src/HOL/MicroJava/BV/JVMType.thy
author kleing
Sun Dec 16 00:17:44 2001 +0100 (2001-12-16)
changeset 12516 d09d0f160888
parent 11372 648795477bb5
child 12911 704713ca07ea
permissions -rw-r--r--
exceptions
kleing@12516
     1
(*  Title:      HOL/MicroJava/BV/JVM.thy
kleing@10812
     2
    ID:         $Id$
kleing@10812
     3
    Author:     Gerwin Klein
kleing@10812
     4
    Copyright   2000 TUM
kleing@10812
     5
kleing@10812
     6
*)
kleing@10812
     7
kleing@12516
     8
header "The JVM Type System as Semilattice"
kleing@10812
     9
kleing@10812
    10
theory JVMType = Opt + Product + Listn + JType:
kleing@10812
    11
kleing@10812
    12
types
kleing@10812
    13
  locvars_type = "ty err list"
kleing@10812
    14
  opstack_type = "ty list"
kleing@10812
    15
  state_type   = "opstack_type \<times> locvars_type"
kleing@12516
    16
  state        = "state_type option err"    -- "for Kildall"
kleing@12516
    17
  method_type  = "state_type option list"   -- "for BVSpec"
kleing@10812
    18
  class_type   = "sig => method_type"
kleing@10812
    19
  prog_type    = "cname => class_type"
kleing@10812
    20
kleing@10812
    21
kleing@10812
    22
constdefs
kleing@10812
    23
  stk_esl :: "'c prog => nat => ty list esl"
kleing@10812
    24
  "stk_esl S maxs == upto_esl maxs (JType.esl S)"
kleing@10812
    25
kleing@10812
    26
  reg_sl :: "'c prog => nat => ty err list sl"
kleing@10812
    27
  "reg_sl S maxr == Listn.sl maxr (Err.sl (JType.esl S))"
kleing@10812
    28
kleing@10812
    29
  sl :: "'c prog => nat => nat => state sl"
kleing@10812
    30
  "sl S maxs maxr ==
kleing@10812
    31
  Err.sl(Opt.esl(Product.esl (stk_esl S maxs) (Err.esl(reg_sl S maxr))))"
kleing@10812
    32
kleing@10812
    33
constdefs
kleing@10812
    34
  states :: "'c prog => nat => nat => state set"
kleing@10812
    35
  "states S maxs maxr == fst(sl S maxs maxr)"
kleing@10812
    36
kleing@10812
    37
  le :: "'c prog => nat => nat => state ord"
kleing@10812
    38
  "le S maxs maxr == fst(snd(sl S maxs maxr))"
kleing@10812
    39
kleing@10812
    40
  sup :: "'c prog => nat => nat => state binop"
kleing@10812
    41
  "sup S maxs maxr == snd(snd(sl S maxs maxr))"
kleing@10812
    42
kleing@10812
    43
kleing@10812
    44
constdefs
kleing@10812
    45
  sup_ty_opt :: "['code prog,ty err,ty err] => bool" 
oheimb@11372
    46
                 ("_ |- _ <=o _" [71,71] 70)
kleing@10812
    47
  "sup_ty_opt G == Err.le (subtype G)"
kleing@10812
    48
kleing@10812
    49
  sup_loc :: "['code prog,locvars_type,locvars_type] => bool" 
oheimb@11372
    50
              ("_ |- _ <=l _"  [71,71] 70)
kleing@10812
    51
  "sup_loc G == Listn.le (sup_ty_opt G)"
kleing@10812
    52
kleing@12516
    53
  sup_state :: "['code prog,state_type,state_type] => bool"   
oheimb@11372
    54
               ("_ |- _ <=s _"  [71,71] 70)
kleing@10812
    55
  "sup_state G == Product.le (Listn.le (subtype G)) (sup_loc G)"
kleing@10812
    56
kleing@10812
    57
  sup_state_opt :: "['code prog,state_type option,state_type option] => bool" 
oheimb@11372
    58
                   ("_ |- _ <=' _"  [71,71] 70)
kleing@10812
    59
  "sup_state_opt G == Opt.le (sup_state G)"
kleing@10812
    60
kleing@10812
    61
oheimb@11372
    62
syntax (xsymbols)
kleing@10812
    63
  sup_ty_opt    :: "['code prog,ty err,ty err] => bool" 
oheimb@11372
    64
                   ("_ \<turnstile> _ <=o _" [71,71] 70)
kleing@10812
    65
  sup_loc       :: "['code prog,locvars_type,locvars_type] => bool" 
oheimb@11372
    66
                   ("_ \<turnstile> _ <=l _" [71,71] 70)
kleing@12516
    67
  sup_state     :: "['code prog,state_type,state_type] => bool" 
oheimb@11372
    68
                   ("_ \<turnstile> _ <=s _" [71,71] 70)
kleing@10812
    69
  sup_state_opt :: "['code prog,state_type option,state_type option] => bool"
oheimb@11372
    70
                   ("_ \<turnstile> _ <=' _" [71,71] 70)
kleing@10812
    71
                   
kleing@10812
    72
kleing@10812
    73
lemma JVM_states_unfold: 
kleing@10812
    74
  "states S maxs maxr == err(opt((Union {list n (types S) |n. n <= maxs}) <*>
kleing@10812
    75
                                  list maxr (err(types S))))"
kleing@10812
    76
  apply (unfold states_def sl_def Opt.esl_def Err.sl_def
kleing@10812
    77
         stk_esl_def reg_sl_def Product.esl_def
kleing@10812
    78
         Listn.sl_def upto_esl_def JType.esl_def Err.esl_def)
kleing@10812
    79
  by simp
kleing@10812
    80
kleing@10812
    81
kleing@10812
    82
lemma JVM_le_unfold:
kleing@10812
    83
 "le S m n == 
kleing@10812
    84
  Err.le(Opt.le(Product.le(Listn.le(subtype S))(Listn.le(Err.le(subtype S)))))" 
kleing@10812
    85
  apply (unfold le_def sl_def Opt.esl_def Err.sl_def
kleing@10812
    86
         stk_esl_def reg_sl_def Product.esl_def  
kleing@10812
    87
         Listn.sl_def upto_esl_def JType.esl_def Err.esl_def) 
kleing@10812
    88
  by simp
kleing@10812
    89
kleing@10812
    90
lemma JVM_le_convert:
kleing@10812
    91
  "le G m n (OK t1) (OK t2) = G \<turnstile> t1 <=' t2"
kleing@10812
    92
  by (simp add: JVM_le_unfold Err.le_def lesub_def sup_state_opt_def 
kleing@10812
    93
                sup_state_def sup_loc_def sup_ty_opt_def)
kleing@10812
    94
kleing@10812
    95
lemma JVM_le_Err_conv:
kleing@10812
    96
  "le G m n = Err.le (sup_state_opt G)"
kleing@10812
    97
  by (unfold sup_state_opt_def sup_state_def sup_loc_def  
kleing@10812
    98
             sup_ty_opt_def JVM_le_unfold) simp
kleing@10812
    99
kleing@10812
   100
lemma zip_map [rule_format]:
kleing@12516
   101
  "\<forall>a. length a = length b --> 
kleing@12516
   102
  zip (map f a) (map g b) = map (\<lambda>(x,y). (f x, g y)) (zip a b)"
kleing@10812
   103
  apply (induct b) 
kleing@10812
   104
   apply simp
kleing@10812
   105
  apply clarsimp
kleing@10812
   106
  apply (case_tac aa)
kleing@10812
   107
  apply simp+
kleing@10812
   108
  done
kleing@10812
   109
kleing@10812
   110
lemma [simp]: "Err.le r (OK a) (OK b) = r a b"
kleing@10812
   111
  by (simp add: Err.le_def lesub_def)
kleing@10812
   112
kleing@10812
   113
lemma stk_convert:
kleing@10812
   114
  "Listn.le (subtype G) a b = G \<turnstile> map OK a <=l map OK b"
kleing@10812
   115
proof 
kleing@10812
   116
  assume "Listn.le (subtype G) a b"
kleing@10812
   117
kleing@10812
   118
  hence le: "list_all2 (subtype G) a b"
kleing@10812
   119
    by (unfold Listn.le_def lesub_def)
kleing@10812
   120
  
kleing@10812
   121
  { fix x' y'
kleing@10812
   122
    assume "length a = length b"
kleing@10812
   123
           "(x',y') \<in> set (zip (map OK a) (map OK b))"
kleing@10812
   124
    then
kleing@10812
   125
    obtain x y where OK:
kleing@10812
   126
      "x' = OK x" "y' = OK y" "(x,y) \<in> set (zip a b)"
kleing@10812
   127
      by (auto simp add: zip_map)
kleing@10812
   128
    with le
kleing@10812
   129
    have "subtype G x y"
kleing@10812
   130
      by (simp add: list_all2_def Ball_def)
kleing@10812
   131
    with OK
kleing@10812
   132
    have "G \<turnstile> x' <=o y'"
kleing@10812
   133
      by (simp add: sup_ty_opt_def)
kleing@10812
   134
  }
kleing@10812
   135
  
kleing@10812
   136
  with le
kleing@10812
   137
  show "G \<turnstile> map OK a <=l map OK b"
kleing@10812
   138
    by (unfold sup_loc_def Listn.le_def lesub_def list_all2_def) auto
kleing@10812
   139
next
kleing@10812
   140
  assume "G \<turnstile> map OK a <=l map OK b"
kleing@10812
   141
kleing@10812
   142
  thus "Listn.le (subtype G) a b"
kleing@10812
   143
    apply (unfold sup_loc_def list_all2_def Listn.le_def lesub_def)
kleing@10812
   144
    apply (clarsimp simp add: zip_map)
kleing@10812
   145
    apply (drule bspec, assumption)
kleing@10812
   146
    apply (auto simp add: sup_ty_opt_def subtype_def)
kleing@10812
   147
    done
kleing@10812
   148
qed
kleing@10812
   149
kleing@10812
   150
kleing@10812
   151
lemma sup_state_conv:
kleing@12516
   152
  "(G \<turnstile> s1 <=s s2) == 
kleing@12516
   153
  (G \<turnstile> map OK (fst s1) <=l map OK (fst s2)) \<and> (G \<turnstile> snd s1 <=l snd s2)"
kleing@10812
   154
  by (auto simp add: sup_state_def stk_convert lesub_def Product.le_def split_beta)
kleing@10812
   155
kleing@10812
   156
kleing@10812
   157
lemma subtype_refl [simp]:
kleing@10812
   158
  "subtype G t t"
kleing@10812
   159
  by (simp add: subtype_def)
kleing@10812
   160
kleing@10812
   161
theorem sup_ty_opt_refl [simp]:
kleing@10812
   162
  "G \<turnstile> t <=o t"
kleing@10812
   163
  by (simp add: sup_ty_opt_def Err.le_def lesub_def split: err.split)
kleing@10812
   164
kleing@10812
   165
lemma le_list_refl2 [simp]: 
kleing@10812
   166
  "(\<And>xs. r xs xs) \<Longrightarrow> Listn.le r xs xs"
kleing@10812
   167
  by (induct xs, auto simp add: Listn.le_def lesub_def)
kleing@10812
   168
kleing@10812
   169
theorem sup_loc_refl [simp]:
kleing@10812
   170
  "G \<turnstile> t <=l t"
kleing@10812
   171
  by (simp add: sup_loc_def)
kleing@10812
   172
kleing@10812
   173
theorem sup_state_refl [simp]:
kleing@10812
   174
  "G \<turnstile> s <=s s"
kleing@10812
   175
  by (auto simp add: sup_state_def Product.le_def lesub_def)
kleing@10812
   176
kleing@10812
   177
theorem sup_state_opt_refl [simp]:
kleing@10812
   178
  "G \<turnstile> s <=' s"
kleing@10812
   179
  by (simp add: sup_state_opt_def Opt.le_def lesub_def split: option.split)
kleing@10812
   180
  
kleing@10812
   181
kleing@10812
   182
theorem anyConvErr [simp]:
kleing@10812
   183
  "(G \<turnstile> Err <=o any) = (any = Err)"
kleing@10812
   184
  by (simp add: sup_ty_opt_def Err.le_def split: err.split)
kleing@10812
   185
kleing@10812
   186
theorem OKanyConvOK [simp]:
kleing@10812
   187
  "(G \<turnstile> (OK ty') <=o (OK ty)) = (G \<turnstile> ty' \<preceq> ty)"
kleing@10812
   188
  by (simp add: sup_ty_opt_def Err.le_def lesub_def subtype_def)
kleing@10812
   189
kleing@10812
   190
theorem sup_ty_opt_OK:
kleing@10812
   191
  "G \<turnstile> a <=o (OK b) ==> \<exists> x. a = OK x"
kleing@10812
   192
  by (clarsimp simp add: sup_ty_opt_def Err.le_def split: err.splits)
kleing@10812
   193
kleing@10812
   194
lemma widen_PrimT_conv1 [simp]:
kleing@10812
   195
  "[| G \<turnstile> S \<preceq> T; S = PrimT x|] ==> T = PrimT x"
kleing@10812
   196
  by (auto elim: widen.elims)
kleing@10812
   197
kleing@10812
   198
theorem sup_PTS_eq:
kleing@10812
   199
  "(G \<turnstile> OK (PrimT p) <=o X) = (X=Err \<or> X = OK (PrimT p))"
kleing@10812
   200
  by (auto simp add: sup_ty_opt_def Err.le_def lesub_def subtype_def 
kleing@10812
   201
              split: err.splits)
kleing@10812
   202
kleing@10812
   203
theorem sup_loc_Nil [iff]:
kleing@10812
   204
  "(G \<turnstile> [] <=l XT) = (XT=[])"
kleing@10812
   205
  by (simp add: sup_loc_def Listn.le_def)
kleing@10812
   206
kleing@10812
   207
theorem sup_loc_Cons [iff]:
kleing@10812
   208
  "(G \<turnstile> (Y#YT) <=l XT) = (\<exists>X XT'. XT=X#XT' \<and> (G \<turnstile> Y <=o X) \<and> (G \<turnstile> YT <=l XT'))"
kleing@10812
   209
  by (simp add: sup_loc_def Listn.le_def lesub_def list_all2_Cons1)
kleing@10812
   210
kleing@10812
   211
theorem sup_loc_Cons2:
kleing@10812
   212
  "(G \<turnstile> YT <=l (X#XT)) = (\<exists>Y YT'. YT=Y#YT' \<and> (G \<turnstile> Y <=o X) \<and> (G \<turnstile> YT' <=l XT))"
kleing@10812
   213
  by (simp add: sup_loc_def Listn.le_def lesub_def list_all2_Cons2)
kleing@10812
   214
kleing@10812
   215
kleing@10812
   216
theorem sup_loc_length:
kleing@10812
   217
  "G \<turnstile> a <=l b ==> length a = length b"
kleing@10812
   218
proof -
kleing@10812
   219
  assume G: "G \<turnstile> a <=l b"
kleing@10812
   220
  have "\<forall>b. (G \<turnstile> a <=l b) --> length a = length b"
kleing@10812
   221
    by (induct a, auto)
kleing@10812
   222
  with G
kleing@10812
   223
  show ?thesis by blast
kleing@10812
   224
qed
kleing@10812
   225
kleing@10812
   226
theorem sup_loc_nth:
kleing@10812
   227
  "[| G \<turnstile> a <=l b; n < length a |] ==> G \<turnstile> (a!n) <=o (b!n)"
kleing@10812
   228
proof -
kleing@10812
   229
  assume a: "G \<turnstile> a <=l b" "n < length a"
kleing@10812
   230
  have "\<forall> n b. (G \<turnstile> a <=l b) --> n < length a --> (G \<turnstile> (a!n) <=o (b!n))"
kleing@10812
   231
    (is "?P a")
kleing@10812
   232
  proof (induct a)
kleing@10812
   233
    show "?P []" by simp
kleing@10812
   234
    
kleing@10812
   235
    fix x xs assume IH: "?P xs"
kleing@10812
   236
kleing@10812
   237
    show "?P (x#xs)"
kleing@10812
   238
    proof (intro strip)
kleing@10812
   239
      fix n b
kleing@10812
   240
      assume "G \<turnstile> (x # xs) <=l b" "n < length (x # xs)"
kleing@10812
   241
      with IH
kleing@10812
   242
      show "G \<turnstile> ((x # xs) ! n) <=o (b ! n)"
kleing@10812
   243
        by - (cases n, auto)
kleing@10812
   244
    qed
kleing@10812
   245
  qed
kleing@10812
   246
  with a
kleing@10812
   247
  show ?thesis by blast
kleing@10812
   248
qed
kleing@10812
   249
kleing@10812
   250
theorem all_nth_sup_loc:
kleing@10812
   251
  "\<forall>b. length a = length b --> (\<forall> n. n < length a --> (G \<turnstile> (a!n) <=o (b!n))) 
kleing@10812
   252
  --> (G \<turnstile> a <=l b)" (is "?P a")
kleing@10812
   253
proof (induct a)
kleing@10812
   254
  show "?P []" by simp
kleing@10812
   255
kleing@10812
   256
  fix l ls assume IH: "?P ls"
kleing@10812
   257
  
kleing@10812
   258
  show "?P (l#ls)"
kleing@10812
   259
  proof (intro strip)
kleing@10812
   260
    fix b
kleing@10812
   261
    assume f: "\<forall>n. n < length (l # ls) --> (G \<turnstile> ((l # ls) ! n) <=o (b ! n))"
kleing@10812
   262
    assume l: "length (l#ls) = length b"
kleing@10812
   263
    
kleing@10812
   264
    then obtain b' bs where b: "b = b'#bs"
kleing@10812
   265
      by - (cases b, simp, simp add: neq_Nil_conv, rule that)
kleing@10812
   266
kleing@10812
   267
    with f
kleing@10812
   268
    have "\<forall>n. n < length ls --> (G \<turnstile> (ls!n) <=o (bs!n))"
kleing@10812
   269
      by auto
kleing@10812
   270
kleing@10812
   271
    with f b l IH
kleing@10812
   272
    show "G \<turnstile> (l # ls) <=l b"
kleing@10812
   273
      by auto
kleing@10812
   274
  qed
kleing@10812
   275
qed
kleing@10812
   276
kleing@10812
   277
kleing@10812
   278
theorem sup_loc_append:
kleing@10812
   279
  "length a = length b ==> 
kleing@10812
   280
   (G \<turnstile> (a@x) <=l (b@y)) = ((G \<turnstile> a <=l b) \<and> (G \<turnstile> x <=l y))"
kleing@10812
   281
proof -
kleing@10812
   282
  assume l: "length a = length b"
kleing@10812
   283
kleing@10812
   284
  have "\<forall>b. length a = length b --> (G \<turnstile> (a@x) <=l (b@y)) = ((G \<turnstile> a <=l b) \<and> 
kleing@10812
   285
            (G \<turnstile> x <=l y))" (is "?P a") 
kleing@10812
   286
  proof (induct a)
kleing@10812
   287
    show "?P []" by simp
kleing@10812
   288
    
kleing@10812
   289
    fix l ls assume IH: "?P ls"    
kleing@10812
   290
    show "?P (l#ls)" 
kleing@10812
   291
    proof (intro strip)
kleing@10812
   292
      fix b
kleing@10812
   293
      assume "length (l#ls) = length (b::ty err list)"
kleing@10812
   294
      with IH
kleing@10812
   295
      show "(G \<turnstile> ((l#ls)@x) <=l (b@y)) = ((G \<turnstile> (l#ls) <=l b) \<and> (G \<turnstile> x <=l y))"
kleing@10812
   296
        by - (cases b, auto)
kleing@10812
   297
    qed
kleing@10812
   298
  qed
kleing@10812
   299
  with l
kleing@10812
   300
  show ?thesis by blast
kleing@10812
   301
qed
kleing@10812
   302
kleing@10812
   303
theorem sup_loc_rev [simp]:
kleing@10812
   304
  "(G \<turnstile> (rev a) <=l rev b) = (G \<turnstile> a <=l b)"
kleing@10812
   305
proof -
kleing@10812
   306
  have "\<forall>b. (G \<turnstile> (rev a) <=l rev b) = (G \<turnstile> a <=l b)" (is "\<forall>b. ?Q a b" is "?P a")
kleing@10812
   307
  proof (induct a)
kleing@10812
   308
    show "?P []" by simp
kleing@10812
   309
kleing@10812
   310
    fix l ls assume IH: "?P ls"
kleing@10812
   311
kleing@10812
   312
    { 
kleing@10812
   313
      fix b
kleing@10812
   314
      have "?Q (l#ls) b"
kleing@10812
   315
      proof (cases (open) b)
kleing@10812
   316
        case Nil
kleing@10812
   317
        thus ?thesis by (auto dest: sup_loc_length)
kleing@10812
   318
      next
kleing@10812
   319
        case Cons 
kleing@10812
   320
        show ?thesis
kleing@10812
   321
        proof
kleing@10812
   322
          assume "G \<turnstile> (l # ls) <=l b"
kleing@10812
   323
          thus "G \<turnstile> rev (l # ls) <=l rev b"
kleing@10812
   324
            by (clarsimp simp add: Cons IH sup_loc_length sup_loc_append)
kleing@10812
   325
        next
kleing@10812
   326
          assume "G \<turnstile> rev (l # ls) <=l rev b"
kleing@10812
   327
          hence G: "G \<turnstile> (rev ls @ [l]) <=l (rev list @ [a])"
kleing@10812
   328
            by (simp add: Cons)          
kleing@10812
   329
          
kleing@10812
   330
          hence "length (rev ls) = length (rev list)"
kleing@10812
   331
            by (auto dest: sup_loc_length)
kleing@10812
   332
kleing@10812
   333
          from this G
kleing@10812
   334
          obtain "G \<turnstile> rev ls <=l rev list" "G \<turnstile> l <=o a"
kleing@10812
   335
            by (simp add: sup_loc_append)
kleing@10812
   336
kleing@10812
   337
          thus "G \<turnstile> (l # ls) <=l b"
kleing@10812
   338
            by (simp add: Cons IH)
kleing@10812
   339
        qed
kleing@10812
   340
      qed    
kleing@10812
   341
    }
kleing@10812
   342
    thus "?P (l#ls)" by blast
kleing@10812
   343
  qed
kleing@10812
   344
kleing@10812
   345
  thus ?thesis by blast
kleing@10812
   346
qed
kleing@10812
   347
kleing@10812
   348
kleing@10812
   349
theorem sup_loc_update [rule_format]:
kleing@10812
   350
  "\<forall> n y. (G \<turnstile> a <=o b) --> n < length y --> (G \<turnstile> x <=l y) --> 
kleing@10812
   351
          (G \<turnstile> x[n := a] <=l y[n := b])" (is "?P x")
kleing@10812
   352
proof (induct x)
kleing@10812
   353
  show "?P []" by simp
kleing@10812
   354
kleing@10812
   355
  fix l ls assume IH: "?P ls"
kleing@10812
   356
  show "?P (l#ls)"
kleing@10812
   357
  proof (intro strip)
kleing@10812
   358
    fix n y
kleing@10812
   359
    assume "G \<turnstile>a <=o b" "G \<turnstile> (l # ls) <=l y" "n < length y"
kleing@10812
   360
    with IH
kleing@10812
   361
    show "G \<turnstile> (l # ls)[n := a] <=l y[n := b]"
kleing@10812
   362
      by - (cases n, auto simp add: sup_loc_Cons2 list_all2_Cons1)
kleing@10812
   363
  qed
kleing@10812
   364
qed
kleing@10812
   365
kleing@10812
   366
kleing@10812
   367
theorem sup_state_length [simp]:
kleing@10812
   368
  "G \<turnstile> s2 <=s s1 ==> 
kleing@10812
   369
   length (fst s2) = length (fst s1) \<and> length (snd s2) = length (snd s1)"
kleing@10812
   370
  by (auto dest: sup_loc_length simp add: sup_state_def stk_convert lesub_def Product.le_def);
kleing@10812
   371
kleing@10812
   372
theorem sup_state_append_snd:
kleing@10812
   373
  "length a = length b ==> 
kleing@10812
   374
  (G \<turnstile> (i,a@x) <=s (j,b@y)) = ((G \<turnstile> (i,a) <=s (j,b)) \<and> (G \<turnstile> (i,x) <=s (j,y)))"
kleing@10812
   375
  by (auto simp add: sup_state_def stk_convert lesub_def Product.le_def sup_loc_append)
kleing@10812
   376
kleing@10812
   377
theorem sup_state_append_fst:
kleing@10812
   378
  "length a = length b ==> 
kleing@10812
   379
  (G \<turnstile> (a@x,i) <=s (b@y,j)) = ((G \<turnstile> (a,i) <=s (b,j)) \<and> (G \<turnstile> (x,i) <=s (y,j)))"
kleing@10812
   380
  by (auto simp add: sup_state_def stk_convert lesub_def Product.le_def sup_loc_append)
kleing@10812
   381
kleing@10812
   382
theorem sup_state_Cons1:
kleing@10812
   383
  "(G \<turnstile> (x#xt, a) <=s (yt, b)) = 
kleing@10812
   384
   (\<exists>y yt'. yt=y#yt' \<and> (G \<turnstile> x \<preceq> y) \<and> (G \<turnstile> (xt,a) <=s (yt',b)))"
kleing@10812
   385
  by (auto simp add: sup_state_def stk_convert lesub_def Product.le_def map_eq_Cons)
kleing@10812
   386
kleing@10812
   387
theorem sup_state_Cons2:
kleing@10812
   388
  "(G \<turnstile> (xt, a) <=s (y#yt, b)) = 
kleing@10812
   389
   (\<exists>x xt'. xt=x#xt' \<and> (G \<turnstile> x \<preceq> y) \<and> (G \<turnstile> (xt',a) <=s (yt,b)))"
kleing@10812
   390
  by (auto simp add: sup_state_def stk_convert lesub_def Product.le_def map_eq_Cons sup_loc_Cons2)
kleing@10812
   391
kleing@10812
   392
theorem sup_state_ignore_fst:  
kleing@10812
   393
  "G \<turnstile> (a, x) <=s (b, y) ==> G \<turnstile> (c, x) <=s (c, y)"
kleing@10812
   394
  by (simp add: sup_state_def lesub_def Product.le_def)
kleing@10812
   395
kleing@10812
   396
theorem sup_state_rev_fst:
kleing@10812
   397
  "(G \<turnstile> (rev a, x) <=s (rev b, y)) = (G \<turnstile> (a, x) <=s (b, y))"
kleing@10812
   398
proof -
kleing@10812
   399
  have m: "!!f x. map f (rev x) = rev (map f x)" by (simp add: rev_map)
kleing@10812
   400
  show ?thesis by (simp add: m sup_state_def stk_convert lesub_def Product.le_def)
kleing@10812
   401
qed
kleing@10812
   402
  
kleing@10812
   403
kleing@10812
   404
lemma sup_state_opt_None_any [iff]:
kleing@10812
   405
  "(G \<turnstile> None <=' any) = True"
kleing@10812
   406
  by (simp add: sup_state_opt_def Opt.le_def split: option.split)
kleing@10812
   407
kleing@10812
   408
lemma sup_state_opt_any_None [iff]:
kleing@10812
   409
  "(G \<turnstile> any <=' None) = (any = None)"
kleing@10812
   410
  by (simp add: sup_state_opt_def Opt.le_def split: option.split)
kleing@10812
   411
kleing@10812
   412
lemma sup_state_opt_Some_Some [iff]:
kleing@10812
   413
  "(G \<turnstile> (Some a) <=' (Some b)) = (G \<turnstile> a <=s b)"
kleing@10812
   414
  by (simp add: sup_state_opt_def Opt.le_def lesub_def del: split_paired_Ex)
kleing@10812
   415
kleing@10812
   416
lemma sup_state_opt_any_Some [iff]:
kleing@10812
   417
  "(G \<turnstile> (Some a) <=' any) = (\<exists>b. any = Some b \<and> G \<turnstile> a <=s b)"
kleing@10812
   418
  by (simp add: sup_state_opt_def Opt.le_def lesub_def split: option.split)
kleing@10812
   419
kleing@10812
   420
lemma sup_state_opt_Some_any:
kleing@10812
   421
  "(G \<turnstile> any <=' (Some b)) = (any = None \<or> (\<exists>a. any = Some a \<and> G \<turnstile> a <=s b))"
kleing@10812
   422
  by (simp add: sup_state_opt_def Opt.le_def lesub_def split: option.split)
kleing@10812
   423
kleing@10812
   424
kleing@10812
   425
theorem sup_ty_opt_trans [trans]:
kleing@10812
   426
  "[|G \<turnstile> a <=o b; G \<turnstile> b <=o c|] ==> G \<turnstile> a <=o c"
kleing@10812
   427
  by (auto intro: widen_trans 
kleing@10812
   428
           simp add: sup_ty_opt_def Err.le_def lesub_def subtype_def 
kleing@10812
   429
           split: err.splits)
kleing@10812
   430
kleing@10812
   431
theorem sup_loc_trans [trans]:
kleing@10812
   432
  "[|G \<turnstile> a <=l b; G \<turnstile> b <=l c|] ==> G \<turnstile> a <=l c"
kleing@10812
   433
proof -
kleing@10812
   434
  assume G: "G \<turnstile> a <=l b" "G \<turnstile> b <=l c"
kleing@10812
   435
 
kleing@10812
   436
  hence "\<forall> n. n < length a --> (G \<turnstile> (a!n) <=o (c!n))"
kleing@10812
   437
  proof (intro strip)
kleing@10812
   438
    fix n 
kleing@10812
   439
    assume n: "n < length a"
kleing@10812
   440
    with G
kleing@10812
   441
    have "G \<turnstile> (a!n) <=o (b!n)"
kleing@10812
   442
      by - (rule sup_loc_nth)
kleing@10812
   443
    also 
kleing@10812
   444
    from n G
kleing@10812
   445
    have "G \<turnstile> ... <=o (c!n)"
kleing@10812
   446
      by - (rule sup_loc_nth, auto dest: sup_loc_length)
kleing@10812
   447
    finally
kleing@10812
   448
    show "G \<turnstile> (a!n) <=o (c!n)" .
kleing@10812
   449
  qed
kleing@10812
   450
kleing@10812
   451
  with G
kleing@10812
   452
  show ?thesis 
kleing@10812
   453
    by (auto intro!: all_nth_sup_loc [rule_format] dest!: sup_loc_length) 
kleing@10812
   454
qed
kleing@10812
   455
  
kleing@10812
   456
kleing@10812
   457
theorem sup_state_trans [trans]:
kleing@10812
   458
  "[|G \<turnstile> a <=s b; G \<turnstile> b <=s c|] ==> G \<turnstile> a <=s c"
kleing@10812
   459
  by (auto intro: sup_loc_trans simp add: sup_state_def stk_convert Product.le_def lesub_def)
kleing@10812
   460
kleing@10812
   461
theorem sup_state_opt_trans [trans]:
kleing@10812
   462
  "[|G \<turnstile> a <=' b; G \<turnstile> b <=' c|] ==> G \<turnstile> a <=' c"
kleing@10812
   463
  by (auto intro: sup_state_trans 
kleing@10812
   464
           simp add: sup_state_opt_def Opt.le_def lesub_def 
kleing@10812
   465
           split: option.splits)
kleing@10812
   466
kleing@10812
   467
end