| author | berghofe | 
| Sat, 15 Jan 2011 12:35:29 +0100 | |
| changeset 41561 | d1318f3c86ba | 
| parent 28952 | 15a4b2cf8c34 | 
| child 41777 | 1f7cbe39d425 | 
| permissions | -rw-r--r-- | 
| 13240 | 1  | 
(* Title: ZF/pair  | 
2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
3  | 
Copyright 1992 University of Cambridge  | 
|
4  | 
||
5  | 
*)  | 
|
6  | 
||
| 13357 | 7  | 
header{*Ordered Pairs*}
 | 
8  | 
||
| 16417 | 9  | 
theory pair imports upair  | 
10  | 
uses "simpdata.ML" begin  | 
|
| 13240 | 11  | 
|
12  | 
(** Lemmas for showing that <a,b> uniquely determines a and b **)  | 
|
13  | 
||
14  | 
lemma singleton_eq_iff [iff]: "{a} = {b} <-> a=b"
 | 
|
15  | 
by (rule extension [THEN iff_trans], blast)  | 
|
16  | 
||
17  | 
lemma doubleton_eq_iff: "{a,b} = {c,d} <-> (a=c & b=d) | (a=d & b=c)"
 | 
|
18  | 
by (rule extension [THEN iff_trans], blast)  | 
|
19  | 
||
20  | 
lemma Pair_iff [simp]: "<a,b> = <c,d> <-> a=c & b=d"  | 
|
21  | 
by (simp add: Pair_def doubleton_eq_iff, blast)  | 
|
22  | 
||
23  | 
lemmas Pair_inject = Pair_iff [THEN iffD1, THEN conjE, standard, elim!]  | 
|
24  | 
||
25  | 
lemmas Pair_inject1 = Pair_iff [THEN iffD1, THEN conjunct1, standard]  | 
|
26  | 
lemmas Pair_inject2 = Pair_iff [THEN iffD1, THEN conjunct2, standard]  | 
|
27  | 
||
28  | 
lemma Pair_not_0: "<a,b> ~= 0"  | 
|
29  | 
apply (unfold Pair_def)  | 
|
30  | 
apply (blast elim: equalityE)  | 
|
31  | 
done  | 
|
32  | 
||
33  | 
lemmas Pair_neq_0 = Pair_not_0 [THEN notE, standard, elim!]  | 
|
34  | 
||
35  | 
declare sym [THEN Pair_neq_0, elim!]  | 
|
36  | 
||
37  | 
lemma Pair_neq_fst: "<a,b>=a ==> P"  | 
|
38  | 
apply (unfold Pair_def)  | 
|
39  | 
apply (rule consI1 [THEN mem_asym, THEN FalseE])  | 
|
40  | 
apply (erule subst)  | 
|
41  | 
apply (rule consI1)  | 
|
42  | 
done  | 
|
43  | 
||
44  | 
lemma Pair_neq_snd: "<a,b>=b ==> P"  | 
|
45  | 
apply (unfold Pair_def)  | 
|
46  | 
apply (rule consI1 [THEN consI2, THEN mem_asym, THEN FalseE])  | 
|
47  | 
apply (erule subst)  | 
|
48  | 
apply (rule consI1 [THEN consI2])  | 
|
49  | 
done  | 
|
50  | 
||
51  | 
||
| 13357 | 52  | 
subsection{*Sigma: Disjoint Union of a Family of Sets*}
 | 
53  | 
||
54  | 
text{*Generalizes Cartesian product*}
 | 
|
| 13240 | 55  | 
|
56  | 
lemma Sigma_iff [simp]: "<a,b>: Sigma(A,B) <-> a:A & b:B(a)"  | 
|
57  | 
by (simp add: Sigma_def)  | 
|
58  | 
||
59  | 
lemma SigmaI [TC,intro!]: "[| a:A; b:B(a) |] ==> <a,b> : Sigma(A,B)"  | 
|
60  | 
by simp  | 
|
61  | 
||
62  | 
lemmas SigmaD1 = Sigma_iff [THEN iffD1, THEN conjunct1, standard]  | 
|
63  | 
lemmas SigmaD2 = Sigma_iff [THEN iffD1, THEN conjunct2, standard]  | 
|
64  | 
||
65  | 
(*The general elimination rule*)  | 
|
66  | 
lemma SigmaE [elim!]:  | 
|
67  | 
"[| c: Sigma(A,B);  | 
|
68  | 
!!x y.[| x:A; y:B(x); c=<x,y> |] ==> P  | 
|
69  | 
|] ==> P"  | 
|
| 13357 | 70  | 
by (unfold Sigma_def, blast)  | 
| 13240 | 71  | 
|
72  | 
lemma SigmaE2 [elim!]:  | 
|
73  | 
"[| <a,b> : Sigma(A,B);  | 
|
74  | 
[| a:A; b:B(a) |] ==> P  | 
|
75  | 
|] ==> P"  | 
|
| 13357 | 76  | 
by (unfold Sigma_def, blast)  | 
| 13240 | 77  | 
|
78  | 
lemma Sigma_cong:  | 
|
79  | 
"[| A=A'; !!x. x:A' ==> B(x)=B'(x) |] ==>  | 
|
80  | 
Sigma(A,B) = Sigma(A',B')"  | 
|
81  | 
by (simp add: Sigma_def)  | 
|
82  | 
||
83  | 
(*Sigma_cong, Pi_cong NOT given to Addcongs: they cause  | 
|
84  | 
flex-flex pairs and the "Check your prover" error. Most  | 
|
85  | 
Sigmas and Pis are abbreviated as * or -> *)  | 
|
86  | 
||
87  | 
lemma Sigma_empty1 [simp]: "Sigma(0,B) = 0"  | 
|
88  | 
by blast  | 
|
89  | 
||
90  | 
lemma Sigma_empty2 [simp]: "A*0 = 0"  | 
|
91  | 
by blast  | 
|
92  | 
||
93  | 
lemma Sigma_empty_iff: "A*B=0 <-> A=0 | B=0"  | 
|
94  | 
by blast  | 
|
95  | 
||
96  | 
||
| 13357 | 97  | 
subsection{*Projections @{term fst} and @{term snd}*}
 | 
| 13240 | 98  | 
|
99  | 
lemma fst_conv [simp]: "fst(<a,b>) = a"  | 
|
| 13544 | 100  | 
by (simp add: fst_def)  | 
| 13240 | 101  | 
|
102  | 
lemma snd_conv [simp]: "snd(<a,b>) = b"  | 
|
| 13544 | 103  | 
by (simp add: snd_def)  | 
| 13240 | 104  | 
|
105  | 
lemma fst_type [TC]: "p:Sigma(A,B) ==> fst(p) : A"  | 
|
106  | 
by auto  | 
|
107  | 
||
108  | 
lemma snd_type [TC]: "p:Sigma(A,B) ==> snd(p) : B(fst(p))"  | 
|
109  | 
by auto  | 
|
110  | 
||
111  | 
lemma Pair_fst_snd_eq: "a: Sigma(A,B) ==> <fst(a),snd(a)> = a"  | 
|
112  | 
by auto  | 
|
113  | 
||
114  | 
||
| 13357 | 115  | 
subsection{*The Eliminator, @{term split}*}
 | 
| 13240 | 116  | 
|
117  | 
(*A META-equality, so that it applies to higher types as well...*)  | 
|
118  | 
lemma split [simp]: "split(%x y. c(x,y), <a,b>) == c(a,b)"  | 
|
119  | 
by (simp add: split_def)  | 
|
120  | 
||
121  | 
lemma split_type [TC]:  | 
|
122  | 
"[| p:Sigma(A,B);  | 
|
123  | 
!!x y.[| x:A; y:B(x) |] ==> c(x,y):C(<x,y>)  | 
|
124  | 
|] ==> split(%x y. c(x,y), p) : C(p)"  | 
|
125  | 
apply (erule SigmaE, auto)  | 
|
126  | 
done  | 
|
127  | 
||
128  | 
lemma expand_split:  | 
|
129  | 
"u: A*B ==>  | 
|
130  | 
R(split(c,u)) <-> (ALL x:A. ALL y:B. u = <x,y> --> R(c(x,y)))"  | 
|
| 17001 | 131  | 
apply (simp add: split_def)  | 
132  | 
apply auto  | 
|
| 13240 | 133  | 
done  | 
134  | 
||
135  | 
||
| 13357 | 136  | 
subsection{*A version of @{term split} for Formulae: Result Type @{typ o}*}
 | 
| 13240 | 137  | 
|
138  | 
lemma splitI: "R(a,b) ==> split(R, <a,b>)"  | 
|
139  | 
by (simp add: split_def)  | 
|
140  | 
||
141  | 
lemma splitE:  | 
|
142  | 
"[| split(R,z); z:Sigma(A,B);  | 
|
143  | 
!!x y. [| z = <x,y>; R(x,y) |] ==> P  | 
|
144  | 
|] ==> P"  | 
|
145  | 
apply (simp add: split_def)  | 
|
146  | 
apply (erule SigmaE, force)  | 
|
147  | 
done  | 
|
148  | 
||
149  | 
lemma splitD: "split(R,<a,b>) ==> R(a,b)"  | 
|
150  | 
by (simp add: split_def)  | 
|
151  | 
||
| 14864 | 152  | 
text {*
 | 
153  | 
\bigskip Complex rules for Sigma.  | 
|
154  | 
*}  | 
|
155  | 
||
156  | 
lemma split_paired_Bex_Sigma [simp]:  | 
|
157  | 
"(\<exists>z \<in> Sigma(A,B). P(z)) <-> (\<exists>x \<in> A. \<exists>y \<in> B(x). P(<x,y>))"  | 
|
158  | 
by blast  | 
|
159  | 
||
160  | 
lemma split_paired_Ball_Sigma [simp]:  | 
|
161  | 
"(\<forall>z \<in> Sigma(A,B). P(z)) <-> (\<forall>x \<in> A. \<forall>y \<in> B(x). P(<x,y>))"  | 
|
162  | 
by blast  | 
|
163  | 
||
| 
9570
 
e16e168984e1
installation of cancellation simprocs for the integers
 
paulson 
parents: 
2469 
diff
changeset
 | 
164  | 
end  | 
| 124 | 165  | 
|
| 2469 | 166  |