| author | haftmann | 
| Thu, 08 Sep 2011 11:31:23 +0200 | |
| changeset 44839 | d19c677eb812 | 
| parent 44668 | 31d41a0f6b5d | 
| child 44890 | 22f665a2e91c | 
| permissions | -rw-r--r-- | 
| 33714 
eb2574ac4173
Added new lemmas to Euclidean Space by Robert Himmelmann
 hoelzl parents: 
33324diff
changeset | 1 | (* title: HOL/Library/Topology_Euclidian_Space.thy | 
| 33175 | 2 | Author: Amine Chaieb, University of Cambridge | 
| 3 | Author: Robert Himmelmann, TU Muenchen | |
| 44075 | 4 | Author: Brian Huffman, Portland State University | 
| 33175 | 5 | *) | 
| 6 | ||
| 7 | header {* Elementary topology in Euclidean space. *}
 | |
| 8 | ||
| 9 | theory Topology_Euclidean_Space | |
| 44628 
bd17b7543af1
move lemmas from Topology_Euclidean_Space to Euclidean_Space
 huffman parents: 
44584diff
changeset | 10 | imports SEQ Linear_Algebra "~~/src/HOL/Library/Glbs" Norm_Arith | 
| 33175 | 11 | begin | 
| 12 | ||
| 44517 | 13 | subsection {* General notion of a topology as a value *}
 | 
| 33175 | 14 | |
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44167diff
changeset | 15 | definition "istopology L \<longleftrightarrow> L {} \<and> (\<forall>S T. L S \<longrightarrow> L T \<longrightarrow> L (S \<inter> T)) \<and> (\<forall>K. Ball K L \<longrightarrow> L (\<Union> K))"
 | 
| 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44167diff
changeset | 16 | typedef (open) 'a topology = "{L::('a set) \<Rightarrow> bool. istopology L}"
 | 
| 33175 | 17 | morphisms "openin" "topology" | 
| 18 | unfolding istopology_def by blast | |
| 19 | ||
| 20 | lemma istopology_open_in[intro]: "istopology(openin U)" | |
| 21 | using openin[of U] by blast | |
| 22 | ||
| 23 | lemma topology_inverse': "istopology U \<Longrightarrow> openin (topology U) = U" | |
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44167diff
changeset | 24 | using topology_inverse[unfolded mem_Collect_eq] . | 
| 33175 | 25 | |
| 26 | lemma topology_inverse_iff: "istopology U \<longleftrightarrow> openin (topology U) = U" | |
| 27 | using topology_inverse[of U] istopology_open_in[of "topology U"] by auto | |
| 28 | ||
| 29 | lemma topology_eq: "T1 = T2 \<longleftrightarrow> (\<forall>S. openin T1 S \<longleftrightarrow> openin T2 S)" | |
| 30 | proof- | |
| 31 |   {assume "T1=T2" hence "\<forall>S. openin T1 S \<longleftrightarrow> openin T2 S" by simp}
 | |
| 32 | moreover | |
| 33 |   {assume H: "\<forall>S. openin T1 S \<longleftrightarrow> openin T2 S"
 | |
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44167diff
changeset | 34 | hence "openin T1 = openin T2" by (simp add: fun_eq_iff) | 
| 33175 | 35 | hence "topology (openin T1) = topology (openin T2)" by simp | 
| 36 | hence "T1 = T2" unfolding openin_inverse .} | |
| 37 | ultimately show ?thesis by blast | |
| 38 | qed | |
| 39 | ||
| 40 | text{* Infer the "universe" from union of all sets in the topology. *}
 | |
| 41 | ||
| 42 | definition "topspace T =  \<Union>{S. openin T S}"
 | |
| 43 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 44 | subsubsection {* Main properties of open sets *}
 | 
| 33175 | 45 | |
| 46 | lemma openin_clauses: | |
| 47 | fixes U :: "'a topology" | |
| 48 |   shows "openin U {}"
 | |
| 49 | "\<And>S T. openin U S \<Longrightarrow> openin U T \<Longrightarrow> openin U (S\<inter>T)" | |
| 50 | "\<And>K. (\<forall>S \<in> K. openin U S) \<Longrightarrow> openin U (\<Union>K)" | |
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44167diff
changeset | 51 | using openin[of U] unfolding istopology_def mem_Collect_eq | 
| 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44167diff
changeset | 52 | by fast+ | 
| 33175 | 53 | |
| 54 | lemma openin_subset[intro]: "openin U S \<Longrightarrow> S \<subseteq> topspace U" | |
| 55 | unfolding topspace_def by blast | |
| 56 | lemma openin_empty[simp]: "openin U {}" by (simp add: openin_clauses)
 | |
| 57 | ||
| 58 | lemma openin_Int[intro]: "openin U S \<Longrightarrow> openin U T \<Longrightarrow> openin U (S \<inter> T)" | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36360diff
changeset | 59 | using openin_clauses by simp | 
| 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36360diff
changeset | 60 | |
| 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36360diff
changeset | 61 | lemma openin_Union[intro]: "(\<forall>S \<in>K. openin U S) \<Longrightarrow> openin U (\<Union> K)" | 
| 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36360diff
changeset | 62 | using openin_clauses by simp | 
| 33175 | 63 | |
| 64 | lemma openin_Un[intro]: "openin U S \<Longrightarrow> openin U T \<Longrightarrow> openin U (S \<union> T)" | |
| 65 |   using openin_Union[of "{S,T}" U] by auto
 | |
| 66 | ||
| 67 | lemma openin_topspace[intro, simp]: "openin U (topspace U)" by (simp add: openin_Union topspace_def) | |
| 68 | ||
| 69 | lemma openin_subopen: "openin U S \<longleftrightarrow> (\<forall>x \<in> S. \<exists>T. openin U T \<and> x \<in> T \<and> T \<subseteq> S)" (is "?lhs \<longleftrightarrow> ?rhs") | |
| 36584 | 70 | proof | 
| 71 | assume ?lhs then show ?rhs by auto | |
| 72 | next | |
| 73 | assume H: ?rhs | |
| 74 |   let ?t = "\<Union>{T. openin U T \<and> T \<subseteq> S}"
 | |
| 75 | have "openin U ?t" by (simp add: openin_Union) | |
| 76 | also have "?t = S" using H by auto | |
| 77 | finally show "openin U S" . | |
| 33175 | 78 | qed | 
| 79 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 80 | subsubsection {* Closed sets *}
 | 
| 33175 | 81 | |
| 82 | definition "closedin U S \<longleftrightarrow> S \<subseteq> topspace U \<and> openin U (topspace U - S)" | |
| 83 | ||
| 84 | lemma closedin_subset: "closedin U S \<Longrightarrow> S \<subseteq> topspace U" by (metis closedin_def) | |
| 85 | lemma closedin_empty[simp]: "closedin U {}" by (simp add: closedin_def)
 | |
| 86 | lemma closedin_topspace[intro,simp]: | |
| 87 | "closedin U (topspace U)" by (simp add: closedin_def) | |
| 88 | lemma closedin_Un[intro]: "closedin U S \<Longrightarrow> closedin U T \<Longrightarrow> closedin U (S \<union> T)" | |
| 89 | by (auto simp add: Diff_Un closedin_def) | |
| 90 | ||
| 91 | lemma Diff_Inter[intro]: "A - \<Inter>S = \<Union> {A - s|s. s\<in>S}" by auto
 | |
| 92 | lemma closedin_Inter[intro]: assumes Ke: "K \<noteq> {}" and Kc: "\<forall>S \<in>K. closedin U S"
 | |
| 93 | shows "closedin U (\<Inter> K)" using Ke Kc unfolding closedin_def Diff_Inter by auto | |
| 94 | ||
| 95 | lemma closedin_Int[intro]: "closedin U S \<Longrightarrow> closedin U T \<Longrightarrow> closedin U (S \<inter> T)" | |
| 96 |   using closedin_Inter[of "{S,T}" U] by auto
 | |
| 97 | ||
| 98 | lemma Diff_Diff_Int: "A - (A - B) = A \<inter> B" by blast | |
| 99 | lemma openin_closedin_eq: "openin U S \<longleftrightarrow> S \<subseteq> topspace U \<and> closedin U (topspace U - S)" | |
| 100 | apply (auto simp add: closedin_def Diff_Diff_Int inf_absorb2) | |
| 101 | apply (metis openin_subset subset_eq) | |
| 102 | done | |
| 103 | ||
| 104 | lemma openin_closedin: "S \<subseteq> topspace U \<Longrightarrow> (openin U S \<longleftrightarrow> closedin U (topspace U - S))" | |
| 105 | by (simp add: openin_closedin_eq) | |
| 106 | ||
| 107 | lemma openin_diff[intro]: assumes oS: "openin U S" and cT: "closedin U T" shows "openin U (S - T)" | |
| 108 | proof- | |
| 109 | have "S - T = S \<inter> (topspace U - T)" using openin_subset[of U S] oS cT | |
| 110 | by (auto simp add: topspace_def openin_subset) | |
| 111 | then show ?thesis using oS cT by (auto simp add: closedin_def) | |
| 112 | qed | |
| 113 | ||
| 114 | lemma closedin_diff[intro]: assumes oS: "closedin U S" and cT: "openin U T" shows "closedin U (S - T)" | |
| 115 | proof- | |
| 116 | have "S - T = S \<inter> (topspace U - T)" using closedin_subset[of U S] oS cT | |
| 117 | by (auto simp add: topspace_def ) | |
| 118 | then show ?thesis using oS cT by (auto simp add: openin_closedin_eq) | |
| 119 | qed | |
| 120 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 121 | subsubsection {* Subspace topology *}
 | 
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44167diff
changeset | 122 | |
| 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44167diff
changeset | 123 | definition "subtopology U V = topology (\<lambda>T. \<exists>S. T = S \<inter> V \<and> openin U S)" | 
| 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44167diff
changeset | 124 | |
| 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44167diff
changeset | 125 | lemma istopology_subtopology: "istopology (\<lambda>T. \<exists>S. T = S \<inter> V \<and> openin U S)" | 
| 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44167diff
changeset | 126 | (is "istopology ?L") | 
| 33175 | 127 | proof- | 
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44167diff
changeset | 128 |   have "?L {}" by blast
 | 
| 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44167diff
changeset | 129 |   {fix A B assume A: "?L A" and B: "?L B"
 | 
| 33175 | 130 | from A B obtain Sa and Sb where Sa: "openin U Sa" "A = Sa \<inter> V" and Sb: "openin U Sb" "B = Sb \<inter> V" by blast | 
| 131 | have "A\<inter>B = (Sa \<inter> Sb) \<inter> V" "openin U (Sa \<inter> Sb)" using Sa Sb by blast+ | |
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44167diff
changeset | 132 | then have "?L (A \<inter> B)" by blast} | 
| 33175 | 133 | moreover | 
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44167diff
changeset | 134 |   {fix K assume K: "K \<subseteq> Collect ?L"
 | 
| 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44167diff
changeset | 135 | have th0: "Collect ?L = (\<lambda>S. S \<inter> V) ` Collect (openin U)" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 136 | apply (rule set_eqI) | 
| 33175 | 137 | apply (simp add: Ball_def image_iff) | 
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44167diff
changeset | 138 | by metis | 
| 33175 | 139 | from K[unfolded th0 subset_image_iff] | 
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44167diff
changeset | 140 | obtain Sk where Sk: "Sk \<subseteq> Collect (openin U)" "K = (\<lambda>S. S \<inter> V) ` Sk" by blast | 
| 33175 | 141 | have "\<Union>K = (\<Union>Sk) \<inter> V" using Sk by auto | 
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44167diff
changeset | 142 | moreover have "openin U (\<Union> Sk)" using Sk by (auto simp add: subset_eq) | 
| 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44167diff
changeset | 143 | ultimately have "?L (\<Union>K)" by blast} | 
| 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44167diff
changeset | 144 | ultimately show ?thesis | 
| 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44167diff
changeset | 145 | unfolding subset_eq mem_Collect_eq istopology_def by blast | 
| 33175 | 146 | qed | 
| 147 | ||
| 148 | lemma openin_subtopology: | |
| 149 | "openin (subtopology U V) S \<longleftrightarrow> (\<exists> T. (openin U T) \<and> (S = T \<inter> V))" | |
| 150 | unfolding subtopology_def topology_inverse'[OF istopology_subtopology] | |
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44167diff
changeset | 151 | by auto | 
| 33175 | 152 | |
| 153 | lemma topspace_subtopology: "topspace(subtopology U V) = topspace U \<inter> V" | |
| 154 | by (auto simp add: topspace_def openin_subtopology) | |
| 155 | ||
| 156 | lemma closedin_subtopology: | |
| 157 | "closedin (subtopology U V) S \<longleftrightarrow> (\<exists>T. closedin U T \<and> S = T \<inter> V)" | |
| 158 | unfolding closedin_def topspace_subtopology | |
| 159 | apply (simp add: openin_subtopology) | |
| 160 | apply (rule iffI) | |
| 161 | apply clarify | |
| 162 | apply (rule_tac x="topspace U - T" in exI) | |
| 163 | by auto | |
| 164 | ||
| 165 | lemma openin_subtopology_refl: "openin (subtopology U V) V \<longleftrightarrow> V \<subseteq> topspace U" | |
| 166 | unfolding openin_subtopology | |
| 167 | apply (rule iffI, clarify) | |
| 168 | apply (frule openin_subset[of U]) apply blast | |
| 169 | apply (rule exI[where x="topspace U"]) | |
| 170 | by auto | |
| 171 | ||
| 172 | lemma subtopology_superset: assumes UV: "topspace U \<subseteq> V" | |
| 173 | shows "subtopology U V = U" | |
| 174 | proof- | |
| 175 |   {fix S
 | |
| 176 |     {fix T assume T: "openin U T" "S = T \<inter> V"
 | |
| 177 | from T openin_subset[OF T(1)] UV have eq: "S = T" by blast | |
| 178 | have "openin U S" unfolding eq using T by blast} | |
| 179 | moreover | |
| 180 |     {assume S: "openin U S"
 | |
| 181 | hence "\<exists>T. openin U T \<and> S = T \<inter> V" | |
| 182 | using openin_subset[OF S] UV by auto} | |
| 183 | ultimately have "(\<exists>T. openin U T \<and> S = T \<inter> V) \<longleftrightarrow> openin U S" by blast} | |
| 184 | then show ?thesis unfolding topology_eq openin_subtopology by blast | |
| 185 | qed | |
| 186 | ||
| 187 | lemma subtopology_topspace[simp]: "subtopology U (topspace U) = U" | |
| 188 | by (simp add: subtopology_superset) | |
| 189 | ||
| 190 | lemma subtopology_UNIV[simp]: "subtopology U UNIV = U" | |
| 191 | by (simp add: subtopology_superset) | |
| 192 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 193 | subsubsection {* The standard Euclidean topology *}
 | 
| 33175 | 194 | |
| 195 | definition | |
| 196 | euclidean :: "'a::topological_space topology" where | |
| 197 | "euclidean = topology open" | |
| 198 | ||
| 199 | lemma open_openin: "open S \<longleftrightarrow> openin euclidean S" | |
| 200 | unfolding euclidean_def | |
| 201 | apply (rule cong[where x=S and y=S]) | |
| 202 | apply (rule topology_inverse[symmetric]) | |
| 203 | apply (auto simp add: istopology_def) | |
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44167diff
changeset | 204 | done | 
| 33175 | 205 | |
| 206 | lemma topspace_euclidean: "topspace euclidean = UNIV" | |
| 207 | apply (simp add: topspace_def) | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 208 | apply (rule set_eqI) | 
| 33175 | 209 | by (auto simp add: open_openin[symmetric]) | 
| 210 | ||
| 211 | lemma topspace_euclidean_subtopology[simp]: "topspace (subtopology euclidean S) = S" | |
| 212 | by (simp add: topspace_euclidean topspace_subtopology) | |
| 213 | ||
| 214 | lemma closed_closedin: "closed S \<longleftrightarrow> closedin euclidean S" | |
| 215 | by (simp add: closed_def closedin_def topspace_euclidean open_openin Compl_eq_Diff_UNIV) | |
| 216 | ||
| 217 | lemma open_subopen: "open S \<longleftrightarrow> (\<forall>x\<in>S. \<exists>T. open T \<and> x \<in> T \<and> T \<subseteq> S)" | |
| 218 | by (simp add: open_openin openin_subopen[symmetric]) | |
| 219 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 220 | text {* Basic "localization" results are handy for connectedness. *}
 | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 221 | |
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 222 | lemma openin_open: "openin (subtopology euclidean U) S \<longleftrightarrow> (\<exists>T. open T \<and> (S = U \<inter> T))" | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 223 | by (auto simp add: openin_subtopology open_openin[symmetric]) | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 224 | |
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 225 | lemma openin_open_Int[intro]: "open S \<Longrightarrow> openin (subtopology euclidean U) (U \<inter> S)" | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 226 | by (auto simp add: openin_open) | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 227 | |
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 228 | lemma open_openin_trans[trans]: | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 229 | "open S \<Longrightarrow> open T \<Longrightarrow> T \<subseteq> S \<Longrightarrow> openin (subtopology euclidean S) T" | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 230 | by (metis Int_absorb1 openin_open_Int) | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 231 | |
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 232 | lemma open_subset: "S \<subseteq> T \<Longrightarrow> open S \<Longrightarrow> openin (subtopology euclidean T) S" | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 233 | by (auto simp add: openin_open) | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 234 | |
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 235 | lemma closedin_closed: "closedin (subtopology euclidean U) S \<longleftrightarrow> (\<exists>T. closed T \<and> S = U \<inter> T)" | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 236 | by (simp add: closedin_subtopology closed_closedin Int_ac) | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 237 | |
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 238 | lemma closedin_closed_Int: "closed S ==> closedin (subtopology euclidean U) (U \<inter> S)" | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 239 | by (metis closedin_closed) | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 240 | |
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 241 | lemma closed_closedin_trans: "closed S \<Longrightarrow> closed T \<Longrightarrow> T \<subseteq> S \<Longrightarrow> closedin (subtopology euclidean S) T" | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 242 | apply (subgoal_tac "S \<inter> T = T" ) | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 243 | apply auto | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 244 | apply (frule closedin_closed_Int[of T S]) | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 245 | by simp | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 246 | |
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 247 | lemma closed_subset: "S \<subseteq> T \<Longrightarrow> closed S \<Longrightarrow> closedin (subtopology euclidean T) S" | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 248 | by (auto simp add: closedin_closed) | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 249 | |
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 250 | lemma openin_euclidean_subtopology_iff: | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 251 | fixes S U :: "'a::metric_space set" | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 252 | shows "openin (subtopology euclidean U) S | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 253 | \<longleftrightarrow> S \<subseteq> U \<and> (\<forall>x\<in>S. \<exists>e>0. \<forall>x'\<in>U. dist x' x < e \<longrightarrow> x'\<in> S)" (is "?lhs \<longleftrightarrow> ?rhs") | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 254 | proof | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 255 | assume ?lhs thus ?rhs unfolding openin_open open_dist by blast | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 256 | next | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 257 |   def T \<equiv> "{x. \<exists>a\<in>S. \<exists>d>0. (\<forall>y\<in>U. dist y a < d \<longrightarrow> y \<in> S) \<and> dist x a < d}"
 | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 258 | have 1: "\<forall>x\<in>T. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> T" | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 259 | unfolding T_def | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 260 | apply clarsimp | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 261 | apply (rule_tac x="d - dist x a" in exI) | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 262 | apply (clarsimp simp add: less_diff_eq) | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 263 | apply (erule rev_bexI) | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 264 | apply (rule_tac x=d in exI, clarify) | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 265 | apply (erule le_less_trans [OF dist_triangle]) | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 266 | done | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 267 | assume ?rhs hence 2: "S = U \<inter> T" | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 268 | unfolding T_def | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 269 | apply auto | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 270 | apply (drule (1) bspec, erule rev_bexI) | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 271 | apply auto | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 272 | done | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 273 | from 1 2 show ?lhs | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 274 | unfolding openin_open open_dist by fast | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 275 | qed | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 276 | |
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 277 | text {* These "transitivity" results are handy too *}
 | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 278 | |
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 279 | lemma openin_trans[trans]: "openin (subtopology euclidean T) S \<Longrightarrow> openin (subtopology euclidean U) T | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 280 | \<Longrightarrow> openin (subtopology euclidean U) S" | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 281 | unfolding open_openin openin_open by blast | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 282 | |
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 283 | lemma openin_open_trans: "openin (subtopology euclidean T) S \<Longrightarrow> open T \<Longrightarrow> open S" | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 284 | by (auto simp add: openin_open intro: openin_trans) | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 285 | |
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 286 | lemma closedin_trans[trans]: | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 287 | "closedin (subtopology euclidean T) S \<Longrightarrow> | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 288 | closedin (subtopology euclidean U) T | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 289 | ==> closedin (subtopology euclidean U) S" | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 290 | by (auto simp add: closedin_closed closed_closedin closed_Inter Int_assoc) | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 291 | |
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 292 | lemma closedin_closed_trans: "closedin (subtopology euclidean T) S \<Longrightarrow> closed T \<Longrightarrow> closed S" | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 293 | by (auto simp add: closedin_closed intro: closedin_trans) | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 294 | |
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 295 | |
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 296 | subsection {* Open and closed balls *}
 | 
| 33175 | 297 | |
| 298 | definition | |
| 299 | ball :: "'a::metric_space \<Rightarrow> real \<Rightarrow> 'a set" where | |
| 300 |   "ball x e = {y. dist x y < e}"
 | |
| 301 | ||
| 302 | definition | |
| 303 | cball :: "'a::metric_space \<Rightarrow> real \<Rightarrow> 'a set" where | |
| 304 |   "cball x e = {y. dist x y \<le> e}"
 | |
| 305 | ||
| 306 | lemma mem_ball[simp]: "y \<in> ball x e \<longleftrightarrow> dist x y < e" by (simp add: ball_def) | |
| 307 | lemma mem_cball[simp]: "y \<in> cball x e \<longleftrightarrow> dist x y \<le> e" by (simp add: cball_def) | |
| 308 | ||
| 309 | lemma mem_ball_0 [simp]: | |
| 310 | fixes x :: "'a::real_normed_vector" | |
| 311 | shows "x \<in> ball 0 e \<longleftrightarrow> norm x < e" | |
| 312 | by (simp add: dist_norm) | |
| 313 | ||
| 314 | lemma mem_cball_0 [simp]: | |
| 315 | fixes x :: "'a::real_normed_vector" | |
| 316 | shows "x \<in> cball 0 e \<longleftrightarrow> norm x \<le> e" | |
| 317 | by (simp add: dist_norm) | |
| 318 | ||
| 319 | lemma centre_in_cball[simp]: "x \<in> cball x e \<longleftrightarrow> 0\<le> e" by simp | |
| 320 | lemma ball_subset_cball[simp,intro]: "ball x e \<subseteq> cball x e" by (simp add: subset_eq) | |
| 321 | lemma subset_ball[intro]: "d <= e ==> ball x d \<subseteq> ball x e" by (simp add: subset_eq) | |
| 322 | lemma subset_cball[intro]: "d <= e ==> cball x d \<subseteq> cball x e" by (simp add: subset_eq) | |
| 323 | lemma ball_max_Un: "ball a (max r s) = ball a r \<union> ball a s" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 324 | by (simp add: set_eq_iff) arith | 
| 33175 | 325 | |
| 326 | lemma ball_min_Int: "ball a (min r s) = ball a r \<inter> ball a s" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 327 | by (simp add: set_eq_iff) | 
| 33175 | 328 | |
| 329 | lemma diff_less_iff: "(a::real) - b > 0 \<longleftrightarrow> a > b" | |
| 330 | "(a::real) - b < 0 \<longleftrightarrow> a < b" | |
| 331 | "a - b < c \<longleftrightarrow> a < c +b" "a - b > c \<longleftrightarrow> a > c +b" by arith+ | |
| 332 | lemma diff_le_iff: "(a::real) - b \<ge> 0 \<longleftrightarrow> a \<ge> b" "(a::real) - b \<le> 0 \<longleftrightarrow> a \<le> b" | |
| 333 | "a - b \<le> c \<longleftrightarrow> a \<le> c +b" "a - b \<ge> c \<longleftrightarrow> a \<ge> c +b" by arith+ | |
| 334 | ||
| 335 | lemma open_ball[intro, simp]: "open (ball x e)" | |
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44167diff
changeset | 336 | unfolding open_dist ball_def mem_Collect_eq Ball_def | 
| 33175 | 337 | unfolding dist_commute | 
| 338 | apply clarify | |
| 339 | apply (rule_tac x="e - dist xa x" in exI) | |
| 340 | using dist_triangle_alt[where z=x] | |
| 341 | apply (clarsimp simp add: diff_less_iff) | |
| 342 | apply atomize | |
| 343 | apply (erule_tac x="y" in allE) | |
| 344 | apply (erule_tac x="xa" in allE) | |
| 345 | by arith | |
| 346 | ||
| 347 | lemma centre_in_ball[simp]: "x \<in> ball x e \<longleftrightarrow> e > 0" by (metis mem_ball dist_self) | |
| 348 | lemma open_contains_ball: "open S \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0. ball x e \<subseteq> S)" | |
| 349 | unfolding open_dist subset_eq mem_ball Ball_def dist_commute .. | |
| 350 | ||
| 33714 
eb2574ac4173
Added new lemmas to Euclidean Space by Robert Himmelmann
 hoelzl parents: 
33324diff
changeset | 351 | lemma openE[elim?]: | 
| 
eb2574ac4173
Added new lemmas to Euclidean Space by Robert Himmelmann
 hoelzl parents: 
33324diff
changeset | 352 | assumes "open S" "x\<in>S" | 
| 
eb2574ac4173
Added new lemmas to Euclidean Space by Robert Himmelmann
 hoelzl parents: 
33324diff
changeset | 353 | obtains e where "e>0" "ball x e \<subseteq> S" | 
| 
eb2574ac4173
Added new lemmas to Euclidean Space by Robert Himmelmann
 hoelzl parents: 
33324diff
changeset | 354 | using assms unfolding open_contains_ball by auto | 
| 
eb2574ac4173
Added new lemmas to Euclidean Space by Robert Himmelmann
 hoelzl parents: 
33324diff
changeset | 355 | |
| 33175 | 356 | lemma open_contains_ball_eq: "open S \<Longrightarrow> \<forall>x. x\<in>S \<longleftrightarrow> (\<exists>e>0. ball x e \<subseteq> S)" | 
| 357 | by (metis open_contains_ball subset_eq centre_in_ball) | |
| 358 | ||
| 359 | lemma ball_eq_empty[simp]: "ball x e = {} \<longleftrightarrow> e \<le> 0"
 | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 360 | unfolding mem_ball set_eq_iff | 
| 33175 | 361 | apply (simp add: not_less) | 
| 362 | by (metis zero_le_dist order_trans dist_self) | |
| 363 | ||
| 364 | lemma ball_empty[intro]: "e \<le> 0 ==> ball x e = {}" by simp
 | |
| 365 | ||
| 366 | ||
| 367 | subsection{* Connectedness *}
 | |
| 368 | ||
| 369 | definition "connected S \<longleftrightarrow> | |
| 370 |   ~(\<exists>e1 e2. open e1 \<and> open e2 \<and> S \<subseteq> (e1 \<union> e2) \<and> (e1 \<inter> e2 \<inter> S = {})
 | |
| 371 |   \<and> ~(e1 \<inter> S = {}) \<and> ~(e2 \<inter> S = {}))"
 | |
| 372 | ||
| 373 | lemma connected_local: | |
| 374 | "connected S \<longleftrightarrow> ~(\<exists>e1 e2. | |
| 375 | openin (subtopology euclidean S) e1 \<and> | |
| 376 | openin (subtopology euclidean S) e2 \<and> | |
| 377 | S \<subseteq> e1 \<union> e2 \<and> | |
| 378 |                  e1 \<inter> e2 = {} \<and>
 | |
| 379 |                  ~(e1 = {}) \<and>
 | |
| 380 |                  ~(e2 = {}))"
 | |
| 381 | unfolding connected_def openin_open by (safe, blast+) | |
| 382 | ||
| 34105 | 383 | lemma exists_diff: | 
| 384 | fixes P :: "'a set \<Rightarrow> bool" | |
| 385 | shows "(\<exists>S. P(- S)) \<longleftrightarrow> (\<exists>S. P S)" (is "?lhs \<longleftrightarrow> ?rhs") | |
| 33175 | 386 | proof- | 
| 387 |   {assume "?lhs" hence ?rhs by blast }
 | |
| 388 | moreover | |
| 389 |   {fix S assume H: "P S"
 | |
| 34105 | 390 | have "S = - (- S)" by auto | 
| 391 | with H have "P (- (- S))" by metis } | |
| 33175 | 392 | ultimately show ?thesis by metis | 
| 393 | qed | |
| 394 | ||
| 395 | lemma connected_clopen: "connected S \<longleftrightarrow> | |
| 396 | (\<forall>T. openin (subtopology euclidean S) T \<and> | |
| 397 |             closedin (subtopology euclidean S) T \<longrightarrow> T = {} \<or> T = S)" (is "?lhs \<longleftrightarrow> ?rhs")
 | |
| 398 | proof- | |
| 34105 | 399 |   have " \<not> connected S \<longleftrightarrow> (\<exists>e1 e2. open e1 \<and> open (- e2) \<and> S \<subseteq> e1 \<union> (- e2) \<and> e1 \<inter> (- e2) \<inter> S = {} \<and> e1 \<inter> S \<noteq> {} \<and> (- e2) \<inter> S \<noteq> {})"
 | 
| 33175 | 400 | unfolding connected_def openin_open closedin_closed | 
| 401 | apply (subst exists_diff) by blast | |
| 34105 | 402 |   hence th0: "connected S \<longleftrightarrow> \<not> (\<exists>e2 e1. closed e2 \<and> open e1 \<and> S \<subseteq> e1 \<union> (- e2) \<and> e1 \<inter> (- e2) \<inter> S = {} \<and> e1 \<inter> S \<noteq> {} \<and> (- e2) \<inter> S \<noteq> {})"
 | 
| 403 | (is " _ \<longleftrightarrow> \<not> (\<exists>e2 e1. ?P e2 e1)") apply (simp add: closed_def) by metis | |
| 33175 | 404 | |
| 405 |   have th1: "?rhs \<longleftrightarrow> \<not> (\<exists>t' t. closed t'\<and>t = S\<inter>t' \<and> t\<noteq>{} \<and> t\<noteq>S \<and> (\<exists>t'. open t' \<and> t = S \<inter> t'))"
 | |
| 406 | (is "_ \<longleftrightarrow> \<not> (\<exists>t' t. ?Q t' t)") | |
| 407 | unfolding connected_def openin_open closedin_closed by auto | |
| 408 |   {fix e2
 | |
| 409 |     {fix e1 have "?P e2 e1 \<longleftrightarrow> (\<exists>t.  closed e2 \<and> t = S\<inter>e2 \<and> open e1 \<and> t = S\<inter>e1 \<and> t\<noteq>{} \<and> t\<noteq>S)"
 | |
| 410 | by auto} | |
| 411 | then have "(\<exists>e1. ?P e2 e1) \<longleftrightarrow> (\<exists>t. ?Q e2 t)" by metis} | |
| 412 | then have "\<forall>e2. (\<exists>e1. ?P e2 e1) \<longleftrightarrow> (\<exists>t. ?Q e2 t)" by blast | |
| 413 | then show ?thesis unfolding th0 th1 by simp | |
| 414 | qed | |
| 415 | ||
| 416 | lemma connected_empty[simp, intro]: "connected {}"
 | |
| 417 | by (simp add: connected_def) | |
| 418 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 419 | |
| 33175 | 420 | subsection{* Limit points *}
 | 
| 421 | ||
| 44207 
ea99698c2070
locale-ize some definitions, so perfect_space and heine_borel can inherit from the proper superclasses
 huffman parents: 
44170diff
changeset | 422 | definition (in topological_space) | 
| 
ea99698c2070
locale-ize some definitions, so perfect_space and heine_borel can inherit from the proper superclasses
 huffman parents: 
44170diff
changeset | 423 | islimpt:: "'a \<Rightarrow> 'a set \<Rightarrow> bool" (infixr "islimpt" 60) where | 
| 33175 | 424 | "x islimpt S \<longleftrightarrow> (\<forall>T. x\<in>T \<longrightarrow> open T \<longrightarrow> (\<exists>y\<in>S. y\<in>T \<and> y\<noteq>x))" | 
| 425 | ||
| 426 | lemma islimptI: | |
| 427 | assumes "\<And>T. x \<in> T \<Longrightarrow> open T \<Longrightarrow> \<exists>y\<in>S. y \<in> T \<and> y \<noteq> x" | |
| 428 | shows "x islimpt S" | |
| 429 | using assms unfolding islimpt_def by auto | |
| 430 | ||
| 431 | lemma islimptE: | |
| 432 | assumes "x islimpt S" and "x \<in> T" and "open T" | |
| 433 | obtains y where "y \<in> S" and "y \<in> T" and "y \<noteq> x" | |
| 434 | using assms unfolding islimpt_def by auto | |
| 435 | ||
| 44584 | 436 | lemma islimpt_iff_eventually: "x islimpt S \<longleftrightarrow> \<not> eventually (\<lambda>y. y \<notin> S) (at x)" | 
| 437 | unfolding islimpt_def eventually_at_topological by auto | |
| 438 | ||
| 439 | lemma islimpt_subset: "\<lbrakk>x islimpt S; S \<subseteq> T\<rbrakk> \<Longrightarrow> x islimpt T" | |
| 440 | unfolding islimpt_def by fast | |
| 33175 | 441 | |
| 442 | lemma islimpt_approachable: | |
| 443 | fixes x :: "'a::metric_space" | |
| 444 | shows "x islimpt S \<longleftrightarrow> (\<forall>e>0. \<exists>x'\<in>S. x' \<noteq> x \<and> dist x' x < e)" | |
| 44584 | 445 | unfolding islimpt_iff_eventually eventually_at by fast | 
| 33175 | 446 | |
| 447 | lemma islimpt_approachable_le: | |
| 448 | fixes x :: "'a::metric_space" | |
| 449 | shows "x islimpt S \<longleftrightarrow> (\<forall>e>0. \<exists>x'\<in> S. x' \<noteq> x \<and> dist x' x <= e)" | |
| 450 | unfolding islimpt_approachable | |
| 44584 | 451 | using approachable_lt_le [where f="\<lambda>y. dist y x" and P="\<lambda>y. y \<notin> S \<or> y = x", | 
| 452 | THEN arg_cong [where f=Not]] | |
| 453 | by (simp add: Bex_def conj_commute conj_left_commute) | |
| 33175 | 454 | |
| 44571 | 455 | lemma islimpt_UNIV_iff: "x islimpt UNIV \<longleftrightarrow> \<not> open {x}"
 | 
| 456 |   unfolding islimpt_def by (safe, fast, case_tac "T = {x}", fast, fast)
 | |
| 457 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 458 | text {* A perfect space has no isolated points. *}
 | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 459 | |
| 44571 | 460 | lemma islimpt_UNIV [simp, intro]: "(x::'a::perfect_space) islimpt UNIV" | 
| 461 | unfolding islimpt_UNIV_iff by (rule not_open_singleton) | |
| 33175 | 462 | |
| 463 | lemma perfect_choose_dist: | |
| 44072 
5b970711fb39
class perfect_space inherits from topological_space;
 huffman parents: 
43338diff
changeset | 464 |   fixes x :: "'a::{perfect_space, metric_space}"
 | 
| 33175 | 465 | shows "0 < r \<Longrightarrow> \<exists>a. a \<noteq> x \<and> dist a x < r" | 
| 466 | using islimpt_UNIV [of x] | |
| 467 | by (simp add: islimpt_approachable) | |
| 468 | ||
| 469 | lemma closed_limpt: "closed S \<longleftrightarrow> (\<forall>x. x islimpt S \<longrightarrow> x \<in> S)" | |
| 470 | unfolding closed_def | |
| 471 | apply (subst open_subopen) | |
| 34105 | 472 | apply (simp add: islimpt_def subset_eq) | 
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44167diff
changeset | 473 | by (metis ComplE ComplI) | 
| 33175 | 474 | |
| 475 | lemma islimpt_EMPTY[simp]: "\<not> x islimpt {}"
 | |
| 476 | unfolding islimpt_def by auto | |
| 477 | ||
| 478 | lemma finite_set_avoid: | |
| 479 | fixes a :: "'a::metric_space" | |
| 480 | assumes fS: "finite S" shows "\<exists>d>0. \<forall>x\<in>S. x \<noteq> a \<longrightarrow> d <= dist a x" | |
| 481 | proof(induct rule: finite_induct[OF fS]) | |
| 41863 | 482 | case 1 thus ?case by (auto intro: zero_less_one) | 
| 33175 | 483 | next | 
| 484 | case (2 x F) | |
| 485 | from 2 obtain d where d: "d >0" "\<forall>x\<in>F. x\<noteq>a \<longrightarrow> d \<le> dist a x" by blast | |
| 486 |   {assume "x = a" hence ?case using d by auto  }
 | |
| 487 | moreover | |
| 488 |   {assume xa: "x\<noteq>a"
 | |
| 489 | let ?d = "min d (dist a x)" | |
| 490 | have dp: "?d > 0" using xa d(1) using dist_nz by auto | |
| 491 | from d have d': "\<forall>x\<in>F. x\<noteq>a \<longrightarrow> ?d \<le> dist a x" by auto | |
| 492 | with dp xa have ?case by(auto intro!: exI[where x="?d"]) } | |
| 493 | ultimately show ?case by blast | |
| 494 | qed | |
| 495 | ||
| 496 | lemma islimpt_finite: | |
| 497 | fixes S :: "'a::metric_space set" | |
| 498 | assumes fS: "finite S" shows "\<not> a islimpt S" | |
| 499 | unfolding islimpt_approachable | |
| 500 | using finite_set_avoid[OF fS, of a] by (metis dist_commute not_le) | |
| 501 | ||
| 502 | lemma islimpt_Un: "x islimpt (S \<union> T) \<longleftrightarrow> x islimpt S \<or> x islimpt T" | |
| 503 | apply (rule iffI) | |
| 504 | defer | |
| 505 | apply (metis Un_upper1 Un_upper2 islimpt_subset) | |
| 506 | unfolding islimpt_def | |
| 507 | apply (rule ccontr, clarsimp, rename_tac A B) | |
| 508 | apply (drule_tac x="A \<inter> B" in spec) | |
| 509 | apply (auto simp add: open_Int) | |
| 510 | done | |
| 511 | ||
| 512 | lemma discrete_imp_closed: | |
| 513 | fixes S :: "'a::metric_space set" | |
| 514 | assumes e: "0 < e" and d: "\<forall>x \<in> S. \<forall>y \<in> S. dist y x < e \<longrightarrow> y = x" | |
| 515 | shows "closed S" | |
| 516 | proof- | |
| 517 |   {fix x assume C: "\<forall>e>0. \<exists>x'\<in>S. x' \<noteq> x \<and> dist x' x < e"
 | |
| 518 | from e have e2: "e/2 > 0" by arith | |
| 519 | from C[rule_format, OF e2] obtain y where y: "y \<in> S" "y\<noteq>x" "dist y x < e/2" by blast | |
| 520 | let ?m = "min (e/2) (dist x y) " | |
| 521 | from e2 y(2) have mp: "?m > 0" by (simp add: dist_nz[THEN sym]) | |
| 522 | from C[rule_format, OF mp] obtain z where z: "z \<in> S" "z\<noteq>x" "dist z x < ?m" by blast | |
| 523 | have th: "dist z y < e" using z y | |
| 524 | by (intro dist_triangle_lt [where z=x], simp) | |
| 525 | from d[rule_format, OF y(1) z(1) th] y z | |
| 526 | have False by (auto simp add: dist_commute)} | |
| 527 | then show ?thesis by (metis islimpt_approachable closed_limpt [where 'a='a]) | |
| 528 | qed | |
| 529 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 530 | |
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 531 | subsection {* Interior of a Set *}
 | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 532 | |
| 44519 | 533 | definition "interior S = \<Union>{T. open T \<and> T \<subseteq> S}"
 | 
| 534 | ||
| 535 | lemma interiorI [intro?]: | |
| 536 | assumes "open T" and "x \<in> T" and "T \<subseteq> S" | |
| 537 | shows "x \<in> interior S" | |
| 538 | using assms unfolding interior_def by fast | |
| 539 | ||
| 540 | lemma interiorE [elim?]: | |
| 541 | assumes "x \<in> interior S" | |
| 542 | obtains T where "open T" and "x \<in> T" and "T \<subseteq> S" | |
| 543 | using assms unfolding interior_def by fast | |
| 544 | ||
| 545 | lemma open_interior [simp, intro]: "open (interior S)" | |
| 546 | by (simp add: interior_def open_Union) | |
| 547 | ||
| 548 | lemma interior_subset: "interior S \<subseteq> S" | |
| 549 | by (auto simp add: interior_def) | |
| 550 | ||
| 551 | lemma interior_maximal: "T \<subseteq> S \<Longrightarrow> open T \<Longrightarrow> T \<subseteq> interior S" | |
| 552 | by (auto simp add: interior_def) | |
| 553 | ||
| 554 | lemma interior_open: "open S \<Longrightarrow> interior S = S" | |
| 555 | by (intro equalityI interior_subset interior_maximal subset_refl) | |
| 33175 | 556 | |
| 557 | lemma interior_eq: "interior S = S \<longleftrightarrow> open S" | |
| 44519 | 558 | by (metis open_interior interior_open) | 
| 559 | ||
| 560 | lemma open_subset_interior: "open S \<Longrightarrow> S \<subseteq> interior T \<longleftrightarrow> S \<subseteq> T" | |
| 33175 | 561 | by (metis interior_maximal interior_subset subset_trans) | 
| 562 | ||
| 44519 | 563 | lemma interior_empty [simp]: "interior {} = {}"
 | 
| 564 | using open_empty by (rule interior_open) | |
| 565 | ||
| 44522 
2f7e9d890efe
rename subset_{interior,closure} to {interior,closure}_mono;
 huffman parents: 
44519diff
changeset | 566 | lemma interior_UNIV [simp]: "interior UNIV = UNIV" | 
| 
2f7e9d890efe
rename subset_{interior,closure} to {interior,closure}_mono;
 huffman parents: 
44519diff
changeset | 567 | using open_UNIV by (rule interior_open) | 
| 
2f7e9d890efe
rename subset_{interior,closure} to {interior,closure}_mono;
 huffman parents: 
44519diff
changeset | 568 | |
| 44519 | 569 | lemma interior_interior [simp]: "interior (interior S) = interior S" | 
| 570 | using open_interior by (rule interior_open) | |
| 571 | ||
| 44522 
2f7e9d890efe
rename subset_{interior,closure} to {interior,closure}_mono;
 huffman parents: 
44519diff
changeset | 572 | lemma interior_mono: "S \<subseteq> T \<Longrightarrow> interior S \<subseteq> interior T" | 
| 
2f7e9d890efe
rename subset_{interior,closure} to {interior,closure}_mono;
 huffman parents: 
44519diff
changeset | 573 | by (auto simp add: interior_def) | 
| 44519 | 574 | |
| 575 | lemma interior_unique: | |
| 576 | assumes "T \<subseteq> S" and "open T" | |
| 577 | assumes "\<And>T'. T' \<subseteq> S \<Longrightarrow> open T' \<Longrightarrow> T' \<subseteq> T" | |
| 578 | shows "interior S = T" | |
| 579 | by (intro equalityI assms interior_subset open_interior interior_maximal) | |
| 580 | ||
| 581 | lemma interior_inter [simp]: "interior (S \<inter> T) = interior S \<inter> interior T" | |
| 44522 
2f7e9d890efe
rename subset_{interior,closure} to {interior,closure}_mono;
 huffman parents: 
44519diff
changeset | 582 | by (intro equalityI Int_mono Int_greatest interior_mono Int_lower1 | 
| 44519 | 583 | Int_lower2 interior_maximal interior_subset open_Int open_interior) | 
| 584 | ||
| 585 | lemma mem_interior: "x \<in> interior S \<longleftrightarrow> (\<exists>e>0. ball x e \<subseteq> S)" | |
| 586 | using open_contains_ball_eq [where S="interior S"] | |
| 587 | by (simp add: open_subset_interior) | |
| 33175 | 588 | |
| 589 | lemma interior_limit_point [intro]: | |
| 590 | fixes x :: "'a::perfect_space" | |
| 591 | assumes x: "x \<in> interior S" shows "x islimpt S" | |
| 44072 
5b970711fb39
class perfect_space inherits from topological_space;
 huffman parents: 
43338diff
changeset | 592 | using x islimpt_UNIV [of x] | 
| 
5b970711fb39
class perfect_space inherits from topological_space;
 huffman parents: 
43338diff
changeset | 593 | unfolding interior_def islimpt_def | 
| 
5b970711fb39
class perfect_space inherits from topological_space;
 huffman parents: 
43338diff
changeset | 594 | apply (clarsimp, rename_tac T T') | 
| 
5b970711fb39
class perfect_space inherits from topological_space;
 huffman parents: 
43338diff
changeset | 595 | apply (drule_tac x="T \<inter> T'" in spec) | 
| 
5b970711fb39
class perfect_space inherits from topological_space;
 huffman parents: 
43338diff
changeset | 596 | apply (auto simp add: open_Int) | 
| 
5b970711fb39
class perfect_space inherits from topological_space;
 huffman parents: 
43338diff
changeset | 597 | done | 
| 33175 | 598 | |
| 599 | lemma interior_closed_Un_empty_interior: | |
| 600 |   assumes cS: "closed S" and iT: "interior T = {}"
 | |
| 44519 | 601 | shows "interior (S \<union> T) = interior S" | 
| 33175 | 602 | proof | 
| 44519 | 603 | show "interior S \<subseteq> interior (S \<union> T)" | 
| 44522 
2f7e9d890efe
rename subset_{interior,closure} to {interior,closure}_mono;
 huffman parents: 
44519diff
changeset | 604 | by (rule interior_mono, rule Un_upper1) | 
| 33175 | 605 | next | 
| 606 | show "interior (S \<union> T) \<subseteq> interior S" | |
| 607 | proof | |
| 608 | fix x assume "x \<in> interior (S \<union> T)" | |
| 44519 | 609 | then obtain R where "open R" "x \<in> R" "R \<subseteq> S \<union> T" .. | 
| 33175 | 610 | show "x \<in> interior S" | 
| 611 | proof (rule ccontr) | |
| 612 | assume "x \<notin> interior S" | |
| 613 | with `x \<in> R` `open R` obtain y where "y \<in> R - S" | |
| 44519 | 614 | unfolding interior_def by fast | 
| 33175 | 615 | from `open R` `closed S` have "open (R - S)" by (rule open_Diff) | 
| 616 | from `R \<subseteq> S \<union> T` have "R - S \<subseteq> T" by fast | |
| 617 |       from `y \<in> R - S` `open (R - S)` `R - S \<subseteq> T` `interior T = {}`
 | |
| 618 | show "False" unfolding interior_def by fast | |
| 619 | qed | |
| 620 | qed | |
| 621 | qed | |
| 622 | ||
| 44365 | 623 | lemma interior_Times: "interior (A \<times> B) = interior A \<times> interior B" | 
| 624 | proof (rule interior_unique) | |
| 625 | show "interior A \<times> interior B \<subseteq> A \<times> B" | |
| 626 | by (intro Sigma_mono interior_subset) | |
| 627 | show "open (interior A \<times> interior B)" | |
| 628 | by (intro open_Times open_interior) | |
| 44519 | 629 | fix T assume "T \<subseteq> A \<times> B" and "open T" thus "T \<subseteq> interior A \<times> interior B" | 
| 630 | proof (safe) | |
| 631 | fix x y assume "(x, y) \<in> T" | |
| 632 | then obtain C D where "open C" "open D" "C \<times> D \<subseteq> T" "x \<in> C" "y \<in> D" | |
| 633 | using `open T` unfolding open_prod_def by fast | |
| 634 | hence "open C" "open D" "C \<subseteq> A" "D \<subseteq> B" "x \<in> C" "y \<in> D" | |
| 635 | using `T \<subseteq> A \<times> B` by auto | |
| 636 | thus "x \<in> interior A" and "y \<in> interior B" | |
| 637 | by (auto intro: interiorI) | |
| 638 | qed | |
| 44365 | 639 | qed | 
| 640 | ||
| 33175 | 641 | |
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 642 | subsection {* Closure of a Set *}
 | 
| 33175 | 643 | |
| 644 | definition "closure S = S \<union> {x | x. x islimpt S}"
 | |
| 645 | ||
| 44518 | 646 | lemma interior_closure: "interior S = - (closure (- S))" | 
| 647 | unfolding interior_def closure_def islimpt_def by auto | |
| 648 | ||
| 34105 | 649 | lemma closure_interior: "closure S = - interior (- S)" | 
| 44518 | 650 | unfolding interior_closure by simp | 
| 33175 | 651 | |
| 652 | lemma closed_closure[simp, intro]: "closed (closure S)" | |
| 44518 | 653 | unfolding closure_interior by (simp add: closed_Compl) | 
| 654 | ||
| 655 | lemma closure_subset: "S \<subseteq> closure S" | |
| 656 | unfolding closure_def by simp | |
| 33175 | 657 | |
| 658 | lemma closure_hull: "closure S = closed hull S" | |
| 44519 | 659 | unfolding hull_def closure_interior interior_def by auto | 
| 33175 | 660 | |
| 661 | lemma closure_eq: "closure S = S \<longleftrightarrow> closed S" | |
| 44519 | 662 | unfolding closure_hull using closed_Inter by (rule hull_eq) | 
| 663 | ||
| 664 | lemma closure_closed [simp]: "closed S \<Longrightarrow> closure S = S" | |
| 665 | unfolding closure_eq . | |
| 666 | ||
| 667 | lemma closure_closure [simp]: "closure (closure S) = closure S" | |
| 44518 | 668 | unfolding closure_hull by (rule hull_hull) | 
| 33175 | 669 | |
| 44522 
2f7e9d890efe
rename subset_{interior,closure} to {interior,closure}_mono;
 huffman parents: 
44519diff
changeset | 670 | lemma closure_mono: "S \<subseteq> T \<Longrightarrow> closure S \<subseteq> closure T" | 
| 44518 | 671 | unfolding closure_hull by (rule hull_mono) | 
| 33175 | 672 | |
| 44519 | 673 | lemma closure_minimal: "S \<subseteq> T \<Longrightarrow> closed T \<Longrightarrow> closure S \<subseteq> T" | 
| 44518 | 674 | unfolding closure_hull by (rule hull_minimal) | 
| 33175 | 675 | |
| 44519 | 676 | lemma closure_unique: | 
| 677 | assumes "S \<subseteq> T" and "closed T" | |
| 678 | assumes "\<And>T'. S \<subseteq> T' \<Longrightarrow> closed T' \<Longrightarrow> T \<subseteq> T'" | |
| 679 | shows "closure S = T" | |
| 680 | using assms unfolding closure_hull by (rule hull_unique) | |
| 681 | ||
| 682 | lemma closure_empty [simp]: "closure {} = {}"
 | |
| 44518 | 683 | using closed_empty by (rule closure_closed) | 
| 33175 | 684 | |
| 44522 
2f7e9d890efe
rename subset_{interior,closure} to {interior,closure}_mono;
 huffman parents: 
44519diff
changeset | 685 | lemma closure_UNIV [simp]: "closure UNIV = UNIV" | 
| 44518 | 686 | using closed_UNIV by (rule closure_closed) | 
| 687 | ||
| 688 | lemma closure_union [simp]: "closure (S \<union> T) = closure S \<union> closure T" | |
| 689 | unfolding closure_interior by simp | |
| 33175 | 690 | |
| 691 | lemma closure_eq_empty: "closure S = {} \<longleftrightarrow> S = {}"
 | |
| 692 | using closure_empty closure_subset[of S] | |
| 693 | by blast | |
| 694 | ||
| 695 | lemma closure_subset_eq: "closure S \<subseteq> S \<longleftrightarrow> closed S" | |
| 696 | using closure_eq[of S] closure_subset[of S] | |
| 697 | by simp | |
| 698 | ||
| 699 | lemma open_inter_closure_eq_empty: | |
| 700 |   "open S \<Longrightarrow> (S \<inter> closure T) = {} \<longleftrightarrow> S \<inter> T = {}"
 | |
| 34105 | 701 | using open_subset_interior[of S "- T"] | 
| 702 | using interior_subset[of "- T"] | |
| 33175 | 703 | unfolding closure_interior | 
| 704 | by auto | |
| 705 | ||
| 706 | lemma open_inter_closure_subset: | |
| 707 | "open S \<Longrightarrow> (S \<inter> (closure T)) \<subseteq> closure(S \<inter> T)" | |
| 708 | proof | |
| 709 | fix x | |
| 710 | assume as: "open S" "x \<in> S \<inter> closure T" | |
| 711 |   { assume *:"x islimpt T"
 | |
| 712 | have "x islimpt (S \<inter> T)" | |
| 713 | proof (rule islimptI) | |
| 714 | fix A | |
| 715 | assume "x \<in> A" "open A" | |
| 716 | with as have "x \<in> A \<inter> S" "open (A \<inter> S)" | |
| 717 | by (simp_all add: open_Int) | |
| 718 | with * obtain y where "y \<in> T" "y \<in> A \<inter> S" "y \<noteq> x" | |
| 719 | by (rule islimptE) | |
| 720 | hence "y \<in> S \<inter> T" "y \<in> A \<and> y \<noteq> x" | |
| 721 | by simp_all | |
| 722 | thus "\<exists>y\<in>(S \<inter> T). y \<in> A \<and> y \<noteq> x" .. | |
| 723 | qed | |
| 724 | } | |
| 725 | then show "x \<in> closure (S \<inter> T)" using as | |
| 726 | unfolding closure_def | |
| 727 | by blast | |
| 728 | qed | |
| 729 | ||
| 44519 | 730 | lemma closure_complement: "closure (- S) = - interior S" | 
| 44518 | 731 | unfolding closure_interior by simp | 
| 33175 | 732 | |
| 44519 | 733 | lemma interior_complement: "interior (- S) = - closure S" | 
| 44518 | 734 | unfolding closure_interior by simp | 
| 33175 | 735 | |
| 44365 | 736 | lemma closure_Times: "closure (A \<times> B) = closure A \<times> closure B" | 
| 44519 | 737 | proof (rule closure_unique) | 
| 44365 | 738 | show "A \<times> B \<subseteq> closure A \<times> closure B" | 
| 739 | by (intro Sigma_mono closure_subset) | |
| 740 | show "closed (closure A \<times> closure B)" | |
| 741 | by (intro closed_Times closed_closure) | |
| 44519 | 742 | fix T assume "A \<times> B \<subseteq> T" and "closed T" thus "closure A \<times> closure B \<subseteq> T" | 
| 44365 | 743 | apply (simp add: closed_def open_prod_def, clarify) | 
| 744 | apply (rule ccontr) | |
| 745 | apply (drule_tac x="(a, b)" in bspec, simp, clarify, rename_tac C D) | |
| 746 | apply (simp add: closure_interior interior_def) | |
| 747 | apply (drule_tac x=C in spec) | |
| 748 | apply (drule_tac x=D in spec) | |
| 749 | apply auto | |
| 750 | done | |
| 751 | qed | |
| 752 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 753 | |
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 754 | subsection {* Frontier (aka boundary) *}
 | 
| 33175 | 755 | |
| 756 | definition "frontier S = closure S - interior S" | |
| 757 | ||
| 758 | lemma frontier_closed: "closed(frontier S)" | |
| 759 | by (simp add: frontier_def closed_Diff) | |
| 760 | ||
| 34105 | 761 | lemma frontier_closures: "frontier S = (closure S) \<inter> (closure(- S))" | 
| 33175 | 762 | by (auto simp add: frontier_def interior_closure) | 
| 763 | ||
| 764 | lemma frontier_straddle: | |
| 765 | fixes a :: "'a::metric_space" | |
| 766 | shows "a \<in> frontier S \<longleftrightarrow> (\<forall>e>0. (\<exists>x\<in>S. dist a x < e) \<and> (\<exists>x. x \<notin> S \<and> dist a x < e))" (is "?lhs \<longleftrightarrow> ?rhs") | |
| 767 | proof | |
| 768 | assume "?lhs" | |
| 769 |   { fix e::real
 | |
| 770 | assume "e > 0" | |
| 771 | let ?rhse = "(\<exists>x\<in>S. dist a x < e) \<and> (\<exists>x. x \<notin> S \<and> dist a x < e)" | |
| 772 |     { assume "a\<in>S"
 | |
| 773 | have "\<exists>x\<in>S. dist a x < e" using `e>0` `a\<in>S` by(rule_tac x=a in bexI) auto | |
| 774 | moreover have "\<exists>x. x \<notin> S \<and> dist a x < e" using `?lhs` `a\<in>S` | |
| 775 | unfolding frontier_closures closure_def islimpt_def using `e>0` | |
| 776 | by (auto, erule_tac x="ball a e" in allE, auto) | |
| 777 | ultimately have ?rhse by auto | |
| 778 | } | |
| 779 | moreover | |
| 780 |     { assume "a\<notin>S"
 | |
| 781 | hence ?rhse using `?lhs` | |
| 782 | unfolding frontier_closures closure_def islimpt_def | |
| 783 | using open_ball[of a e] `e > 0` | |
| 33324 | 784 | by simp (metis centre_in_ball mem_ball open_ball) | 
| 33175 | 785 | } | 
| 786 | ultimately have ?rhse by auto | |
| 787 | } | |
| 788 | thus ?rhs by auto | |
| 789 | next | |
| 790 | assume ?rhs | |
| 791 | moreover | |
| 792 |   { fix T assume "a\<notin>S" and
 | |
| 793 | as:"\<forall>e>0. (\<exists>x\<in>S. dist a x < e) \<and> (\<exists>x. x \<notin> S \<and> dist a x < e)" "a \<notin> S" "a \<in> T" "open T" | |
| 794 | from `open T` `a \<in> T` have "\<exists>e>0. ball a e \<subseteq> T" unfolding open_contains_ball[of T] by auto | |
| 795 | then obtain e where "e>0" "ball a e \<subseteq> T" by auto | |
| 796 | then obtain y where y:"y\<in>S" "dist a y < e" using as(1) by auto | |
| 797 | have "\<exists>y\<in>S. y \<in> T \<and> y \<noteq> a" | |
| 798 | using `dist a y < e` `ball a e \<subseteq> T` unfolding ball_def using `y\<in>S` `a\<notin>S` by auto | |
| 799 | } | |
| 800 | hence "a \<in> closure S" unfolding closure_def islimpt_def using `?rhs` by auto | |
| 801 | moreover | |
| 802 |   { fix T assume "a \<in> T"  "open T" "a\<in>S"
 | |
| 803 | then obtain e where "e>0" and balle: "ball a e \<subseteq> T" unfolding open_contains_ball using `?rhs` by auto | |
| 804 | obtain x where "x \<notin> S" "dist a x < e" using `?rhs` using `e>0` by auto | |
| 34105 | 805 | hence "\<exists>y\<in>- S. y \<in> T \<and> y \<noteq> a" using balle `a\<in>S` unfolding ball_def by (rule_tac x=x in bexI)auto | 
| 33175 | 806 | } | 
| 34105 | 807 | hence "a islimpt (- S) \<or> a\<notin>S" unfolding islimpt_def by auto | 
| 808 | ultimately show ?lhs unfolding frontier_closures using closure_def[of "- S"] by auto | |
| 33175 | 809 | qed | 
| 810 | ||
| 811 | lemma frontier_subset_closed: "closed S \<Longrightarrow> frontier S \<subseteq> S" | |
| 812 | by (metis frontier_def closure_closed Diff_subset) | |
| 813 | ||
| 34964 | 814 | lemma frontier_empty[simp]: "frontier {} = {}"
 | 
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36360diff
changeset | 815 | by (simp add: frontier_def) | 
| 33175 | 816 | |
| 817 | lemma frontier_subset_eq: "frontier S \<subseteq> S \<longleftrightarrow> closed S" | |
| 818 | proof- | |
| 819 |   { assume "frontier S \<subseteq> S"
 | |
| 820 | hence "closure S \<subseteq> S" using interior_subset unfolding frontier_def by auto | |
| 821 | hence "closed S" using closure_subset_eq by auto | |
| 822 | } | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36360diff
changeset | 823 | thus ?thesis using frontier_subset_closed[of S] .. | 
| 33175 | 824 | qed | 
| 825 | ||
| 34105 | 826 | lemma frontier_complement: "frontier(- S) = frontier S" | 
| 33175 | 827 | by (auto simp add: frontier_def closure_complement interior_complement) | 
| 828 | ||
| 829 | lemma frontier_disjoint_eq: "frontier S \<inter> S = {} \<longleftrightarrow> open S"
 | |
| 34105 | 830 | using frontier_complement frontier_subset_eq[of "- S"] | 
| 831 | unfolding open_closed by auto | |
| 33175 | 832 | |
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 833 | |
| 44081 
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
 huffman parents: 
44076diff
changeset | 834 | subsection {* Filters and the ``eventually true'' quantifier *}
 | 
| 
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
 huffman parents: 
44076diff
changeset | 835 | |
| 33175 | 836 | definition | 
| 44081 
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
 huffman parents: 
44076diff
changeset | 837 | at_infinity :: "'a::real_normed_vector filter" where | 
| 
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
 huffman parents: 
44076diff
changeset | 838 | "at_infinity = Abs_filter (\<lambda>P. \<exists>r. \<forall>x. r \<le> norm x \<longrightarrow> P x)" | 
| 33175 | 839 | |
| 840 | definition | |
| 44081 
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
 huffman parents: 
44076diff
changeset | 841 | indirection :: "'a::real_normed_vector \<Rightarrow> 'a \<Rightarrow> 'a filter" | 
| 
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
 huffman parents: 
44076diff
changeset | 842 | (infixr "indirection" 70) where | 
| 33175 | 843 |   "a indirection v = (at a) within {b. \<exists>c\<ge>0. b - a = scaleR c v}"
 | 
| 844 | ||
| 44081 
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
 huffman parents: 
44076diff
changeset | 845 | text{* Prove That They are all filters. *}
 | 
| 33175 | 846 | |
| 36358 
246493d61204
define nets directly as filters, instead of as filter bases
 huffman parents: 
36336diff
changeset | 847 | lemma eventually_at_infinity: | 
| 
246493d61204
define nets directly as filters, instead of as filter bases
 huffman parents: 
36336diff
changeset | 848 | "eventually P at_infinity \<longleftrightarrow> (\<exists>b. \<forall>x. norm x >= b \<longrightarrow> P x)" | 
| 33175 | 849 | unfolding at_infinity_def | 
| 44081 
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
 huffman parents: 
44076diff
changeset | 850 | proof (rule eventually_Abs_filter, rule is_filter.intro) | 
| 36358 
246493d61204
define nets directly as filters, instead of as filter bases
 huffman parents: 
36336diff
changeset | 851 | fix P Q :: "'a \<Rightarrow> bool" | 
| 
246493d61204
define nets directly as filters, instead of as filter bases
 huffman parents: 
36336diff
changeset | 852 | assume "\<exists>r. \<forall>x. r \<le> norm x \<longrightarrow> P x" and "\<exists>s. \<forall>x. s \<le> norm x \<longrightarrow> Q x" | 
| 
246493d61204
define nets directly as filters, instead of as filter bases
 huffman parents: 
36336diff
changeset | 853 | then obtain r s where | 
| 
246493d61204
define nets directly as filters, instead of as filter bases
 huffman parents: 
36336diff
changeset | 854 | "\<forall>x. r \<le> norm x \<longrightarrow> P x" and "\<forall>x. s \<le> norm x \<longrightarrow> Q x" by auto | 
| 
246493d61204
define nets directly as filters, instead of as filter bases
 huffman parents: 
36336diff
changeset | 855 | then have "\<forall>x. max r s \<le> norm x \<longrightarrow> P x \<and> Q x" by simp | 
| 
246493d61204
define nets directly as filters, instead of as filter bases
 huffman parents: 
36336diff
changeset | 856 | then show "\<exists>r. \<forall>x. r \<le> norm x \<longrightarrow> P x \<and> Q x" .. | 
| 
246493d61204
define nets directly as filters, instead of as filter bases
 huffman parents: 
36336diff
changeset | 857 | qed auto | 
| 33175 | 858 | |
| 36437 | 859 | text {* Identify Trivial limits, where we can't approach arbitrarily closely. *}
 | 
| 33175 | 860 | |
| 861 | lemma trivial_limit_within: | |
| 862 | shows "trivial_limit (at a within S) \<longleftrightarrow> \<not> a islimpt S" | |
| 863 | proof | |
| 864 | assume "trivial_limit (at a within S)" | |
| 865 | thus "\<not> a islimpt S" | |
| 866 | unfolding trivial_limit_def | |
| 36358 
246493d61204
define nets directly as filters, instead of as filter bases
 huffman parents: 
36336diff
changeset | 867 | unfolding eventually_within eventually_at_topological | 
| 33175 | 868 | unfolding islimpt_def | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 869 | apply (clarsimp simp add: set_eq_iff) | 
| 33175 | 870 | apply (rename_tac T, rule_tac x=T in exI) | 
| 36358 
246493d61204
define nets directly as filters, instead of as filter bases
 huffman parents: 
36336diff
changeset | 871 | apply (clarsimp, drule_tac x=y in bspec, simp_all) | 
| 33175 | 872 | done | 
| 873 | next | |
| 874 | assume "\<not> a islimpt S" | |
| 875 | thus "trivial_limit (at a within S)" | |
| 876 | unfolding trivial_limit_def | |
| 36358 
246493d61204
define nets directly as filters, instead of as filter bases
 huffman parents: 
36336diff
changeset | 877 | unfolding eventually_within eventually_at_topological | 
| 33175 | 878 | unfolding islimpt_def | 
| 36358 
246493d61204
define nets directly as filters, instead of as filter bases
 huffman parents: 
36336diff
changeset | 879 | apply clarsimp | 
| 
246493d61204
define nets directly as filters, instead of as filter bases
 huffman parents: 
36336diff
changeset | 880 | apply (rule_tac x=T in exI) | 
| 
246493d61204
define nets directly as filters, instead of as filter bases
 huffman parents: 
36336diff
changeset | 881 | apply auto | 
| 33175 | 882 | done | 
| 883 | qed | |
| 884 | ||
| 885 | lemma trivial_limit_at_iff: "trivial_limit (at a) \<longleftrightarrow> \<not> a islimpt UNIV" | |
| 886 | using trivial_limit_within [of a UNIV] | |
| 887 | by (simp add: within_UNIV) | |
| 888 | ||
| 889 | lemma trivial_limit_at: | |
| 890 | fixes a :: "'a::perfect_space" | |
| 891 | shows "\<not> trivial_limit (at a)" | |
| 44571 | 892 | by (rule at_neq_bot) | 
| 33175 | 893 | |
| 894 | lemma trivial_limit_at_infinity: | |
| 44081 
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
 huffman parents: 
44076diff
changeset | 895 |   "\<not> trivial_limit (at_infinity :: ('a::{real_normed_vector,perfect_space}) filter)"
 | 
| 36358 
246493d61204
define nets directly as filters, instead of as filter bases
 huffman parents: 
36336diff
changeset | 896 | unfolding trivial_limit_def eventually_at_infinity | 
| 
246493d61204
define nets directly as filters, instead of as filter bases
 huffman parents: 
36336diff
changeset | 897 | apply clarsimp | 
| 44072 
5b970711fb39
class perfect_space inherits from topological_space;
 huffman parents: 
43338diff
changeset | 898 | apply (subgoal_tac "\<exists>x::'a. x \<noteq> 0", clarify) | 
| 
5b970711fb39
class perfect_space inherits from topological_space;
 huffman parents: 
43338diff
changeset | 899 | apply (rule_tac x="scaleR (b / norm x) x" in exI, simp) | 
| 
5b970711fb39
class perfect_space inherits from topological_space;
 huffman parents: 
43338diff
changeset | 900 | apply (cut_tac islimpt_UNIV [of "0::'a", unfolded islimpt_def]) | 
| 
5b970711fb39
class perfect_space inherits from topological_space;
 huffman parents: 
43338diff
changeset | 901 | apply (drule_tac x=UNIV in spec, simp) | 
| 33175 | 902 | done | 
| 903 | ||
| 36437 | 904 | text {* Some property holds "sufficiently close" to the limit point. *}
 | 
| 33175 | 905 | |
| 906 | lemma eventually_at: (* FIXME: this replaces Limits.eventually_at *) | |
| 907 | "eventually P (at a) \<longleftrightarrow> (\<exists>d>0. \<forall>x. 0 < dist x a \<and> dist x a < d \<longrightarrow> P x)" | |
| 908 | unfolding eventually_at dist_nz by auto | |
| 909 | ||
| 910 | lemma eventually_within: "eventually P (at a within S) \<longleftrightarrow> | |
| 911 | (\<exists>d>0. \<forall>x\<in>S. 0 < dist x a \<and> dist x a < d \<longrightarrow> P x)" | |
| 912 | unfolding eventually_within eventually_at dist_nz by auto | |
| 913 | ||
| 914 | lemma eventually_within_le: "eventually P (at a within S) \<longleftrightarrow> | |
| 915 | (\<exists>d>0. \<forall>x\<in>S. 0 < dist x a \<and> dist x a <= d \<longrightarrow> P x)" (is "?lhs = ?rhs") | |
| 916 | unfolding eventually_within | |
| 44668 | 917 | by auto (metis dense order_le_less_trans) | 
| 33175 | 918 | |
| 919 | lemma eventually_happens: "eventually P net ==> trivial_limit net \<or> (\<exists>x. P x)" | |
| 36358 
246493d61204
define nets directly as filters, instead of as filter bases
 huffman parents: 
36336diff
changeset | 920 | unfolding trivial_limit_def | 
| 
246493d61204
define nets directly as filters, instead of as filter bases
 huffman parents: 
36336diff
changeset | 921 | by (auto elim: eventually_rev_mp) | 
| 33175 | 922 | |
| 923 | lemma trivial_limit_eventually: "trivial_limit net \<Longrightarrow> eventually P net" | |
| 36358 
246493d61204
define nets directly as filters, instead of as filter bases
 huffman parents: 
36336diff
changeset | 924 | unfolding trivial_limit_def by (auto elim: eventually_rev_mp) | 
| 33175 | 925 | |
| 926 | lemma trivial_limit_eq: "trivial_limit net \<longleftrightarrow> (\<forall>P. eventually P net)" | |
| 44342 
8321948340ea
redefine constant 'trivial_limit' as an abbreviation
 huffman parents: 
44286diff
changeset | 927 | by (simp add: filter_eq_iff) | 
| 33175 | 928 | |
| 929 | text{* Combining theorems for "eventually" *}
 | |
| 930 | ||
| 931 | lemma eventually_rev_mono: | |
| 932 | "eventually P net \<Longrightarrow> (\<forall>x. P x \<longrightarrow> Q x) \<Longrightarrow> eventually Q net" | |
| 933 | using eventually_mono [of P Q] by fast | |
| 934 | ||
| 935 | lemma not_eventually: "(\<forall>x. \<not> P x ) \<Longrightarrow> ~(trivial_limit net) ==> ~(eventually (\<lambda>x. P x) net)" | |
| 936 | by (simp add: eventually_False) | |
| 937 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 938 | |
| 36437 | 939 | subsection {* Limits *}
 | 
| 33175 | 940 | |
| 44081 
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
 huffman parents: 
44076diff
changeset | 941 | text{* Notation Lim to avoid collition with lim defined in analysis *}
 | 
| 
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
 huffman parents: 
44076diff
changeset | 942 | |
| 
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
 huffman parents: 
44076diff
changeset | 943 | definition Lim :: "'a filter \<Rightarrow> ('a \<Rightarrow> 'b::t2_space) \<Rightarrow> 'b"
 | 
| 
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
 huffman parents: 
44076diff
changeset | 944 | where "Lim A f = (THE l. (f ---> l) A)" | 
| 33175 | 945 | |
| 946 | lemma Lim: | |
| 947 | "(f ---> l) net \<longleftrightarrow> | |
| 948 | trivial_limit net \<or> | |
| 949 | (\<forall>e>0. eventually (\<lambda>x. dist (f x) l < e) net)" | |
| 950 | unfolding tendsto_iff trivial_limit_eq by auto | |
| 951 | ||
| 952 | text{* Show that they yield usual definitions in the various cases. *}
 | |
| 953 | ||
| 954 | lemma Lim_within_le: "(f ---> l)(at a within S) \<longleftrightarrow> | |
| 955 | (\<forall>e>0. \<exists>d>0. \<forall>x\<in>S. 0 < dist x a \<and> dist x a <= d \<longrightarrow> dist (f x) l < e)" | |
| 956 | by (auto simp add: tendsto_iff eventually_within_le) | |
| 957 | ||
| 958 | lemma Lim_within: "(f ---> l) (at a within S) \<longleftrightarrow> | |
| 959 | (\<forall>e >0. \<exists>d>0. \<forall>x \<in> S. 0 < dist x a \<and> dist x a < d \<longrightarrow> dist (f x) l < e)" | |
| 960 | by (auto simp add: tendsto_iff eventually_within) | |
| 961 | ||
| 962 | lemma Lim_at: "(f ---> l) (at a) \<longleftrightarrow> | |
| 963 | (\<forall>e >0. \<exists>d>0. \<forall>x. 0 < dist x a \<and> dist x a < d \<longrightarrow> dist (f x) l < e)" | |
| 964 | by (auto simp add: tendsto_iff eventually_at) | |
| 965 | ||
| 966 | lemma Lim_at_iff_LIM: "(f ---> l) (at a) \<longleftrightarrow> f -- a --> l" | |
| 967 | unfolding Lim_at LIM_def by (simp only: zero_less_dist_iff) | |
| 968 | ||
| 969 | lemma Lim_at_infinity: | |
| 970 | "(f ---> l) at_infinity \<longleftrightarrow> (\<forall>e>0. \<exists>b. \<forall>x. norm x >= b \<longrightarrow> dist (f x) l < e)" | |
| 971 | by (auto simp add: tendsto_iff eventually_at_infinity) | |
| 972 | ||
| 973 | lemma Lim_sequentially: | |
| 974 | "(S ---> l) sequentially \<longleftrightarrow> | |
| 975 | (\<forall>e>0. \<exists>N. \<forall>n\<ge>N. dist (S n) l < e)" | |
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 976 | by (rule LIMSEQ_def) (* FIXME: redundant *) | 
| 33175 | 977 | |
| 978 | lemma Lim_eventually: "eventually (\<lambda>x. f x = l) net \<Longrightarrow> (f ---> l) net" | |
| 979 | by (rule topological_tendstoI, auto elim: eventually_rev_mono) | |
| 980 | ||
| 981 | text{* The expected monotonicity property. *}
 | |
| 982 | ||
| 983 | lemma Lim_within_empty: "(f ---> l) (net within {})"
 | |
| 984 | unfolding tendsto_def Limits.eventually_within by simp | |
| 985 | ||
| 986 | lemma Lim_within_subset: "(f ---> l) (net within S) \<Longrightarrow> T \<subseteq> S \<Longrightarrow> (f ---> l) (net within T)" | |
| 987 | unfolding tendsto_def Limits.eventually_within | |
| 988 | by (auto elim!: eventually_elim1) | |
| 989 | ||
| 990 | lemma Lim_Un: assumes "(f ---> l) (net within S)" "(f ---> l) (net within T)" | |
| 991 | shows "(f ---> l) (net within (S \<union> T))" | |
| 992 | using assms unfolding tendsto_def Limits.eventually_within | |
| 993 | apply clarify | |
| 994 | apply (drule spec, drule (1) mp, drule (1) mp) | |
| 995 | apply (drule spec, drule (1) mp, drule (1) mp) | |
| 996 | apply (auto elim: eventually_elim2) | |
| 997 | done | |
| 998 | ||
| 999 | lemma Lim_Un_univ: | |
| 1000 | "(f ---> l) (net within S) \<Longrightarrow> (f ---> l) (net within T) \<Longrightarrow> S \<union> T = UNIV | |
| 1001 | ==> (f ---> l) net" | |
| 1002 | by (metis Lim_Un within_UNIV) | |
| 1003 | ||
| 1004 | text{* Interrelations between restricted and unrestricted limits. *}
 | |
| 1005 | ||
| 1006 | lemma Lim_at_within: "(f ---> l) net ==> (f ---> l)(net within S)" | |
| 1007 | (* FIXME: rename *) | |
| 1008 | unfolding tendsto_def Limits.eventually_within | |
| 1009 | apply (clarify, drule spec, drule (1) mp, drule (1) mp) | |
| 1010 | by (auto elim!: eventually_elim1) | |
| 1011 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1012 | lemma eventually_within_interior: | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1013 | assumes "x \<in> interior S" | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1014 | shows "eventually P (at x within S) \<longleftrightarrow> eventually P (at x)" (is "?lhs = ?rhs") | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1015 | proof- | 
| 44519 | 1016 | from assms obtain T where T: "open T" "x \<in> T" "T \<subseteq> S" .. | 
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1017 |   { assume "?lhs"
 | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1018 | then obtain A where "open A" "x \<in> A" "\<forall>y\<in>A. y \<noteq> x \<longrightarrow> y \<in> S \<longrightarrow> P y" | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1019 | unfolding Limits.eventually_within Limits.eventually_at_topological | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1020 | by auto | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1021 | with T have "open (A \<inter> T)" "x \<in> A \<inter> T" "\<forall>y\<in>(A \<inter> T). y \<noteq> x \<longrightarrow> P y" | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1022 | by auto | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1023 | then have "?rhs" | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1024 | unfolding Limits.eventually_at_topological by auto | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1025 | } moreover | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1026 |   { assume "?rhs" hence "?lhs"
 | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1027 | unfolding Limits.eventually_within | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1028 | by (auto elim: eventually_elim1) | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1029 | } ultimately | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1030 | show "?thesis" .. | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1031 | qed | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1032 | |
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1033 | lemma at_within_interior: | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1034 | "x \<in> interior S \<Longrightarrow> at x within S = at x" | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1035 | by (simp add: filter_eq_iff eventually_within_interior) | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1036 | |
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1037 | lemma at_within_open: | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1038 | "\<lbrakk>x \<in> S; open S\<rbrakk> \<Longrightarrow> at x within S = at x" | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1039 | by (simp only: at_within_interior interior_open) | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1040 | |
| 33175 | 1041 | lemma Lim_within_open: | 
| 1042 | fixes f :: "'a::topological_space \<Rightarrow> 'b::topological_space" | |
| 1043 | assumes"a \<in> S" "open S" | |
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1044 | shows "(f ---> l)(at a within S) \<longleftrightarrow> (f ---> l)(at a)" | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1045 | using assms by (simp only: at_within_open) | 
| 33175 | 1046 | |
| 43338 | 1047 | lemma Lim_within_LIMSEQ: | 
| 44584 | 1048 | fixes a :: "'a::metric_space" | 
| 43338 | 1049 | assumes "\<forall>S. (\<forall>n. S n \<noteq> a \<and> S n \<in> T) \<and> S ----> a \<longrightarrow> (\<lambda>n. X (S n)) ----> L" | 
| 1050 | shows "(X ---> L) (at a within T)" | |
| 44584 | 1051 | using assms unfolding tendsto_def [where l=L] | 
| 1052 | by (simp add: sequentially_imp_eventually_within) | |
| 43338 | 1053 | |
| 1054 | lemma Lim_right_bound: | |
| 1055 | fixes f :: "real \<Rightarrow> real" | |
| 1056 | assumes mono: "\<And>a b. a \<in> I \<Longrightarrow> b \<in> I \<Longrightarrow> x < a \<Longrightarrow> a \<le> b \<Longrightarrow> f a \<le> f b" | |
| 1057 | assumes bnd: "\<And>a. a \<in> I \<Longrightarrow> x < a \<Longrightarrow> K \<le> f a" | |
| 1058 |   shows "(f ---> Inf (f ` ({x<..} \<inter> I))) (at x within ({x<..} \<inter> I))"
 | |
| 1059 | proof cases | |
| 1060 |   assume "{x<..} \<inter> I = {}" then show ?thesis by (simp add: Lim_within_empty)
 | |
| 1061 | next | |
| 1062 |   assume [simp]: "{x<..} \<inter> I \<noteq> {}"
 | |
| 1063 | show ?thesis | |
| 1064 | proof (rule Lim_within_LIMSEQ, safe) | |
| 1065 |     fix S assume S: "\<forall>n. S n \<noteq> x \<and> S n \<in> {x <..} \<inter> I" "S ----> x"
 | |
| 1066 | ||
| 1067 |     show "(\<lambda>n. f (S n)) ----> Inf (f ` ({x<..} \<inter> I))"
 | |
| 1068 | proof (rule LIMSEQ_I, rule ccontr) | |
| 1069 | fix r :: real assume "0 < r" | |
| 1070 |       with Inf_close[of "f ` ({x<..} \<inter> I)" r]
 | |
| 1071 |       obtain y where y: "x < y" "y \<in> I" "f y < Inf (f ` ({x <..} \<inter> I)) + r" by auto
 | |
| 1072 | from `x < y` have "0 < y - x" by auto | |
| 1073 | from S(2)[THEN LIMSEQ_D, OF this] | |
| 1074 | obtain N where N: "\<And>n. N \<le> n \<Longrightarrow> \<bar>S n - x\<bar> < y - x" by auto | |
| 1075 | ||
| 1076 |       assume "\<not> (\<exists>N. \<forall>n\<ge>N. norm (f (S n) - Inf (f ` ({x<..} \<inter> I))) < r)"
 | |
| 1077 |       moreover have "\<And>n. Inf (f ` ({x<..} \<inter> I)) \<le> f (S n)"
 | |
| 1078 | using S bnd by (intro Inf_lower[where z=K]) auto | |
| 1079 |       ultimately obtain n where n: "N \<le> n" "r + Inf (f ` ({x<..} \<inter> I)) \<le> f (S n)"
 | |
| 1080 | by (auto simp: not_less field_simps) | |
| 1081 | with N[OF n(1)] mono[OF _ `y \<in> I`, of "S n"] S(1)[THEN spec, of n] y | |
| 1082 | show False by auto | |
| 1083 | qed | |
| 1084 | qed | |
| 1085 | qed | |
| 1086 | ||
| 33175 | 1087 | text{* Another limit point characterization. *}
 | 
| 1088 | ||
| 1089 | lemma islimpt_sequential: | |
| 36667 | 1090 | fixes x :: "'a::metric_space" | 
| 33175 | 1091 |   shows "x islimpt S \<longleftrightarrow> (\<exists>f. (\<forall>n::nat. f n \<in> S -{x}) \<and> (f ---> x) sequentially)"
 | 
| 1092 | (is "?lhs = ?rhs") | |
| 1093 | proof | |
| 1094 | assume ?lhs | |
| 1095 | then obtain f where f:"\<forall>y. y>0 \<longrightarrow> f y \<in> S \<and> f y \<noteq> x \<and> dist (f y) x < y" | |
| 44584 | 1096 | unfolding islimpt_approachable | 
| 1097 | using choice[of "\<lambda>e y. e>0 \<longrightarrow> y\<in>S \<and> y\<noteq>x \<and> dist y x < e"] by auto | |
| 1098 | let ?I = "\<lambda>n. inverse (real (Suc n))" | |
| 1099 |   have "\<forall>n. f (?I n) \<in> S - {x}" using f by simp
 | |
| 1100 | moreover have "(\<lambda>n. f (?I n)) ----> x" | |
| 1101 | proof (rule metric_tendsto_imp_tendsto) | |
| 1102 | show "?I ----> 0" | |
| 1103 | by (rule LIMSEQ_inverse_real_of_nat) | |
| 1104 | show "eventually (\<lambda>n. dist (f (?I n)) x \<le> dist (?I n) 0) sequentially" | |
| 1105 | by (simp add: norm_conv_dist [symmetric] less_imp_le f) | |
| 1106 | qed | |
| 1107 | ultimately show ?rhs by fast | |
| 33175 | 1108 | next | 
| 1109 | assume ?rhs | |
| 1110 |   then obtain f::"nat\<Rightarrow>'a"  where f:"(\<forall>n. f n \<in> S - {x})" "(\<forall>e>0. \<exists>N. \<forall>n\<ge>N. dist (f n) x < e)" unfolding Lim_sequentially by auto
 | |
| 1111 |   { fix e::real assume "e>0"
 | |
| 1112 | then obtain N where "dist (f N) x < e" using f(2) by auto | |
| 1113 | moreover have "f N\<in>S" "f N \<noteq> x" using f(1) by auto | |
| 1114 | ultimately have "\<exists>x'\<in>S. x' \<noteq> x \<and> dist x' x < e" by auto | |
| 1115 | } | |
| 1116 | thus ?lhs unfolding islimpt_approachable by auto | |
| 1117 | qed | |
| 1118 | ||
| 44125 | 1119 | lemma Lim_inv: (* TODO: delete *) | 
| 44081 
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
 huffman parents: 
44076diff
changeset | 1120 | fixes f :: "'a \<Rightarrow> real" and A :: "'a filter" | 
| 
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
 huffman parents: 
44076diff
changeset | 1121 | assumes "(f ---> l) A" and "l \<noteq> 0" | 
| 
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
 huffman parents: 
44076diff
changeset | 1122 | shows "((inverse o f) ---> inverse l) A" | 
| 36437 | 1123 | unfolding o_def using assms by (rule tendsto_inverse) | 
| 1124 | ||
| 33175 | 1125 | lemma Lim_null: | 
| 1126 | fixes f :: "'a \<Rightarrow> 'b::real_normed_vector" | |
| 44125 | 1127 | shows "(f ---> l) net \<longleftrightarrow> ((\<lambda>x. f(x) - l) ---> 0) net" | 
| 33175 | 1128 | by (simp add: Lim dist_norm) | 
| 1129 | ||
| 1130 | lemma Lim_null_comparison: | |
| 1131 | fixes f :: "'a \<Rightarrow> 'b::real_normed_vector" | |
| 1132 | assumes "eventually (\<lambda>x. norm (f x) \<le> g x) net" "(g ---> 0) net" | |
| 1133 | shows "(f ---> 0) net" | |
| 44252 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1134 | proof (rule metric_tendsto_imp_tendsto) | 
| 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1135 | show "(g ---> 0) net" by fact | 
| 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1136 | show "eventually (\<lambda>x. dist (f x) 0 \<le> dist (g x) 0) net" | 
| 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1137 | using assms(1) by (rule eventually_elim1, simp add: dist_norm) | 
| 33175 | 1138 | qed | 
| 1139 | ||
| 1140 | lemma Lim_transform_bound: | |
| 1141 | fixes f :: "'a \<Rightarrow> 'b::real_normed_vector" | |
| 1142 | fixes g :: "'a \<Rightarrow> 'c::real_normed_vector" | |
| 1143 | assumes "eventually (\<lambda>n. norm(f n) <= norm(g n)) net" "(g ---> 0) net" | |
| 1144 | shows "(f ---> 0) net" | |
| 44252 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1145 | using assms(1) tendsto_norm_zero [OF assms(2)] | 
| 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1146 | by (rule Lim_null_comparison) | 
| 33175 | 1147 | |
| 1148 | text{* Deducing things about the limit from the elements. *}
 | |
| 1149 | ||
| 1150 | lemma Lim_in_closed_set: | |
| 1151 | assumes "closed S" "eventually (\<lambda>x. f(x) \<in> S) net" "\<not>(trivial_limit net)" "(f ---> l) net" | |
| 1152 | shows "l \<in> S" | |
| 1153 | proof (rule ccontr) | |
| 1154 | assume "l \<notin> S" | |
| 1155 | with `closed S` have "open (- S)" "l \<in> - S" | |
| 1156 | by (simp_all add: open_Compl) | |
| 1157 | with assms(4) have "eventually (\<lambda>x. f x \<in> - S) net" | |
| 1158 | by (rule topological_tendstoD) | |
| 1159 | with assms(2) have "eventually (\<lambda>x. False) net" | |
| 1160 | by (rule eventually_elim2) simp | |
| 1161 | with assms(3) show "False" | |
| 1162 | by (simp add: eventually_False) | |
| 1163 | qed | |
| 1164 | ||
| 1165 | text{* Need to prove closed(cball(x,e)) before deducing this as a corollary. *}
 | |
| 1166 | ||
| 1167 | lemma Lim_dist_ubound: | |
| 1168 | assumes "\<not>(trivial_limit net)" "(f ---> l) net" "eventually (\<lambda>x. dist a (f x) <= e) net" | |
| 1169 | shows "dist a l <= e" | |
| 44252 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1170 | proof- | 
| 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1171 |   have "dist a l \<in> {..e}"
 | 
| 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1172 | proof (rule Lim_in_closed_set) | 
| 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1173 |     show "closed {..e}" by simp
 | 
| 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1174 |     show "eventually (\<lambda>x. dist a (f x) \<in> {..e}) net" by (simp add: assms)
 | 
| 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1175 | show "\<not> trivial_limit net" by fact | 
| 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1176 | show "((\<lambda>x. dist a (f x)) ---> dist a l) net" by (intro tendsto_intros assms) | 
| 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1177 | qed | 
| 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1178 | thus ?thesis by simp | 
| 33175 | 1179 | qed | 
| 1180 | ||
| 1181 | lemma Lim_norm_ubound: | |
| 1182 | fixes f :: "'a \<Rightarrow> 'b::real_normed_vector" | |
| 1183 | assumes "\<not>(trivial_limit net)" "(f ---> l) net" "eventually (\<lambda>x. norm(f x) <= e) net" | |
| 1184 | shows "norm(l) <= e" | |
| 44252 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1185 | proof- | 
| 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1186 |   have "norm l \<in> {..e}"
 | 
| 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1187 | proof (rule Lim_in_closed_set) | 
| 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1188 |     show "closed {..e}" by simp
 | 
| 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1189 |     show "eventually (\<lambda>x. norm (f x) \<in> {..e}) net" by (simp add: assms)
 | 
| 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1190 | show "\<not> trivial_limit net" by fact | 
| 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1191 | show "((\<lambda>x. norm (f x)) ---> norm l) net" by (intro tendsto_intros assms) | 
| 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1192 | qed | 
| 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1193 | thus ?thesis by simp | 
| 33175 | 1194 | qed | 
| 1195 | ||
| 1196 | lemma Lim_norm_lbound: | |
| 1197 | fixes f :: "'a \<Rightarrow> 'b::real_normed_vector" | |
| 1198 | assumes "\<not> (trivial_limit net)" "(f ---> l) net" "eventually (\<lambda>x. e <= norm(f x)) net" | |
| 1199 | shows "e \<le> norm l" | |
| 44252 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1200 | proof- | 
| 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1201 |   have "norm l \<in> {e..}"
 | 
| 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1202 | proof (rule Lim_in_closed_set) | 
| 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1203 |     show "closed {e..}" by simp
 | 
| 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1204 |     show "eventually (\<lambda>x. norm (f x) \<in> {e..}) net" by (simp add: assms)
 | 
| 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1205 | show "\<not> trivial_limit net" by fact | 
| 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1206 | show "((\<lambda>x. norm (f x)) ---> norm l) net" by (intro tendsto_intros assms) | 
| 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1207 | qed | 
| 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1208 | thus ?thesis by simp | 
| 33175 | 1209 | qed | 
| 1210 | ||
| 1211 | text{* Uniqueness of the limit, when nontrivial. *}
 | |
| 1212 | ||
| 1213 | lemma tendsto_Lim: | |
| 1214 | fixes f :: "'a \<Rightarrow> 'b::t2_space" | |
| 1215 | shows "~(trivial_limit net) \<Longrightarrow> (f ---> l) net ==> Lim net f = l" | |
| 41970 | 1216 | unfolding Lim_def using tendsto_unique[of net f] by auto | 
| 33175 | 1217 | |
| 1218 | text{* Limit under bilinear function *}
 | |
| 1219 | ||
| 1220 | lemma Lim_bilinear: | |
| 1221 | assumes "(f ---> l) net" and "(g ---> m) net" and "bounded_bilinear h" | |
| 1222 | shows "((\<lambda>x. h (f x) (g x)) ---> (h l m)) net" | |
| 1223 | using `bounded_bilinear h` `(f ---> l) net` `(g ---> m) net` | |
| 1224 | by (rule bounded_bilinear.tendsto) | |
| 1225 | ||
| 1226 | text{* These are special for limits out of the same vector space. *}
 | |
| 1227 | ||
| 1228 | lemma Lim_within_id: "(id ---> a) (at a within s)" | |
| 1229 | unfolding tendsto_def Limits.eventually_within eventually_at_topological | |
| 1230 | by auto | |
| 1231 | ||
| 1232 | lemma Lim_at_id: "(id ---> a) (at a)" | |
| 1233 | apply (subst within_UNIV[symmetric]) by (simp add: Lim_within_id) | |
| 1234 | ||
| 1235 | lemma Lim_at_zero: | |
| 1236 | fixes a :: "'a::real_normed_vector" | |
| 1237 | fixes l :: "'b::topological_space" | |
| 1238 | shows "(f ---> l) (at a) \<longleftrightarrow> ((\<lambda>x. f(a + x)) ---> l) (at 0)" (is "?lhs = ?rhs") | |
| 44252 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1239 | using LIM_offset_zero LIM_offset_zero_cancel .. | 
| 33175 | 1240 | |
| 44081 
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
 huffman parents: 
44076diff
changeset | 1241 | text{* It's also sometimes useful to extract the limit point from the filter. *}
 | 
| 33175 | 1242 | |
| 1243 | definition | |
| 44081 
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
 huffman parents: 
44076diff
changeset | 1244 | netlimit :: "'a::t2_space filter \<Rightarrow> 'a" where | 
| 33175 | 1245 | "netlimit net = (SOME a. ((\<lambda>x. x) ---> a) net)" | 
| 1246 | ||
| 1247 | lemma netlimit_within: | |
| 1248 | assumes "\<not> trivial_limit (at a within S)" | |
| 1249 | shows "netlimit (at a within S) = a" | |
| 1250 | unfolding netlimit_def | |
| 1251 | apply (rule some_equality) | |
| 1252 | apply (rule Lim_at_within) | |
| 44568 
e6f291cb5810
discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
 huffman parents: 
44533diff
changeset | 1253 | apply (rule tendsto_ident_at) | 
| 41970 | 1254 | apply (erule tendsto_unique [OF assms]) | 
| 33175 | 1255 | apply (rule Lim_at_within) | 
| 44568 
e6f291cb5810
discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
 huffman parents: 
44533diff
changeset | 1256 | apply (rule tendsto_ident_at) | 
| 33175 | 1257 | done | 
| 1258 | ||
| 1259 | lemma netlimit_at: | |
| 44072 
5b970711fb39
class perfect_space inherits from topological_space;
 huffman parents: 
43338diff
changeset | 1260 |   fixes a :: "'a::{perfect_space,t2_space}"
 | 
| 33175 | 1261 | shows "netlimit (at a) = a" | 
| 1262 | apply (subst within_UNIV[symmetric]) | |
| 1263 | using netlimit_within[of a UNIV] | |
| 44584 | 1264 | by (simp add: within_UNIV) | 
| 33175 | 1265 | |
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1266 | lemma lim_within_interior: | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1267 | "x \<in> interior S \<Longrightarrow> (f ---> l) (at x within S) \<longleftrightarrow> (f ---> l) (at x)" | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1268 | by (simp add: at_within_interior) | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1269 | |
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1270 | lemma netlimit_within_interior: | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1271 |   fixes x :: "'a::{t2_space,perfect_space}"
 | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1272 | assumes "x \<in> interior S" | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1273 | shows "netlimit (at x within S) = x" | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1274 | using assms by (simp add: at_within_interior netlimit_at) | 
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1275 | |
| 33175 | 1276 | text{* Transformation of limit. *}
 | 
| 1277 | ||
| 1278 | lemma Lim_transform: | |
| 1279 | fixes f g :: "'a::type \<Rightarrow> 'b::real_normed_vector" | |
| 1280 | assumes "((\<lambda>x. f x - g x) ---> 0) net" "(f ---> l) net" | |
| 1281 | shows "(g ---> l) net" | |
| 44252 
10362a07eb7c
Topology_Euclidean_Space.thy: simplify some proofs
 huffman parents: 
44250diff
changeset | 1282 | using tendsto_diff [OF assms(2) assms(1)] by simp | 
| 33175 | 1283 | |
| 1284 | lemma Lim_transform_eventually: | |
| 36667 | 1285 | "eventually (\<lambda>x. f x = g x) net \<Longrightarrow> (f ---> l) net \<Longrightarrow> (g ---> l) net" | 
| 33175 | 1286 | apply (rule topological_tendstoI) | 
| 1287 | apply (drule (2) topological_tendstoD) | |
| 1288 | apply (erule (1) eventually_elim2, simp) | |
| 1289 | done | |
| 1290 | ||
| 1291 | lemma Lim_transform_within: | |
| 36667 | 1292 | assumes "0 < d" and "\<forall>x'\<in>S. 0 < dist x' x \<and> dist x' x < d \<longrightarrow> f x' = g x'" | 
| 1293 | and "(f ---> l) (at x within S)" | |
| 1294 | shows "(g ---> l) (at x within S)" | |
| 1295 | proof (rule Lim_transform_eventually) | |
| 1296 | show "eventually (\<lambda>x. f x = g x) (at x within S)" | |
| 1297 | unfolding eventually_within | |
| 1298 | using assms(1,2) by auto | |
| 1299 | show "(f ---> l) (at x within S)" by fact | |
| 1300 | qed | |
| 33175 | 1301 | |
| 1302 | lemma Lim_transform_at: | |
| 36667 | 1303 | assumes "0 < d" and "\<forall>x'. 0 < dist x' x \<and> dist x' x < d \<longrightarrow> f x' = g x'" | 
| 1304 | and "(f ---> l) (at x)" | |
| 1305 | shows "(g ---> l) (at x)" | |
| 1306 | proof (rule Lim_transform_eventually) | |
| 1307 | show "eventually (\<lambda>x. f x = g x) (at x)" | |
| 1308 | unfolding eventually_at | |
| 1309 | using assms(1,2) by auto | |
| 1310 | show "(f ---> l) (at x)" by fact | |
| 1311 | qed | |
| 33175 | 1312 | |
| 1313 | text{* Common case assuming being away from some crucial point like 0. *}
 | |
| 1314 | ||
| 1315 | lemma Lim_transform_away_within: | |
| 36669 | 1316 | fixes a b :: "'a::t1_space" | 
| 36667 | 1317 | assumes "a \<noteq> b" and "\<forall>x\<in>S. x \<noteq> a \<and> x \<noteq> b \<longrightarrow> f x = g x" | 
| 33175 | 1318 | and "(f ---> l) (at a within S)" | 
| 1319 | shows "(g ---> l) (at a within S)" | |
| 36669 | 1320 | proof (rule Lim_transform_eventually) | 
| 1321 | show "(f ---> l) (at a within S)" by fact | |
| 1322 | show "eventually (\<lambda>x. f x = g x) (at a within S)" | |
| 1323 | unfolding Limits.eventually_within eventually_at_topological | |
| 1324 |     by (rule exI [where x="- {b}"], simp add: open_Compl assms)
 | |
| 33175 | 1325 | qed | 
| 1326 | ||
| 1327 | lemma Lim_transform_away_at: | |
| 36669 | 1328 | fixes a b :: "'a::t1_space" | 
| 33175 | 1329 | assumes ab: "a\<noteq>b" and fg: "\<forall>x. x \<noteq> a \<and> x \<noteq> b \<longrightarrow> f x = g x" | 
| 1330 | and fl: "(f ---> l) (at a)" | |
| 1331 | shows "(g ---> l) (at a)" | |
| 1332 | using Lim_transform_away_within[OF ab, of UNIV f g l] fg fl | |
| 1333 | by (auto simp add: within_UNIV) | |
| 1334 | ||
| 1335 | text{* Alternatively, within an open set. *}
 | |
| 1336 | ||
| 1337 | lemma Lim_transform_within_open: | |
| 36667 | 1338 | assumes "open S" and "a \<in> S" and "\<forall>x\<in>S. x \<noteq> a \<longrightarrow> f x = g x" | 
| 1339 | and "(f ---> l) (at a)" | |
| 33175 | 1340 | shows "(g ---> l) (at a)" | 
| 36667 | 1341 | proof (rule Lim_transform_eventually) | 
| 1342 | show "eventually (\<lambda>x. f x = g x) (at a)" | |
| 1343 | unfolding eventually_at_topological | |
| 1344 | using assms(1,2,3) by auto | |
| 1345 | show "(f ---> l) (at a)" by fact | |
| 33175 | 1346 | qed | 
| 1347 | ||
| 1348 | text{* A congruence rule allowing us to transform limits assuming not at point. *}
 | |
| 1349 | ||
| 1350 | (* FIXME: Only one congruence rule for tendsto can be used at a time! *) | |
| 1351 | ||
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36360diff
changeset | 1352 | lemma Lim_cong_within(*[cong add]*): | 
| 43338 | 1353 | assumes "a = b" "x = y" "S = T" | 
| 1354 | assumes "\<And>x. x \<noteq> b \<Longrightarrow> x \<in> T \<Longrightarrow> f x = g x" | |
| 1355 | shows "(f ---> x) (at a within S) \<longleftrightarrow> (g ---> y) (at b within T)" | |
| 36667 | 1356 | unfolding tendsto_def Limits.eventually_within eventually_at_topological | 
| 1357 | using assms by simp | |
| 1358 | ||
| 1359 | lemma Lim_cong_at(*[cong add]*): | |
| 43338 | 1360 | assumes "a = b" "x = y" | 
| 36667 | 1361 | assumes "\<And>x. x \<noteq> a \<Longrightarrow> f x = g x" | 
| 43338 | 1362 | shows "((\<lambda>x. f x) ---> x) (at a) \<longleftrightarrow> ((g ---> y) (at a))" | 
| 36667 | 1363 | unfolding tendsto_def eventually_at_topological | 
| 1364 | using assms by simp | |
| 33175 | 1365 | |
| 1366 | text{* Useful lemmas on closure and set of possible sequential limits.*}
 | |
| 1367 | ||
| 1368 | lemma closure_sequential: | |
| 36667 | 1369 | fixes l :: "'a::metric_space" | 
| 33175 | 1370 | shows "l \<in> closure S \<longleftrightarrow> (\<exists>x. (\<forall>n. x n \<in> S) \<and> (x ---> l) sequentially)" (is "?lhs = ?rhs") | 
| 1371 | proof | |
| 1372 | assume "?lhs" moreover | |
| 1373 |   { assume "l \<in> S"
 | |
| 44125 | 1374 | hence "?rhs" using tendsto_const[of l sequentially] by auto | 
| 33175 | 1375 | } moreover | 
| 1376 |   { assume "l islimpt S"
 | |
| 1377 | hence "?rhs" unfolding islimpt_sequential by auto | |
| 1378 | } ultimately | |
| 1379 | show "?rhs" unfolding closure_def by auto | |
| 1380 | next | |
| 1381 | assume "?rhs" | |
| 1382 | thus "?lhs" unfolding closure_def unfolding islimpt_sequential by auto | |
| 1383 | qed | |
| 1384 | ||
| 1385 | lemma closed_sequential_limits: | |
| 1386 | fixes S :: "'a::metric_space set" | |
| 1387 | shows "closed S \<longleftrightarrow> (\<forall>x l. (\<forall>n. x n \<in> S) \<and> (x ---> l) sequentially \<longrightarrow> l \<in> S)" | |
| 1388 | unfolding closed_limpt | |
| 1389 | using closure_sequential [where 'a='a] closure_closed [where 'a='a] closed_limpt [where 'a='a] islimpt_sequential [where 'a='a] mem_delete [where 'a='a] | |
| 1390 | by metis | |
| 1391 | ||
| 1392 | lemma closure_approachable: | |
| 1393 | fixes S :: "'a::metric_space set" | |
| 1394 | shows "x \<in> closure S \<longleftrightarrow> (\<forall>e>0. \<exists>y\<in>S. dist y x < e)" | |
| 1395 | apply (auto simp add: closure_def islimpt_approachable) | |
| 1396 | by (metis dist_self) | |
| 1397 | ||
| 1398 | lemma closed_approachable: | |
| 1399 | fixes S :: "'a::metric_space set" | |
| 1400 | shows "closed S ==> (\<forall>e>0. \<exists>y\<in>S. dist y x < e) \<longleftrightarrow> x \<in> S" | |
| 1401 | by (metis closure_closed closure_approachable) | |
| 1402 | ||
| 1403 | text{* Some other lemmas about sequences. *}
 | |
| 1404 | ||
| 36441 | 1405 | lemma sequentially_offset: | 
| 1406 | assumes "eventually (\<lambda>i. P i) sequentially" | |
| 1407 | shows "eventually (\<lambda>i. P (i + k)) sequentially" | |
| 1408 | using assms unfolding eventually_sequentially by (metis trans_le_add1) | |
| 1409 | ||
| 33175 | 1410 | lemma seq_offset: | 
| 36441 | 1411 | assumes "(f ---> l) sequentially" | 
| 1412 | shows "((\<lambda>i. f (i + k)) ---> l) sequentially" | |
| 44584 | 1413 | using assms by (rule LIMSEQ_ignore_initial_segment) (* FIXME: redundant *) | 
| 33175 | 1414 | |
| 1415 | lemma seq_offset_neg: | |
| 1416 | "(f ---> l) sequentially ==> ((\<lambda>i. f(i - k)) ---> l) sequentially" | |
| 1417 | apply (rule topological_tendstoI) | |
| 1418 | apply (drule (2) topological_tendstoD) | |
| 1419 | apply (simp only: eventually_sequentially) | |
| 1420 | apply (subgoal_tac "\<And>N k (n::nat). N + k <= n ==> N <= n - k") | |
| 1421 | apply metis | |
| 1422 | by arith | |
| 1423 | ||
| 1424 | lemma seq_offset_rev: | |
| 1425 | "((\<lambda>i. f(i + k)) ---> l) sequentially ==> (f ---> l) sequentially" | |
| 44584 | 1426 | by (rule LIMSEQ_offset) (* FIXME: redundant *) | 
| 33175 | 1427 | |
| 1428 | lemma seq_harmonic: "((\<lambda>n. inverse (real n)) ---> 0) sequentially" | |
| 44584 | 1429 | using LIMSEQ_inverse_real_of_nat by (rule LIMSEQ_imp_Suc) | 
| 33175 | 1430 | |
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1431 | subsection {* More properties of closed balls *}
 | 
| 33175 | 1432 | |
| 1433 | lemma closed_cball: "closed (cball x e)" | |
| 1434 | unfolding cball_def closed_def | |
| 1435 | unfolding Collect_neg_eq [symmetric] not_le | |
| 1436 | apply (clarsimp simp add: open_dist, rename_tac y) | |
| 1437 | apply (rule_tac x="dist x y - e" in exI, clarsimp) | |
| 1438 | apply (rename_tac x') | |
| 1439 | apply (cut_tac x=x and y=x' and z=y in dist_triangle) | |
| 1440 | apply simp | |
| 1441 | done | |
| 1442 | ||
| 1443 | lemma open_contains_cball: "open S \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0. cball x e \<subseteq> S)" | |
| 1444 | proof- | |
| 1445 |   { fix x and e::real assume "x\<in>S" "e>0" "ball x e \<subseteq> S"
 | |
| 1446 | hence "\<exists>d>0. cball x d \<subseteq> S" unfolding subset_eq by (rule_tac x="e/2" in exI, auto) | |
| 1447 | } moreover | |
| 1448 |   { fix x and e::real assume "x\<in>S" "e>0" "cball x e \<subseteq> S"
 | |
| 1449 | hence "\<exists>d>0. ball x d \<subseteq> S" unfolding subset_eq apply(rule_tac x="e/2" in exI) by auto | |
| 1450 | } ultimately | |
| 1451 | show ?thesis unfolding open_contains_ball by auto | |
| 1452 | qed | |
| 1453 | ||
| 1454 | lemma open_contains_cball_eq: "open S ==> (\<forall>x. x \<in> S \<longleftrightarrow> (\<exists>e>0. cball x e \<subseteq> S))" | |
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44167diff
changeset | 1455 | by (metis open_contains_cball subset_eq order_less_imp_le centre_in_cball) | 
| 33175 | 1456 | |
| 1457 | lemma mem_interior_cball: "x \<in> interior S \<longleftrightarrow> (\<exists>e>0. cball x e \<subseteq> S)" | |
| 1458 | apply (simp add: interior_def, safe) | |
| 1459 | apply (force simp add: open_contains_cball) | |
| 1460 | apply (rule_tac x="ball x e" in exI) | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36360diff
changeset | 1461 | apply (simp add: subset_trans [OF ball_subset_cball]) | 
| 33175 | 1462 | done | 
| 1463 | ||
| 1464 | lemma islimpt_ball: | |
| 1465 |   fixes x y :: "'a::{real_normed_vector,perfect_space}"
 | |
| 1466 | shows "y islimpt ball x e \<longleftrightarrow> 0 < e \<and> y \<in> cball x e" (is "?lhs = ?rhs") | |
| 1467 | proof | |
| 1468 | assume "?lhs" | |
| 1469 |   { assume "e \<le> 0"
 | |
| 1470 |     hence *:"ball x e = {}" using ball_eq_empty[of x e] by auto
 | |
| 1471 | have False using `?lhs` unfolding * using islimpt_EMPTY[of y] by auto | |
| 1472 | } | |
| 1473 | hence "e > 0" by (metis not_less) | |
| 1474 | moreover | |
| 1475 | have "y \<in> cball x e" using closed_cball[of x e] islimpt_subset[of y "ball x e" "cball x e"] ball_subset_cball[of x e] `?lhs` unfolding closed_limpt by auto | |
| 1476 | ultimately show "?rhs" by auto | |
| 1477 | next | |
| 1478 | assume "?rhs" hence "e>0" by auto | |
| 1479 |   { fix d::real assume "d>0"
 | |
| 1480 | have "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d" | |
| 1481 | proof(cases "d \<le> dist x y") | |
| 1482 | case True thus "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d" | |
| 1483 | proof(cases "x=y") | |
| 1484 | case True hence False using `d \<le> dist x y` `d>0` by auto | |
| 1485 | thus "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d" by auto | |
| 1486 | next | |
| 1487 | case False | |
| 1488 | ||
| 1489 | have "dist x (y - (d / (2 * dist y x)) *\<^sub>R (y - x)) | |
| 1490 | = norm (x - y + (d / (2 * norm (y - x))) *\<^sub>R (y - x))" | |
| 1491 | unfolding mem_cball mem_ball dist_norm diff_diff_eq2 diff_add_eq[THEN sym] by auto | |
| 1492 | also have "\<dots> = \<bar>- 1 + d / (2 * norm (x - y))\<bar> * norm (x - y)" | |
| 1493 | using scaleR_left_distrib[of "- 1" "d / (2 * norm (y - x))", THEN sym, of "y - x"] | |
| 1494 | unfolding scaleR_minus_left scaleR_one | |
| 1495 | by (auto simp add: norm_minus_commute) | |
| 1496 | also have "\<dots> = \<bar>- norm (x - y) + d / 2\<bar>" | |
| 1497 | unfolding abs_mult_pos[of "norm (x - y)", OF norm_ge_zero[of "x - y"]] | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36669diff
changeset | 1498 | unfolding left_distrib using `x\<noteq>y`[unfolded dist_nz, unfolded dist_norm] by auto | 
| 33175 | 1499 | also have "\<dots> \<le> e - d/2" using `d \<le> dist x y` and `d>0` and `?rhs` by(auto simp add: dist_norm) | 
| 1500 | finally have "y - (d / (2 * dist y x)) *\<^sub>R (y - x) \<in> ball x e" using `d>0` by auto | |
| 1501 | ||
| 1502 | moreover | |
| 1503 | ||
| 1504 | have "(d / (2*dist y x)) *\<^sub>R (y - x) \<noteq> 0" | |
| 1505 | using `x\<noteq>y`[unfolded dist_nz] `d>0` unfolding scaleR_eq_0_iff by (auto simp add: dist_commute) | |
| 1506 | moreover | |
| 1507 | have "dist (y - (d / (2 * dist y x)) *\<^sub>R (y - x)) y < d" unfolding dist_norm apply simp unfolding norm_minus_cancel | |
| 1508 | using `d>0` `x\<noteq>y`[unfolded dist_nz] dist_commute[of x y] | |
| 1509 | unfolding dist_norm by auto | |
| 1510 | ultimately show "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d" by (rule_tac x="y - (d / (2*dist y x)) *\<^sub>R (y - x)" in bexI) auto | |
| 1511 | qed | |
| 1512 | next | |
| 1513 | case False hence "d > dist x y" by auto | |
| 1514 | show "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d" | |
| 1515 | proof(cases "x=y") | |
| 1516 | case True | |
| 1517 | obtain z where **: "z \<noteq> y" "dist z y < min e d" | |
| 1518 | using perfect_choose_dist[of "min e d" y] | |
| 1519 | using `d > 0` `e>0` by auto | |
| 1520 | show "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d" | |
| 1521 | unfolding `x = y` | |
| 1522 | using `z \<noteq> y` ** | |
| 1523 | by (rule_tac x=z in bexI, auto simp add: dist_commute) | |
| 1524 | next | |
| 1525 | case False thus "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d" | |
| 1526 | using `d>0` `d > dist x y` `?rhs` by(rule_tac x=x in bexI, auto) | |
| 1527 | qed | |
| 1528 | qed } | |
| 1529 | thus "?lhs" unfolding mem_cball islimpt_approachable mem_ball by auto | |
| 1530 | qed | |
| 1531 | ||
| 1532 | lemma closure_ball_lemma: | |
| 1533 | fixes x y :: "'a::real_normed_vector" | |
| 1534 | assumes "x \<noteq> y" shows "y islimpt ball x (dist x y)" | |
| 1535 | proof (rule islimptI) | |
| 1536 | fix T assume "y \<in> T" "open T" | |
| 1537 | then obtain r where "0 < r" "\<forall>z. dist z y < r \<longrightarrow> z \<in> T" | |
| 1538 | unfolding open_dist by fast | |
| 1539 | (* choose point between x and y, within distance r of y. *) | |
| 1540 | def k \<equiv> "min 1 (r / (2 * dist x y))" | |
| 1541 | def z \<equiv> "y + scaleR k (x - y)" | |
| 1542 | have z_def2: "z = x + scaleR (1 - k) (y - x)" | |
| 1543 | unfolding z_def by (simp add: algebra_simps) | |
| 1544 | have "dist z y < r" | |
| 1545 | unfolding z_def k_def using `0 < r` | |
| 1546 | by (simp add: dist_norm min_def) | |
| 1547 | hence "z \<in> T" using `\<forall>z. dist z y < r \<longrightarrow> z \<in> T` by simp | |
| 1548 | have "dist x z < dist x y" | |
| 1549 | unfolding z_def2 dist_norm | |
| 1550 | apply (simp add: norm_minus_commute) | |
| 1551 | apply (simp only: dist_norm [symmetric]) | |
| 1552 | apply (subgoal_tac "\<bar>1 - k\<bar> * dist x y < 1 * dist x y", simp) | |
| 1553 | apply (rule mult_strict_right_mono) | |
| 1554 | apply (simp add: k_def divide_pos_pos zero_less_dist_iff `0 < r` `x \<noteq> y`) | |
| 1555 | apply (simp add: zero_less_dist_iff `x \<noteq> y`) | |
| 1556 | done | |
| 1557 | hence "z \<in> ball x (dist x y)" by simp | |
| 1558 | have "z \<noteq> y" | |
| 1559 | unfolding z_def k_def using `x \<noteq> y` `0 < r` | |
| 1560 | by (simp add: min_def) | |
| 1561 | show "\<exists>z\<in>ball x (dist x y). z \<in> T \<and> z \<noteq> y" | |
| 1562 | using `z \<in> ball x (dist x y)` `z \<in> T` `z \<noteq> y` | |
| 1563 | by fast | |
| 1564 | qed | |
| 1565 | ||
| 1566 | lemma closure_ball: | |
| 1567 | fixes x :: "'a::real_normed_vector" | |
| 1568 | shows "0 < e \<Longrightarrow> closure (ball x e) = cball x e" | |
| 1569 | apply (rule equalityI) | |
| 1570 | apply (rule closure_minimal) | |
| 1571 | apply (rule ball_subset_cball) | |
| 1572 | apply (rule closed_cball) | |
| 1573 | apply (rule subsetI, rename_tac y) | |
| 1574 | apply (simp add: le_less [where 'a=real]) | |
| 1575 | apply (erule disjE) | |
| 1576 | apply (rule subsetD [OF closure_subset], simp) | |
| 1577 | apply (simp add: closure_def) | |
| 1578 | apply clarify | |
| 1579 | apply (rule closure_ball_lemma) | |
| 1580 | apply (simp add: zero_less_dist_iff) | |
| 1581 | done | |
| 1582 | ||
| 1583 | (* In a trivial vector space, this fails for e = 0. *) | |
| 1584 | lemma interior_cball: | |
| 1585 |   fixes x :: "'a::{real_normed_vector, perfect_space}"
 | |
| 1586 | shows "interior (cball x e) = ball x e" | |
| 1587 | proof(cases "e\<ge>0") | |
| 1588 | case False note cs = this | |
| 1589 |   from cs have "ball x e = {}" using ball_empty[of e x] by auto moreover
 | |
| 1590 |   { fix y assume "y \<in> cball x e"
 | |
| 1591 | hence False unfolding mem_cball using dist_nz[of x y] cs by auto } | |
| 1592 |   hence "cball x e = {}" by auto
 | |
| 1593 |   hence "interior (cball x e) = {}" using interior_empty by auto
 | |
| 1594 | ultimately show ?thesis by blast | |
| 1595 | next | |
| 1596 | case True note cs = this | |
| 1597 | have "ball x e \<subseteq> cball x e" using ball_subset_cball by auto moreover | |
| 1598 |   { fix S y assume as: "S \<subseteq> cball x e" "open S" "y\<in>S"
 | |
| 1599 | then obtain d where "d>0" and d:"\<forall>x'. dist x' y < d \<longrightarrow> x' \<in> S" unfolding open_dist by blast | |
| 1600 | ||
| 1601 | then obtain xa where xa_y: "xa \<noteq> y" and xa: "dist xa y < d" | |
| 1602 | using perfect_choose_dist [of d] by auto | |
| 1603 | have "xa\<in>S" using d[THEN spec[where x=xa]] using xa by(auto simp add: dist_commute) | |
| 1604 | hence xa_cball:"xa \<in> cball x e" using as(1) by auto | |
| 1605 | ||
| 1606 | hence "y \<in> ball x e" proof(cases "x = y") | |
| 1607 | case True | |
| 1608 | hence "e>0" using xa_y[unfolded dist_nz] xa_cball[unfolded mem_cball] by (auto simp add: dist_commute) | |
| 1609 | thus "y \<in> ball x e" using `x = y ` by simp | |
| 1610 | next | |
| 1611 | case False | |
| 1612 | have "dist (y + (d / 2 / dist y x) *\<^sub>R (y - x)) y < d" unfolding dist_norm | |
| 1613 | using `d>0` norm_ge_zero[of "y - x"] `x \<noteq> y` by auto | |
| 1614 | hence *:"y + (d / 2 / dist y x) *\<^sub>R (y - x) \<in> cball x e" using d as(1)[unfolded subset_eq] by blast | |
| 1615 | have "y - x \<noteq> 0" using `x \<noteq> y` by auto | |
| 1616 | hence **:"d / (2 * norm (y - x)) > 0" unfolding zero_less_norm_iff[THEN sym] | |
| 1617 | using `d>0` divide_pos_pos[of d "2*norm (y - x)"] by auto | |
| 1618 | ||
| 1619 | have "dist (y + (d / 2 / dist y x) *\<^sub>R (y - x)) x = norm (y + (d / (2 * norm (y - x))) *\<^sub>R y - (d / (2 * norm (y - x))) *\<^sub>R x - x)" | |
| 1620 | by (auto simp add: dist_norm algebra_simps) | |
| 1621 | also have "\<dots> = norm ((1 + d / (2 * norm (y - x))) *\<^sub>R (y - x))" | |
| 1622 | by (auto simp add: algebra_simps) | |
| 1623 | also have "\<dots> = \<bar>1 + d / (2 * norm (y - x))\<bar> * norm (y - x)" | |
| 1624 | using ** by auto | |
| 1625 | also have "\<dots> = (dist y x) + d/2"using ** by (auto simp add: left_distrib dist_norm) | |
| 1626 | finally have "e \<ge> dist x y +d/2" using *[unfolded mem_cball] by (auto simp add: dist_commute) | |
| 1627 | thus "y \<in> ball x e" unfolding mem_ball using `d>0` by auto | |
| 1628 | qed } | |
| 1629 | hence "\<forall>S \<subseteq> cball x e. open S \<longrightarrow> S \<subseteq> ball x e" by auto | |
| 1630 | ultimately show ?thesis using interior_unique[of "ball x e" "cball x e"] using open_ball[of x e] by auto | |
| 1631 | qed | |
| 1632 | ||
| 1633 | lemma frontier_ball: | |
| 1634 | fixes a :: "'a::real_normed_vector" | |
| 1635 |   shows "0 < e ==> frontier(ball a e) = {x. dist a x = e}"
 | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36360diff
changeset | 1636 | apply (simp add: frontier_def closure_ball interior_open order_less_imp_le) | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 1637 | apply (simp add: set_eq_iff) | 
| 33175 | 1638 | by arith | 
| 1639 | ||
| 1640 | lemma frontier_cball: | |
| 1641 |   fixes a :: "'a::{real_normed_vector, perfect_space}"
 | |
| 1642 |   shows "frontier(cball a e) = {x. dist a x = e}"
 | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36360diff
changeset | 1643 | apply (simp add: frontier_def interior_cball closed_cball order_less_imp_le) | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 1644 | apply (simp add: set_eq_iff) | 
| 33175 | 1645 | by arith | 
| 1646 | ||
| 1647 | lemma cball_eq_empty: "(cball x e = {}) \<longleftrightarrow> e < 0"
 | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 1648 | apply (simp add: set_eq_iff not_le) | 
| 33175 | 1649 | by (metis zero_le_dist dist_self order_less_le_trans) | 
| 1650 | lemma cball_empty: "e < 0 ==> cball x e = {}" by (simp add: cball_eq_empty)
 | |
| 1651 | ||
| 1652 | lemma cball_eq_sing: | |
| 44072 
5b970711fb39
class perfect_space inherits from topological_space;
 huffman parents: 
43338diff
changeset | 1653 |   fixes x :: "'a::{metric_space,perfect_space}"
 | 
| 33175 | 1654 |   shows "(cball x e = {x}) \<longleftrightarrow> e = 0"
 | 
| 1655 | proof (rule linorder_cases) | |
| 1656 | assume e: "0 < e" | |
| 1657 | obtain a where "a \<noteq> x" "dist a x < e" | |
| 1658 | using perfect_choose_dist [OF e] by auto | |
| 1659 | hence "a \<noteq> x" "dist x a \<le> e" by (auto simp add: dist_commute) | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 1660 | with e show ?thesis by (auto simp add: set_eq_iff) | 
| 33175 | 1661 | qed auto | 
| 1662 | ||
| 1663 | lemma cball_sing: | |
| 1664 | fixes x :: "'a::metric_space" | |
| 1665 |   shows "e = 0 ==> cball x e = {x}"
 | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 1666 | by (auto simp add: set_eq_iff) | 
| 33175 | 1667 | |
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1668 | |
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1669 | subsection {* Boundedness *}
 | 
| 33175 | 1670 | |
| 1671 | (* FIXME: This has to be unified with BSEQ!! *) | |
| 44207 
ea99698c2070
locale-ize some definitions, so perfect_space and heine_borel can inherit from the proper superclasses
 huffman parents: 
44170diff
changeset | 1672 | definition (in metric_space) | 
| 
ea99698c2070
locale-ize some definitions, so perfect_space and heine_borel can inherit from the proper superclasses
 huffman parents: 
44170diff
changeset | 1673 | bounded :: "'a set \<Rightarrow> bool" where | 
| 33175 | 1674 | "bounded S \<longleftrightarrow> (\<exists>x e. \<forall>y\<in>S. dist x y \<le> e)" | 
| 1675 | ||
| 1676 | lemma bounded_any_center: "bounded S \<longleftrightarrow> (\<exists>e. \<forall>y\<in>S. dist a y \<le> e)" | |
| 1677 | unfolding bounded_def | |
| 1678 | apply safe | |
| 1679 | apply (rule_tac x="dist a x + e" in exI, clarify) | |
| 1680 | apply (drule (1) bspec) | |
| 1681 | apply (erule order_trans [OF dist_triangle add_left_mono]) | |
| 1682 | apply auto | |
| 1683 | done | |
| 1684 | ||
| 1685 | lemma bounded_iff: "bounded S \<longleftrightarrow> (\<exists>a. \<forall>x\<in>S. norm x \<le> a)" | |
| 1686 | unfolding bounded_any_center [where a=0] | |
| 1687 | by (simp add: dist_norm) | |
| 1688 | ||
| 1689 | lemma bounded_empty[simp]: "bounded {}" by (simp add: bounded_def)
 | |
| 1690 | lemma bounded_subset: "bounded T \<Longrightarrow> S \<subseteq> T ==> bounded S" | |
| 1691 | by (metis bounded_def subset_eq) | |
| 1692 | ||
| 1693 | lemma bounded_interior[intro]: "bounded S ==> bounded(interior S)" | |
| 1694 | by (metis bounded_subset interior_subset) | |
| 1695 | ||
| 1696 | lemma bounded_closure[intro]: assumes "bounded S" shows "bounded(closure S)" | |
| 1697 | proof- | |
| 1698 | from assms obtain x and a where a: "\<forall>y\<in>S. dist x y \<le> a" unfolding bounded_def by auto | |
| 1699 |   { fix y assume "y \<in> closure S"
 | |
| 1700 | then obtain f where f: "\<forall>n. f n \<in> S" "(f ---> y) sequentially" | |
| 1701 | unfolding closure_sequential by auto | |
| 1702 | have "\<forall>n. f n \<in> S \<longrightarrow> dist x (f n) \<le> a" using a by simp | |
| 1703 | hence "eventually (\<lambda>n. dist x (f n) \<le> a) sequentially" | |
| 1704 | by (rule eventually_mono, simp add: f(1)) | |
| 1705 | have "dist x y \<le> a" | |
| 1706 | apply (rule Lim_dist_ubound [of sequentially f]) | |
| 1707 | apply (rule trivial_limit_sequentially) | |
| 1708 | apply (rule f(2)) | |
| 1709 | apply fact | |
| 1710 | done | |
| 1711 | } | |
| 1712 | thus ?thesis unfolding bounded_def by auto | |
| 1713 | qed | |
| 1714 | ||
| 1715 | lemma bounded_cball[simp,intro]: "bounded (cball x e)" | |
| 1716 | apply (simp add: bounded_def) | |
| 1717 | apply (rule_tac x=x in exI) | |
| 1718 | apply (rule_tac x=e in exI) | |
| 1719 | apply auto | |
| 1720 | done | |
| 1721 | ||
| 1722 | lemma bounded_ball[simp,intro]: "bounded(ball x e)" | |
| 1723 | by (metis ball_subset_cball bounded_cball bounded_subset) | |
| 1724 | ||
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36360diff
changeset | 1725 | lemma finite_imp_bounded[intro]: | 
| 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36360diff
changeset | 1726 | fixes S :: "'a::metric_space set" assumes "finite S" shows "bounded S" | 
| 33175 | 1727 | proof- | 
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36360diff
changeset | 1728 |   { fix a and F :: "'a set" assume as:"bounded F"
 | 
| 33175 | 1729 | then obtain x e where "\<forall>y\<in>F. dist x y \<le> e" unfolding bounded_def by auto | 
| 1730 | hence "\<forall>y\<in>(insert a F). dist x y \<le> max e (dist x a)" by auto | |
| 1731 | hence "bounded (insert a F)" unfolding bounded_def by (intro exI) | |
| 1732 | } | |
| 1733 | thus ?thesis using finite_induct[of S bounded] using bounded_empty assms by auto | |
| 1734 | qed | |
| 1735 | ||
| 1736 | lemma bounded_Un[simp]: "bounded (S \<union> T) \<longleftrightarrow> bounded S \<and> bounded T" | |
| 1737 | apply (auto simp add: bounded_def) | |
| 1738 | apply (rename_tac x y r s) | |
| 1739 | apply (rule_tac x=x in exI) | |
| 1740 | apply (rule_tac x="max r (dist x y + s)" in exI) | |
| 1741 | apply (rule ballI, rename_tac z, safe) | |
| 1742 | apply (drule (1) bspec, simp) | |
| 1743 | apply (drule (1) bspec) | |
| 1744 | apply (rule min_max.le_supI2) | |
| 1745 | apply (erule order_trans [OF dist_triangle add_left_mono]) | |
| 1746 | done | |
| 1747 | ||
| 1748 | lemma bounded_Union[intro]: "finite F \<Longrightarrow> (\<forall>S\<in>F. bounded S) \<Longrightarrow> bounded(\<Union>F)" | |
| 1749 | by (induct rule: finite_induct[of F], auto) | |
| 1750 | ||
| 1751 | lemma bounded_pos: "bounded S \<longleftrightarrow> (\<exists>b>0. \<forall>x\<in> S. norm x <= b)" | |
| 1752 | apply (simp add: bounded_iff) | |
| 1753 | apply (subgoal_tac "\<And>x (y::real). 0 < 1 + abs y \<and> (x <= y \<longrightarrow> x <= 1 + abs y)") | |
| 1754 | by metis arith | |
| 1755 | ||
| 1756 | lemma bounded_Int[intro]: "bounded S \<or> bounded T \<Longrightarrow> bounded (S \<inter> T)" | |
| 1757 | by (metis Int_lower1 Int_lower2 bounded_subset) | |
| 1758 | ||
| 1759 | lemma bounded_diff[intro]: "bounded S ==> bounded (S - T)" | |
| 1760 | apply (metis Diff_subset bounded_subset) | |
| 1761 | done | |
| 1762 | ||
| 1763 | lemma bounded_insert[intro]:"bounded(insert x S) \<longleftrightarrow> bounded S" | |
| 1764 | by (metis Diff_cancel Un_empty_right Un_insert_right bounded_Un bounded_subset finite.emptyI finite_imp_bounded infinite_remove subset_insertI) | |
| 1765 | ||
| 1766 | lemma not_bounded_UNIV[simp, intro]: | |
| 1767 |   "\<not> bounded (UNIV :: 'a::{real_normed_vector, perfect_space} set)"
 | |
| 1768 | proof(auto simp add: bounded_pos not_le) | |
| 1769 | obtain x :: 'a where "x \<noteq> 0" | |
| 1770 | using perfect_choose_dist [OF zero_less_one] by fast | |
| 1771 | fix b::real assume b: "b >0" | |
| 1772 | have b1: "b +1 \<ge> 0" using b by simp | |
| 1773 | with `x \<noteq> 0` have "b < norm (scaleR (b + 1) (sgn x))" | |
| 1774 | by (simp add: norm_sgn) | |
| 1775 | then show "\<exists>x::'a. b < norm x" .. | |
| 1776 | qed | |
| 1777 | ||
| 1778 | lemma bounded_linear_image: | |
| 1779 | assumes "bounded S" "bounded_linear f" | |
| 1780 | shows "bounded(f ` S)" | |
| 1781 | proof- | |
| 1782 | from assms(1) obtain b where b:"b>0" "\<forall>x\<in>S. norm x \<le> b" unfolding bounded_pos by auto | |
| 1783 | from assms(2) obtain B where B:"B>0" "\<forall>x. norm (f x) \<le> B * norm x" using bounded_linear.pos_bounded by (auto simp add: mult_ac) | |
| 1784 |   { fix x assume "x\<in>S"
 | |
| 1785 | hence "norm x \<le> b" using b by auto | |
| 1786 | hence "norm (f x) \<le> B * b" using B(2) apply(erule_tac x=x in allE) | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36669diff
changeset | 1787 | by (metis B(1) B(2) order_trans mult_le_cancel_left_pos) | 
| 33175 | 1788 | } | 
| 1789 | thus ?thesis unfolding bounded_pos apply(rule_tac x="b*B" in exI) | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36669diff
changeset | 1790 | using b B mult_pos_pos [of b B] by (auto simp add: mult_commute) | 
| 33175 | 1791 | qed | 
| 1792 | ||
| 1793 | lemma bounded_scaling: | |
| 1794 | fixes S :: "'a::real_normed_vector set" | |
| 1795 | shows "bounded S \<Longrightarrow> bounded ((\<lambda>x. c *\<^sub>R x) ` S)" | |
| 1796 | apply (rule bounded_linear_image, assumption) | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44252diff
changeset | 1797 | apply (rule bounded_linear_scaleR_right) | 
| 33175 | 1798 | done | 
| 1799 | ||
| 1800 | lemma bounded_translation: | |
| 1801 | fixes S :: "'a::real_normed_vector set" | |
| 1802 | assumes "bounded S" shows "bounded ((\<lambda>x. a + x) ` S)" | |
| 1803 | proof- | |
| 1804 | from assms obtain b where b:"b>0" "\<forall>x\<in>S. norm x \<le> b" unfolding bounded_pos by auto | |
| 1805 |   { fix x assume "x\<in>S"
 | |
| 1806 | hence "norm (a + x) \<le> b + norm a" using norm_triangle_ineq[of a x] b by auto | |
| 1807 | } | |
| 1808 | thus ?thesis unfolding bounded_pos using norm_ge_zero[of a] b(1) using add_strict_increasing[of b 0 "norm a"] | |
| 1809 | by (auto intro!: add exI[of _ "b + norm a"]) | |
| 1810 | qed | |
| 1811 | ||
| 1812 | ||
| 1813 | text{* Some theorems on sups and infs using the notion "bounded". *}
 | |
| 1814 | ||
| 1815 | lemma bounded_real: | |
| 1816 | fixes S :: "real set" | |
| 1817 | shows "bounded S \<longleftrightarrow> (\<exists>a. \<forall>x\<in>S. abs x <= a)" | |
| 1818 | by (simp add: bounded_iff) | |
| 1819 | ||
| 33270 | 1820 | lemma bounded_has_Sup: | 
| 1821 | fixes S :: "real set" | |
| 1822 |   assumes "bounded S" "S \<noteq> {}"
 | |
| 1823 | shows "\<forall>x\<in>S. x <= Sup S" and "\<forall>b. (\<forall>x\<in>S. x <= b) \<longrightarrow> Sup S <= b" | |
| 1824 | proof | |
| 1825 | fix x assume "x\<in>S" | |
| 1826 | thus "x \<le> Sup S" | |
| 1827 | by (metis SupInf.Sup_upper abs_le_D1 assms(1) bounded_real) | |
| 1828 | next | |
| 1829 | show "\<forall>b. (\<forall>x\<in>S. x \<le> b) \<longrightarrow> Sup S \<le> b" using assms | |
| 1830 | by (metis SupInf.Sup_least) | |
| 1831 | qed | |
| 1832 | ||
| 1833 | lemma Sup_insert: | |
| 1834 | fixes S :: "real set" | |
| 1835 |   shows "bounded S ==> Sup(insert x S) = (if S = {} then x else max x (Sup S))" 
 | |
| 1836 | by auto (metis Int_absorb Sup_insert_nonempty assms bounded_has_Sup(1) disjoint_iff_not_equal) | |
| 1837 | ||
| 1838 | lemma Sup_insert_finite: | |
| 1839 | fixes S :: "real set" | |
| 1840 |   shows "finite S \<Longrightarrow> Sup(insert x S) = (if S = {} then x else max x (Sup S))"
 | |
| 1841 | apply (rule Sup_insert) | |
| 1842 | apply (rule finite_imp_bounded) | |
| 1843 | by simp | |
| 1844 | ||
| 1845 | lemma bounded_has_Inf: | |
| 1846 | fixes S :: "real set" | |
| 1847 |   assumes "bounded S"  "S \<noteq> {}"
 | |
| 1848 | shows "\<forall>x\<in>S. x >= Inf S" and "\<forall>b. (\<forall>x\<in>S. x >= b) \<longrightarrow> Inf S >= b" | |
| 33175 | 1849 | proof | 
| 1850 | fix x assume "x\<in>S" | |
| 1851 | from assms(1) obtain a where a:"\<forall>x\<in>S. \<bar>x\<bar> \<le> a" unfolding bounded_real by auto | |
| 33270 | 1852 | thus "x \<ge> Inf S" using `x\<in>S` | 
| 1853 | by (metis Inf_lower_EX abs_le_D2 minus_le_iff) | |
| 33175 | 1854 | next | 
| 33270 | 1855 | show "\<forall>b. (\<forall>x\<in>S. x >= b) \<longrightarrow> Inf S \<ge> b" using assms | 
| 1856 | by (metis SupInf.Inf_greatest) | |
| 1857 | qed | |
| 1858 | ||
| 1859 | lemma Inf_insert: | |
| 1860 | fixes S :: "real set" | |
| 1861 |   shows "bounded S ==> Inf(insert x S) = (if S = {} then x else min x (Inf S))" 
 | |
| 1862 | by auto (metis Int_absorb Inf_insert_nonempty bounded_has_Inf(1) disjoint_iff_not_equal) | |
| 1863 | lemma Inf_insert_finite: | |
| 1864 | fixes S :: "real set" | |
| 1865 |   shows "finite S ==> Inf(insert x S) = (if S = {} then x else min x (Inf S))"
 | |
| 1866 | by (rule Inf_insert, rule finite_imp_bounded, simp) | |
| 1867 | ||
| 33175 | 1868 | (* TODO: Move this to RComplete.thy -- would need to include Glb into RComplete *) | 
| 1869 | lemma real_isGlb_unique: "[| isGlb R S x; isGlb R S y |] ==> x = (y::real)" | |
| 1870 | apply (frule isGlb_isLb) | |
| 1871 | apply (frule_tac x = y in isGlb_isLb) | |
| 1872 | apply (blast intro!: order_antisym dest!: isGlb_le_isLb) | |
| 1873 | done | |
| 1874 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 1875 | |
| 36437 | 1876 | subsection {* Equivalent versions of compactness *}
 | 
| 1877 | ||
| 1878 | subsubsection{* Sequential compactness *}
 | |
| 33175 | 1879 | |
| 1880 | definition | |
| 1881 | compact :: "'a::metric_space set \<Rightarrow> bool" where (* TODO: generalize *) | |
| 1882 | "compact S \<longleftrightarrow> | |
| 1883 | (\<forall>f. (\<forall>n. f n \<in> S) \<longrightarrow> | |
| 1884 | (\<exists>l\<in>S. \<exists>r. subseq r \<and> ((f o r) ---> l) sequentially))" | |
| 1885 | ||
| 44075 | 1886 | lemma compactI: | 
| 1887 | assumes "\<And>f. \<forall>n. f n \<in> S \<Longrightarrow> \<exists>l\<in>S. \<exists>r. subseq r \<and> ((f o r) ---> l) sequentially" | |
| 1888 | shows "compact S" | |
| 1889 | unfolding compact_def using assms by fast | |
| 1890 | ||
| 1891 | lemma compactE: | |
| 1892 | assumes "compact S" "\<forall>n. f n \<in> S" | |
| 1893 | obtains l r where "l \<in> S" "subseq r" "((f \<circ> r) ---> l) sequentially" | |
| 1894 | using assms unfolding compact_def by fast | |
| 1895 | ||
| 33175 | 1896 | text {*
 | 
| 1897 | A metric space (or topological vector space) is said to have the | |
| 1898 | Heine-Borel property if every closed and bounded subset is compact. | |
| 1899 | *} | |
| 1900 | ||
| 44207 
ea99698c2070
locale-ize some definitions, so perfect_space and heine_borel can inherit from the proper superclasses
 huffman parents: 
44170diff
changeset | 1901 | class heine_borel = metric_space + | 
| 33175 | 1902 | assumes bounded_imp_convergent_subsequence: | 
| 1903 | "bounded s \<Longrightarrow> \<forall>n. f n \<in> s | |
| 1904 | \<Longrightarrow> \<exists>l r. subseq r \<and> ((f \<circ> r) ---> l) sequentially" | |
| 1905 | ||
| 1906 | lemma bounded_closed_imp_compact: | |
| 1907 | fixes s::"'a::heine_borel set" | |
| 1908 | assumes "bounded s" and "closed s" shows "compact s" | |
| 1909 | proof (unfold compact_def, clarify) | |
| 1910 | fix f :: "nat \<Rightarrow> 'a" assume f: "\<forall>n. f n \<in> s" | |
| 1911 | obtain l r where r: "subseq r" and l: "((f \<circ> r) ---> l) sequentially" | |
| 1912 | using bounded_imp_convergent_subsequence [OF `bounded s` `\<forall>n. f n \<in> s`] by auto | |
| 1913 | from f have fr: "\<forall>n. (f \<circ> r) n \<in> s" by simp | |
| 1914 | have "l \<in> s" using `closed s` fr l | |
| 1915 | unfolding closed_sequential_limits by blast | |
| 1916 | show "\<exists>l\<in>s. \<exists>r. subseq r \<and> ((f \<circ> r) ---> l) sequentially" | |
| 1917 | using `l \<in> s` r l by blast | |
| 1918 | qed | |
| 1919 | ||
| 1920 | lemma subseq_bigger: assumes "subseq r" shows "n \<le> r n" | |
| 1921 | proof(induct n) | |
| 1922 | show "0 \<le> r 0" by auto | |
| 1923 | next | |
| 1924 | fix n assume "n \<le> r n" | |
| 1925 | moreover have "r n < r (Suc n)" | |
| 1926 | using assms [unfolded subseq_def] by auto | |
| 1927 | ultimately show "Suc n \<le> r (Suc n)" by auto | |
| 1928 | qed | |
| 1929 | ||
| 1930 | lemma eventually_subseq: | |
| 1931 | assumes r: "subseq r" | |
| 1932 | shows "eventually P sequentially \<Longrightarrow> eventually (\<lambda>n. P (r n)) sequentially" | |
| 1933 | unfolding eventually_sequentially | |
| 1934 | by (metis subseq_bigger [OF r] le_trans) | |
| 1935 | ||
| 1936 | lemma lim_subseq: | |
| 1937 | "subseq r \<Longrightarrow> (s ---> l) sequentially \<Longrightarrow> ((s o r) ---> l) sequentially" | |
| 1938 | unfolding tendsto_def eventually_sequentially o_def | |
| 1939 | by (metis subseq_bigger le_trans) | |
| 1940 | ||
| 1941 | lemma num_Axiom: "EX! g. g 0 = e \<and> (\<forall>n. g (Suc n) = f n (g n))" | |
| 1942 | unfolding Ex1_def | |
| 1943 | apply (rule_tac x="nat_rec e f" in exI) | |
| 1944 | apply (rule conjI)+ | |
| 1945 | apply (rule def_nat_rec_0, simp) | |
| 1946 | apply (rule allI, rule def_nat_rec_Suc, simp) | |
| 1947 | apply (rule allI, rule impI, rule ext) | |
| 1948 | apply (erule conjE) | |
| 1949 | apply (induct_tac x) | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36360diff
changeset | 1950 | apply simp | 
| 33175 | 1951 | apply (erule_tac x="n" in allE) | 
| 1952 | apply (simp) | |
| 1953 | done | |
| 1954 | ||
| 1955 | lemma convergent_bounded_increasing: fixes s ::"nat\<Rightarrow>real" | |
| 1956 | assumes "incseq s" and "\<forall>n. abs(s n) \<le> b" | |
| 1957 | shows "\<exists> l. \<forall>e::real>0. \<exists> N. \<forall>n \<ge> N. abs(s n - l) < e" | |
| 1958 | proof- | |
| 1959 | have "isUb UNIV (range s) b" using assms(2) and abs_le_D1 unfolding isUb_def and setle_def by auto | |
| 1960 | then obtain t where t:"isLub UNIV (range s) t" using reals_complete[of "range s" ] by auto | |
| 1961 |   { fix e::real assume "e>0" and as:"\<forall>N. \<exists>n\<ge>N. \<not> \<bar>s n - t\<bar> < e"
 | |
| 1962 |     { fix n::nat
 | |
| 1963 | obtain N where "N\<ge>n" and n:"\<bar>s N - t\<bar> \<ge> e" using as[THEN spec[where x=n]] by auto | |
| 1964 | have "t \<ge> s N" using isLub_isUb[OF t, unfolded isUb_def setle_def] by auto | |
| 1965 | with n have "s N \<le> t - e" using `e>0` by auto | |
| 1966 | hence "s n \<le> t - e" using assms(1)[unfolded incseq_def, THEN spec[where x=n], THEN spec[where x=N]] using `n\<le>N` by auto } | |
| 1967 | hence "isUb UNIV (range s) (t - e)" unfolding isUb_def and setle_def by auto | |
| 1968 | hence False using isLub_le_isUb[OF t, of "t - e"] and `e>0` by auto } | |
| 1969 | thus ?thesis by blast | |
| 1970 | qed | |
| 1971 | ||
| 1972 | lemma convergent_bounded_monotone: fixes s::"nat \<Rightarrow> real" | |
| 1973 | assumes "\<forall>n. abs(s n) \<le> b" and "monoseq s" | |
| 1974 | shows "\<exists>l. \<forall>e::real>0. \<exists>N. \<forall>n\<ge>N. abs(s n - l) < e" | |
| 1975 | using convergent_bounded_increasing[of s b] assms using convergent_bounded_increasing[of "\<lambda>n. - s n" b] | |
| 1976 | unfolding monoseq_def incseq_def | |
| 1977 | apply auto unfolding minus_add_distrib[THEN sym, unfolded diff_minus[THEN sym]] | |
| 1978 | unfolding abs_minus_cancel by(rule_tac x="-l" in exI)auto | |
| 1979 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 1980 | (* TODO: merge this lemma with the ones above *) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 1981 | lemma bounded_increasing_convergent: fixes s::"nat \<Rightarrow> real" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 1982 |   assumes "bounded {s n| n::nat. True}"  "\<forall>n. (s n) \<le>(s(Suc n))"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 1983 | shows "\<exists>l. (s ---> l) sequentially" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 1984 | proof- | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 1985 | obtain a where a:"\<forall>n. \<bar> (s n)\<bar> \<le> a" using assms(1)[unfolded bounded_iff] by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 1986 |   { fix m::nat
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 1987 | have "\<And> n. n\<ge>m \<longrightarrow> (s m) \<le> (s n)" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 1988 | apply(induct_tac n) apply simp using assms(2) apply(erule_tac x="na" in allE) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 1989 | apply(case_tac "m \<le> na") unfolding not_less_eq_eq by(auto simp add: not_less_eq_eq) } | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 1990 | hence "\<forall>m n. m \<le> n \<longrightarrow> (s m) \<le> (s n)" by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 1991 | then obtain l where "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<bar> (s n) - l\<bar> < e" using convergent_bounded_monotone[OF a] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 1992 | unfolding monoseq_def by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 1993 | thus ?thesis unfolding Lim_sequentially apply(rule_tac x="l" in exI) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 1994 | unfolding dist_norm by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 1995 | qed | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 1996 | |
| 33175 | 1997 | lemma compact_real_lemma: | 
| 1998 | assumes "\<forall>n::nat. abs(s n) \<le> b" | |
| 1999 | shows "\<exists>(l::real) r. subseq r \<and> ((s \<circ> r) ---> l) sequentially" | |
| 2000 | proof- | |
| 2001 | obtain r where r:"subseq r" "monoseq (\<lambda>n. s (r n))" | |
| 2002 | using seq_monosub[of s] by auto | |
| 2003 | thus ?thesis using convergent_bounded_monotone[of "\<lambda>n. s (r n)" b] and assms | |
| 2004 | unfolding tendsto_iff dist_norm eventually_sequentially by auto | |
| 2005 | qed | |
| 2006 | ||
| 2007 | instance real :: heine_borel | |
| 2008 | proof | |
| 2009 | fix s :: "real set" and f :: "nat \<Rightarrow> real" | |
| 2010 | assume s: "bounded s" and f: "\<forall>n. f n \<in> s" | |
| 2011 | then obtain b where b: "\<forall>n. abs (f n) \<le> b" | |
| 2012 | unfolding bounded_iff by auto | |
| 2013 | obtain l :: real and r :: "nat \<Rightarrow> nat" where | |
| 2014 | r: "subseq r" and l: "((f \<circ> r) ---> l) sequentially" | |
| 2015 | using compact_real_lemma [OF b] by auto | |
| 2016 | thus "\<exists>l r. subseq r \<and> ((f \<circ> r) ---> l) sequentially" | |
| 2017 | by auto | |
| 2018 | qed | |
| 2019 | ||
| 44138 | 2020 | lemma bounded_component: "bounded s \<Longrightarrow> bounded ((\<lambda>x. x $$ i) ` s)" | 
| 2021 | apply (erule bounded_linear_image) | |
| 2022 | apply (rule bounded_linear_euclidean_component) | |
| 2023 | done | |
| 33175 | 2024 | |
| 2025 | lemma compact_lemma: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2026 | fixes f :: "nat \<Rightarrow> 'a::euclidean_space" | 
| 33175 | 2027 | assumes "bounded s" and "\<forall>n. f n \<in> s" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2028 | shows "\<forall>d. \<exists>l::'a. \<exists> r. subseq r \<and> | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2029 | (\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r n) $$ i) (l $$ i) < e) sequentially)" | 
| 33175 | 2030 | proof | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2031 |   fix d'::"nat set" def d \<equiv> "d' \<inter> {..<DIM('a)}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2032 |   have "finite d" "d\<subseteq>{..<DIM('a)}" unfolding d_def by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2033 | hence "\<exists>l::'a. \<exists>r. subseq r \<and> | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2034 | (\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r n) $$ i) (l $$ i) < e) sequentially)" | 
| 33175 | 2035 | proof(induct d) case empty thus ?case unfolding subseq_def by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2036 |   next case (insert k d) have k[intro]:"k<DIM('a)" using insert by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2037 | have s': "bounded ((\<lambda>x. x $$ k) ` s)" using `bounded s` by (rule bounded_component) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2038 | obtain l1::"'a" and r1 where r1:"subseq r1" and | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2039 | lr1:"\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r1 n) $$ i) (l1 $$ i) < e) sequentially" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2040 | using insert(3) using insert(4) by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2041 | have f': "\<forall>n. f (r1 n) $$ k \<in> (\<lambda>x. x $$ k) ` s" using `\<forall>n. f n \<in> s` by simp | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2042 | obtain l2 r2 where r2:"subseq r2" and lr2:"((\<lambda>i. f (r1 (r2 i)) $$ k) ---> l2) sequentially" | 
| 33175 | 2043 | using bounded_imp_convergent_subsequence[OF s' f'] unfolding o_def by auto | 
| 2044 | def r \<equiv> "r1 \<circ> r2" have r:"subseq r" | |
| 2045 | using r1 and r2 unfolding r_def o_def subseq_def by auto | |
| 2046 | moreover | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2047 | def l \<equiv> "(\<chi>\<chi> i. if i = k then l2 else l1$$i)::'a" | 
| 33175 | 2048 |     { fix e::real assume "e>0"
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2049 | from lr1 `e>0` have N1:"eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r1 n) $$ i) (l1 $$ i) < e) sequentially" by blast | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2050 | from lr2 `e>0` have N2:"eventually (\<lambda>n. dist (f (r1 (r2 n)) $$ k) l2 < e) sequentially" by (rule tendstoD) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2051 | from r2 N1 have N1': "eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r1 (r2 n)) $$ i) (l1 $$ i) < e) sequentially" | 
| 33175 | 2052 | by (rule eventually_subseq) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2053 | have "eventually (\<lambda>n. \<forall>i\<in>(insert k d). dist (f (r n) $$ i) (l $$ i) < e) sequentially" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2054 | using N1' N2 apply(rule eventually_elim2) unfolding l_def r_def o_def | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2055 | using insert.prems by auto | 
| 33175 | 2056 | } | 
| 2057 | ultimately show ?case by auto | |
| 2058 | qed | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2059 | thus "\<exists>l::'a. \<exists>r. subseq r \<and> | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2060 | (\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>d'. dist (f (r n) $$ i) (l $$ i) < e) sequentially)" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2061 | apply safe apply(rule_tac x=l in exI,rule_tac x=r in exI) apply safe | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2062 | apply(erule_tac x=e in allE) unfolding d_def eventually_sequentially apply safe | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2063 | apply(rule_tac x=N in exI) apply safe apply(erule_tac x=n in allE,safe) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2064 | apply(erule_tac x=i in ballE) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2065 | proof- fix i and r::"nat=>nat" and n::nat and e::real and l::'a | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2066 |     assume "i\<in>d'" "i \<notin> d' \<inter> {..<DIM('a)}" and e:"e>0"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2067 |     hence *:"i\<ge>DIM('a)" by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2068 | thus "dist (f (r n) $$ i) (l $$ i) < e" using e by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2069 | qed | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2070 | qed | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2071 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2072 | instance euclidean_space \<subseteq> heine_borel | 
| 33175 | 2073 | proof | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2074 | fix s :: "'a set" and f :: "nat \<Rightarrow> 'a" | 
| 33175 | 2075 | assume s: "bounded s" and f: "\<forall>n. f n \<in> s" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2076 | then obtain l::'a and r where r: "subseq r" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2077 | and l: "\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>UNIV. dist (f (r n) $$ i) (l $$ i) < e) sequentially" | 
| 33175 | 2078 | using compact_lemma [OF s f] by blast | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2079 |   let ?d = "{..<DIM('a)}"
 | 
| 33175 | 2080 |   { fix e::real assume "e>0"
 | 
| 2081 | hence "0 < e / (real_of_nat (card ?d))" | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2082 | using DIM_positive using divide_pos_pos[of e, of "real_of_nat (card ?d)"] by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2083 | with l have "eventually (\<lambda>n. \<forall>i. dist (f (r n) $$ i) (l $$ i) < e / (real_of_nat (card ?d))) sequentially" | 
| 33175 | 2084 | by simp | 
| 2085 | moreover | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2086 |     { fix n assume n: "\<forall>i. dist (f (r n) $$ i) (l $$ i) < e / (real_of_nat (card ?d))"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2087 | have "dist (f (r n)) l \<le> (\<Sum>i\<in>?d. dist (f (r n) $$ i) (l $$ i))" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2088 | apply(subst euclidean_dist_l2) using zero_le_dist by (rule setL2_le_setsum) | 
| 33175 | 2089 | also have "\<dots> < (\<Sum>i\<in>?d. e / (real_of_nat (card ?d)))" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2090 | apply(rule setsum_strict_mono) using n by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2091 | finally have "dist (f (r n)) l < e" unfolding setsum_constant | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 2092 | using DIM_positive[where 'a='a] by auto | 
| 33175 | 2093 | } | 
| 2094 | ultimately have "eventually (\<lambda>n. dist (f (r n)) l < e) sequentially" | |
| 2095 | by (rule eventually_elim1) | |
| 2096 | } | |
| 2097 | hence *:"((f \<circ> r) ---> l) sequentially" unfolding o_def tendsto_iff by simp | |
| 2098 | with r show "\<exists>l r. subseq r \<and> ((f \<circ> r) ---> l) sequentially" by auto | |
| 2099 | qed | |
| 2100 | ||
| 2101 | lemma bounded_fst: "bounded s \<Longrightarrow> bounded (fst ` s)" | |
| 2102 | unfolding bounded_def | |
| 2103 | apply clarify | |
| 2104 | apply (rule_tac x="a" in exI) | |
| 2105 | apply (rule_tac x="e" in exI) | |
| 2106 | apply clarsimp | |
| 2107 | apply (drule (1) bspec) | |
| 2108 | apply (simp add: dist_Pair_Pair) | |
| 2109 | apply (erule order_trans [OF real_sqrt_sum_squares_ge1]) | |
| 2110 | done | |
| 2111 | ||
| 2112 | lemma bounded_snd: "bounded s \<Longrightarrow> bounded (snd ` s)" | |
| 2113 | unfolding bounded_def | |
| 2114 | apply clarify | |
| 2115 | apply (rule_tac x="b" in exI) | |
| 2116 | apply (rule_tac x="e" in exI) | |
| 2117 | apply clarsimp | |
| 2118 | apply (drule (1) bspec) | |
| 2119 | apply (simp add: dist_Pair_Pair) | |
| 2120 | apply (erule order_trans [OF real_sqrt_sum_squares_ge2]) | |
| 2121 | done | |
| 2122 | ||
| 37678 
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
 haftmann parents: 
37649diff
changeset | 2123 | instance prod :: (heine_borel, heine_borel) heine_borel | 
| 33175 | 2124 | proof | 
| 2125 |   fix s :: "('a * 'b) set" and f :: "nat \<Rightarrow> 'a * 'b"
 | |
| 2126 | assume s: "bounded s" and f: "\<forall>n. f n \<in> s" | |
| 2127 | from s have s1: "bounded (fst ` s)" by (rule bounded_fst) | |
| 2128 | from f have f1: "\<forall>n. fst (f n) \<in> fst ` s" by simp | |
| 2129 | obtain l1 r1 where r1: "subseq r1" | |
| 2130 | and l1: "((\<lambda>n. fst (f (r1 n))) ---> l1) sequentially" | |
| 2131 | using bounded_imp_convergent_subsequence [OF s1 f1] | |
| 2132 | unfolding o_def by fast | |
| 2133 | from s have s2: "bounded (snd ` s)" by (rule bounded_snd) | |
| 2134 | from f have f2: "\<forall>n. snd (f (r1 n)) \<in> snd ` s" by simp | |
| 2135 | obtain l2 r2 where r2: "subseq r2" | |
| 2136 | and l2: "((\<lambda>n. snd (f (r1 (r2 n)))) ---> l2) sequentially" | |
| 2137 | using bounded_imp_convergent_subsequence [OF s2 f2] | |
| 2138 | unfolding o_def by fast | |
| 2139 | have l1': "((\<lambda>n. fst (f (r1 (r2 n)))) ---> l1) sequentially" | |
| 2140 | using lim_subseq [OF r2 l1] unfolding o_def . | |
| 2141 | have l: "((f \<circ> (r1 \<circ> r2)) ---> (l1, l2)) sequentially" | |
| 2142 | using tendsto_Pair [OF l1' l2] unfolding o_def by simp | |
| 2143 | have r: "subseq (r1 \<circ> r2)" | |
| 2144 | using r1 r2 unfolding subseq_def by simp | |
| 2145 | show "\<exists>l r. subseq r \<and> ((f \<circ> r) ---> l) sequentially" | |
| 2146 | using l r by fast | |
| 2147 | qed | |
| 2148 | ||
| 36437 | 2149 | subsubsection{* Completeness *}
 | 
| 33175 | 2150 | |
| 2151 | lemma cauchy_def: | |
| 2152 | "Cauchy s \<longleftrightarrow> (\<forall>e>0. \<exists>N. \<forall>m n. m \<ge> N \<and> n \<ge> N --> dist(s m)(s n) < e)" | |
| 2153 | unfolding Cauchy_def by blast | |
| 2154 | ||
| 2155 | definition | |
| 2156 | complete :: "'a::metric_space set \<Rightarrow> bool" where | |
| 2157 | "complete s \<longleftrightarrow> (\<forall>f. (\<forall>n. f n \<in> s) \<and> Cauchy f | |
| 2158 | --> (\<exists>l \<in> s. (f ---> l) sequentially))" | |
| 2159 | ||
| 2160 | lemma cauchy: "Cauchy s \<longleftrightarrow> (\<forall>e>0.\<exists> N::nat. \<forall>n\<ge>N. dist(s n)(s N) < e)" (is "?lhs = ?rhs") | |
| 2161 | proof- | |
| 2162 |   { assume ?rhs
 | |
| 2163 |     { fix e::real
 | |
| 2164 | assume "e>0" | |
| 2165 | with `?rhs` obtain N where N:"\<forall>n\<ge>N. dist (s n) (s N) < e/2" | |
| 2166 | by (erule_tac x="e/2" in allE) auto | |
| 2167 |       { fix n m
 | |
| 2168 | assume nm:"N \<le> m \<and> N \<le> n" | |
| 2169 | hence "dist (s m) (s n) < e" using N | |
| 2170 | using dist_triangle_half_l[of "s m" "s N" "e" "s n"] | |
| 2171 | by blast | |
| 2172 | } | |
| 2173 | hence "\<exists>N. \<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (s m) (s n) < e" | |
| 2174 | by blast | |
| 2175 | } | |
| 2176 | hence ?lhs | |
| 2177 | unfolding cauchy_def | |
| 2178 | by blast | |
| 2179 | } | |
| 2180 | thus ?thesis | |
| 2181 | unfolding cauchy_def | |
| 2182 | using dist_triangle_half_l | |
| 2183 | by blast | |
| 2184 | qed | |
| 2185 | ||
| 2186 | lemma convergent_imp_cauchy: | |
| 2187 | "(s ---> l) sequentially ==> Cauchy s" | |
| 2188 | proof(simp only: cauchy_def, rule, rule) | |
| 2189 | fix e::real assume "e>0" "(s ---> l) sequentially" | |
| 2190 | then obtain N::nat where N:"\<forall>n\<ge>N. dist (s n) l < e/2" unfolding Lim_sequentially by(erule_tac x="e/2" in allE) auto | |
| 2191 | thus "\<exists>N. \<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (s m) (s n) < e" using dist_triangle_half_l[of _ l e _] by (rule_tac x=N in exI) auto | |
| 2192 | qed | |
| 2193 | ||
| 34104 | 2194 | lemma cauchy_imp_bounded: assumes "Cauchy s" shows "bounded (range s)" | 
| 33175 | 2195 | proof- | 
| 2196 | from assms obtain N::nat where "\<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (s m) (s n) < 1" unfolding cauchy_def apply(erule_tac x= 1 in allE) by auto | |
| 2197 | hence N:"\<forall>n. N \<le> n \<longrightarrow> dist (s N) (s n) < 1" by auto | |
| 2198 | moreover | |
| 2199 |   have "bounded (s ` {0..N})" using finite_imp_bounded[of "s ` {1..N}"] by auto
 | |
| 2200 |   then obtain a where a:"\<forall>x\<in>s ` {0..N}. dist (s N) x \<le> a"
 | |
| 2201 | unfolding bounded_any_center [where a="s N"] by auto | |
| 2202 | ultimately show "?thesis" | |
| 2203 | unfolding bounded_any_center [where a="s N"] | |
| 2204 | apply(rule_tac x="max a 1" in exI) apply auto | |
| 34104 | 2205 | apply(erule_tac x=y in allE) apply(erule_tac x=y in ballE) by auto | 
| 33175 | 2206 | qed | 
| 2207 | ||
| 2208 | lemma compact_imp_complete: assumes "compact s" shows "complete s" | |
| 2209 | proof- | |
| 2210 |   { fix f assume as: "(\<forall>n::nat. f n \<in> s)" "Cauchy f"
 | |
| 2211 | from as(1) obtain l r where lr: "l\<in>s" "subseq r" "((f \<circ> r) ---> l) sequentially" using assms unfolding compact_def by blast | |
| 2212 | ||
| 2213 | note lr' = subseq_bigger [OF lr(2)] | |
| 2214 | ||
| 2215 |     { fix e::real assume "e>0"
 | |
| 2216 | from as(2) obtain N where N:"\<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (f m) (f n) < e/2" unfolding cauchy_def using `e>0` apply (erule_tac x="e/2" in allE) by auto | |
| 2217 | from lr(3)[unfolded Lim_sequentially, THEN spec[where x="e/2"]] obtain M where M:"\<forall>n\<ge>M. dist ((f \<circ> r) n) l < e/2" using `e>0` by auto | |
| 2218 |       { fix n::nat assume n:"n \<ge> max N M"
 | |
| 2219 | have "dist ((f \<circ> r) n) l < e/2" using n M by auto | |
| 2220 | moreover have "r n \<ge> N" using lr'[of n] n by auto | |
| 2221 | hence "dist (f n) ((f \<circ> r) n) < e / 2" using N using n by auto | |
| 2222 | ultimately have "dist (f n) l < e" using dist_triangle_half_r[of "f (r n)" "f n" e l] by (auto simp add: dist_commute) } | |
| 2223 | hence "\<exists>N. \<forall>n\<ge>N. dist (f n) l < e" by blast } | |
| 2224 | hence "\<exists>l\<in>s. (f ---> l) sequentially" using `l\<in>s` unfolding Lim_sequentially by auto } | |
| 2225 | thus ?thesis unfolding complete_def by auto | |
| 2226 | qed | |
| 2227 | ||
| 2228 | instance heine_borel < complete_space | |
| 2229 | proof | |
| 2230 | fix f :: "nat \<Rightarrow> 'a" assume "Cauchy f" | |
| 34104 | 2231 | hence "bounded (range f)" | 
| 2232 | by (rule cauchy_imp_bounded) | |
| 33175 | 2233 | hence "compact (closure (range f))" | 
| 2234 | using bounded_closed_imp_compact [of "closure (range f)"] by auto | |
| 2235 | hence "complete (closure (range f))" | |
| 34104 | 2236 | by (rule compact_imp_complete) | 
| 33175 | 2237 | moreover have "\<forall>n. f n \<in> closure (range f)" | 
| 2238 | using closure_subset [of "range f"] by auto | |
| 2239 | ultimately have "\<exists>l\<in>closure (range f). (f ---> l) sequentially" | |
| 2240 | using `Cauchy f` unfolding complete_def by auto | |
| 2241 | then show "convergent f" | |
| 36660 
1cc4ab4b7ff7
make (X ----> L) an abbreviation for (X ---> L) sequentially
 huffman parents: 
36659diff
changeset | 2242 | unfolding convergent_def by auto | 
| 33175 | 2243 | qed | 
| 2244 | ||
| 44632 | 2245 | instance euclidean_space \<subseteq> banach .. | 
| 2246 | ||
| 33175 | 2247 | lemma complete_univ: "complete (UNIV :: 'a::complete_space set)" | 
| 2248 | proof(simp add: complete_def, rule, rule) | |
| 2249 | fix f :: "nat \<Rightarrow> 'a" assume "Cauchy f" | |
| 2250 | hence "convergent f" by (rule Cauchy_convergent) | |
| 36660 
1cc4ab4b7ff7
make (X ----> L) an abbreviation for (X ---> L) sequentially
 huffman parents: 
36659diff
changeset | 2251 | thus "\<exists>l. f ----> l" unfolding convergent_def . | 
| 33175 | 2252 | qed | 
| 2253 | ||
| 2254 | lemma complete_imp_closed: assumes "complete s" shows "closed s" | |
| 2255 | proof - | |
| 2256 |   { fix x assume "x islimpt s"
 | |
| 2257 |     then obtain f where f: "\<forall>n. f n \<in> s - {x}" "(f ---> x) sequentially"
 | |
| 2258 | unfolding islimpt_sequential by auto | |
| 2259 | then obtain l where l: "l\<in>s" "(f ---> l) sequentially" | |
| 2260 | using `complete s`[unfolded complete_def] using convergent_imp_cauchy[of f x] by auto | |
| 41970 | 2261 | hence "x \<in> s" using tendsto_unique[of sequentially f l x] trivial_limit_sequentially f(2) by auto | 
| 33175 | 2262 | } | 
| 2263 | thus "closed s" unfolding closed_limpt by auto | |
| 2264 | qed | |
| 2265 | ||
| 2266 | lemma complete_eq_closed: | |
| 2267 | fixes s :: "'a::complete_space set" | |
| 2268 | shows "complete s \<longleftrightarrow> closed s" (is "?lhs = ?rhs") | |
| 2269 | proof | |
| 2270 | assume ?lhs thus ?rhs by (rule complete_imp_closed) | |
| 2271 | next | |
| 2272 | assume ?rhs | |
| 2273 |   { fix f assume as:"\<forall>n::nat. f n \<in> s" "Cauchy f"
 | |
| 2274 | then obtain l where "(f ---> l) sequentially" using complete_univ[unfolded complete_def, THEN spec[where x=f]] by auto | |
| 2275 | hence "\<exists>l\<in>s. (f ---> l) sequentially" using `?rhs`[unfolded closed_sequential_limits, THEN spec[where x=f], THEN spec[where x=l]] using as(1) by auto } | |
| 2276 | thus ?lhs unfolding complete_def by auto | |
| 2277 | qed | |
| 2278 | ||
| 2279 | lemma convergent_eq_cauchy: | |
| 2280 | fixes s :: "nat \<Rightarrow> 'a::complete_space" | |
| 44632 | 2281 | shows "(\<exists>l. (s ---> l) sequentially) \<longleftrightarrow> Cauchy s" | 
| 2282 | unfolding Cauchy_convergent_iff convergent_def .. | |
| 33175 | 2283 | |
| 2284 | lemma convergent_imp_bounded: | |
| 2285 | fixes s :: "nat \<Rightarrow> 'a::metric_space" | |
| 44632 | 2286 | shows "(s ---> l) sequentially \<Longrightarrow> bounded (range s)" | 
| 2287 | by (intro cauchy_imp_bounded convergent_imp_cauchy) | |
| 33175 | 2288 | |
| 36437 | 2289 | subsubsection{* Total boundedness *}
 | 
| 33175 | 2290 | |
| 2291 | fun helper_1::"('a::metric_space set) \<Rightarrow> real \<Rightarrow> nat \<Rightarrow> 'a" where
 | |
| 2292 | "helper_1 s e n = (SOME y::'a. y \<in> s \<and> (\<forall>m<n. \<not> (dist (helper_1 s e m) y < e)))" | |
| 2293 | declare helper_1.simps[simp del] | |
| 2294 | ||
| 2295 | lemma compact_imp_totally_bounded: | |
| 2296 | assumes "compact s" | |
| 2297 | shows "\<forall>e>0. \<exists>k. finite k \<and> k \<subseteq> s \<and> s \<subseteq> (\<Union>((\<lambda>x. ball x e) ` k))" | |
| 2298 | proof(rule, rule, rule ccontr) | |
| 2299 | fix e::real assume "e>0" and assm:"\<not> (\<exists>k. finite k \<and> k \<subseteq> s \<and> s \<subseteq> \<Union>(\<lambda>x. ball x e) ` k)" | |
| 2300 | def x \<equiv> "helper_1 s e" | |
| 2301 |   { fix n
 | |
| 2302 | have "x n \<in> s \<and> (\<forall>m<n. \<not> dist (x m) (x n) < e)" | |
| 2303 | proof(induct_tac rule:nat_less_induct) | |
| 2304 | fix n def Q \<equiv> "(\<lambda>y. y \<in> s \<and> (\<forall>m<n. \<not> dist (x m) y < e))" | |
| 2305 | assume as:"\<forall>m<n. x m \<in> s \<and> (\<forall>ma<m. \<not> dist (x ma) (x m) < e)" | |
| 2306 |       have "\<not> s \<subseteq> (\<Union>x\<in>x ` {0..<n}. ball x e)" using assm apply simp apply(erule_tac x="x ` {0 ..< n}" in allE) using as by auto
 | |
| 2307 |       then obtain z where z:"z\<in>s" "z \<notin> (\<Union>x\<in>x ` {0..<n}. ball x e)" unfolding subset_eq by auto
 | |
| 2308 | have "Q (x n)" unfolding x_def and helper_1.simps[of s e n] | |
| 2309 | apply(rule someI2[where a=z]) unfolding x_def[symmetric] and Q_def using z by auto | |
| 2310 | thus "x n \<in> s \<and> (\<forall>m<n. \<not> dist (x m) (x n) < e)" unfolding Q_def by auto | |
| 2311 | qed } | |
| 2312 | hence "\<forall>n::nat. x n \<in> s" and x:"\<forall>n. \<forall>m < n. \<not> (dist (x m) (x n) < e)" by blast+ | |
| 2313 | then obtain l r where "l\<in>s" and r:"subseq r" and "((x \<circ> r) ---> l) sequentially" using assms(1)[unfolded compact_def, THEN spec[where x=x]] by auto | |
| 2314 | from this(3) have "Cauchy (x \<circ> r)" using convergent_imp_cauchy by auto | |
| 2315 | then obtain N::nat where N:"\<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist ((x \<circ> r) m) ((x \<circ> r) n) < e" unfolding cauchy_def using `e>0` by auto | |
| 2316 | show False | |
| 2317 | using N[THEN spec[where x=N], THEN spec[where x="N+1"]] | |
| 2318 | using r[unfolded subseq_def, THEN spec[where x=N], THEN spec[where x="N+1"]] | |
| 2319 | using x[THEN spec[where x="r (N+1)"], THEN spec[where x="r (N)"]] by auto | |
| 2320 | qed | |
| 2321 | ||
| 36437 | 2322 | subsubsection{* Heine-Borel theorem *}
 | 
| 2323 | ||
| 2324 | text {* Following Burkill \& Burkill vol. 2. *}
 | |
| 33175 | 2325 | |
| 2326 | lemma heine_borel_lemma: fixes s::"'a::metric_space set" | |
| 2327 | assumes "compact s" "s \<subseteq> (\<Union> t)" "\<forall>b \<in> t. open b" | |
| 2328 | shows "\<exists>e>0. \<forall>x \<in> s. \<exists>b \<in> t. ball x e \<subseteq> b" | |
| 2329 | proof(rule ccontr) | |
| 2330 | assume "\<not> (\<exists>e>0. \<forall>x\<in>s. \<exists>b\<in>t. ball x e \<subseteq> b)" | |
| 2331 | hence cont:"\<forall>e>0. \<exists>x\<in>s. \<forall>xa\<in>t. \<not> (ball x e \<subseteq> xa)" by auto | |
| 2332 |   { fix n::nat
 | |
| 2333 | have "1 / real (n + 1) > 0" by auto | |
| 2334 | hence "\<exists>x. x\<in>s \<and> (\<forall>xa\<in>t. \<not> (ball x (inverse (real (n+1))) \<subseteq> xa))" using cont unfolding Bex_def by auto } | |
| 2335 | hence "\<forall>n::nat. \<exists>x. x \<in> s \<and> (\<forall>xa\<in>t. \<not> ball x (inverse (real (n + 1))) \<subseteq> xa)" by auto | |
| 2336 | then obtain f where f:"\<forall>n::nat. f n \<in> s \<and> (\<forall>xa\<in>t. \<not> ball (f n) (inverse (real (n + 1))) \<subseteq> xa)" | |
| 2337 | using choice[of "\<lambda>n::nat. \<lambda>x. x\<in>s \<and> (\<forall>xa\<in>t. \<not> ball x (inverse (real (n + 1))) \<subseteq> xa)"] by auto | |
| 2338 | ||
| 2339 | then obtain l r where l:"l\<in>s" and r:"subseq r" and lr:"((f \<circ> r) ---> l) sequentially" | |
| 2340 | using assms(1)[unfolded compact_def, THEN spec[where x=f]] by auto | |
| 2341 | ||
| 2342 | obtain b where "l\<in>b" "b\<in>t" using assms(2) and l by auto | |
| 2343 | then obtain e where "e>0" and e:"\<forall>z. dist z l < e \<longrightarrow> z\<in>b" | |
| 2344 | using assms(3)[THEN bspec[where x=b]] unfolding open_dist by auto | |
| 2345 | ||
| 2346 | then obtain N1 where N1:"\<forall>n\<ge>N1. dist ((f \<circ> r) n) l < e / 2" | |
| 2347 | using lr[unfolded Lim_sequentially, THEN spec[where x="e/2"]] by auto | |
| 2348 | ||
| 2349 | obtain N2::nat where N2:"N2>0" "inverse (real N2) < e /2" using real_arch_inv[of "e/2"] and `e>0` by auto | |
| 2350 | have N2':"inverse (real (r (N1 + N2) +1 )) < e/2" | |
| 2351 | apply(rule order_less_trans) apply(rule less_imp_inverse_less) using N2 | |
| 2352 | using subseq_bigger[OF r, of "N1 + N2"] by auto | |
| 2353 | ||
| 2354 | def x \<equiv> "(f (r (N1 + N2)))" | |
| 2355 | have x:"\<not> ball x (inverse (real (r (N1 + N2) + 1))) \<subseteq> b" unfolding x_def | |
| 2356 | using f[THEN spec[where x="r (N1 + N2)"]] using `b\<in>t` by auto | |
| 2357 | have "\<exists>y\<in>ball x (inverse (real (r (N1 + N2) + 1))). y\<notin>b" apply(rule ccontr) using x by auto | |
| 2358 | then obtain y where y:"y \<in> ball x (inverse (real (r (N1 + N2) + 1)))" "y \<notin> b" by auto | |
| 2359 | ||
| 2360 | have "dist x l < e/2" using N1 unfolding x_def o_def by auto | |
| 2361 | hence "dist y l < e" using y N2' using dist_triangle[of y l x]by (auto simp add:dist_commute) | |
| 2362 | ||
| 2363 | thus False using e and `y\<notin>b` by auto | |
| 2364 | qed | |
| 2365 | ||
| 2366 | lemma compact_imp_heine_borel: "compact s ==> (\<forall>f. (\<forall>t \<in> f. open t) \<and> s \<subseteq> (\<Union> f) | |
| 2367 | \<longrightarrow> (\<exists>f'. f' \<subseteq> f \<and> finite f' \<and> s \<subseteq> (\<Union> f')))" | |
| 2368 | proof clarify | |
| 2369 | fix f assume "compact s" " \<forall>t\<in>f. open t" "s \<subseteq> \<Union>f" | |
| 2370 | then obtain e::real where "e>0" and "\<forall>x\<in>s. \<exists>b\<in>f. ball x e \<subseteq> b" using heine_borel_lemma[of s f] by auto | |
| 2371 | hence "\<forall>x\<in>s. \<exists>b. b\<in>f \<and> ball x e \<subseteq> b" by auto | |
| 2372 | hence "\<exists>bb. \<forall>x\<in>s. bb x \<in>f \<and> ball x e \<subseteq> bb x" using bchoice[of s "\<lambda>x b. b\<in>f \<and> ball x e \<subseteq> b"] by auto | |
| 2373 | then obtain bb where bb:"\<forall>x\<in>s. (bb x) \<in> f \<and> ball x e \<subseteq> (bb x)" by blast | |
| 2374 | ||
| 2375 | from `compact s` have "\<exists> k. finite k \<and> k \<subseteq> s \<and> s \<subseteq> \<Union>(\<lambda>x. ball x e) ` k" using compact_imp_totally_bounded[of s] `e>0` by auto | |
| 2376 | then obtain k where k:"finite k" "k \<subseteq> s" "s \<subseteq> \<Union>(\<lambda>x. ball x e) ` k" by auto | |
| 2377 | ||
| 2378 | have "finite (bb ` k)" using k(1) by auto | |
| 2379 | moreover | |
| 2380 |   { fix x assume "x\<in>s"
 | |
| 2381 | hence "x\<in>\<Union>(\<lambda>x. ball x e) ` k" using k(3) unfolding subset_eq by auto | |
| 2382 | hence "\<exists>X\<in>bb ` k. x \<in> X" using bb k(2) by blast | |
| 2383 | hence "x \<in> \<Union>(bb ` k)" using Union_iff[of x "bb ` k"] by auto | |
| 2384 | } | |
| 2385 | ultimately show "\<exists>f'\<subseteq>f. finite f' \<and> s \<subseteq> \<Union>f'" using bb k(2) by (rule_tac x="bb ` k" in exI) auto | |
| 2386 | qed | |
| 2387 | ||
| 36437 | 2388 | subsubsection {* Bolzano-Weierstrass property *}
 | 
| 33175 | 2389 | |
| 2390 | lemma heine_borel_imp_bolzano_weierstrass: | |
| 2391 | assumes "\<forall>f. (\<forall>t \<in> f. open t) \<and> s \<subseteq> (\<Union> f) --> (\<exists>f'. f' \<subseteq> f \<and> finite f' \<and> s \<subseteq> (\<Union> f'))" | |
| 2392 | "infinite t" "t \<subseteq> s" | |
| 2393 | shows "\<exists>x \<in> s. x islimpt t" | |
| 2394 | proof(rule ccontr) | |
| 2395 | assume "\<not> (\<exists>x \<in> s. x islimpt t)" | |
| 2396 | then obtain f where f:"\<forall>x\<in>s. x \<in> f x \<and> open (f x) \<and> (\<forall>y\<in>t. y \<in> f x \<longrightarrow> y = x)" unfolding islimpt_def | |
| 2397 | using bchoice[of s "\<lambda> x T. x \<in> T \<and> open T \<and> (\<forall>y\<in>t. y \<in> T \<longrightarrow> y = x)"] by auto | |
| 2398 |   obtain g where g:"g\<subseteq>{t. \<exists>x. x \<in> s \<and> t = f x}" "finite g" "s \<subseteq> \<Union>g"
 | |
| 2399 |     using assms(1)[THEN spec[where x="{t. \<exists>x. x\<in>s \<and> t = f x}"]] using f by auto
 | |
| 2400 | from g(1,3) have g':"\<forall>x\<in>g. \<exists>xa \<in> s. x = f xa" by auto | |
| 2401 |   { fix x y assume "x\<in>t" "y\<in>t" "f x = f y"
 | |
| 2402 | hence "x \<in> f x" "y \<in> f x \<longrightarrow> y = x" using f[THEN bspec[where x=x]] and `t\<subseteq>s` by auto | |
| 2403 | hence "x = y" using `f x = f y` and f[THEN bspec[where x=y]] and `y\<in>t` and `t\<subseteq>s` by auto } | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36360diff
changeset | 2404 | hence "inj_on f t" unfolding inj_on_def by simp | 
| 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36360diff
changeset | 2405 | hence "infinite (f ` t)" using assms(2) using finite_imageD by auto | 
| 33175 | 2406 | moreover | 
| 2407 |   { fix x assume "x\<in>t" "f x \<notin> g"
 | |
| 2408 | from g(3) assms(3) `x\<in>t` obtain h where "h\<in>g" and "x\<in>h" by auto | |
| 2409 | then obtain y where "y\<in>s" "h = f y" using g'[THEN bspec[where x=h]] by auto | |
| 2410 | hence "y = x" using f[THEN bspec[where x=y]] and `x\<in>t` and `x\<in>h`[unfolded `h = f y`] by auto | |
| 2411 | hence False using `f x \<notin> g` `h\<in>g` unfolding `h = f y` by auto } | |
| 2412 | hence "f ` t \<subseteq> g" by auto | |
| 2413 | ultimately show False using g(2) using finite_subset by auto | |
| 2414 | qed | |
| 2415 | ||
| 36437 | 2416 | subsubsection {* Complete the chain of compactness variants *}
 | 
| 33175 | 2417 | |
| 44073 | 2418 | lemma islimpt_range_imp_convergent_subsequence: | 
| 2419 | fixes f :: "nat \<Rightarrow> 'a::metric_space" | |
| 2420 | assumes "l islimpt (range f)" | |
| 2421 | shows "\<exists>r. subseq r \<and> ((f \<circ> r) ---> l) sequentially" | |
| 2422 | proof (intro exI conjI) | |
| 2423 | have *: "\<And>e. 0 < e \<Longrightarrow> \<exists>n. 0 < dist (f n) l \<and> dist (f n) l < e" | |
| 2424 | using assms unfolding islimpt_def | |
| 2425 | by (drule_tac x="ball l e" in spec) | |
| 2426 | (auto simp add: zero_less_dist_iff dist_commute) | |
| 2427 | ||
| 2428 | def t \<equiv> "\<lambda>e. LEAST n. 0 < dist (f n) l \<and> dist (f n) l < e" | |
| 2429 | have f_t_neq: "\<And>e. 0 < e \<Longrightarrow> 0 < dist (f (t e)) l" | |
| 2430 | unfolding t_def by (rule LeastI2_ex [OF * conjunct1]) | |
| 2431 | have f_t_closer: "\<And>e. 0 < e \<Longrightarrow> dist (f (t e)) l < e" | |
| 2432 | unfolding t_def by (rule LeastI2_ex [OF * conjunct2]) | |
| 2433 | have t_le: "\<And>n e. 0 < dist (f n) l \<Longrightarrow> dist (f n) l < e \<Longrightarrow> t e \<le> n" | |
| 2434 | unfolding t_def by (simp add: Least_le) | |
| 2435 | have less_tD: "\<And>n e. n < t e \<Longrightarrow> 0 < dist (f n) l \<Longrightarrow> e \<le> dist (f n) l" | |
| 2436 | unfolding t_def by (drule not_less_Least) simp | |
| 2437 | have t_antimono: "\<And>e e'. 0 < e \<Longrightarrow> e \<le> e' \<Longrightarrow> t e' \<le> t e" | |
| 2438 | apply (rule t_le) | |
| 2439 | apply (erule f_t_neq) | |
| 2440 | apply (erule (1) less_le_trans [OF f_t_closer]) | |
| 2441 | done | |
| 2442 | have t_dist_f_neq: "\<And>n. 0 < dist (f n) l \<Longrightarrow> t (dist (f n) l) \<noteq> n" | |
| 2443 | by (drule f_t_closer) auto | |
| 2444 | have t_less: "\<And>e. 0 < e \<Longrightarrow> t e < t (dist (f (t e)) l)" | |
| 2445 | apply (subst less_le) | |
| 2446 | apply (rule conjI) | |
| 2447 | apply (rule t_antimono) | |
| 2448 | apply (erule f_t_neq) | |
| 2449 | apply (erule f_t_closer [THEN less_imp_le]) | |
| 2450 | apply (rule t_dist_f_neq [symmetric]) | |
| 2451 | apply (erule f_t_neq) | |
| 2452 | done | |
| 2453 | have dist_f_t_less': | |
| 2454 | "\<And>e e'. 0 < e \<Longrightarrow> 0 < e' \<Longrightarrow> t e \<le> t e' \<Longrightarrow> dist (f (t e')) l < e" | |
| 2455 | apply (simp add: le_less) | |
| 2456 | apply (erule disjE) | |
| 2457 | apply (rule less_trans) | |
| 2458 | apply (erule f_t_closer) | |
| 2459 | apply (rule le_less_trans) | |
| 2460 | apply (erule less_tD) | |
| 2461 | apply (erule f_t_neq) | |
| 2462 | apply (erule f_t_closer) | |
| 2463 | apply (erule subst) | |
| 2464 | apply (erule f_t_closer) | |
| 2465 | done | |
| 2466 | ||
| 2467 | def r \<equiv> "nat_rec (t 1) (\<lambda>_ x. t (dist (f x) l))" | |
| 2468 | have r_simps: "r 0 = t 1" "\<And>n. r (Suc n) = t (dist (f (r n)) l)" | |
| 2469 | unfolding r_def by simp_all | |
| 2470 | have f_r_neq: "\<And>n. 0 < dist (f (r n)) l" | |
| 2471 | by (induct_tac n) (simp_all add: r_simps f_t_neq) | |
| 2472 | ||
| 2473 | show "subseq r" | |
| 2474 | unfolding subseq_Suc_iff | |
| 2475 | apply (rule allI) | |
| 2476 | apply (case_tac n) | |
| 2477 | apply (simp_all add: r_simps) | |
| 2478 | apply (rule t_less, rule zero_less_one) | |
| 2479 | apply (rule t_less, rule f_r_neq) | |
| 2480 | done | |
| 2481 | show "((f \<circ> r) ---> l) sequentially" | |
| 2482 | unfolding Lim_sequentially o_def | |
| 2483 | apply (clarify, rule_tac x="t e" in exI, clarify) | |
| 2484 | apply (drule le_trans, rule seq_suble [OF `subseq r`]) | |
| 2485 | apply (case_tac n, simp_all add: r_simps dist_f_t_less' f_r_neq) | |
| 2486 | done | |
| 2487 | qed | |
| 2488 | ||
| 2489 | lemma finite_range_imp_infinite_repeats: | |
| 2490 | fixes f :: "nat \<Rightarrow> 'a" | |
| 2491 | assumes "finite (range f)" | |
| 2492 |   shows "\<exists>k. infinite {n. f n = k}"
 | |
| 2493 | proof - | |
| 2494 |   { fix A :: "'a set" assume "finite A"
 | |
| 2495 |     hence "\<And>f. infinite {n. f n \<in> A} \<Longrightarrow> \<exists>k. infinite {n. f n = k}"
 | |
| 2496 | proof (induct) | |
| 2497 | case empty thus ?case by simp | |
| 2498 | next | |
| 2499 | case (insert x A) | |
| 2500 | show ?case | |
| 2501 |       proof (cases "finite {n. f n = x}")
 | |
| 2502 | case True | |
| 2503 |         with `infinite {n. f n \<in> insert x A}`
 | |
| 2504 |         have "infinite {n. f n \<in> A}" by simp
 | |
| 2505 |         thus "\<exists>k. infinite {n. f n = k}" by (rule insert)
 | |
| 2506 | next | |
| 2507 |         case False thus "\<exists>k. infinite {n. f n = k}" ..
 | |
| 2508 | qed | |
| 2509 | qed | |
| 2510 | } note H = this | |
| 2511 |   from assms show "\<exists>k. infinite {n. f n = k}"
 | |
| 2512 | by (rule H) simp | |
| 2513 | qed | |
| 2514 | ||
| 2515 | lemma bolzano_weierstrass_imp_compact: | |
| 2516 | fixes s :: "'a::metric_space set" | |
| 2517 | assumes "\<forall>t. infinite t \<and> t \<subseteq> s --> (\<exists>x \<in> s. x islimpt t)" | |
| 2518 | shows "compact s" | |
| 2519 | proof - | |
| 2520 |   { fix f :: "nat \<Rightarrow> 'a" assume f: "\<forall>n. f n \<in> s"
 | |
| 2521 | have "\<exists>l\<in>s. \<exists>r. subseq r \<and> ((f \<circ> r) ---> l) sequentially" | |
| 2522 | proof (cases "finite (range f)") | |
| 2523 | case True | |
| 2524 |       hence "\<exists>l. infinite {n. f n = l}"
 | |
| 2525 | by (rule finite_range_imp_infinite_repeats) | |
| 2526 |       then obtain l where "infinite {n. f n = l}" ..
 | |
| 2527 |       hence "\<exists>r. subseq r \<and> (\<forall>n. r n \<in> {n. f n = l})"
 | |
| 2528 | by (rule infinite_enumerate) | |
| 2529 | then obtain r where "subseq r" and fr: "\<forall>n. f (r n) = l" by auto | |
| 2530 | hence "subseq r \<and> ((f \<circ> r) ---> l) sequentially" | |
| 44125 | 2531 | unfolding o_def by (simp add: fr tendsto_const) | 
| 44073 | 2532 | hence "\<exists>r. subseq r \<and> ((f \<circ> r) ---> l) sequentially" | 
| 2533 | by - (rule exI) | |
| 2534 | from f have "\<forall>n. f (r n) \<in> s" by simp | |
| 2535 | hence "l \<in> s" by (simp add: fr) | |
| 2536 | thus "\<exists>l\<in>s. \<exists>r. subseq r \<and> ((f \<circ> r) ---> l) sequentially" | |
| 2537 | by (rule rev_bexI) fact | |
| 2538 | next | |
| 2539 | case False | |
| 2540 | with f assms have "\<exists>x\<in>s. x islimpt (range f)" by auto | |
| 2541 | then obtain l where "l \<in> s" "l islimpt (range f)" .. | |
| 2542 | have "\<exists>r. subseq r \<and> ((f \<circ> r) ---> l) sequentially" | |
| 2543 | using `l islimpt (range f)` | |
| 2544 | by (rule islimpt_range_imp_convergent_subsequence) | |
| 2545 | with `l \<in> s` show "\<exists>l\<in>s. \<exists>r. subseq r \<and> ((f \<circ> r) ---> l) sequentially" .. | |
| 2546 | qed | |
| 2547 | } | |
| 2548 | thus ?thesis unfolding compact_def by auto | |
| 2549 | qed | |
| 2550 | ||
| 33175 | 2551 | primrec helper_2::"(real \<Rightarrow> 'a::metric_space) \<Rightarrow> nat \<Rightarrow> 'a" where | 
| 2552 | "helper_2 beyond 0 = beyond 0" | | |
| 2553 | "helper_2 beyond (Suc n) = beyond (dist undefined (helper_2 beyond n) + 1 )" | |
| 2554 | ||
| 2555 | lemma bolzano_weierstrass_imp_bounded: fixes s::"'a::metric_space set" | |
| 2556 | assumes "\<forall>t. infinite t \<and> t \<subseteq> s --> (\<exists>x \<in> s. x islimpt t)" | |
| 2557 | shows "bounded s" | |
| 2558 | proof(rule ccontr) | |
| 2559 | assume "\<not> bounded s" | |
| 2560 | then obtain beyond where "\<forall>a. beyond a \<in>s \<and> \<not> dist undefined (beyond a) \<le> a" | |
| 2561 | unfolding bounded_any_center [where a=undefined] | |
| 2562 | apply simp using choice[of "\<lambda>a x. x\<in>s \<and> \<not> dist undefined x \<le> a"] by auto | |
| 2563 | hence beyond:"\<And>a. beyond a \<in>s" "\<And>a. dist undefined (beyond a) > a" | |
| 2564 | unfolding linorder_not_le by auto | |
| 2565 | def x \<equiv> "helper_2 beyond" | |
| 2566 | ||
| 2567 |   { fix m n ::nat assume "m<n"
 | |
| 2568 | hence "dist undefined (x m) + 1 < dist undefined (x n)" | |
| 2569 | proof(induct n) | |
| 2570 | case 0 thus ?case by auto | |
| 2571 | next | |
| 2572 | case (Suc n) | |
| 2573 | have *:"dist undefined (x n) + 1 < dist undefined (x (Suc n))" | |
| 2574 | unfolding x_def and helper_2.simps | |
| 2575 | using beyond(2)[of "dist undefined (helper_2 beyond n) + 1"] by auto | |
| 2576 | thus ?case proof(cases "m < n") | |
| 2577 | case True thus ?thesis using Suc and * by auto | |
| 2578 | next | |
| 2579 | case False hence "m = n" using Suc(2) by auto | |
| 2580 | thus ?thesis using * by auto | |
| 2581 | qed | |
| 2582 | qed } note * = this | |
| 2583 |   { fix m n ::nat assume "m\<noteq>n"
 | |
| 2584 | have "1 < dist (x m) (x n)" | |
| 2585 | proof(cases "m<n") | |
| 2586 | case True | |
| 2587 | hence "1 < dist undefined (x n) - dist undefined (x m)" using *[of m n] by auto | |
| 2588 | thus ?thesis using dist_triangle [of undefined "x n" "x m"] by arith | |
| 2589 | next | |
| 2590 | case False hence "n<m" using `m\<noteq>n` by auto | |
| 2591 | hence "1 < dist undefined (x m) - dist undefined (x n)" using *[of n m] by auto | |
| 2592 | thus ?thesis using dist_triangle2 [of undefined "x m" "x n"] by arith | |
| 2593 | qed } note ** = this | |
| 2594 |   { fix a b assume "x a = x b" "a \<noteq> b"
 | |
| 2595 | hence False using **[of a b] by auto } | |
| 2596 | hence "inj x" unfolding inj_on_def by auto | |
| 2597 | moreover | |
| 2598 |   { fix n::nat
 | |
| 2599 | have "x n \<in> s" | |
| 2600 | proof(cases "n = 0") | |
| 2601 | case True thus ?thesis unfolding x_def using beyond by auto | |
| 2602 | next | |
| 2603 | case False then obtain z where "n = Suc z" using not0_implies_Suc by auto | |
| 2604 | thus ?thesis unfolding x_def using beyond by auto | |
| 2605 | qed } | |
| 2606 | ultimately have "infinite (range x) \<and> range x \<subseteq> s" unfolding x_def using range_inj_infinite[of "helper_2 beyond"] using beyond(1) by auto | |
| 2607 | ||
| 2608 | then obtain l where "l\<in>s" and l:"l islimpt range x" using assms[THEN spec[where x="range x"]] by auto | |
| 2609 | then obtain y where "x y \<noteq> l" and y:"dist (x y) l < 1/2" unfolding islimpt_approachable apply(erule_tac x="1/2" in allE) by auto | |
| 2610 | then obtain z where "x z \<noteq> l" and z:"dist (x z) l < dist (x y) l" using l[unfolded islimpt_approachable, THEN spec[where x="dist (x y) l"]] | |
| 2611 | unfolding dist_nz by auto | |
| 2612 | show False using y and z and dist_triangle_half_l[of "x y" l 1 "x z"] and **[of y z] by auto | |
| 2613 | qed | |
| 2614 | ||
| 2615 | lemma sequence_infinite_lemma: | |
| 44076 | 2616 | fixes f :: "nat \<Rightarrow> 'a::t1_space" | 
| 2617 | assumes "\<forall>n. f n \<noteq> l" and "(f ---> l) sequentially" | |
| 34104 | 2618 | shows "infinite (range f)" | 
| 2619 | proof | |
| 2620 | assume "finite (range f)" | |
| 44076 | 2621 | hence "closed (range f)" by (rule finite_imp_closed) | 
| 2622 | hence "open (- range f)" by (rule open_Compl) | |
| 2623 | from assms(1) have "l \<in> - range f" by auto | |
| 2624 | from assms(2) have "eventually (\<lambda>n. f n \<in> - range f) sequentially" | |
| 2625 | using `open (- range f)` `l \<in> - range f` by (rule topological_tendstoD) | |
| 2626 | thus False unfolding eventually_sequentially by auto | |
| 2627 | qed | |
| 2628 | ||
| 2629 | lemma closure_insert: | |
| 2630 | fixes x :: "'a::t1_space" | |
| 2631 | shows "closure (insert x s) = insert x (closure s)" | |
| 2632 | apply (rule closure_unique) | |
| 44519 | 2633 | apply (rule insert_mono [OF closure_subset]) | 
| 2634 | apply (rule closed_insert [OF closed_closure]) | |
| 44076 | 2635 | apply (simp add: closure_minimal) | 
| 2636 | done | |
| 2637 | ||
| 2638 | lemma islimpt_insert: | |
| 2639 | fixes x :: "'a::t1_space" | |
| 2640 | shows "x islimpt (insert a s) \<longleftrightarrow> x islimpt s" | |
| 2641 | proof | |
| 2642 | assume *: "x islimpt (insert a s)" | |
| 2643 | show "x islimpt s" | |
| 2644 | proof (rule islimptI) | |
| 2645 | fix t assume t: "x \<in> t" "open t" | |
| 2646 | show "\<exists>y\<in>s. y \<in> t \<and> y \<noteq> x" | |
| 2647 | proof (cases "x = a") | |
| 2648 | case True | |
| 2649 | obtain y where "y \<in> insert a s" "y \<in> t" "y \<noteq> x" | |
| 2650 | using * t by (rule islimptE) | |
| 2651 | with `x = a` show ?thesis by auto | |
| 2652 | next | |
| 2653 | case False | |
| 2654 |       with t have t': "x \<in> t - {a}" "open (t - {a})"
 | |
| 2655 | by (simp_all add: open_Diff) | |
| 2656 |       obtain y where "y \<in> insert a s" "y \<in> t - {a}" "y \<noteq> x"
 | |
| 2657 | using * t' by (rule islimptE) | |
| 2658 | thus ?thesis by auto | |
| 2659 | qed | |
| 2660 | qed | |
| 2661 | next | |
| 2662 | assume "x islimpt s" thus "x islimpt (insert a s)" | |
| 2663 | by (rule islimpt_subset) auto | |
| 2664 | qed | |
| 2665 | ||
| 2666 | lemma islimpt_union_finite: | |
| 2667 | fixes x :: "'a::t1_space" | |
| 2668 | shows "finite s \<Longrightarrow> x islimpt (s \<union> t) \<longleftrightarrow> x islimpt t" | |
| 2669 | by (induct set: finite, simp_all add: islimpt_insert) | |
| 2670 | ||
| 33175 | 2671 | lemma sequence_unique_limpt: | 
| 44076 | 2672 | fixes f :: "nat \<Rightarrow> 'a::t2_space" | 
| 2673 | assumes "(f ---> l) sequentially" and "l' islimpt (range f)" | |
| 33175 | 2674 | shows "l' = l" | 
| 44076 | 2675 | proof (rule ccontr) | 
| 2676 | assume "l' \<noteq> l" | |
| 2677 |   obtain s t where "open s" "open t" "l' \<in> s" "l \<in> t" "s \<inter> t = {}"
 | |
| 2678 | using hausdorff [OF `l' \<noteq> l`] by auto | |
| 2679 | have "eventually (\<lambda>n. f n \<in> t) sequentially" | |
| 2680 | using assms(1) `open t` `l \<in> t` by (rule topological_tendstoD) | |
| 2681 | then obtain N where "\<forall>n\<ge>N. f n \<in> t" | |
| 2682 | unfolding eventually_sequentially by auto | |
| 2683 | ||
| 2684 |   have "UNIV = {..<N} \<union> {N..}" by auto
 | |
| 2685 |   hence "l' islimpt (f ` ({..<N} \<union> {N..}))" using assms(2) by simp
 | |
| 2686 |   hence "l' islimpt (f ` {..<N} \<union> f ` {N..})" by (simp add: image_Un)
 | |
| 2687 |   hence "l' islimpt (f ` {N..})" by (simp add: islimpt_union_finite)
 | |
| 2688 |   then obtain y where "y \<in> f ` {N..}" "y \<in> s" "y \<noteq> l'"
 | |
| 2689 | using `l' \<in> s` `open s` by (rule islimptE) | |
| 2690 | then obtain n where "N \<le> n" "f n \<in> s" "f n \<noteq> l'" by auto | |
| 2691 | with `\<forall>n\<ge>N. f n \<in> t` have "f n \<in> s \<inter> t" by simp | |
| 2692 |   with `s \<inter> t = {}` show False by simp
 | |
| 33175 | 2693 | qed | 
| 2694 | ||
| 2695 | lemma bolzano_weierstrass_imp_closed: | |
| 2696 | fixes s :: "'a::metric_space set" (* TODO: can this be generalized? *) | |
| 2697 | assumes "\<forall>t. infinite t \<and> t \<subseteq> s --> (\<exists>x \<in> s. x islimpt t)" | |
| 2698 | shows "closed s" | |
| 2699 | proof- | |
| 2700 |   { fix x l assume as: "\<forall>n::nat. x n \<in> s" "(x ---> l) sequentially"
 | |
| 2701 | hence "l \<in> s" | |
| 2702 | proof(cases "\<forall>n. x n \<noteq> l") | |
| 2703 | case False thus "l\<in>s" using as(1) by auto | |
| 2704 | next | |
| 2705 | case True note cas = this | |
| 34104 | 2706 | with as(2) have "infinite (range x)" using sequence_infinite_lemma[of x l] by auto | 
| 2707 | then obtain l' where "l'\<in>s" "l' islimpt (range x)" using assms[THEN spec[where x="range x"]] as(1) by auto | |
| 33175 | 2708 | thus "l\<in>s" using sequence_unique_limpt[of x l l'] using as cas by auto | 
| 2709 | qed } | |
| 2710 | thus ?thesis unfolding closed_sequential_limits by fast | |
| 2711 | qed | |
| 2712 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 2713 | text {* Hence express everything as an equivalence. *}
 | 
| 33175 | 2714 | |
| 2715 | lemma compact_eq_heine_borel: | |
| 44074 | 2716 | fixes s :: "'a::metric_space set" | 
| 33175 | 2717 | shows "compact s \<longleftrightarrow> | 
| 2718 | (\<forall>f. (\<forall>t \<in> f. open t) \<and> s \<subseteq> (\<Union> f) | |
| 2719 | --> (\<exists>f'. f' \<subseteq> f \<and> finite f' \<and> s \<subseteq> (\<Union> f')))" (is "?lhs = ?rhs") | |
| 2720 | proof | |
| 44074 | 2721 | assume ?lhs thus ?rhs by (rule compact_imp_heine_borel) | 
| 33175 | 2722 | next | 
| 2723 | assume ?rhs | |
| 2724 | hence "\<forall>t. infinite t \<and> t \<subseteq> s \<longrightarrow> (\<exists>x\<in>s. x islimpt t)" | |
| 2725 | by (blast intro: heine_borel_imp_bolzano_weierstrass[of s]) | |
| 44074 | 2726 | thus ?lhs by (rule bolzano_weierstrass_imp_compact) | 
| 33175 | 2727 | qed | 
| 2728 | ||
| 2729 | lemma compact_eq_bolzano_weierstrass: | |
| 44074 | 2730 | fixes s :: "'a::metric_space set" | 
| 33175 | 2731 | shows "compact s \<longleftrightarrow> (\<forall>t. infinite t \<and> t \<subseteq> s --> (\<exists>x \<in> s. x islimpt t))" (is "?lhs = ?rhs") | 
| 2732 | proof | |
| 2733 | assume ?lhs thus ?rhs unfolding compact_eq_heine_borel using heine_borel_imp_bolzano_weierstrass[of s] by auto | |
| 2734 | next | |
| 44074 | 2735 | assume ?rhs thus ?lhs by (rule bolzano_weierstrass_imp_compact) | 
| 33175 | 2736 | qed | 
| 2737 | ||
| 2738 | lemma compact_eq_bounded_closed: | |
| 2739 | fixes s :: "'a::heine_borel set" | |
| 2740 | shows "compact s \<longleftrightarrow> bounded s \<and> closed s" (is "?lhs = ?rhs") | |
| 2741 | proof | |
| 2742 | assume ?lhs thus ?rhs unfolding compact_eq_bolzano_weierstrass using bolzano_weierstrass_imp_bounded bolzano_weierstrass_imp_closed by auto | |
| 2743 | next | |
| 2744 | assume ?rhs thus ?lhs using bounded_closed_imp_compact by auto | |
| 2745 | qed | |
| 2746 | ||
| 2747 | lemma compact_imp_bounded: | |
| 2748 | fixes s :: "'a::metric_space set" | |
| 2749 | shows "compact s ==> bounded s" | |
| 2750 | proof - | |
| 2751 | assume "compact s" | |
| 2752 | hence "\<forall>f. (\<forall>t\<in>f. open t) \<and> s \<subseteq> \<Union>f \<longrightarrow> (\<exists>f'\<subseteq>f. finite f' \<and> s \<subseteq> \<Union>f')" | |
| 2753 | by (rule compact_imp_heine_borel) | |
| 2754 | hence "\<forall>t. infinite t \<and> t \<subseteq> s \<longrightarrow> (\<exists>x \<in> s. x islimpt t)" | |
| 2755 | using heine_borel_imp_bolzano_weierstrass[of s] by auto | |
| 2756 | thus "bounded s" | |
| 2757 | by (rule bolzano_weierstrass_imp_bounded) | |
| 2758 | qed | |
| 2759 | ||
| 2760 | lemma compact_imp_closed: | |
| 2761 | fixes s :: "'a::metric_space set" | |
| 2762 | shows "compact s ==> closed s" | |
| 2763 | proof - | |
| 2764 | assume "compact s" | |
| 2765 | hence "\<forall>f. (\<forall>t\<in>f. open t) \<and> s \<subseteq> \<Union>f \<longrightarrow> (\<exists>f'\<subseteq>f. finite f' \<and> s \<subseteq> \<Union>f')" | |
| 2766 | by (rule compact_imp_heine_borel) | |
| 2767 | hence "\<forall>t. infinite t \<and> t \<subseteq> s \<longrightarrow> (\<exists>x \<in> s. x islimpt t)" | |
| 2768 | using heine_borel_imp_bolzano_weierstrass[of s] by auto | |
| 2769 | thus "closed s" | |
| 2770 | by (rule bolzano_weierstrass_imp_closed) | |
| 2771 | qed | |
| 2772 | ||
| 2773 | text{* In particular, some common special cases. *}
 | |
| 2774 | ||
| 2775 | lemma compact_empty[simp]: | |
| 2776 |  "compact {}"
 | |
| 2777 | unfolding compact_def | |
| 2778 | by simp | |
| 2779 | ||
| 44075 | 2780 | lemma subseq_o: "subseq r \<Longrightarrow> subseq s \<Longrightarrow> subseq (r \<circ> s)" | 
| 2781 | unfolding subseq_def by simp (* TODO: move somewhere else *) | |
| 2782 | ||
| 2783 | lemma compact_union [intro]: | |
| 2784 | assumes "compact s" and "compact t" | |
| 2785 | shows "compact (s \<union> t)" | |
| 2786 | proof (rule compactI) | |
| 2787 | fix f :: "nat \<Rightarrow> 'a" | |
| 2788 | assume "\<forall>n. f n \<in> s \<union> t" | |
| 2789 |   hence "infinite {n. f n \<in> s \<union> t}" by simp
 | |
| 2790 |   hence "infinite {n. f n \<in> s} \<or> infinite {n. f n \<in> t}" by simp
 | |
| 2791 | thus "\<exists>l\<in>s \<union> t. \<exists>r. subseq r \<and> ((f \<circ> r) ---> l) sequentially" | |
| 2792 | proof | |
| 2793 |     assume "infinite {n. f n \<in> s}"
 | |
| 2794 | from infinite_enumerate [OF this] | |
| 2795 | obtain q where "subseq q" "\<forall>n. (f \<circ> q) n \<in> s" by auto | |
| 2796 | obtain r l where "l \<in> s" "subseq r" "((f \<circ> q \<circ> r) ---> l) sequentially" | |
| 2797 | using `compact s` `\<forall>n. (f \<circ> q) n \<in> s` by (rule compactE) | |
| 2798 | hence "l \<in> s \<union> t" "subseq (q \<circ> r)" "((f \<circ> (q \<circ> r)) ---> l) sequentially" | |
| 2799 | using `subseq q` by (simp_all add: subseq_o o_assoc) | |
| 2800 | thus ?thesis by auto | |
| 2801 | next | |
| 2802 |     assume "infinite {n. f n \<in> t}"
 | |
| 2803 | from infinite_enumerate [OF this] | |
| 2804 | obtain q where "subseq q" "\<forall>n. (f \<circ> q) n \<in> t" by auto | |
| 2805 | obtain r l where "l \<in> t" "subseq r" "((f \<circ> q \<circ> r) ---> l) sequentially" | |
| 2806 | using `compact t` `\<forall>n. (f \<circ> q) n \<in> t` by (rule compactE) | |
| 2807 | hence "l \<in> s \<union> t" "subseq (q \<circ> r)" "((f \<circ> (q \<circ> r)) ---> l) sequentially" | |
| 2808 | using `subseq q` by (simp_all add: subseq_o o_assoc) | |
| 2809 | thus ?thesis by auto | |
| 2810 | qed | |
| 2811 | qed | |
| 2812 | ||
| 2813 | lemma compact_inter_closed [intro]: | |
| 2814 | assumes "compact s" and "closed t" | |
| 2815 | shows "compact (s \<inter> t)" | |
| 2816 | proof (rule compactI) | |
| 2817 | fix f :: "nat \<Rightarrow> 'a" | |
| 2818 | assume "\<forall>n. f n \<in> s \<inter> t" | |
| 2819 | hence "\<forall>n. f n \<in> s" and "\<forall>n. f n \<in> t" by simp_all | |
| 2820 | obtain l r where "l \<in> s" "subseq r" "((f \<circ> r) ---> l) sequentially" | |
| 2821 | using `compact s` `\<forall>n. f n \<in> s` by (rule compactE) | |
| 33175 | 2822 | moreover | 
| 44075 | 2823 | from `closed t` `\<forall>n. f n \<in> t` `((f \<circ> r) ---> l) sequentially` have "l \<in> t" | 
| 2824 | unfolding closed_sequential_limits o_def by fast | |
| 2825 | ultimately show "\<exists>l\<in>s \<inter> t. \<exists>r. subseq r \<and> ((f \<circ> r) ---> l) sequentially" | |
| 33175 | 2826 | by auto | 
| 2827 | qed | |
| 2828 | ||
| 44075 | 2829 | lemma closed_inter_compact [intro]: | 
| 2830 | assumes "closed s" and "compact t" | |
| 2831 | shows "compact (s \<inter> t)" | |
| 2832 | using compact_inter_closed [of t s] assms | |
| 2833 | by (simp add: Int_commute) | |
| 2834 | ||
| 2835 | lemma compact_inter [intro]: | |
| 2836 | assumes "compact s" and "compact t" | |
| 2837 | shows "compact (s \<inter> t)" | |
| 2838 | using assms by (intro compact_inter_closed compact_imp_closed) | |
| 33175 | 2839 | |
| 2840 | lemma compact_sing [simp]: "compact {a}"
 | |
| 2841 | unfolding compact_def o_def subseq_def | |
| 2842 | by (auto simp add: tendsto_const) | |
| 2843 | ||
| 44075 | 2844 | lemma compact_insert [simp]: | 
| 2845 | assumes "compact s" shows "compact (insert x s)" | |
| 2846 | proof - | |
| 2847 |   have "compact ({x} \<union> s)"
 | |
| 2848 | using compact_sing assms by (rule compact_union) | |
| 2849 | thus ?thesis by simp | |
| 2850 | qed | |
| 2851 | ||
| 2852 | lemma finite_imp_compact: | |
| 2853 | shows "finite s \<Longrightarrow> compact s" | |
| 2854 | by (induct set: finite) simp_all | |
| 2855 | ||
| 33175 | 2856 | lemma compact_cball[simp]: | 
| 2857 | fixes x :: "'a::heine_borel" | |
| 2858 | shows "compact(cball x e)" | |
| 2859 | using compact_eq_bounded_closed bounded_cball closed_cball | |
| 2860 | by blast | |
| 2861 | ||
| 2862 | lemma compact_frontier_bounded[intro]: | |
| 2863 | fixes s :: "'a::heine_borel set" | |
| 2864 | shows "bounded s ==> compact(frontier s)" | |
| 2865 | unfolding frontier_def | |
| 2866 | using compact_eq_bounded_closed | |
| 2867 | by blast | |
| 2868 | ||
| 2869 | lemma compact_frontier[intro]: | |
| 2870 | fixes s :: "'a::heine_borel set" | |
| 2871 | shows "compact s ==> compact (frontier s)" | |
| 2872 | using compact_eq_bounded_closed compact_frontier_bounded | |
| 2873 | by blast | |
| 2874 | ||
| 2875 | lemma frontier_subset_compact: | |
| 2876 | fixes s :: "'a::heine_borel set" | |
| 2877 | shows "compact s ==> frontier s \<subseteq> s" | |
| 2878 | using frontier_subset_closed compact_eq_bounded_closed | |
| 2879 | by blast | |
| 2880 | ||
| 2881 | lemma open_delete: | |
| 36668 
941ba2da372e
simplify definition of t1_space; generalize lemma closed_sing and related lemmas
 huffman parents: 
36667diff
changeset | 2882 | fixes s :: "'a::t1_space set" | 
| 
941ba2da372e
simplify definition of t1_space; generalize lemma closed_sing and related lemmas
 huffman parents: 
36667diff
changeset | 2883 |   shows "open s \<Longrightarrow> open (s - {x})"
 | 
| 
941ba2da372e
simplify definition of t1_space; generalize lemma closed_sing and related lemmas
 huffman parents: 
36667diff
changeset | 2884 | by (simp add: open_Diff) | 
| 33175 | 2885 | |
| 2886 | text{* Finite intersection property. I could make it an equivalence in fact. *}
 | |
| 2887 | ||
| 2888 | lemma compact_imp_fip: | |
| 2889 | assumes "compact s" "\<forall>t \<in> f. closed t" | |
| 2890 |         "\<forall>f'. finite f' \<and> f' \<subseteq> f --> (s \<inter> (\<Inter> f') \<noteq> {})"
 | |
| 2891 |   shows "s \<inter> (\<Inter> f) \<noteq> {}"
 | |
| 2892 | proof | |
| 2893 |   assume as:"s \<inter> (\<Inter> f) = {}"
 | |
| 34105 | 2894 | hence "s \<subseteq> \<Union> uminus ` f" by auto | 
| 2895 | moreover have "Ball (uminus ` f) open" using open_Diff closed_Diff using assms(2) by auto | |
| 2896 | ultimately obtain f' where f':"f' \<subseteq> uminus ` f" "finite f'" "s \<subseteq> \<Union>f'" using assms(1)[unfolded compact_eq_heine_borel, THEN spec[where x="(\<lambda>t. - t) ` f"]] by auto | |
| 2897 | hence "finite (uminus ` f') \<and> uminus ` f' \<subseteq> f" by(auto simp add: Diff_Diff_Int) | |
| 2898 |   hence "s \<inter> \<Inter>uminus ` f' \<noteq> {}" using assms(3)[THEN spec[where x="uminus ` f'"]] by auto
 | |
| 33175 | 2899 | thus False using f'(3) unfolding subset_eq and Union_iff by blast | 
| 2900 | qed | |
| 2901 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 2902 | |
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 2903 | subsection {* Bounded closed nest property (proof does not use Heine-Borel) *}
 | 
| 33175 | 2904 | |
| 2905 | lemma bounded_closed_nest: | |
| 2906 |   assumes "\<forall>n. closed(s n)" "\<forall>n. (s n \<noteq> {})"
 | |
| 2907 | "(\<forall>m n. m \<le> n --> s n \<subseteq> s m)" "bounded(s 0)" | |
| 2908 | shows "\<exists>a::'a::heine_borel. \<forall>n::nat. a \<in> s(n)" | |
| 2909 | proof- | |
| 2910 | from assms(2) obtain x where x:"\<forall>n::nat. x n \<in> s n" using choice[of "\<lambda>n x. x\<in> s n"] by auto | |
| 2911 | from assms(4,1) have *:"compact (s 0)" using bounded_closed_imp_compact[of "s 0"] by auto | |
| 2912 | ||
| 2913 | then obtain l r where lr:"l\<in>s 0" "subseq r" "((x \<circ> r) ---> l) sequentially" | |
| 2914 | unfolding compact_def apply(erule_tac x=x in allE) using x using assms(3) by blast | |
| 2915 | ||
| 2916 |   { fix n::nat
 | |
| 2917 |     { fix e::real assume "e>0"
 | |
| 2918 | with lr(3) obtain N where N:"\<forall>m\<ge>N. dist ((x \<circ> r) m) l < e" unfolding Lim_sequentially by auto | |
| 2919 | hence "dist ((x \<circ> r) (max N n)) l < e" by auto | |
| 2920 | moreover | |
| 2921 | have "r (max N n) \<ge> n" using lr(2) using subseq_bigger[of r "max N n"] by auto | |
| 2922 | hence "(x \<circ> r) (max N n) \<in> s n" | |
| 2923 | using x apply(erule_tac x=n in allE) | |
| 2924 | using x apply(erule_tac x="r (max N n)" in allE) | |
| 2925 | using assms(3) apply(erule_tac x=n in allE)apply( erule_tac x="r (max N n)" in allE) by auto | |
| 2926 | ultimately have "\<exists>y\<in>s n. dist y l < e" by auto | |
| 2927 | } | |
| 2928 | hence "l \<in> s n" using closed_approachable[of "s n" l] assms(1) by blast | |
| 2929 | } | |
| 2930 | thus ?thesis by auto | |
| 2931 | qed | |
| 2932 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 2933 | text {* Decreasing case does not even need compactness, just completeness. *}
 | 
| 33175 | 2934 | |
| 2935 | lemma decreasing_closed_nest: | |
| 2936 | assumes "\<forall>n. closed(s n)" | |
| 2937 |           "\<forall>n. (s n \<noteq> {})"
 | |
| 2938 | "\<forall>m n. m \<le> n --> s n \<subseteq> s m" | |
| 2939 | "\<forall>e>0. \<exists>n. \<forall>x \<in> (s n). \<forall> y \<in> (s n). dist x y < e" | |
| 44632 | 2940 | shows "\<exists>a::'a::complete_space. \<forall>n::nat. a \<in> s n" | 
| 33175 | 2941 | proof- | 
| 2942 | have "\<forall>n. \<exists> x. x\<in>s n" using assms(2) by auto | |
| 2943 | hence "\<exists>t. \<forall>n. t n \<in> s n" using choice[of "\<lambda> n x. x \<in> s n"] by auto | |
| 2944 | then obtain t where t: "\<forall>n. t n \<in> s n" by auto | |
| 2945 |   { fix e::real assume "e>0"
 | |
| 2946 | then obtain N where N:"\<forall>x\<in>s N. \<forall>y\<in>s N. dist x y < e" using assms(4) by auto | |
| 2947 |     { fix m n ::nat assume "N \<le> m \<and> N \<le> n"
 | |
| 2948 | hence "t m \<in> s N" "t n \<in> s N" using assms(3) t unfolding subset_eq t by blast+ | |
| 2949 | hence "dist (t m) (t n) < e" using N by auto | |
| 2950 | } | |
| 2951 | hence "\<exists>N. \<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (t m) (t n) < e" by auto | |
| 2952 | } | |
| 2953 | hence "Cauchy t" unfolding cauchy_def by auto | |
| 2954 | then obtain l where l:"(t ---> l) sequentially" using complete_univ unfolding complete_def by auto | |
| 2955 |   { fix n::nat
 | |
| 2956 |     { fix e::real assume "e>0"
 | |
| 2957 | then obtain N::nat where N:"\<forall>n\<ge>N. dist (t n) l < e" using l[unfolded Lim_sequentially] by auto | |
| 2958 | have "t (max n N) \<in> s n" using assms(3) unfolding subset_eq apply(erule_tac x=n in allE) apply (erule_tac x="max n N" in allE) using t by auto | |
| 2959 | hence "\<exists>y\<in>s n. dist y l < e" apply(rule_tac x="t (max n N)" in bexI) using N by auto | |
| 2960 | } | |
| 2961 | hence "l \<in> s n" using closed_approachable[of "s n" l] assms(1) by auto | |
| 2962 | } | |
| 2963 | then show ?thesis by auto | |
| 2964 | qed | |
| 2965 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 2966 | text {* Strengthen it to the intersection actually being a singleton. *}
 | 
| 33175 | 2967 | |
| 2968 | lemma decreasing_closed_nest_sing: | |
| 44632 | 2969 | fixes s :: "nat \<Rightarrow> 'a::complete_space set" | 
| 33175 | 2970 | assumes "\<forall>n. closed(s n)" | 
| 2971 |           "\<forall>n. s n \<noteq> {}"
 | |
| 2972 | "\<forall>m n. m \<le> n --> s n \<subseteq> s m" | |
| 2973 | "\<forall>e>0. \<exists>n. \<forall>x \<in> (s n). \<forall> y\<in>(s n). dist x y < e" | |
| 34104 | 2974 |   shows "\<exists>a. \<Inter>(range s) = {a}"
 | 
| 33175 | 2975 | proof- | 
| 2976 | obtain a where a:"\<forall>n. a \<in> s n" using decreasing_closed_nest[of s] using assms by auto | |
| 34104 | 2977 |   { fix b assume b:"b \<in> \<Inter>(range s)"
 | 
| 33175 | 2978 |     { fix e::real assume "e>0"
 | 
| 2979 | hence "dist a b < e" using assms(4 )using b using a by blast | |
| 2980 | } | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36669diff
changeset | 2981 | hence "dist a b = 0" by (metis dist_eq_0_iff dist_nz less_le) | 
| 33175 | 2982 | } | 
| 34104 | 2983 |   with a have "\<Inter>(range s) = {a}" unfolding image_def by auto
 | 
| 2984 | thus ?thesis .. | |
| 33175 | 2985 | qed | 
| 2986 | ||
| 2987 | text{* Cauchy-type criteria for uniform convergence. *}
 | |
| 2988 | ||
| 2989 | lemma uniformly_convergent_eq_cauchy: fixes s::"nat \<Rightarrow> 'b \<Rightarrow> 'a::heine_borel" shows | |
| 2990 | "(\<exists>l. \<forall>e>0. \<exists>N. \<forall>n x. N \<le> n \<and> P x --> dist(s n x)(l x) < e) \<longleftrightarrow> | |
| 2991 | (\<forall>e>0. \<exists>N. \<forall>m n x. N \<le> m \<and> N \<le> n \<and> P x --> dist (s m x) (s n x) < e)" (is "?lhs = ?rhs") | |
| 2992 | proof(rule) | |
| 2993 | assume ?lhs | |
| 2994 | then obtain l where l:"\<forall>e>0. \<exists>N. \<forall>n x. N \<le> n \<and> P x \<longrightarrow> dist (s n x) (l x) < e" by auto | |
| 2995 |   { fix e::real assume "e>0"
 | |
| 2996 | then obtain N::nat where N:"\<forall>n x. N \<le> n \<and> P x \<longrightarrow> dist (s n x) (l x) < e / 2" using l[THEN spec[where x="e/2"]] by auto | |
| 2997 |     { fix n m::nat and x::"'b" assume "N \<le> m \<and> N \<le> n \<and> P x"
 | |
| 2998 | hence "dist (s m x) (s n x) < e" | |
| 2999 | using N[THEN spec[where x=m], THEN spec[where x=x]] | |
| 3000 | using N[THEN spec[where x=n], THEN spec[where x=x]] | |
| 3001 | using dist_triangle_half_l[of "s m x" "l x" e "s n x"] by auto } | |
| 3002 | hence "\<exists>N. \<forall>m n x. N \<le> m \<and> N \<le> n \<and> P x --> dist (s m x) (s n x) < e" by auto } | |
| 3003 | thus ?rhs by auto | |
| 3004 | next | |
| 3005 | assume ?rhs | |
| 3006 | hence "\<forall>x. P x \<longrightarrow> Cauchy (\<lambda>n. s n x)" unfolding cauchy_def apply auto by (erule_tac x=e in allE)auto | |
| 3007 | then obtain l where l:"\<forall>x. P x \<longrightarrow> ((\<lambda>n. s n x) ---> l x) sequentially" unfolding convergent_eq_cauchy[THEN sym] | |
| 3008 | using choice[of "\<lambda>x l. P x \<longrightarrow> ((\<lambda>n. s n x) ---> l) sequentially"] by auto | |
| 3009 |   { fix e::real assume "e>0"
 | |
| 3010 | then obtain N where N:"\<forall>m n x. N \<le> m \<and> N \<le> n \<and> P x \<longrightarrow> dist (s m x) (s n x) < e/2" | |
| 3011 | using `?rhs`[THEN spec[where x="e/2"]] by auto | |
| 3012 |     { fix x assume "P x"
 | |
| 3013 | then obtain M where M:"\<forall>n\<ge>M. dist (s n x) (l x) < e/2" | |
| 3014 | using l[THEN spec[where x=x], unfolded Lim_sequentially] using `e>0` by(auto elim!: allE[where x="e/2"]) | |
| 3015 | fix n::nat assume "n\<ge>N" | |
| 3016 | hence "dist(s n x)(l x) < e" using `P x`and N[THEN spec[where x=n], THEN spec[where x="N+M"], THEN spec[where x=x]] | |
| 3017 | using M[THEN spec[where x="N+M"]] and dist_triangle_half_l[of "s n x" "s (N+M) x" e "l x"] by (auto simp add: dist_commute) } | |
| 3018 | hence "\<exists>N. \<forall>n x. N \<le> n \<and> P x \<longrightarrow> dist(s n x)(l x) < e" by auto } | |
| 3019 | thus ?lhs by auto | |
| 3020 | qed | |
| 3021 | ||
| 3022 | lemma uniformly_cauchy_imp_uniformly_convergent: | |
| 3023 | fixes s :: "nat \<Rightarrow> 'a \<Rightarrow> 'b::heine_borel" | |
| 3024 | assumes "\<forall>e>0.\<exists>N. \<forall>m (n::nat) x. N \<le> m \<and> N \<le> n \<and> P x --> dist(s m x)(s n x) < e" | |
| 3025 | "\<forall>x. P x --> (\<forall>e>0. \<exists>N. \<forall>n. N \<le> n --> dist(s n x)(l x) < e)" | |
| 3026 | shows "\<forall>e>0. \<exists>N. \<forall>n x. N \<le> n \<and> P x --> dist(s n x)(l x) < e" | |
| 3027 | proof- | |
| 3028 | obtain l' where l:"\<forall>e>0. \<exists>N. \<forall>n x. N \<le> n \<and> P x \<longrightarrow> dist (s n x) (l' x) < e" | |
| 3029 | using assms(1) unfolding uniformly_convergent_eq_cauchy[THEN sym] by auto | |
| 3030 | moreover | |
| 3031 |   { fix x assume "P x"
 | |
| 41970 | 3032 | hence "l x = l' x" using tendsto_unique[OF trivial_limit_sequentially, of "\<lambda>n. s n x" "l x" "l' x"] | 
| 33175 | 3033 | using l and assms(2) unfolding Lim_sequentially by blast } | 
| 3034 | ultimately show ?thesis by auto | |
| 3035 | qed | |
| 3036 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 3037 | |
| 36437 | 3038 | subsection {* Continuity *}
 | 
| 3039 | ||
| 3040 | text {* Define continuity over a net to take in restrictions of the set. *}
 | |
| 33175 | 3041 | |
| 3042 | definition | |
| 44081 
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
 huffman parents: 
44076diff
changeset | 3043 |   continuous :: "'a::t2_space filter \<Rightarrow> ('a \<Rightarrow> 'b::topological_space) \<Rightarrow> bool"
 | 
| 
730f7cced3a6
rename type 'a net to 'a filter, following standard mathematical terminology
 huffman parents: 
44076diff
changeset | 3044 | where "continuous net f \<longleftrightarrow> (f ---> f(netlimit net)) net" | 
| 33175 | 3045 | |
| 3046 | lemma continuous_trivial_limit: | |
| 3047 | "trivial_limit net ==> continuous net f" | |
| 3048 | unfolding continuous_def tendsto_def trivial_limit_eq by auto | |
| 3049 | ||
| 3050 | lemma continuous_within: "continuous (at x within s) f \<longleftrightarrow> (f ---> f(x)) (at x within s)" | |
| 3051 | unfolding continuous_def | |
| 3052 | unfolding tendsto_def | |
| 3053 | using netlimit_within[of x s] | |
| 3054 | by (cases "trivial_limit (at x within s)") (auto simp add: trivial_limit_eventually) | |
| 3055 | ||
| 3056 | lemma continuous_at: "continuous (at x) f \<longleftrightarrow> (f ---> f(x)) (at x)" | |
| 3057 | using continuous_within [of x UNIV f] by (simp add: within_UNIV) | |
| 3058 | ||
| 3059 | lemma continuous_at_within: | |
| 3060 | assumes "continuous (at x) f" shows "continuous (at x within s) f" | |
| 3061 | using assms unfolding continuous_at continuous_within | |
| 3062 | by (rule Lim_at_within) | |
| 3063 | ||
| 3064 | text{* Derive the epsilon-delta forms, which we often use as "definitions" *}
 | |
| 3065 | ||
| 3066 | lemma continuous_within_eps_delta: | |
| 3067 | "continuous (at x within s) f \<longleftrightarrow> (\<forall>e>0. \<exists>d>0. \<forall>x'\<in> s. dist x' x < d --> dist (f x') (f x) < e)" | |
| 3068 | unfolding continuous_within and Lim_within | |
| 44584 | 3069 | apply auto unfolding dist_nz[THEN sym] apply(auto del: allE elim!:allE) apply(rule_tac x=d in exI) by auto | 
| 33175 | 3070 | |
| 3071 | lemma continuous_at_eps_delta: "continuous (at x) f \<longleftrightarrow> (\<forall>e>0. \<exists>d>0. | |
| 3072 | \<forall>x'. dist x' x < d --> dist(f x')(f x) < e)" | |
| 3073 | using continuous_within_eps_delta[of x UNIV f] | |
| 3074 | unfolding within_UNIV by blast | |
| 3075 | ||
| 3076 | text{* Versions in terms of open balls. *}
 | |
| 3077 | ||
| 3078 | lemma continuous_within_ball: | |
| 3079 | "continuous (at x within s) f \<longleftrightarrow> (\<forall>e>0. \<exists>d>0. | |
| 3080 | f ` (ball x d \<inter> s) \<subseteq> ball (f x) e)" (is "?lhs = ?rhs") | |
| 3081 | proof | |
| 3082 | assume ?lhs | |
| 3083 |   { fix e::real assume "e>0"
 | |
| 3084 | then obtain d where d: "d>0" "\<forall>xa\<in>s. 0 < dist xa x \<and> dist xa x < d \<longrightarrow> dist (f xa) (f x) < e" | |
| 3085 | using `?lhs`[unfolded continuous_within Lim_within] by auto | |
| 3086 |     { fix y assume "y\<in>f ` (ball x d \<inter> s)"
 | |
| 3087 | hence "y \<in> ball (f x) e" using d(2) unfolding dist_nz[THEN sym] | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36360diff
changeset | 3088 | apply (auto simp add: dist_commute) apply(erule_tac x=xa in ballE) apply auto using `e>0` by auto | 
| 33175 | 3089 | } | 
| 3090 | hence "\<exists>d>0. f ` (ball x d \<inter> s) \<subseteq> ball (f x) e" using `d>0` unfolding subset_eq ball_def by (auto simp add: dist_commute) } | |
| 3091 | thus ?rhs by auto | |
| 3092 | next | |
| 3093 | assume ?rhs thus ?lhs unfolding continuous_within Lim_within ball_def subset_eq | |
| 3094 | apply (auto simp add: dist_commute) apply(erule_tac x=e in allE) by auto | |
| 3095 | qed | |
| 3096 | ||
| 3097 | lemma continuous_at_ball: | |
| 3098 | "continuous (at x) f \<longleftrightarrow> (\<forall>e>0. \<exists>d>0. f ` (ball x d) \<subseteq> ball (f x) e)" (is "?lhs = ?rhs") | |
| 3099 | proof | |
| 3100 | assume ?lhs thus ?rhs unfolding continuous_at Lim_at subset_eq Ball_def Bex_def image_iff mem_ball | |
| 3101 | apply auto apply(erule_tac x=e in allE) apply auto apply(rule_tac x=d in exI) apply auto apply(erule_tac x=xa in allE) apply (auto simp add: dist_commute dist_nz) | |
| 3102 | unfolding dist_nz[THEN sym] by auto | |
| 3103 | next | |
| 3104 | assume ?rhs thus ?lhs unfolding continuous_at Lim_at subset_eq Ball_def Bex_def image_iff mem_ball | |
| 3105 | apply auto apply(erule_tac x=e in allE) apply auto apply(rule_tac x=d in exI) apply auto apply(erule_tac x="f xa" in allE) by (auto simp add: dist_commute dist_nz) | |
| 3106 | qed | |
| 3107 | ||
| 36440 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3108 | text{* Define setwise continuity in terms of limits within the set. *}
 | 
| 33175 | 3109 | |
| 3110 | definition | |
| 36359 | 3111 | continuous_on :: | 
| 3112 |     "'a set \<Rightarrow> ('a::topological_space \<Rightarrow> 'b::topological_space) \<Rightarrow> bool"
 | |
| 3113 | where | |
| 36440 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3114 | "continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. (f ---> f x) (at x within s))" | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3115 | |
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3116 | lemma continuous_on_topological: | 
| 36359 | 3117 | "continuous_on s f \<longleftrightarrow> | 
| 3118 | (\<forall>x\<in>s. \<forall>B. open B \<longrightarrow> f x \<in> B \<longrightarrow> | |
| 36440 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3119 | (\<exists>A. open A \<and> x \<in> A \<and> (\<forall>y\<in>s. y \<in> A \<longrightarrow> f y \<in> B)))" | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3120 | unfolding continuous_on_def tendsto_def | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3121 | unfolding Limits.eventually_within eventually_at_topological | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3122 | by (intro ball_cong [OF refl] all_cong imp_cong ex_cong conj_cong refl) auto | 
| 36359 | 3123 | |
| 3124 | lemma continuous_on_iff: | |
| 3125 | "continuous_on s f \<longleftrightarrow> | |
| 36440 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3126 | (\<forall>x\<in>s. \<forall>e>0. \<exists>d>0. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (f x') (f x) < e)" | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3127 | unfolding continuous_on_def Lim_within | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3128 | apply (intro ball_cong [OF refl] all_cong ex_cong) | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3129 | apply (rename_tac y, case_tac "y = x", simp) | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3130 | apply (simp add: dist_nz) | 
| 36359 | 3131 | done | 
| 33175 | 3132 | |
| 3133 | definition | |
| 3134 | uniformly_continuous_on :: | |
| 36440 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3135 |     "'a set \<Rightarrow> ('a::metric_space \<Rightarrow> 'b::metric_space) \<Rightarrow> bool"
 | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3136 | where | 
| 33175 | 3137 | "uniformly_continuous_on s f \<longleftrightarrow> | 
| 36440 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3138 | (\<forall>e>0. \<exists>d>0. \<forall>x\<in>s. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (f x') (f x) < e)" | 
| 35172 
579dd5570f96
Added integration to Multivariate-Analysis (upto FTC)
 himmelma parents: 
35028diff
changeset | 3139 | |
| 33175 | 3140 | text{* Some simple consequential lemmas. *}
 | 
| 3141 | ||
| 3142 | lemma uniformly_continuous_imp_continuous: | |
| 3143 | " uniformly_continuous_on s f ==> continuous_on s f" | |
| 36359 | 3144 | unfolding uniformly_continuous_on_def continuous_on_iff by blast | 
| 33175 | 3145 | |
| 3146 | lemma continuous_at_imp_continuous_within: | |
| 3147 | "continuous (at x) f ==> continuous (at x within s) f" | |
| 3148 | unfolding continuous_within continuous_at using Lim_at_within by auto | |
| 3149 | ||
| 36440 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3150 | lemma Lim_trivial_limit: "trivial_limit net \<Longrightarrow> (f ---> l) net" | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3151 | unfolding tendsto_def by (simp add: trivial_limit_eq) | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3152 | |
| 36359 | 3153 | lemma continuous_at_imp_continuous_on: | 
| 36440 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3154 | assumes "\<forall>x\<in>s. continuous (at x) f" | 
| 33175 | 3155 | shows "continuous_on s f" | 
| 36440 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3156 | unfolding continuous_on_def | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3157 | proof | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3158 | fix x assume "x \<in> s" | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3159 | with assms have *: "(f ---> f (netlimit (at x))) (at x)" | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3160 | unfolding continuous_def by simp | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3161 | have "(f ---> f x) (at x)" | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3162 | proof (cases "trivial_limit (at x)") | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3163 | case True thus ?thesis | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3164 | by (rule Lim_trivial_limit) | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3165 | next | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3166 | case False | 
| 36667 | 3167 | hence 1: "netlimit (at x) = x" | 
| 36440 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3168 | using netlimit_within [of x UNIV] | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3169 | by (simp add: within_UNIV) | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3170 | with * show ?thesis by simp | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3171 | qed | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3172 | thus "(f ---> f x) (at x within s)" | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3173 | by (rule Lim_at_within) | 
| 33175 | 3174 | qed | 
| 3175 | ||
| 3176 | lemma continuous_on_eq_continuous_within: | |
| 36440 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3177 | "continuous_on s f \<longleftrightarrow> (\<forall>x \<in> s. continuous (at x within s) f)" | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3178 | unfolding continuous_on_def continuous_def | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3179 | apply (rule ball_cong [OF refl]) | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3180 | apply (case_tac "trivial_limit (at x within s)") | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3181 | apply (simp add: Lim_trivial_limit) | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3182 | apply (simp add: netlimit_within) | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3183 | done | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3184 | |
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3185 | lemmas continuous_on = continuous_on_def -- "legacy theorem name" | 
| 33175 | 3186 | |
| 3187 | lemma continuous_on_eq_continuous_at: | |
| 36359 | 3188 | shows "open s ==> (continuous_on s f \<longleftrightarrow> (\<forall>x \<in> s. continuous (at x) f))" | 
| 33175 | 3189 | by (auto simp add: continuous_on continuous_at Lim_within_open) | 
| 3190 | ||
| 3191 | lemma continuous_within_subset: | |
| 3192 | "continuous (at x within s) f \<Longrightarrow> t \<subseteq> s | |
| 3193 | ==> continuous (at x within t) f" | |
| 3194 | unfolding continuous_within by(metis Lim_within_subset) | |
| 3195 | ||
| 3196 | lemma continuous_on_subset: | |
| 36359 | 3197 | shows "continuous_on s f \<Longrightarrow> t \<subseteq> s ==> continuous_on t f" | 
| 33175 | 3198 | unfolding continuous_on by (metis subset_eq Lim_within_subset) | 
| 3199 | ||
| 3200 | lemma continuous_on_interior: | |
| 44519 | 3201 | shows "continuous_on s f \<Longrightarrow> x \<in> interior s \<Longrightarrow> continuous (at x) f" | 
| 3202 | by (erule interiorE, drule (1) continuous_on_subset, | |
| 3203 | simp add: continuous_on_eq_continuous_at) | |
| 33175 | 3204 | |
| 3205 | lemma continuous_on_eq: | |
| 36440 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3206 | "(\<forall>x \<in> s. f x = g x) \<Longrightarrow> continuous_on s f \<Longrightarrow> continuous_on s g" | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3207 | unfolding continuous_on_def tendsto_def Limits.eventually_within | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3208 | by simp | 
| 33175 | 3209 | |
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 3210 | text {* Characterization of various kinds of continuity in terms of sequences. *}
 | 
| 33175 | 3211 | |
| 3212 | lemma continuous_within_sequentially: | |
| 44533 
7abe4a59f75d
generalize and simplify proof of continuous_within_sequentially
 huffman parents: 
44531diff
changeset | 3213 | fixes f :: "'a::metric_space \<Rightarrow> 'b::topological_space" | 
| 33175 | 3214 | shows "continuous (at a within s) f \<longleftrightarrow> | 
| 3215 | (\<forall>x. (\<forall>n::nat. x n \<in> s) \<and> (x ---> a) sequentially | |
| 3216 | --> ((f o x) ---> f a) sequentially)" (is "?lhs = ?rhs") | |
| 3217 | proof | |
| 3218 | assume ?lhs | |
| 44533 
7abe4a59f75d
generalize and simplify proof of continuous_within_sequentially
 huffman parents: 
44531diff
changeset | 3219 |   { fix x::"nat \<Rightarrow> 'a" assume x:"\<forall>n. x n \<in> s" "\<forall>e>0. eventually (\<lambda>n. dist (x n) a < e) sequentially"
 | 
| 
7abe4a59f75d
generalize and simplify proof of continuous_within_sequentially
 huffman parents: 
44531diff
changeset | 3220 | fix T::"'b set" assume "open T" and "f a \<in> T" | 
| 
7abe4a59f75d
generalize and simplify proof of continuous_within_sequentially
 huffman parents: 
44531diff
changeset | 3221 | with `?lhs` obtain d where "d>0" and d:"\<forall>x\<in>s. 0 < dist x a \<and> dist x a < d \<longrightarrow> f x \<in> T" | 
| 
7abe4a59f75d
generalize and simplify proof of continuous_within_sequentially
 huffman parents: 
44531diff
changeset | 3222 | unfolding continuous_within tendsto_def eventually_within by auto | 
| 
7abe4a59f75d
generalize and simplify proof of continuous_within_sequentially
 huffman parents: 
44531diff
changeset | 3223 | have "eventually (\<lambda>n. dist (x n) a < d) sequentially" | 
| 
7abe4a59f75d
generalize and simplify proof of continuous_within_sequentially
 huffman parents: 
44531diff
changeset | 3224 | using x(2) `d>0` by simp | 
| 
7abe4a59f75d
generalize and simplify proof of continuous_within_sequentially
 huffman parents: 
44531diff
changeset | 3225 | hence "eventually (\<lambda>n. (f \<circ> x) n \<in> T) sequentially" | 
| 
7abe4a59f75d
generalize and simplify proof of continuous_within_sequentially
 huffman parents: 
44531diff
changeset | 3226 | proof (rule eventually_elim1) | 
| 
7abe4a59f75d
generalize and simplify proof of continuous_within_sequentially
 huffman parents: 
44531diff
changeset | 3227 | fix n assume "dist (x n) a < d" thus "(f \<circ> x) n \<in> T" | 
| 
7abe4a59f75d
generalize and simplify proof of continuous_within_sequentially
 huffman parents: 
44531diff
changeset | 3228 | using d x(1) `f a \<in> T` unfolding dist_nz[THEN sym] by auto | 
| 
7abe4a59f75d
generalize and simplify proof of continuous_within_sequentially
 huffman parents: 
44531diff
changeset | 3229 | qed | 
| 33175 | 3230 | } | 
| 44533 
7abe4a59f75d
generalize and simplify proof of continuous_within_sequentially
 huffman parents: 
44531diff
changeset | 3231 | thus ?rhs unfolding tendsto_iff unfolding tendsto_def by simp | 
| 33175 | 3232 | next | 
| 44533 
7abe4a59f75d
generalize and simplify proof of continuous_within_sequentially
 huffman parents: 
44531diff
changeset | 3233 | assume ?rhs thus ?lhs | 
| 
7abe4a59f75d
generalize and simplify proof of continuous_within_sequentially
 huffman parents: 
44531diff
changeset | 3234 | unfolding continuous_within tendsto_def [where l="f a"] | 
| 
7abe4a59f75d
generalize and simplify proof of continuous_within_sequentially
 huffman parents: 
44531diff
changeset | 3235 | by (simp add: sequentially_imp_eventually_within) | 
| 33175 | 3236 | qed | 
| 3237 | ||
| 3238 | lemma continuous_at_sequentially: | |
| 44533 
7abe4a59f75d
generalize and simplify proof of continuous_within_sequentially
 huffman parents: 
44531diff
changeset | 3239 | fixes f :: "'a::metric_space \<Rightarrow> 'b::topological_space" | 
| 33175 | 3240 | shows "continuous (at a) f \<longleftrightarrow> (\<forall>x. (x ---> a) sequentially | 
| 3241 | --> ((f o x) ---> f a) sequentially)" | |
| 44533 
7abe4a59f75d
generalize and simplify proof of continuous_within_sequentially
 huffman parents: 
44531diff
changeset | 3242 | using continuous_within_sequentially[of a UNIV f] | 
| 
7abe4a59f75d
generalize and simplify proof of continuous_within_sequentially
 huffman parents: 
44531diff
changeset | 3243 | unfolding within_UNIV by auto | 
| 33175 | 3244 | |
| 3245 | lemma continuous_on_sequentially: | |
| 44533 
7abe4a59f75d
generalize and simplify proof of continuous_within_sequentially
 huffman parents: 
44531diff
changeset | 3246 | fixes f :: "'a::metric_space \<Rightarrow> 'b::topological_space" | 
| 36359 | 3247 | shows "continuous_on s f \<longleftrightarrow> | 
| 3248 | (\<forall>x. \<forall>a \<in> s. (\<forall>n. x(n) \<in> s) \<and> (x ---> a) sequentially | |
| 33175 | 3249 | --> ((f o x) ---> f(a)) sequentially)" (is "?lhs = ?rhs") | 
| 3250 | proof | |
| 3251 | assume ?rhs thus ?lhs using continuous_within_sequentially[of _ s f] unfolding continuous_on_eq_continuous_within by auto | |
| 3252 | next | |
| 3253 | assume ?lhs thus ?rhs unfolding continuous_on_eq_continuous_within using continuous_within_sequentially[of _ s f] by auto | |
| 3254 | qed | |
| 3255 | ||
| 44648 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3256 | lemma uniformly_continuous_on_sequentially: | 
| 36441 | 3257 | "uniformly_continuous_on s f \<longleftrightarrow> (\<forall>x y. (\<forall>n. x n \<in> s) \<and> (\<forall>n. y n \<in> s) \<and> | 
| 3258 | ((\<lambda>n. dist (x n) (y n)) ---> 0) sequentially | |
| 3259 | \<longrightarrow> ((\<lambda>n. dist (f(x n)) (f(y n))) ---> 0) sequentially)" (is "?lhs = ?rhs") | |
| 33175 | 3260 | proof | 
| 3261 | assume ?lhs | |
| 36441 | 3262 |   { fix x y assume x:"\<forall>n. x n \<in> s" and y:"\<forall>n. y n \<in> s" and xy:"((\<lambda>n. dist (x n) (y n)) ---> 0) sequentially"
 | 
| 33175 | 3263 |     { fix e::real assume "e>0"
 | 
| 3264 | then obtain d where "d>0" and d:"\<forall>x\<in>s. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (f x') (f x) < e" | |
| 3265 | using `?lhs`[unfolded uniformly_continuous_on_def, THEN spec[where x=e]] by auto | |
| 36441 | 3266 | obtain N where N:"\<forall>n\<ge>N. dist (x n) (y n) < d" using xy[unfolded Lim_sequentially dist_norm] and `d>0` by auto | 
| 33175 | 3267 |       { fix n assume "n\<ge>N"
 | 
| 36441 | 3268 | hence "dist (f (x n)) (f (y n)) < e" | 
| 33175 | 3269 | using N[THEN spec[where x=n]] using d[THEN bspec[where x="x n"], THEN bspec[where x="y n"]] using x and y | 
| 36441 | 3270 | unfolding dist_commute by simp } | 
| 3271 | hence "\<exists>N. \<forall>n\<ge>N. dist (f (x n)) (f (y n)) < e" by auto } | |
| 3272 | hence "((\<lambda>n. dist (f(x n)) (f(y n))) ---> 0) sequentially" unfolding Lim_sequentially and dist_real_def by auto } | |
| 33175 | 3273 | thus ?rhs by auto | 
| 3274 | next | |
| 3275 | assume ?rhs | |
| 3276 |   { assume "\<not> ?lhs"
 | |
| 3277 | then obtain e where "e>0" "\<forall>d>0. \<exists>x\<in>s. \<exists>x'\<in>s. dist x' x < d \<and> \<not> dist (f x') (f x) < e" unfolding uniformly_continuous_on_def by auto | |
| 3278 | then obtain fa where fa:"\<forall>x. 0 < x \<longrightarrow> fst (fa x) \<in> s \<and> snd (fa x) \<in> s \<and> dist (fst (fa x)) (snd (fa x)) < x \<and> \<not> dist (f (fst (fa x))) (f (snd (fa x))) < e" | |
| 3279 | using choice[of "\<lambda>d x. d>0 \<longrightarrow> fst x \<in> s \<and> snd x \<in> s \<and> dist (snd x) (fst x) < d \<and> \<not> dist (f (snd x)) (f (fst x)) < e"] unfolding Bex_def | |
| 3280 | by (auto simp add: dist_commute) | |
| 3281 | def x \<equiv> "\<lambda>n::nat. fst (fa (inverse (real n + 1)))" | |
| 3282 | def y \<equiv> "\<lambda>n::nat. snd (fa (inverse (real n + 1)))" | |
| 3283 | have xyn:"\<forall>n. x n \<in> s \<and> y n \<in> s" and xy0:"\<forall>n. dist (x n) (y n) < inverse (real n + 1)" and fxy:"\<forall>n. \<not> dist (f (x n)) (f (y n)) < e" | |
| 3284 | unfolding x_def and y_def using fa by auto | |
| 3285 |     { fix e::real assume "e>0"
 | |
| 3286 | then obtain N::nat where "N \<noteq> 0" and N:"0 < inverse (real N) \<and> inverse (real N) < e" unfolding real_arch_inv[of e] by auto | |
| 3287 |       { fix n::nat assume "n\<ge>N"
 | |
| 3288 | hence "inverse (real n + 1) < inverse (real N)" using real_of_nat_ge_zero and `N\<noteq>0` by auto | |
| 3289 | also have "\<dots> < e" using N by auto | |
| 3290 | finally have "inverse (real n + 1) < e" by auto | |
| 36441 | 3291 | hence "dist (x n) (y n) < e" using xy0[THEN spec[where x=n]] by auto } | 
| 3292 | hence "\<exists>N. \<forall>n\<ge>N. dist (x n) (y n) < e" by auto } | |
| 3293 | hence "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. dist (f (x n)) (f (y n)) < e" using `?rhs`[THEN spec[where x=x], THEN spec[where x=y]] and xyn unfolding Lim_sequentially dist_real_def by auto | |
| 3294 | hence False using fxy and `e>0` by auto } | |
| 33175 | 3295 | thus ?lhs unfolding uniformly_continuous_on_def by blast | 
| 3296 | qed | |
| 3297 | ||
| 3298 | text{* The usual transformation theorems. *}
 | |
| 3299 | ||
| 3300 | lemma continuous_transform_within: | |
| 36667 | 3301 | fixes f g :: "'a::metric_space \<Rightarrow> 'b::topological_space" | 
| 33175 | 3302 | assumes "0 < d" "x \<in> s" "\<forall>x' \<in> s. dist x' x < d --> f x' = g x'" | 
| 3303 | "continuous (at x within s) f" | |
| 3304 | shows "continuous (at x within s) g" | |
| 36667 | 3305 | unfolding continuous_within | 
| 3306 | proof (rule Lim_transform_within) | |
| 3307 | show "0 < d" by fact | |
| 3308 | show "\<forall>x'\<in>s. 0 < dist x' x \<and> dist x' x < d \<longrightarrow> f x' = g x'" | |
| 3309 | using assms(3) by auto | |
| 3310 | have "f x = g x" | |
| 3311 | using assms(1,2,3) by auto | |
| 3312 | thus "(f ---> g x) (at x within s)" | |
| 3313 | using assms(4) unfolding continuous_within by simp | |
| 33175 | 3314 | qed | 
| 3315 | ||
| 3316 | lemma continuous_transform_at: | |
| 36667 | 3317 | fixes f g :: "'a::metric_space \<Rightarrow> 'b::topological_space" | 
| 33175 | 3318 | assumes "0 < d" "\<forall>x'. dist x' x < d --> f x' = g x'" | 
| 3319 | "continuous (at x) f" | |
| 3320 | shows "continuous (at x) g" | |
| 36667 | 3321 | using continuous_transform_within [of d x UNIV f g] assms | 
| 3322 | by (simp add: within_UNIV) | |
| 33175 | 3323 | |
| 44648 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3324 | subsubsection {* Structural rules for pointwise continuity *}
 | 
| 33175 | 3325 | |
| 44647 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3326 | lemma continuous_within_id: "continuous (at a within s) (\<lambda>x. x)" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3327 | unfolding continuous_within by (rule tendsto_ident_at_within) | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3328 | |
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3329 | lemma continuous_at_id: "continuous (at a) (\<lambda>x. x)" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3330 | unfolding continuous_at by (rule tendsto_ident_at) | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3331 | |
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3332 | lemma continuous_const: "continuous F (\<lambda>x. c)" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3333 | unfolding continuous_def by (rule tendsto_const) | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3334 | |
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3335 | lemma continuous_dist: | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3336 | assumes "continuous F f" and "continuous F g" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3337 | shows "continuous F (\<lambda>x. dist (f x) (g x))" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3338 | using assms unfolding continuous_def by (rule tendsto_dist) | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3339 | |
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3340 | lemma continuous_norm: | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3341 | shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. norm (f x))" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3342 | unfolding continuous_def by (rule tendsto_norm) | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3343 | |
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3344 | lemma continuous_infnorm: | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3345 | shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. infnorm (f x))" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3346 | unfolding continuous_def by (rule tendsto_infnorm) | 
| 33175 | 3347 | |
| 3348 | lemma continuous_add: | |
| 3349 | fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector" | |
| 44647 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3350 | shows "\<lbrakk>continuous F f; continuous F g\<rbrakk> \<Longrightarrow> continuous F (\<lambda>x. f x + g x)" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3351 | unfolding continuous_def by (rule tendsto_add) | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3352 | |
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3353 | lemma continuous_minus: | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3354 | fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3355 | shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. - f x)" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3356 | unfolding continuous_def by (rule tendsto_minus) | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3357 | |
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3358 | lemma continuous_diff: | 
| 33175 | 3359 | fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector" | 
| 44647 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3360 | shows "\<lbrakk>continuous F f; continuous F g\<rbrakk> \<Longrightarrow> continuous F (\<lambda>x. f x - g x)" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3361 | unfolding continuous_def by (rule tendsto_diff) | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3362 | |
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3363 | lemma continuous_scaleR: | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3364 | fixes g :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3365 | shows "\<lbrakk>continuous F f; continuous F g\<rbrakk> \<Longrightarrow> continuous F (\<lambda>x. f x *\<^sub>R g x)" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3366 | unfolding continuous_def by (rule tendsto_scaleR) | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3367 | |
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3368 | lemma continuous_mult: | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3369 | fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_algebra" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3370 | shows "\<lbrakk>continuous F f; continuous F g\<rbrakk> \<Longrightarrow> continuous F (\<lambda>x. f x * g x)" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3371 | unfolding continuous_def by (rule tendsto_mult) | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3372 | |
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3373 | lemma continuous_inner: | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3374 | assumes "continuous F f" and "continuous F g" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3375 | shows "continuous F (\<lambda>x. inner (f x) (g x))" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3376 | using assms unfolding continuous_def by (rule tendsto_inner) | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3377 | |
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3378 | lemma continuous_euclidean_component: | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3379 | shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. f x $$ i)" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3380 | unfolding continuous_def by (rule tendsto_euclidean_component) | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3381 | |
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3382 | lemma continuous_inverse: | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3383 | fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_div_algebra" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3384 | assumes "continuous F f" and "f (netlimit F) \<noteq> 0" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3385 | shows "continuous F (\<lambda>x. inverse (f x))" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3386 | using assms unfolding continuous_def by (rule tendsto_inverse) | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3387 | |
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3388 | lemma continuous_at_within_inverse: | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3389 | fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_div_algebra" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3390 | assumes "continuous (at a within s) f" and "f a \<noteq> 0" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3391 | shows "continuous (at a within s) (\<lambda>x. inverse (f x))" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3392 | using assms unfolding continuous_within by (rule tendsto_inverse) | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3393 | |
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3394 | lemma continuous_at_inverse: | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3395 | fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_div_algebra" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3396 | assumes "continuous (at a) f" and "f a \<noteq> 0" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3397 | shows "continuous (at a) (\<lambda>x. inverse (f x))" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3398 | using assms unfolding continuous_at by (rule tendsto_inverse) | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3399 | |
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3400 | lemmas continuous_intros = continuous_at_id continuous_within_id | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3401 | continuous_const continuous_dist continuous_norm continuous_infnorm | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3402 | continuous_add continuous_minus continuous_diff | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3403 | continuous_scaleR continuous_mult | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3404 | continuous_inner continuous_euclidean_component | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3405 | continuous_at_inverse continuous_at_within_inverse | 
| 34964 | 3406 | |
| 44648 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3407 | subsubsection {* Structural rules for setwise continuity *}
 | 
| 33175 | 3408 | |
| 44647 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3409 | lemma continuous_on_id: "continuous_on s (\<lambda>x. x)" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3410 | unfolding continuous_on_def by (fast intro: tendsto_ident_at_within) | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3411 | |
| 44531 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3412 | lemma continuous_on_const: "continuous_on s (\<lambda>x. c)" | 
| 44125 | 3413 | unfolding continuous_on_def by (auto intro: tendsto_intros) | 
| 33175 | 3414 | |
| 44647 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3415 | lemma continuous_on_norm: | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3416 | shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. norm (f x))" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3417 | unfolding continuous_on_def by (fast intro: tendsto_norm) | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3418 | |
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3419 | lemma continuous_on_infnorm: | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3420 | shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. infnorm (f x))" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3421 | unfolding continuous_on by (fast intro: tendsto_infnorm) | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3422 | |
| 44531 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3423 | lemma continuous_on_minus: | 
| 36440 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3424 | fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector" | 
| 33175 | 3425 | shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. - f x)" | 
| 36440 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3426 | unfolding continuous_on_def by (auto intro: tendsto_intros) | 
| 33175 | 3427 | |
| 3428 | lemma continuous_on_add: | |
| 36440 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3429 | fixes f g :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector" | 
| 33175 | 3430 | shows "continuous_on s f \<Longrightarrow> continuous_on s g | 
| 3431 | \<Longrightarrow> continuous_on s (\<lambda>x. f x + g x)" | |
| 36440 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3432 | unfolding continuous_on_def by (auto intro: tendsto_intros) | 
| 33175 | 3433 | |
| 44531 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3434 | lemma continuous_on_diff: | 
| 36440 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3435 | fixes f g :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector" | 
| 33175 | 3436 | shows "continuous_on s f \<Longrightarrow> continuous_on s g | 
| 3437 | \<Longrightarrow> continuous_on s (\<lambda>x. f x - g x)" | |
| 36440 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3438 | unfolding continuous_on_def by (auto intro: tendsto_intros) | 
| 33175 | 3439 | |
| 44531 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3440 | lemma (in bounded_linear) continuous_on: | 
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3441 | "continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f (g x))" | 
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3442 | unfolding continuous_on_def by (fast intro: tendsto) | 
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3443 | |
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3444 | lemma (in bounded_bilinear) continuous_on: | 
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3445 | "\<lbrakk>continuous_on s f; continuous_on s g\<rbrakk> \<Longrightarrow> continuous_on s (\<lambda>x. f x ** g x)" | 
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3446 | unfolding continuous_on_def by (fast intro: tendsto) | 
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3447 | |
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3448 | lemma continuous_on_scaleR: | 
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3449 | fixes g :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector" | 
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3450 | assumes "continuous_on s f" and "continuous_on s g" | 
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3451 | shows "continuous_on s (\<lambda>x. f x *\<^sub>R g x)" | 
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3452 | using bounded_bilinear_scaleR assms | 
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3453 | by (rule bounded_bilinear.continuous_on) | 
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3454 | |
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3455 | lemma continuous_on_mult: | 
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3456 | fixes g :: "'a::topological_space \<Rightarrow> 'b::real_normed_algebra" | 
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3457 | assumes "continuous_on s f" and "continuous_on s g" | 
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3458 | shows "continuous_on s (\<lambda>x. f x * g x)" | 
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3459 | using bounded_bilinear_mult assms | 
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3460 | by (rule bounded_bilinear.continuous_on) | 
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3461 | |
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3462 | lemma continuous_on_inner: | 
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3463 | fixes g :: "'a::topological_space \<Rightarrow> 'b::real_inner" | 
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3464 | assumes "continuous_on s f" and "continuous_on s g" | 
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3465 | shows "continuous_on s (\<lambda>x. inner (f x) (g x))" | 
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3466 | using bounded_bilinear_inner assms | 
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3467 | by (rule bounded_bilinear.continuous_on) | 
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3468 | |
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3469 | lemma continuous_on_euclidean_component: | 
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3470 | "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. f x $$ i)" | 
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3471 | using bounded_linear_euclidean_component | 
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3472 | by (rule bounded_linear.continuous_on) | 
| 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 3473 | |
| 44647 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3474 | lemma continuous_on_inverse: | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3475 | fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_div_algebra" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3476 | assumes "continuous_on s f" and "\<forall>x\<in>s. f x \<noteq> 0" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3477 | shows "continuous_on s (\<lambda>x. inverse (f x))" | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3478 | using assms unfolding continuous_on by (fast intro: tendsto_inverse) | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3479 | |
| 44648 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3480 | subsubsection {* Structural rules for uniform continuity *}
 | 
| 33175 | 3481 | |
| 44647 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3482 | lemma uniformly_continuous_on_id: | 
| 44648 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3483 | shows "uniformly_continuous_on s (\<lambda>x. x)" | 
| 44647 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3484 | unfolding uniformly_continuous_on_def by auto | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3485 | |
| 33175 | 3486 | lemma uniformly_continuous_on_const: | 
| 44648 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3487 | shows "uniformly_continuous_on s (\<lambda>x. c)" | 
| 33175 | 3488 | unfolding uniformly_continuous_on_def by simp | 
| 3489 | ||
| 44648 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3490 | lemma uniformly_continuous_on_dist: | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3491 | fixes f g :: "'a::metric_space \<Rightarrow> 'b::metric_space" | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3492 | assumes "uniformly_continuous_on s f" | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3493 | assumes "uniformly_continuous_on s g" | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3494 | shows "uniformly_continuous_on s (\<lambda>x. dist (f x) (g x))" | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3495 | proof - | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3496 |   { fix a b c d :: 'b have "\<bar>dist a b - dist c d\<bar> \<le> dist a c + dist b d"
 | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3497 | using dist_triangle2 [of a b c] dist_triangle2 [of b c d] | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3498 | using dist_triangle3 [of c d a] dist_triangle [of a d b] | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3499 | by arith | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3500 | } note le = this | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3501 |   { fix x y
 | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3502 | assume f: "(\<lambda>n. dist (f (x n)) (f (y n))) ----> 0" | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3503 | assume g: "(\<lambda>n. dist (g (x n)) (g (y n))) ----> 0" | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3504 | have "(\<lambda>n. \<bar>dist (f (x n)) (g (x n)) - dist (f (y n)) (g (y n))\<bar>) ----> 0" | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3505 | by (rule Lim_transform_bound [OF _ tendsto_add_zero [OF f g]], | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3506 | simp add: le) | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3507 | } | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3508 | thus ?thesis using assms unfolding uniformly_continuous_on_sequentially | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3509 | unfolding dist_real_def by simp | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3510 | qed | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3511 | |
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3512 | lemma uniformly_continuous_on_norm: | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3513 | assumes "uniformly_continuous_on s f" | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3514 | shows "uniformly_continuous_on s (\<lambda>x. norm (f x))" | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3515 | unfolding norm_conv_dist using assms | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3516 | by (intro uniformly_continuous_on_dist uniformly_continuous_on_const) | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3517 | |
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3518 | lemma (in bounded_linear) uniformly_continuous_on: | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3519 | assumes "uniformly_continuous_on s g" | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3520 | shows "uniformly_continuous_on s (\<lambda>x. f (g x))" | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3521 | using assms unfolding uniformly_continuous_on_sequentially | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3522 | unfolding dist_norm tendsto_norm_zero_iff diff[symmetric] | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3523 | by (auto intro: tendsto_zero) | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3524 | |
| 33175 | 3525 | lemma uniformly_continuous_on_cmul: | 
| 36441 | 3526 | fixes f :: "'a::metric_space \<Rightarrow> 'b::real_normed_vector" | 
| 33175 | 3527 | assumes "uniformly_continuous_on s f" | 
| 3528 | shows "uniformly_continuous_on s (\<lambda>x. c *\<^sub>R f(x))" | |
| 44648 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3529 | using bounded_linear_scaleR_right assms | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3530 | by (rule bounded_linear.uniformly_continuous_on) | 
| 33175 | 3531 | |
| 3532 | lemma dist_minus: | |
| 3533 | fixes x y :: "'a::real_normed_vector" | |
| 3534 | shows "dist (- x) (- y) = dist x y" | |
| 3535 | unfolding dist_norm minus_diff_minus norm_minus_cancel .. | |
| 3536 | ||
| 44648 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3537 | lemma uniformly_continuous_on_minus: | 
| 33175 | 3538 | fixes f :: "'a::metric_space \<Rightarrow> 'b::real_normed_vector" | 
| 44648 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3539 | shows "uniformly_continuous_on s f \<Longrightarrow> uniformly_continuous_on s (\<lambda>x. - f x)" | 
| 33175 | 3540 | unfolding uniformly_continuous_on_def dist_minus . | 
| 3541 | ||
| 3542 | lemma uniformly_continuous_on_add: | |
| 36441 | 3543 | fixes f g :: "'a::metric_space \<Rightarrow> 'b::real_normed_vector" | 
| 44648 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3544 | assumes "uniformly_continuous_on s f" | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3545 | assumes "uniformly_continuous_on s g" | 
| 33175 | 3546 | shows "uniformly_continuous_on s (\<lambda>x. f x + g x)" | 
| 44648 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3547 | using assms unfolding uniformly_continuous_on_sequentially | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3548 | unfolding dist_norm tendsto_norm_zero_iff add_diff_add | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3549 | by (auto intro: tendsto_add_zero) | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3550 | |
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3551 | lemma uniformly_continuous_on_diff: | 
| 36441 | 3552 | fixes f :: "'a::metric_space \<Rightarrow> 'b::real_normed_vector" | 
| 44648 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3553 | assumes "uniformly_continuous_on s f" and "uniformly_continuous_on s g" | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3554 | shows "uniformly_continuous_on s (\<lambda>x. f x - g x)" | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3555 | unfolding ab_diff_minus using assms | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3556 | by (intro uniformly_continuous_on_add uniformly_continuous_on_minus) | 
| 33175 | 3557 | |
| 3558 | text{* Continuity of all kinds is preserved under composition. *}
 | |
| 3559 | ||
| 36441 | 3560 | lemma continuous_within_topological: | 
| 3561 | "continuous (at x within s) f \<longleftrightarrow> | |
| 3562 | (\<forall>B. open B \<longrightarrow> f x \<in> B \<longrightarrow> | |
| 3563 | (\<exists>A. open A \<and> x \<in> A \<and> (\<forall>y\<in>s. y \<in> A \<longrightarrow> f y \<in> B)))" | |
| 3564 | unfolding continuous_within | |
| 3565 | unfolding tendsto_def Limits.eventually_within eventually_at_topological | |
| 3566 | by (intro ball_cong [OF refl] all_cong imp_cong ex_cong conj_cong refl) auto | |
| 3567 | ||
| 33175 | 3568 | lemma continuous_within_compose: | 
| 36441 | 3569 | assumes "continuous (at x within s) f" | 
| 3570 | assumes "continuous (at (f x) within f ` s) g" | |
| 33175 | 3571 | shows "continuous (at x within s) (g o f)" | 
| 36441 | 3572 | using assms unfolding continuous_within_topological by simp metis | 
| 33175 | 3573 | |
| 3574 | lemma continuous_at_compose: | |
| 3575 | assumes "continuous (at x) f" "continuous (at (f x)) g" | |
| 3576 | shows "continuous (at x) (g o f)" | |
| 3577 | proof- | |
| 3578 | have " continuous (at (f x) within range f) g" using assms(2) using continuous_within_subset[of "f x" UNIV g "range f", unfolded within_UNIV] by auto | |
| 3579 | thus ?thesis using assms(1) using continuous_within_compose[of x UNIV f g, unfolded within_UNIV] by auto | |
| 3580 | qed | |
| 3581 | ||
| 3582 | lemma continuous_on_compose: | |
| 36440 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3583 | "continuous_on s f \<Longrightarrow> continuous_on (f ` s) g \<Longrightarrow> continuous_on s (g o f)" | 
| 
89a70297564d
simplify definition of continuous_on; generalize some lemmas
 huffman parents: 
36439diff
changeset | 3584 | unfolding continuous_on_topological by simp metis | 
| 33175 | 3585 | |
| 3586 | lemma uniformly_continuous_on_compose: | |
| 3587 | assumes "uniformly_continuous_on s f" "uniformly_continuous_on (f ` s) g" | |
| 3588 | shows "uniformly_continuous_on s (g o f)" | |
| 3589 | proof- | |
| 3590 |   { fix e::real assume "e>0"
 | |
| 3591 | then obtain d where "d>0" and d:"\<forall>x\<in>f ` s. \<forall>x'\<in>f ` s. dist x' x < d \<longrightarrow> dist (g x') (g x) < e" using assms(2) unfolding uniformly_continuous_on_def by auto | |
| 3592 | obtain d' where "d'>0" "\<forall>x\<in>s. \<forall>x'\<in>s. dist x' x < d' \<longrightarrow> dist (f x') (f x) < d" using `d>0` using assms(1) unfolding uniformly_continuous_on_def by auto | |
| 3593 | hence "\<exists>d>0. \<forall>x\<in>s. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist ((g \<circ> f) x') ((g \<circ> f) x) < e" using `d>0` using d by auto } | |
| 3594 | thus ?thesis using assms unfolding uniformly_continuous_on_def by auto | |
| 3595 | qed | |
| 3596 | ||
| 44647 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3597 | lemmas continuous_on_intros = continuous_on_id continuous_on_const | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3598 | continuous_on_compose continuous_on_norm continuous_on_infnorm | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3599 | continuous_on_add continuous_on_minus continuous_on_diff | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3600 | continuous_on_scaleR continuous_on_mult continuous_on_inverse | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3601 | continuous_on_inner continuous_on_euclidean_component | 
| 44648 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3602 | uniformly_continuous_on_id uniformly_continuous_on_const | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3603 | uniformly_continuous_on_dist uniformly_continuous_on_norm | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3604 | uniformly_continuous_on_compose uniformly_continuous_on_add | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3605 | uniformly_continuous_on_minus uniformly_continuous_on_diff | 
| 
897f32a827f2
simplify some proofs about uniform continuity, and add some new ones;
 huffman parents: 
44647diff
changeset | 3606 | uniformly_continuous_on_cmul | 
| 44647 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3607 | |
| 33175 | 3608 | text{* Continuity in terms of open preimages. *}
 | 
| 3609 | ||
| 3610 | lemma continuous_at_open: | |
| 36441 | 3611 | shows "continuous (at x) f \<longleftrightarrow> (\<forall>t. open t \<and> f x \<in> t --> (\<exists>s. open s \<and> x \<in> s \<and> (\<forall>x' \<in> s. (f x') \<in> t)))" | 
| 3612 | unfolding continuous_within_topological [of x UNIV f, unfolded within_UNIV] | |
| 3613 | unfolding imp_conjL by (intro all_cong imp_cong ex_cong conj_cong refl) auto | |
| 33175 | 3614 | |
| 3615 | lemma continuous_on_open: | |
| 36441 | 3616 | shows "continuous_on s f \<longleftrightarrow> | 
| 33175 | 3617 | (\<forall>t. openin (subtopology euclidean (f ` s)) t | 
| 3618 |             --> openin (subtopology euclidean s) {x \<in> s. f x \<in> t})" (is "?lhs = ?rhs")
 | |
| 36441 | 3619 | proof (safe) | 
| 3620 | fix t :: "'b set" | |
| 3621 | assume 1: "continuous_on s f" | |
| 3622 | assume 2: "openin (subtopology euclidean (f ` s)) t" | |
| 3623 | from 2 obtain B where B: "open B" and t: "t = f ` s \<inter> B" | |
| 3624 | unfolding openin_open by auto | |
| 3625 |   def U == "\<Union>{A. open A \<and> (\<forall>x\<in>s. x \<in> A \<longrightarrow> f x \<in> B)}"
 | |
| 3626 | have "open U" unfolding U_def by (simp add: open_Union) | |
| 3627 | moreover have "\<forall>x\<in>s. x \<in> U \<longleftrightarrow> f x \<in> t" | |
| 3628 | proof (intro ballI iffI) | |
| 3629 | fix x assume "x \<in> s" and "x \<in> U" thus "f x \<in> t" | |
| 3630 | unfolding U_def t by auto | |
| 3631 | next | |
| 3632 | fix x assume "x \<in> s" and "f x \<in> t" | |
| 3633 | hence "x \<in> s" and "f x \<in> B" | |
| 3634 | unfolding t by auto | |
| 3635 | with 1 B obtain A where "open A" "x \<in> A" "\<forall>y\<in>s. y \<in> A \<longrightarrow> f y \<in> B" | |
| 3636 | unfolding t continuous_on_topological by metis | |
| 3637 | then show "x \<in> U" | |
| 3638 | unfolding U_def by auto | |
| 3639 | qed | |
| 3640 |   ultimately have "open U \<and> {x \<in> s. f x \<in> t} = s \<inter> U" by auto
 | |
| 3641 |   then show "openin (subtopology euclidean s) {x \<in> s. f x \<in> t}"
 | |
| 3642 | unfolding openin_open by fast | |
| 33175 | 3643 | next | 
| 36441 | 3644 | assume "?rhs" show "continuous_on s f" | 
| 3645 | unfolding continuous_on_topological | |
| 3646 | proof (clarify) | |
| 3647 | fix x and B assume "x \<in> s" and "open B" and "f x \<in> B" | |
| 3648 | have "openin (subtopology euclidean (f ` s)) (f ` s \<inter> B)" | |
| 3649 | unfolding openin_open using `open B` by auto | |
| 3650 |     then have "openin (subtopology euclidean s) {x \<in> s. f x \<in> f ` s \<inter> B}"
 | |
| 3651 | using `?rhs` by fast | |
| 3652 | then show "\<exists>A. open A \<and> x \<in> A \<and> (\<forall>y\<in>s. y \<in> A \<longrightarrow> f y \<in> B)" | |
| 3653 | unfolding openin_open using `x \<in> s` and `f x \<in> B` by auto | |
| 3654 | qed | |
| 3655 | qed | |
| 3656 | ||
| 3657 | text {* Similarly in terms of closed sets. *}
 | |
| 33175 | 3658 | |
| 3659 | lemma continuous_on_closed: | |
| 36359 | 3660 |   shows "continuous_on s f \<longleftrightarrow>  (\<forall>t. closedin (subtopology euclidean (f ` s)) t  --> closedin (subtopology euclidean s) {x \<in> s. f x \<in> t})" (is "?lhs = ?rhs")
 | 
| 33175 | 3661 | proof | 
| 3662 | assume ?lhs | |
| 3663 |   { fix t
 | |
| 3664 |     have *:"s - {x \<in> s. f x \<in> f ` s - t} = {x \<in> s. f x \<in> t}" by auto
 | |
| 3665 | have **:"f ` s - (f ` s - (f ` s - t)) = f ` s - t" by auto | |
| 3666 | assume as:"closedin (subtopology euclidean (f ` s)) t" | |
| 3667 | hence "closedin (subtopology euclidean (f ` s)) (f ` s - (f ` s - t))" unfolding closedin_def topspace_euclidean_subtopology unfolding ** by auto | |
| 3668 |     hence "closedin (subtopology euclidean s) {x \<in> s. f x \<in> t}" using `?lhs`[unfolded continuous_on_open, THEN spec[where x="(f ` s) - t"]]
 | |
| 3669 | unfolding openin_closedin_eq topspace_euclidean_subtopology unfolding * by auto } | |
| 3670 | thus ?rhs by auto | |
| 3671 | next | |
| 3672 | assume ?rhs | |
| 3673 |   { fix t
 | |
| 3674 |     have *:"s - {x \<in> s. f x \<in> f ` s - t} = {x \<in> s. f x \<in> t}" by auto
 | |
| 3675 | assume as:"openin (subtopology euclidean (f ` s)) t" | |
| 3676 |     hence "openin (subtopology euclidean s) {x \<in> s. f x \<in> t}" using `?rhs`[THEN spec[where x="(f ` s) - t"]]
 | |
| 3677 | unfolding openin_closedin_eq topspace_euclidean_subtopology *[THEN sym] closedin_subtopology by auto } | |
| 3678 | thus ?lhs unfolding continuous_on_open by auto | |
| 3679 | qed | |
| 3680 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 3681 | text {* Half-global and completely global cases. *}
 | 
| 33175 | 3682 | |
| 3683 | lemma continuous_open_in_preimage: | |
| 3684 | assumes "continuous_on s f" "open t" | |
| 3685 |   shows "openin (subtopology euclidean s) {x \<in> s. f x \<in> t}"
 | |
| 3686 | proof- | |
| 3687 | have *:"\<forall>x. x \<in> s \<and> f x \<in> t \<longleftrightarrow> x \<in> s \<and> f x \<in> (t \<inter> f ` s)" by auto | |
| 3688 | have "openin (subtopology euclidean (f ` s)) (t \<inter> f ` s)" | |
| 3689 | using openin_open_Int[of t "f ` s", OF assms(2)] unfolding openin_open by auto | |
| 3690 | thus ?thesis using assms(1)[unfolded continuous_on_open, THEN spec[where x="t \<inter> f ` s"]] using * by auto | |
| 3691 | qed | |
| 3692 | ||
| 3693 | lemma continuous_closed_in_preimage: | |
| 3694 | assumes "continuous_on s f" "closed t" | |
| 3695 |   shows "closedin (subtopology euclidean s) {x \<in> s. f x \<in> t}"
 | |
| 3696 | proof- | |
| 3697 | have *:"\<forall>x. x \<in> s \<and> f x \<in> t \<longleftrightarrow> x \<in> s \<and> f x \<in> (t \<inter> f ` s)" by auto | |
| 3698 | have "closedin (subtopology euclidean (f ` s)) (t \<inter> f ` s)" | |
| 3699 | using closedin_closed_Int[of t "f ` s", OF assms(2)] unfolding Int_commute by auto | |
| 3700 | thus ?thesis | |
| 3701 | using assms(1)[unfolded continuous_on_closed, THEN spec[where x="t \<inter> f ` s"]] using * by auto | |
| 3702 | qed | |
| 3703 | ||
| 3704 | lemma continuous_open_preimage: | |
| 3705 | assumes "continuous_on s f" "open s" "open t" | |
| 3706 |   shows "open {x \<in> s. f x \<in> t}"
 | |
| 3707 | proof- | |
| 3708 |   obtain T where T: "open T" "{x \<in> s. f x \<in> t} = s \<inter> T"
 | |
| 3709 | using continuous_open_in_preimage[OF assms(1,3)] unfolding openin_open by auto | |
| 3710 | thus ?thesis using open_Int[of s T, OF assms(2)] by auto | |
| 3711 | qed | |
| 3712 | ||
| 3713 | lemma continuous_closed_preimage: | |
| 3714 | assumes "continuous_on s f" "closed s" "closed t" | |
| 3715 |   shows "closed {x \<in> s. f x \<in> t}"
 | |
| 3716 | proof- | |
| 3717 |   obtain T where T: "closed T" "{x \<in> s. f x \<in> t} = s \<inter> T"
 | |
| 3718 | using continuous_closed_in_preimage[OF assms(1,3)] unfolding closedin_closed by auto | |
| 3719 | thus ?thesis using closed_Int[of s T, OF assms(2)] by auto | |
| 3720 | qed | |
| 3721 | ||
| 3722 | lemma continuous_open_preimage_univ: | |
| 3723 |   shows "\<forall>x. continuous (at x) f \<Longrightarrow> open s \<Longrightarrow> open {x. f x \<in> s}"
 | |
| 3724 | using continuous_open_preimage[of UNIV f s] open_UNIV continuous_at_imp_continuous_on by auto | |
| 3725 | ||
| 3726 | lemma continuous_closed_preimage_univ: | |
| 3727 |   shows "(\<forall>x. continuous (at x) f) \<Longrightarrow> closed s ==> closed {x. f x \<in> s}"
 | |
| 3728 | using continuous_closed_preimage[of UNIV f s] closed_UNIV continuous_at_imp_continuous_on by auto | |
| 3729 | ||
| 3730 | lemma continuous_open_vimage: | |
| 3731 | shows "\<forall>x. continuous (at x) f \<Longrightarrow> open s \<Longrightarrow> open (f -` s)" | |
| 3732 | unfolding vimage_def by (rule continuous_open_preimage_univ) | |
| 3733 | ||
| 3734 | lemma continuous_closed_vimage: | |
| 3735 | shows "\<forall>x. continuous (at x) f \<Longrightarrow> closed s \<Longrightarrow> closed (f -` s)" | |
| 3736 | unfolding vimage_def by (rule continuous_closed_preimage_univ) | |
| 3737 | ||
| 36441 | 3738 | lemma interior_image_subset: | 
| 35172 
579dd5570f96
Added integration to Multivariate-Analysis (upto FTC)
 himmelma parents: 
35028diff
changeset | 3739 | assumes "\<forall>x. continuous (at x) f" "inj f" | 
| 
579dd5570f96
Added integration to Multivariate-Analysis (upto FTC)
 himmelma parents: 
35028diff
changeset | 3740 | shows "interior (f ` s) \<subseteq> f ` (interior s)" | 
| 44519 | 3741 | proof | 
| 3742 | fix x assume "x \<in> interior (f ` s)" | |
| 3743 | then obtain T where as: "open T" "x \<in> T" "T \<subseteq> f ` s" .. | |
| 3744 | hence "x \<in> f ` s" by auto | |
| 3745 | then obtain y where y: "y \<in> s" "x = f y" by auto | |
| 3746 | have "open (vimage f T)" | |
| 3747 | using assms(1) `open T` by (rule continuous_open_vimage) | |
| 3748 | moreover have "y \<in> vimage f T" | |
| 3749 | using `x = f y` `x \<in> T` by simp | |
| 3750 | moreover have "vimage f T \<subseteq> s" | |
| 3751 | using `T \<subseteq> image f s` `inj f` unfolding inj_on_def subset_eq by auto | |
| 3752 | ultimately have "y \<in> interior s" .. | |
| 3753 | with `x = f y` show "x \<in> f ` interior s" .. | |
| 3754 | qed | |
| 35172 
579dd5570f96
Added integration to Multivariate-Analysis (upto FTC)
 himmelma parents: 
35028diff
changeset | 3755 | |
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 3756 | text {* Equality of continuous functions on closure and related results. *}
 | 
| 33175 | 3757 | |
| 3758 | lemma continuous_closed_in_preimage_constant: | |
| 36668 
941ba2da372e
simplify definition of t1_space; generalize lemma closed_sing and related lemmas
 huffman parents: 
36667diff
changeset | 3759 | fixes f :: "_ \<Rightarrow> 'b::t1_space" | 
| 36359 | 3760 |   shows "continuous_on s f ==> closedin (subtopology euclidean s) {x \<in> s. f x = a}"
 | 
| 36668 
941ba2da372e
simplify definition of t1_space; generalize lemma closed_sing and related lemmas
 huffman parents: 
36667diff
changeset | 3761 |   using continuous_closed_in_preimage[of s f "{a}"] by auto
 | 
| 33175 | 3762 | |
| 3763 | lemma continuous_closed_preimage_constant: | |
| 36668 
941ba2da372e
simplify definition of t1_space; generalize lemma closed_sing and related lemmas
 huffman parents: 
36667diff
changeset | 3764 | fixes f :: "_ \<Rightarrow> 'b::t1_space" | 
| 36359 | 3765 |   shows "continuous_on s f \<Longrightarrow> closed s ==> closed {x \<in> s. f x = a}"
 | 
| 36668 
941ba2da372e
simplify definition of t1_space; generalize lemma closed_sing and related lemmas
 huffman parents: 
36667diff
changeset | 3766 |   using continuous_closed_preimage[of s f "{a}"] by auto
 | 
| 33175 | 3767 | |
| 3768 | lemma continuous_constant_on_closure: | |
| 36668 
941ba2da372e
simplify definition of t1_space; generalize lemma closed_sing and related lemmas
 huffman parents: 
36667diff
changeset | 3769 | fixes f :: "_ \<Rightarrow> 'b::t1_space" | 
| 33175 | 3770 | assumes "continuous_on (closure s) f" | 
| 3771 | "\<forall>x \<in> s. f x = a" | |
| 3772 | shows "\<forall>x \<in> (closure s). f x = a" | |
| 3773 | using continuous_closed_preimage_constant[of "closure s" f a] | |
| 3774 |     assms closure_minimal[of s "{x \<in> closure s. f x = a}"] closure_subset unfolding subset_eq by auto
 | |
| 3775 | ||
| 3776 | lemma image_closure_subset: | |
| 3777 | assumes "continuous_on (closure s) f" "closed t" "(f ` s) \<subseteq> t" | |
| 3778 | shows "f ` (closure s) \<subseteq> t" | |
| 3779 | proof- | |
| 3780 |   have "s \<subseteq> {x \<in> closure s. f x \<in> t}" using assms(3) closure_subset by auto
 | |
| 3781 |   moreover have "closed {x \<in> closure s. f x \<in> t}"
 | |
| 3782 | using continuous_closed_preimage[OF assms(1)] and assms(2) by auto | |
| 3783 |   ultimately have "closure s = {x \<in> closure s . f x \<in> t}"
 | |
| 3784 |     using closure_minimal[of s "{x \<in> closure s. f x \<in> t}"] by auto
 | |
| 3785 | thus ?thesis by auto | |
| 3786 | qed | |
| 3787 | ||
| 3788 | lemma continuous_on_closure_norm_le: | |
| 3789 | fixes f :: "'a::metric_space \<Rightarrow> 'b::real_normed_vector" | |
| 3790 | assumes "continuous_on (closure s) f" "\<forall>y \<in> s. norm(f y) \<le> b" "x \<in> (closure s)" | |
| 3791 | shows "norm(f x) \<le> b" | |
| 3792 | proof- | |
| 3793 | have *:"f ` s \<subseteq> cball 0 b" using assms(2)[unfolded mem_cball_0[THEN sym]] by auto | |
| 3794 | show ?thesis | |
| 3795 | using image_closure_subset[OF assms(1) closed_cball[of 0 b] *] assms(3) | |
| 3796 | unfolding subset_eq apply(erule_tac x="f x" in ballE) by (auto simp add: dist_norm) | |
| 3797 | qed | |
| 3798 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 3799 | text {* Making a continuous function avoid some value in a neighbourhood. *}
 | 
| 33175 | 3800 | |
| 3801 | lemma continuous_within_avoid: | |
| 3802 | fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space" (* FIXME: generalize *) | |
| 3803 | assumes "continuous (at x within s) f" "x \<in> s" "f x \<noteq> a" | |
| 3804 | shows "\<exists>e>0. \<forall>y \<in> s. dist x y < e --> f y \<noteq> a" | |
| 3805 | proof- | |
| 3806 | obtain d where "d>0" and d:"\<forall>xa\<in>s. 0 < dist xa x \<and> dist xa x < d \<longrightarrow> dist (f xa) (f x) < dist (f x) a" | |
| 3807 | using assms(1)[unfolded continuous_within Lim_within, THEN spec[where x="dist (f x) a"]] assms(3)[unfolded dist_nz] by auto | |
| 3808 |   { fix y assume " y\<in>s"  "dist x y < d"
 | |
| 3809 | hence "f y \<noteq> a" using d[THEN bspec[where x=y]] assms(3)[unfolded dist_nz] | |
| 3810 | apply auto unfolding dist_nz[THEN sym] by (auto simp add: dist_commute) } | |
| 3811 | thus ?thesis using `d>0` by auto | |
| 3812 | qed | |
| 3813 | ||
| 3814 | lemma continuous_at_avoid: | |
| 3815 | fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space" (* FIXME: generalize *) | |
| 3816 | assumes "continuous (at x) f" "f x \<noteq> a" | |
| 3817 | shows "\<exists>e>0. \<forall>y. dist x y < e \<longrightarrow> f y \<noteq> a" | |
| 3818 | using assms using continuous_within_avoid[of x UNIV f a, unfolded within_UNIV] by auto | |
| 3819 | ||
| 3820 | lemma continuous_on_avoid: | |
| 36359 | 3821 | fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space" (* TODO: generalize *) | 
| 33175 | 3822 | assumes "continuous_on s f" "x \<in> s" "f x \<noteq> a" | 
| 3823 | shows "\<exists>e>0. \<forall>y \<in> s. dist x y < e \<longrightarrow> f y \<noteq> a" | |
| 3824 | using assms(1)[unfolded continuous_on_eq_continuous_within, THEN bspec[where x=x], OF assms(2)] continuous_within_avoid[of x s f a] assms(2,3) by auto | |
| 3825 | ||
| 3826 | lemma continuous_on_open_avoid: | |
| 36359 | 3827 | fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space" (* TODO: generalize *) | 
| 33175 | 3828 | assumes "continuous_on s f" "open s" "x \<in> s" "f x \<noteq> a" | 
| 3829 | shows "\<exists>e>0. \<forall>y. dist x y < e \<longrightarrow> f y \<noteq> a" | |
| 3830 | using assms(1)[unfolded continuous_on_eq_continuous_at[OF assms(2)], THEN bspec[where x=x], OF assms(3)] continuous_at_avoid[of x f a] assms(3,4) by auto | |
| 3831 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 3832 | text {* Proving a function is constant by proving open-ness of level set. *}
 | 
| 33175 | 3833 | |
| 3834 | lemma continuous_levelset_open_in_cases: | |
| 36668 
941ba2da372e
simplify definition of t1_space; generalize lemma closed_sing and related lemmas
 huffman parents: 
36667diff
changeset | 3835 | fixes f :: "_ \<Rightarrow> 'b::t1_space" | 
| 36359 | 3836 | shows "connected s \<Longrightarrow> continuous_on s f \<Longrightarrow> | 
| 33175 | 3837 |         openin (subtopology euclidean s) {x \<in> s. f x = a}
 | 
| 3838 | ==> (\<forall>x \<in> s. f x \<noteq> a) \<or> (\<forall>x \<in> s. f x = a)" | |
| 3839 | unfolding connected_clopen using continuous_closed_in_preimage_constant by auto | |
| 3840 | ||
| 3841 | lemma continuous_levelset_open_in: | |
| 36668 
941ba2da372e
simplify definition of t1_space; generalize lemma closed_sing and related lemmas
 huffman parents: 
36667diff
changeset | 3842 | fixes f :: "_ \<Rightarrow> 'b::t1_space" | 
| 36359 | 3843 | shows "connected s \<Longrightarrow> continuous_on s f \<Longrightarrow> | 
| 33175 | 3844 |         openin (subtopology euclidean s) {x \<in> s. f x = a} \<Longrightarrow>
 | 
| 3845 | (\<exists>x \<in> s. f x = a) ==> (\<forall>x \<in> s. f x = a)" | |
| 3846 | using continuous_levelset_open_in_cases[of s f ] | |
| 3847 | by meson | |
| 3848 | ||
| 3849 | lemma continuous_levelset_open: | |
| 36668 
941ba2da372e
simplify definition of t1_space; generalize lemma closed_sing and related lemmas
 huffman parents: 
36667diff
changeset | 3850 | fixes f :: "_ \<Rightarrow> 'b::t1_space" | 
| 33175 | 3851 |   assumes "connected s"  "continuous_on s f"  "open {x \<in> s. f x = a}"  "\<exists>x \<in> s.  f x = a"
 | 
| 3852 | shows "\<forall>x \<in> s. f x = a" | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36360diff
changeset | 3853 | using continuous_levelset_open_in[OF assms(1,2), of a, unfolded openin_open] using assms (3,4) by fast | 
| 33175 | 3854 | |
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 3855 | text {* Some arithmetical combinations (more to prove). *}
 | 
| 33175 | 3856 | |
| 3857 | lemma open_scaling[intro]: | |
| 3858 | fixes s :: "'a::real_normed_vector set" | |
| 3859 | assumes "c \<noteq> 0" "open s" | |
| 3860 | shows "open((\<lambda>x. c *\<^sub>R x) ` s)" | |
| 3861 | proof- | |
| 3862 |   { fix x assume "x \<in> s"
 | |
| 3863 | then obtain e where "e>0" and e:"\<forall>x'. dist x' x < e \<longrightarrow> x' \<in> s" using assms(2)[unfolded open_dist, THEN bspec[where x=x]] by auto | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36669diff
changeset | 3864 | have "e * abs c > 0" using assms(1)[unfolded zero_less_abs_iff[THEN sym]] using mult_pos_pos[OF `e>0`] by auto | 
| 33175 | 3865 | moreover | 
| 3866 |     { fix y assume "dist y (c *\<^sub>R x) < e * \<bar>c\<bar>"
 | |
| 3867 | hence "norm ((1 / c) *\<^sub>R y - x) < e" unfolding dist_norm | |
| 3868 | using norm_scaleR[of c "(1 / c) *\<^sub>R y - x", unfolded scaleR_right_diff_distrib, unfolded scaleR_scaleR] assms(1) | |
| 3869 | assms(1)[unfolded zero_less_abs_iff[THEN sym]] by (simp del:zero_less_abs_iff) | |
| 3870 | hence "y \<in> op *\<^sub>R c ` s" using rev_image_eqI[of "(1 / c) *\<^sub>R y" s y "op *\<^sub>R c"] e[THEN spec[where x="(1 / c) *\<^sub>R y"]] assms(1) unfolding dist_norm scaleR_scaleR by auto } | |
| 3871 | ultimately have "\<exists>e>0. \<forall>x'. dist x' (c *\<^sub>R x) < e \<longrightarrow> x' \<in> op *\<^sub>R c ` s" apply(rule_tac x="e * abs c" in exI) by auto } | |
| 3872 | thus ?thesis unfolding open_dist by auto | |
| 3873 | qed | |
| 3874 | ||
| 3875 | lemma minus_image_eq_vimage: | |
| 3876 | fixes A :: "'a::ab_group_add set" | |
| 3877 | shows "(\<lambda>x. - x) ` A = (\<lambda>x. - x) -` A" | |
| 3878 | by (auto intro!: image_eqI [where f="\<lambda>x. - x"]) | |
| 3879 | ||
| 3880 | lemma open_negations: | |
| 3881 | fixes s :: "'a::real_normed_vector set" | |
| 3882 | shows "open s ==> open ((\<lambda> x. -x) ` s)" | |
| 3883 | unfolding scaleR_minus1_left [symmetric] | |
| 3884 | by (rule open_scaling, auto) | |
| 3885 | ||
| 3886 | lemma open_translation: | |
| 3887 | fixes s :: "'a::real_normed_vector set" | |
| 3888 | assumes "open s" shows "open((\<lambda>x. a + x) ` s)" | |
| 3889 | proof- | |
| 44647 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3890 |   { fix x have "continuous (at x) (\<lambda>x. x - a)"
 | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3891 | by (intro continuous_diff continuous_at_id continuous_const) } | 
| 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 3892 |   moreover have "{x. x - a \<in> s} = op + a ` s" by force
 | 
| 33175 | 3893 | ultimately show ?thesis using continuous_open_preimage_univ[of "\<lambda>x. x - a" s] using assms by auto | 
| 3894 | qed | |
| 3895 | ||
| 3896 | lemma open_affinity: | |
| 3897 | fixes s :: "'a::real_normed_vector set" | |
| 3898 | assumes "open s" "c \<noteq> 0" | |
| 3899 | shows "open ((\<lambda>x. a + c *\<^sub>R x) ` s)" | |
| 3900 | proof- | |
| 3901 | have *:"(\<lambda>x. a + c *\<^sub>R x) = (\<lambda>x. a + x) \<circ> (\<lambda>x. c *\<^sub>R x)" unfolding o_def .. | |
| 3902 | have "op + a ` op *\<^sub>R c ` s = (op + a \<circ> op *\<^sub>R c) ` s" by auto | |
| 3903 | thus ?thesis using assms open_translation[of "op *\<^sub>R c ` s" a] unfolding * by auto | |
| 3904 | qed | |
| 3905 | ||
| 3906 | lemma interior_translation: | |
| 3907 | fixes s :: "'a::real_normed_vector set" | |
| 3908 | shows "interior ((\<lambda>x. a + x) ` s) = (\<lambda>x. a + x) ` (interior s)" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 3909 | proof (rule set_eqI, rule) | 
| 33175 | 3910 | fix x assume "x \<in> interior (op + a ` s)" | 
| 3911 | then obtain e where "e>0" and e:"ball x e \<subseteq> op + a ` s" unfolding mem_interior by auto | |
| 3912 | hence "ball (x - a) e \<subseteq> s" unfolding subset_eq Ball_def mem_ball dist_norm apply auto apply(erule_tac x="a + xa" in allE) unfolding ab_group_add_class.diff_diff_eq[THEN sym] by auto | |
| 3913 | thus "x \<in> op + a ` interior s" unfolding image_iff apply(rule_tac x="x - a" in bexI) unfolding mem_interior using `e > 0` by auto | |
| 3914 | next | |
| 3915 | fix x assume "x \<in> op + a ` interior s" | |
| 3916 | then obtain y e where "e>0" and e:"ball y e \<subseteq> s" and y:"x = a + y" unfolding image_iff Bex_def mem_interior by auto | |
| 3917 |   { fix z have *:"a + y - z = y + a - z" by auto
 | |
| 3918 | assume "z\<in>ball x e" | |
| 3919 | hence "z - a \<in> s" using e[unfolded subset_eq, THEN bspec[where x="z - a"]] unfolding mem_ball dist_norm y ab_group_add_class.diff_diff_eq2 * by auto | |
| 3920 | hence "z \<in> op + a ` s" unfolding image_iff by(auto intro!: bexI[where x="z - a"]) } | |
| 3921 | hence "ball x e \<subseteq> op + a ` s" unfolding subset_eq by auto | |
| 3922 | thus "x \<in> interior (op + a ` s)" unfolding mem_interior using `e>0` by auto | |
| 3923 | qed | |
| 3924 | ||
| 36437 | 3925 | text {* Topological properties of linear functions. *}
 | 
| 3926 | ||
| 3927 | lemma linear_lim_0: | |
| 3928 | assumes "bounded_linear f" shows "(f ---> 0) (at (0))" | |
| 3929 | proof- | |
| 3930 | interpret f: bounded_linear f by fact | |
| 3931 | have "(f ---> f 0) (at 0)" | |
| 3932 | using tendsto_ident_at by (rule f.tendsto) | |
| 3933 | thus ?thesis unfolding f.zero . | |
| 3934 | qed | |
| 3935 | ||
| 3936 | lemma linear_continuous_at: | |
| 3937 | assumes "bounded_linear f" shows "continuous (at a) f" | |
| 3938 | unfolding continuous_at using assms | |
| 3939 | apply (rule bounded_linear.tendsto) | |
| 3940 | apply (rule tendsto_ident_at) | |
| 3941 | done | |
| 3942 | ||
| 3943 | lemma linear_continuous_within: | |
| 3944 | shows "bounded_linear f ==> continuous (at x within s) f" | |
| 3945 | using continuous_at_imp_continuous_within[of x f s] using linear_continuous_at[of f] by auto | |
| 3946 | ||
| 3947 | lemma linear_continuous_on: | |
| 3948 | shows "bounded_linear f ==> continuous_on s f" | |
| 3949 | using continuous_at_imp_continuous_on[of s f] using linear_continuous_at[of f] by auto | |
| 3950 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 3951 | text {* Also bilinear functions, in composition form. *}
 | 
| 36437 | 3952 | |
| 3953 | lemma bilinear_continuous_at_compose: | |
| 3954 | shows "continuous (at x) f \<Longrightarrow> continuous (at x) g \<Longrightarrow> bounded_bilinear h | |
| 3955 | ==> continuous (at x) (\<lambda>x. h (f x) (g x))" | |
| 3956 | unfolding continuous_at using Lim_bilinear[of f "f x" "(at x)" g "g x" h] by auto | |
| 3957 | ||
| 3958 | lemma bilinear_continuous_within_compose: | |
| 3959 | shows "continuous (at x within s) f \<Longrightarrow> continuous (at x within s) g \<Longrightarrow> bounded_bilinear h | |
| 3960 | ==> continuous (at x within s) (\<lambda>x. h (f x) (g x))" | |
| 3961 | unfolding continuous_within using Lim_bilinear[of f "f x"] by auto | |
| 3962 | ||
| 3963 | lemma bilinear_continuous_on_compose: | |
| 3964 | shows "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> bounded_bilinear h | |
| 3965 | ==> continuous_on s (\<lambda>x. h (f x) (g x))" | |
| 36441 | 3966 | unfolding continuous_on_def | 
| 3967 | by (fast elim: bounded_bilinear.tendsto) | |
| 36437 | 3968 | |
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 3969 | text {* Preservation of compactness and connectedness under continuous function. *}
 | 
| 33175 | 3970 | |
| 3971 | lemma compact_continuous_image: | |
| 3972 | assumes "continuous_on s f" "compact s" | |
| 3973 | shows "compact(f ` s)" | |
| 3974 | proof- | |
| 3975 |   { fix x assume x:"\<forall>n::nat. x n \<in> f ` s"
 | |
| 3976 | then obtain y where y:"\<forall>n. y n \<in> s \<and> x n = f (y n)" unfolding image_iff Bex_def using choice[of "\<lambda>n xa. xa \<in> s \<and> x n = f xa"] by auto | |
| 3977 | then obtain l r where "l\<in>s" and r:"subseq r" and lr:"((y \<circ> r) ---> l) sequentially" using assms(2)[unfolded compact_def, THEN spec[where x=y]] by auto | |
| 3978 |     { fix e::real assume "e>0"
 | |
| 36359 | 3979 | then obtain d where "d>0" and d:"\<forall>x'\<in>s. dist x' l < d \<longrightarrow> dist (f x') (f l) < e" using assms(1)[unfolded continuous_on_iff, THEN bspec[where x=l], OF `l\<in>s`] by auto | 
| 33175 | 3980 | then obtain N::nat where N:"\<forall>n\<ge>N. dist ((y \<circ> r) n) l < d" using lr[unfolded Lim_sequentially, THEN spec[where x=d]] by auto | 
| 3981 |       { fix n::nat assume "n\<ge>N" hence "dist ((x \<circ> r) n) (f l) < e" using N[THEN spec[where x=n]] d[THEN bspec[where x="y (r n)"]] y[THEN spec[where x="r n"]] by auto  }
 | |
| 3982 | hence "\<exists>N. \<forall>n\<ge>N. dist ((x \<circ> r) n) (f l) < e" by auto } | |
| 3983 | hence "\<exists>l\<in>f ` s. \<exists>r. subseq r \<and> ((x \<circ> r) ---> l) sequentially" unfolding Lim_sequentially using r lr `l\<in>s` by auto } | |
| 3984 | thus ?thesis unfolding compact_def by auto | |
| 3985 | qed | |
| 3986 | ||
| 3987 | lemma connected_continuous_image: | |
| 3988 | assumes "continuous_on s f" "connected s" | |
| 3989 | shows "connected(f ` s)" | |
| 3990 | proof- | |
| 3991 |   { fix T assume as: "T \<noteq> {}"  "T \<noteq> f ` s"  "openin (subtopology euclidean (f ` s)) T"  "closedin (subtopology euclidean (f ` s)) T"
 | |
| 3992 |     have "{x \<in> s. f x \<in> T} = {} \<or> {x \<in> s. f x \<in> T} = s"
 | |
| 3993 | using assms(1)[unfolded continuous_on_open, THEN spec[where x=T]] | |
| 3994 | using assms(1)[unfolded continuous_on_closed, THEN spec[where x=T]] | |
| 3995 |       using assms(2)[unfolded connected_clopen, THEN spec[where x="{x \<in> s. f x \<in> T}"]] as(3,4) by auto
 | |
| 3996 | hence False using as(1,2) | |
| 3997 | using as(4)[unfolded closedin_def topspace_euclidean_subtopology] by auto } | |
| 3998 | thus ?thesis unfolding connected_clopen by auto | |
| 3999 | qed | |
| 4000 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 4001 | text {* Continuity implies uniform continuity on a compact domain. *}
 | 
| 33175 | 4002 | |
| 4003 | lemma compact_uniformly_continuous: | |
| 4004 | assumes "continuous_on s f" "compact s" | |
| 4005 | shows "uniformly_continuous_on s f" | |
| 4006 | proof- | |
| 4007 |     { fix x assume x:"x\<in>s"
 | |
| 36359 | 4008 | hence "\<forall>xa. \<exists>y. 0 < xa \<longrightarrow> (y > 0 \<and> (\<forall>x'\<in>s. dist x' x < y \<longrightarrow> dist (f x') (f x) < xa))" using assms(1)[unfolded continuous_on_iff, THEN bspec[where x=x]] by auto | 
| 33175 | 4009 | hence "\<exists>fa. \<forall>xa>0. \<forall>x'\<in>s. fa xa > 0 \<and> (dist x' x < fa xa \<longrightarrow> dist (f x') (f x) < xa)" using choice[of "\<lambda>e d. e>0 \<longrightarrow> d>0 \<and>(\<forall>x'\<in>s. (dist x' x < d \<longrightarrow> dist (f x') (f x) < e))"] by auto } | 
| 4010 | then have "\<forall>x\<in>s. \<exists>y. \<forall>xa. 0 < xa \<longrightarrow> (\<forall>x'\<in>s. y xa > 0 \<and> (dist x' x < y xa \<longrightarrow> dist (f x') (f x) < xa))" by auto | |
| 4011 | then obtain d where d:"\<forall>e>0. \<forall>x\<in>s. \<forall>x'\<in>s. d x e > 0 \<and> (dist x' x < d x e \<longrightarrow> dist (f x') (f x) < e)" | |
| 4012 | using bchoice[of s "\<lambda>x fa. \<forall>xa>0. \<forall>x'\<in>s. fa xa > 0 \<and> (dist x' x < fa xa \<longrightarrow> dist (f x') (f x) < xa)"] by blast | |
| 4013 | ||
| 4014 |   { fix e::real assume "e>0"
 | |
| 4015 | ||
| 4016 |     { fix x assume "x\<in>s" hence "x \<in> ball x (d x (e / 2))" unfolding centre_in_ball using d[THEN spec[where x="e/2"]] using `e>0` by auto  }
 | |
| 4017 |     hence "s \<subseteq> \<Union>{ball x (d x (e / 2)) |x. x \<in> s}" unfolding subset_eq by auto
 | |
| 4018 | moreover | |
| 4019 |     { fix b assume "b\<in>{ball x (d x (e / 2)) |x. x \<in> s}" hence "open b" by auto  }
 | |
| 4020 |     ultimately obtain ea where "ea>0" and ea:"\<forall>x\<in>s. \<exists>b\<in>{ball x (d x (e / 2)) |x. x \<in> s}. ball x ea \<subseteq> b" using heine_borel_lemma[OF assms(2), of "{ball x (d x (e / 2)) | x. x\<in>s }"] by auto
 | |
| 4021 | ||
| 4022 |     { fix x y assume "x\<in>s" "y\<in>s" and as:"dist y x < ea"
 | |
| 4023 | obtain z where "z\<in>s" and z:"ball x ea \<subseteq> ball z (d z (e / 2))" using ea[THEN bspec[where x=x]] and `x\<in>s` by auto | |
| 4024 | hence "x\<in>ball z (d z (e / 2))" using `ea>0` unfolding subset_eq by auto | |
| 4025 | hence "dist (f z) (f x) < e / 2" using d[THEN spec[where x="e/2"]] and `e>0` and `x\<in>s` and `z\<in>s` | |
| 4026 | by (auto simp add: dist_commute) | |
| 4027 | moreover have "y\<in>ball z (d z (e / 2))" using as and `ea>0` and z[unfolded subset_eq] | |
| 4028 | by (auto simp add: dist_commute) | |
| 4029 | hence "dist (f z) (f y) < e / 2" using d[THEN spec[where x="e/2"]] and `e>0` and `y\<in>s` and `z\<in>s` | |
| 4030 | by (auto simp add: dist_commute) | |
| 4031 | ultimately have "dist (f y) (f x) < e" using dist_triangle_half_r[of "f z" "f x" e "f y"] | |
| 4032 | by (auto simp add: dist_commute) } | |
| 4033 | then have "\<exists>d>0. \<forall>x\<in>s. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (f x') (f x) < e" using `ea>0` by auto } | |
| 4034 | thus ?thesis unfolding uniformly_continuous_on_def by auto | |
| 4035 | qed | |
| 4036 | ||
| 4037 | text{* Continuity of inverse function on compact domain. *}
 | |
| 4038 | ||
| 44647 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 4039 | lemma continuous_on_inv: | 
| 33175 | 4040 | fixes f :: "'a::heine_borel \<Rightarrow> 'b::heine_borel" | 
| 4041 | (* TODO: can this be generalized more? *) | |
| 4042 | assumes "continuous_on s f" "compact s" "\<forall>x \<in> s. g (f x) = x" | |
| 4043 | shows "continuous_on (f ` s) g" | |
| 4044 | proof- | |
| 4045 | have *:"g ` f ` s = s" using assms(3) by (auto simp add: image_iff) | |
| 4046 |   { fix t assume t:"closedin (subtopology euclidean (g ` f ` s)) t"
 | |
| 4047 | then obtain T where T: "closed T" "t = s \<inter> T" unfolding closedin_closed unfolding * by auto | |
| 4048 | have "continuous_on (s \<inter> T) f" using continuous_on_subset[OF assms(1), of "s \<inter> t"] | |
| 4049 | unfolding T(2) and Int_left_absorb by auto | |
| 4050 | moreover have "compact (s \<inter> T)" | |
| 4051 | using assms(2) unfolding compact_eq_bounded_closed | |
| 4052 | using bounded_subset[of s "s \<inter> T"] and T(1) by auto | |
| 4053 | ultimately have "closed (f ` t)" using T(1) unfolding T(2) | |
| 4054 | using compact_continuous_image [of "s \<inter> T" f] unfolding compact_eq_bounded_closed by auto | |
| 4055 |     moreover have "{x \<in> f ` s. g x \<in> t} = f ` s \<inter> f ` t" using assms(3) unfolding T(2) by auto
 | |
| 4056 |     ultimately have "closedin (subtopology euclidean (f ` s)) {x \<in> f ` s. g x \<in> t}"
 | |
| 4057 | unfolding closedin_closed by auto } | |
| 4058 | thus ?thesis unfolding continuous_on_closed by auto | |
| 4059 | qed | |
| 4060 | ||
| 36437 | 4061 | text {* A uniformly convergent limit of continuous functions is continuous. *}
 | 
| 33175 | 4062 | |
| 4063 | lemma continuous_uniform_limit: | |
| 44212 
4d10e7f342b1
generalize lemma continuous_uniform_limit to class metric_space
 huffman parents: 
44211diff
changeset | 4064 | fixes f :: "'a \<Rightarrow> 'b::metric_space \<Rightarrow> 'c::metric_space" | 
| 
4d10e7f342b1
generalize lemma continuous_uniform_limit to class metric_space
 huffman parents: 
44211diff
changeset | 4065 | assumes "\<not> trivial_limit F" | 
| 
4d10e7f342b1
generalize lemma continuous_uniform_limit to class metric_space
 huffman parents: 
44211diff
changeset | 4066 | assumes "eventually (\<lambda>n. continuous_on s (f n)) F" | 
| 
4d10e7f342b1
generalize lemma continuous_uniform_limit to class metric_space
 huffman parents: 
44211diff
changeset | 4067 | assumes "\<forall>e>0. eventually (\<lambda>n. \<forall>x\<in>s. dist (f n x) (g x) < e) F" | 
| 33175 | 4068 | shows "continuous_on s g" | 
| 4069 | proof- | |
| 4070 |   { fix x and e::real assume "x\<in>s" "e>0"
 | |
| 44212 
4d10e7f342b1
generalize lemma continuous_uniform_limit to class metric_space
 huffman parents: 
44211diff
changeset | 4071 | have "eventually (\<lambda>n. \<forall>x\<in>s. dist (f n x) (g x) < e / 3) F" | 
| 
4d10e7f342b1
generalize lemma continuous_uniform_limit to class metric_space
 huffman parents: 
44211diff
changeset | 4072 | using `e>0` assms(3)[THEN spec[where x="e/3"]] by auto | 
| 
4d10e7f342b1
generalize lemma continuous_uniform_limit to class metric_space
 huffman parents: 
44211diff
changeset | 4073 | from eventually_happens [OF eventually_conj [OF this assms(2)]] | 
| 
4d10e7f342b1
generalize lemma continuous_uniform_limit to class metric_space
 huffman parents: 
44211diff
changeset | 4074 | obtain n where n:"\<forall>x\<in>s. dist (f n x) (g x) < e / 3" "continuous_on s (f n)" | 
| 
4d10e7f342b1
generalize lemma continuous_uniform_limit to class metric_space
 huffman parents: 
44211diff
changeset | 4075 | using assms(1) by blast | 
| 33175 | 4076 | have "e / 3 > 0" using `e>0` by auto | 
| 4077 | then obtain d where "d>0" and d:"\<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (f n x') (f n x) < e / 3" | |
| 36359 | 4078 | using n(2)[unfolded continuous_on_iff, THEN bspec[where x=x], OF `x\<in>s`, THEN spec[where x="e/3"]] by blast | 
| 44212 
4d10e7f342b1
generalize lemma continuous_uniform_limit to class metric_space
 huffman parents: 
44211diff
changeset | 4079 |     { fix y assume "y \<in> s" and "dist y x < d"
 | 
| 
4d10e7f342b1
generalize lemma continuous_uniform_limit to class metric_space
 huffman parents: 
44211diff
changeset | 4080 | hence "dist (f n y) (f n x) < e / 3" | 
| 
4d10e7f342b1
generalize lemma continuous_uniform_limit to class metric_space
 huffman parents: 
44211diff
changeset | 4081 | by (rule d [rule_format]) | 
| 
4d10e7f342b1
generalize lemma continuous_uniform_limit to class metric_space
 huffman parents: 
44211diff
changeset | 4082 | hence "dist (f n y) (g x) < 2 * e / 3" | 
| 
4d10e7f342b1
generalize lemma continuous_uniform_limit to class metric_space
 huffman parents: 
44211diff
changeset | 4083 | using dist_triangle [of "f n y" "g x" "f n x"] | 
| 
4d10e7f342b1
generalize lemma continuous_uniform_limit to class metric_space
 huffman parents: 
44211diff
changeset | 4084 | using n(1)[THEN bspec[where x=x], OF `x\<in>s`] | 
| 
4d10e7f342b1
generalize lemma continuous_uniform_limit to class metric_space
 huffman parents: 
44211diff
changeset | 4085 | by auto | 
| 
4d10e7f342b1
generalize lemma continuous_uniform_limit to class metric_space
 huffman parents: 
44211diff
changeset | 4086 | hence "dist (g y) (g x) < e" | 
| 
4d10e7f342b1
generalize lemma continuous_uniform_limit to class metric_space
 huffman parents: 
44211diff
changeset | 4087 | using n(1)[THEN bspec[where x=y], OF `y\<in>s`] | 
| 
4d10e7f342b1
generalize lemma continuous_uniform_limit to class metric_space
 huffman parents: 
44211diff
changeset | 4088 | using dist_triangle3 [of "g y" "g x" "f n y"] | 
| 
4d10e7f342b1
generalize lemma continuous_uniform_limit to class metric_space
 huffman parents: 
44211diff
changeset | 4089 | by auto } | 
| 
4d10e7f342b1
generalize lemma continuous_uniform_limit to class metric_space
 huffman parents: 
44211diff
changeset | 4090 | hence "\<exists>d>0. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (g x') (g x) < e" | 
| 
4d10e7f342b1
generalize lemma continuous_uniform_limit to class metric_space
 huffman parents: 
44211diff
changeset | 4091 | using `d>0` by auto } | 
| 36359 | 4092 | thus ?thesis unfolding continuous_on_iff by auto | 
| 33175 | 4093 | qed | 
| 4094 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 4095 | |
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 4096 | subsection {* Topological stuff lifted from and dropped to R *}
 | 
| 33175 | 4097 | |
| 4098 | lemma open_real: | |
| 4099 | fixes s :: "real set" shows | |
| 4100 | "open s \<longleftrightarrow> | |
| 4101 | (\<forall>x \<in> s. \<exists>e>0. \<forall>x'. abs(x' - x) < e --> x' \<in> s)" (is "?lhs = ?rhs") | |
| 4102 | unfolding open_dist dist_norm by simp | |
| 4103 | ||
| 4104 | lemma islimpt_approachable_real: | |
| 4105 | fixes s :: "real set" | |
| 4106 | shows "x islimpt s \<longleftrightarrow> (\<forall>e>0. \<exists>x'\<in> s. x' \<noteq> x \<and> abs(x' - x) < e)" | |
| 4107 | unfolding islimpt_approachable dist_norm by simp | |
| 4108 | ||
| 4109 | lemma closed_real: | |
| 4110 | fixes s :: "real set" | |
| 4111 | shows "closed s \<longleftrightarrow> | |
| 4112 | (\<forall>x. (\<forall>e>0. \<exists>x' \<in> s. x' \<noteq> x \<and> abs(x' - x) < e) | |
| 4113 | --> x \<in> s)" | |
| 4114 | unfolding closed_limpt islimpt_approachable dist_norm by simp | |
| 4115 | ||
| 4116 | lemma continuous_at_real_range: | |
| 4117 | fixes f :: "'a::real_normed_vector \<Rightarrow> real" | |
| 4118 | shows "continuous (at x) f \<longleftrightarrow> (\<forall>e>0. \<exists>d>0. | |
| 4119 | \<forall>x'. norm(x' - x) < d --> abs(f x' - f x) < e)" | |
| 4120 | unfolding continuous_at unfolding Lim_at | |
| 4121 | unfolding dist_nz[THEN sym] unfolding dist_norm apply auto | |
| 4122 | apply(erule_tac x=e in allE) apply auto apply (rule_tac x=d in exI) apply auto apply (erule_tac x=x' in allE) apply auto | |
| 4123 | apply(erule_tac x=e in allE) by auto | |
| 4124 | ||
| 4125 | lemma continuous_on_real_range: | |
| 4126 | fixes f :: "'a::real_normed_vector \<Rightarrow> real" | |
| 4127 | shows "continuous_on s f \<longleftrightarrow> (\<forall>x \<in> s. \<forall>e>0. \<exists>d>0. (\<forall>x' \<in> s. norm(x' - x) < d --> abs(f x' - f x) < e))" | |
| 36359 | 4128 | unfolding continuous_on_iff dist_norm by simp | 
| 33175 | 4129 | |
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 4130 | text {* Hence some handy theorems on distance, diameter etc. of/from a set. *}
 | 
| 33175 | 4131 | |
| 4132 | lemma compact_attains_sup: | |
| 4133 | fixes s :: "real set" | |
| 4134 |   assumes "compact s"  "s \<noteq> {}"
 | |
| 4135 | shows "\<exists>x \<in> s. \<forall>y \<in> s. y \<le> x" | |
| 4136 | proof- | |
| 4137 | from assms(1) have a:"bounded s" "closed s" unfolding compact_eq_bounded_closed by auto | |
| 33270 | 4138 |   { fix e::real assume as: "\<forall>x\<in>s. x \<le> Sup s" "Sup s \<notin> s"  "0 < e" "\<forall>x'\<in>s. x' = Sup s \<or> \<not> Sup s - x' < e"
 | 
| 4139 | have "isLub UNIV s (Sup s)" using Sup[OF assms(2)] unfolding setle_def using as(1) by auto | |
| 4140 | moreover have "isUb UNIV s (Sup s - e)" unfolding isUb_def unfolding setle_def using as(4,2) by auto | |
| 4141 | ultimately have False using isLub_le_isUb[of UNIV s "Sup s" "Sup s - e"] using `e>0` by auto } | |
| 4142 | thus ?thesis using bounded_has_Sup(1)[OF a(1) assms(2)] using a(2)[unfolded closed_real, THEN spec[where x="Sup s"]] | |
| 4143 | apply(rule_tac x="Sup s" in bexI) by auto | |
| 4144 | qed | |
| 4145 | ||
| 4146 | lemma Inf: | |
| 4147 | fixes S :: "real set" | |
| 4148 |   shows "S \<noteq> {} ==> (\<exists>b. b <=* S) ==> isGlb UNIV S (Inf S)"
 | |
| 4149 | by (auto simp add: isLb_def setle_def setge_def isGlb_def greatestP_def) | |
| 33175 | 4150 | |
| 4151 | lemma compact_attains_inf: | |
| 4152 | fixes s :: "real set" | |
| 4153 |   assumes "compact s" "s \<noteq> {}"  shows "\<exists>x \<in> s. \<forall>y \<in> s. x \<le> y"
 | |
| 4154 | proof- | |
| 4155 | from assms(1) have a:"bounded s" "closed s" unfolding compact_eq_bounded_closed by auto | |
| 33270 | 4156 |   { fix e::real assume as: "\<forall>x\<in>s. x \<ge> Inf s"  "Inf s \<notin> s"  "0 < e"
 | 
| 4157 | "\<forall>x'\<in>s. x' = Inf s \<or> \<not> abs (x' - Inf s) < e" | |
| 4158 | have "isGlb UNIV s (Inf s)" using Inf[OF assms(2)] unfolding setge_def using as(1) by auto | |
| 33175 | 4159 | moreover | 
| 4160 |     { fix x assume "x \<in> s"
 | |
| 33270 | 4161 | hence *:"abs (x - Inf s) = x - Inf s" using as(1)[THEN bspec[where x=x]] by auto | 
| 4162 | have "Inf s + e \<le> x" using as(4)[THEN bspec[where x=x]] using as(2) `x\<in>s` unfolding * by auto } | |
| 4163 | hence "isLb UNIV s (Inf s + e)" unfolding isLb_def and setge_def by auto | |
| 4164 | ultimately have False using isGlb_le_isLb[of UNIV s "Inf s" "Inf s + e"] using `e>0` by auto } | |
| 4165 | thus ?thesis using bounded_has_Inf(1)[OF a(1) assms(2)] using a(2)[unfolded closed_real, THEN spec[where x="Inf s"]] | |
| 4166 | apply(rule_tac x="Inf s" in bexI) by auto | |
| 33175 | 4167 | qed | 
| 4168 | ||
| 4169 | lemma continuous_attains_sup: | |
| 4170 | fixes f :: "'a::metric_space \<Rightarrow> real" | |
| 4171 |   shows "compact s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> continuous_on s f
 | |
| 4172 | ==> (\<exists>x \<in> s. \<forall>y \<in> s. f y \<le> f x)" | |
| 4173 | using compact_attains_sup[of "f ` s"] | |
| 4174 | using compact_continuous_image[of s f] by auto | |
| 4175 | ||
| 4176 | lemma continuous_attains_inf: | |
| 4177 | fixes f :: "'a::metric_space \<Rightarrow> real" | |
| 4178 |   shows "compact s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> continuous_on s f
 | |
| 4179 | \<Longrightarrow> (\<exists>x \<in> s. \<forall>y \<in> s. f x \<le> f y)" | |
| 4180 | using compact_attains_inf[of "f ` s"] | |
| 4181 | using compact_continuous_image[of s f] by auto | |
| 4182 | ||
| 4183 | lemma distance_attains_sup: | |
| 4184 |   assumes "compact s" "s \<noteq> {}"
 | |
| 4185 | shows "\<exists>x \<in> s. \<forall>y \<in> s. dist a y \<le> dist a x" | |
| 4186 | proof (rule continuous_attains_sup [OF assms]) | |
| 4187 |   { fix x assume "x\<in>s"
 | |
| 4188 | have "(dist a ---> dist a x) (at x within s)" | |
| 44568 
e6f291cb5810
discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
 huffman parents: 
44533diff
changeset | 4189 | by (intro tendsto_dist tendsto_const Lim_at_within tendsto_ident_at) | 
| 33175 | 4190 | } | 
| 4191 | thus "continuous_on s (dist a)" | |
| 4192 | unfolding continuous_on .. | |
| 4193 | qed | |
| 4194 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 4195 | text {* For \emph{minimal} distance, we only need closure, not compactness. *}
 | 
| 33175 | 4196 | |
| 4197 | lemma distance_attains_inf: | |
| 4198 | fixes a :: "'a::heine_borel" | |
| 4199 |   assumes "closed s"  "s \<noteq> {}"
 | |
| 4200 | shows "\<exists>x \<in> s. \<forall>y \<in> s. dist a x \<le> dist a y" | |
| 4201 | proof- | |
| 4202 | from assms(2) obtain b where "b\<in>s" by auto | |
| 4203 | let ?B = "cball a (dist b a) \<inter> s" | |
| 4204 | have "b \<in> ?B" using `b\<in>s` by (simp add: dist_commute) | |
| 4205 |   hence "?B \<noteq> {}" by auto
 | |
| 4206 | moreover | |
| 4207 |   { fix x assume "x\<in>?B"
 | |
| 4208 | fix e::real assume "e>0" | |
| 4209 |     { fix x' assume "x'\<in>?B" and as:"dist x' x < e"
 | |
| 4210 | from as have "\<bar>dist a x' - dist a x\<bar> < e" | |
| 4211 | unfolding abs_less_iff minus_diff_eq | |
| 4212 | using dist_triangle2 [of a x' x] | |
| 4213 | using dist_triangle [of a x x'] | |
| 4214 | by arith | |
| 4215 | } | |
| 4216 | hence "\<exists>d>0. \<forall>x'\<in>?B. dist x' x < d \<longrightarrow> \<bar>dist a x' - dist a x\<bar> < e" | |
| 4217 | using `e>0` by auto | |
| 4218 | } | |
| 4219 | hence "continuous_on (cball a (dist b a) \<inter> s) (dist a)" | |
| 4220 | unfolding continuous_on Lim_within dist_norm real_norm_def | |
| 4221 | by fast | |
| 4222 | moreover have "compact ?B" | |
| 4223 | using compact_cball[of a "dist b a"] | |
| 4224 | unfolding compact_eq_bounded_closed | |
| 4225 | using bounded_Int and closed_Int and assms(1) by auto | |
| 4226 | ultimately obtain x where "x\<in>cball a (dist b a) \<inter> s" "\<forall>y\<in>cball a (dist b a) \<inter> s. dist a x \<le> dist a y" | |
| 4227 | using continuous_attains_inf[of ?B "dist a"] by fastsimp | |
| 4228 | thus ?thesis by fastsimp | |
| 4229 | qed | |
| 4230 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 4231 | |
| 36437 | 4232 | subsection {* Pasted sets *}
 | 
| 33175 | 4233 | |
| 4234 | lemma bounded_Times: | |
| 4235 | assumes "bounded s" "bounded t" shows "bounded (s \<times> t)" | |
| 4236 | proof- | |
| 4237 | obtain x y a b where "\<forall>z\<in>s. dist x z \<le> a" "\<forall>z\<in>t. dist y z \<le> b" | |
| 4238 | using assms [unfolded bounded_def] by auto | |
| 4239 | then have "\<forall>z\<in>s \<times> t. dist (x, y) z \<le> sqrt (a\<twosuperior> + b\<twosuperior>)" | |
| 4240 | by (auto simp add: dist_Pair_Pair real_sqrt_le_mono add_mono power_mono) | |
| 4241 | thus ?thesis unfolding bounded_any_center [where a="(x, y)"] by auto | |
| 4242 | qed | |
| 4243 | ||
| 4244 | lemma mem_Times_iff: "x \<in> A \<times> B \<longleftrightarrow> fst x \<in> A \<and> snd x \<in> B" | |
| 4245 | by (induct x) simp | |
| 4246 | ||
| 4247 | lemma compact_Times: "compact s \<Longrightarrow> compact t \<Longrightarrow> compact (s \<times> t)" | |
| 4248 | unfolding compact_def | |
| 4249 | apply clarify | |
| 4250 | apply (drule_tac x="fst \<circ> f" in spec) | |
| 4251 | apply (drule mp, simp add: mem_Times_iff) | |
| 4252 | apply (clarify, rename_tac l1 r1) | |
| 4253 | apply (drule_tac x="snd \<circ> f \<circ> r1" in spec) | |
| 4254 | apply (drule mp, simp add: mem_Times_iff) | |
| 4255 | apply (clarify, rename_tac l2 r2) | |
| 4256 | apply (rule_tac x="(l1, l2)" in rev_bexI, simp) | |
| 4257 | apply (rule_tac x="r1 \<circ> r2" in exI) | |
| 4258 | apply (rule conjI, simp add: subseq_def) | |
| 4259 | apply (drule_tac r=r2 in lim_subseq [COMP swap_prems_rl], assumption) | |
| 4260 | apply (drule (1) tendsto_Pair) back | |
| 4261 | apply (simp add: o_def) | |
| 4262 | done | |
| 4263 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 4264 | text{* Hence some useful properties follow quite easily. *}
 | 
| 33175 | 4265 | |
| 4266 | lemma compact_scaling: | |
| 4267 | fixes s :: "'a::real_normed_vector set" | |
| 4268 | assumes "compact s" shows "compact ((\<lambda>x. c *\<^sub>R x) ` s)" | |
| 4269 | proof- | |
| 4270 | let ?f = "\<lambda>x. scaleR c x" | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44252diff
changeset | 4271 | have *:"bounded_linear ?f" by (rule bounded_linear_scaleR_right) | 
| 33175 | 4272 | show ?thesis using compact_continuous_image[of s ?f] continuous_at_imp_continuous_on[of s ?f] | 
| 4273 | using linear_continuous_at[OF *] assms by auto | |
| 4274 | qed | |
| 4275 | ||
| 4276 | lemma compact_negations: | |
| 4277 | fixes s :: "'a::real_normed_vector set" | |
| 4278 | assumes "compact s" shows "compact ((\<lambda>x. -x) ` s)" | |
| 4279 | using compact_scaling [OF assms, of "- 1"] by auto | |
| 4280 | ||
| 4281 | lemma compact_sums: | |
| 4282 | fixes s t :: "'a::real_normed_vector set" | |
| 4283 |   assumes "compact s"  "compact t"  shows "compact {x + y | x y. x \<in> s \<and> y \<in> t}"
 | |
| 4284 | proof- | |
| 4285 |   have *:"{x + y | x y. x \<in> s \<and> y \<in> t} = (\<lambda>z. fst z + snd z) ` (s \<times> t)"
 | |
| 4286 | apply auto unfolding image_iff apply(rule_tac x="(xa, y)" in bexI) by auto | |
| 4287 | have "continuous_on (s \<times> t) (\<lambda>z. fst z + snd z)" | |
| 4288 | unfolding continuous_on by (rule ballI) (intro tendsto_intros) | |
| 4289 | thus ?thesis unfolding * using compact_continuous_image compact_Times [OF assms] by auto | |
| 4290 | qed | |
| 4291 | ||
| 4292 | lemma compact_differences: | |
| 4293 | fixes s t :: "'a::real_normed_vector set" | |
| 4294 |   assumes "compact s" "compact t"  shows "compact {x - y | x y. x \<in> s \<and> y \<in> t}"
 | |
| 4295 | proof- | |
| 4296 |   have "{x - y | x y. x\<in>s \<and> y \<in> t} =  {x + y | x y. x \<in> s \<and> y \<in> (uminus ` t)}"
 | |
| 4297 | apply auto apply(rule_tac x= xa in exI) apply auto apply(rule_tac x=xa in exI) by auto | |
| 4298 | thus ?thesis using compact_sums[OF assms(1) compact_negations[OF assms(2)]] by auto | |
| 4299 | qed | |
| 4300 | ||
| 4301 | lemma compact_translation: | |
| 4302 | fixes s :: "'a::real_normed_vector set" | |
| 4303 | assumes "compact s" shows "compact ((\<lambda>x. a + x) ` s)" | |
| 4304 | proof- | |
| 4305 |   have "{x + y |x y. x \<in> s \<and> y \<in> {a}} = (\<lambda>x. a + x) ` s" by auto
 | |
| 4306 | thus ?thesis using compact_sums[OF assms compact_sing[of a]] by auto | |
| 4307 | qed | |
| 4308 | ||
| 4309 | lemma compact_affinity: | |
| 4310 | fixes s :: "'a::real_normed_vector set" | |
| 4311 | assumes "compact s" shows "compact ((\<lambda>x. a + c *\<^sub>R x) ` s)" | |
| 4312 | proof- | |
| 4313 | have "op + a ` op *\<^sub>R c ` s = (\<lambda>x. a + c *\<^sub>R x) ` s" by auto | |
| 4314 | thus ?thesis using compact_translation[OF compact_scaling[OF assms], of a c] by auto | |
| 4315 | qed | |
| 4316 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 4317 | text {* Hence we get the following. *}
 | 
| 33175 | 4318 | |
| 4319 | lemma compact_sup_maxdistance: | |
| 4320 | fixes s :: "'a::real_normed_vector set" | |
| 4321 |   assumes "compact s"  "s \<noteq> {}"
 | |
| 4322 | shows "\<exists>x\<in>s. \<exists>y\<in>s. \<forall>u\<in>s. \<forall>v\<in>s. norm(u - v) \<le> norm(x - y)" | |
| 4323 | proof- | |
| 4324 |   have "{x - y | x y . x\<in>s \<and> y\<in>s} \<noteq> {}" using `s \<noteq> {}` by auto
 | |
| 4325 |   then obtain x where x:"x\<in>{x - y |x y. x \<in> s \<and> y \<in> s}"  "\<forall>y\<in>{x - y |x y. x \<in> s \<and> y \<in> s}. norm y \<le> norm x"
 | |
| 4326 | using compact_differences[OF assms(1) assms(1)] | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36360diff
changeset | 4327 |     using distance_attains_sup[where 'a="'a", unfolded dist_norm, of "{x - y | x y . x\<in>s \<and> y\<in>s}" 0] by auto
 | 
| 33175 | 4328 | from x(1) obtain a b where "a\<in>s" "b\<in>s" "x = a - b" by auto | 
| 4329 | thus ?thesis using x(2)[unfolded `x = a - b`] by blast | |
| 4330 | qed | |
| 4331 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 4332 | text {* We can state this in terms of diameter of a set. *}
 | 
| 33175 | 4333 | |
| 33270 | 4334 | definition "diameter s = (if s = {} then 0::real else Sup {norm(x - y) | x y. x \<in> s \<and> y \<in> s})"
 | 
| 33175 | 4335 | (* TODO: generalize to class metric_space *) | 
| 4336 | ||
| 4337 | lemma diameter_bounded: | |
| 4338 | assumes "bounded s" | |
| 4339 | shows "\<forall>x\<in>s. \<forall>y\<in>s. norm(x - y) \<le> diameter s" | |
| 4340 | "\<forall>d>0. d < diameter s --> (\<exists>x\<in>s. \<exists>y\<in>s. norm(x - y) > d)" | |
| 4341 | proof- | |
| 4342 |   let ?D = "{norm (x - y) |x y. x \<in> s \<and> y \<in> s}"
 | |
| 4343 | obtain a where a:"\<forall>x\<in>s. norm x \<le> a" using assms[unfolded bounded_iff] by auto | |
| 4344 |   { fix x y assume "x \<in> s" "y \<in> s"
 | |
| 36350 | 4345 | hence "norm (x - y) \<le> 2 * a" using norm_triangle_ineq[of x "-y", unfolded norm_minus_cancel] a[THEN bspec[where x=x]] a[THEN bspec[where x=y]] by (auto simp add: field_simps) } | 
| 33175 | 4346 | note * = this | 
| 4347 |   { fix x y assume "x\<in>s" "y\<in>s"  hence "s \<noteq> {}" by auto
 | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36360diff
changeset | 4348 |     have "norm(x - y) \<le> diameter s" unfolding diameter_def using `s\<noteq>{}` *[OF `x\<in>s` `y\<in>s`] `x\<in>s` `y\<in>s`
 | 
| 44584 | 4349 | by simp (blast del: Sup_upper intro!: * Sup_upper) } | 
| 33175 | 4350 | moreover | 
| 4351 |   { fix d::real assume "d>0" "d < diameter s"
 | |
| 4352 |     hence "s\<noteq>{}" unfolding diameter_def by auto
 | |
| 4353 | have "\<exists>d' \<in> ?D. d' > d" | |
| 4354 | proof(rule ccontr) | |
| 4355 |       assume "\<not> (\<exists>d'\<in>{norm (x - y) |x y. x \<in> s \<and> y \<in> s}. d < d')"
 | |
| 33324 | 4356 | hence "\<forall>d'\<in>?D. d' \<le> d" by auto (metis not_leE) | 
| 4357 |       thus False using `d < diameter s` `s\<noteq>{}` 
 | |
| 4358 | apply (auto simp add: diameter_def) | |
| 4359 | apply (drule Sup_real_iff [THEN [2] rev_iffD2]) | |
| 4360 | apply (auto, force) | |
| 4361 | done | |
| 33175 | 4362 | qed | 
| 4363 | hence "\<exists>x\<in>s. \<exists>y\<in>s. norm(x - y) > d" by auto } | |
| 4364 | ultimately show "\<forall>x\<in>s. \<forall>y\<in>s. norm(x - y) \<le> diameter s" | |
| 4365 | "\<forall>d>0. d < diameter s --> (\<exists>x\<in>s. \<exists>y\<in>s. norm(x - y) > d)" by auto | |
| 4366 | qed | |
| 4367 | ||
| 4368 | lemma diameter_bounded_bound: | |
| 4369 | "bounded s \<Longrightarrow> x \<in> s \<Longrightarrow> y \<in> s ==> norm(x - y) \<le> diameter s" | |
| 4370 | using diameter_bounded by blast | |
| 4371 | ||
| 4372 | lemma diameter_compact_attained: | |
| 4373 | fixes s :: "'a::real_normed_vector set" | |
| 4374 |   assumes "compact s"  "s \<noteq> {}"
 | |
| 4375 | shows "\<exists>x\<in>s. \<exists>y\<in>s. (norm(x - y) = diameter s)" | |
| 4376 | proof- | |
| 4377 | have b:"bounded s" using assms(1) by (rule compact_imp_bounded) | |
| 4378 | then obtain x y where xys:"x\<in>s" "y\<in>s" and xy:"\<forall>u\<in>s. \<forall>v\<in>s. norm (u - v) \<le> norm (x - y)" using compact_sup_maxdistance[OF assms] by auto | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36360diff
changeset | 4379 | hence "diameter s \<le> norm (x - y)" | 
| 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36360diff
changeset | 4380 | unfolding diameter_def by clarsimp (rule Sup_least, fast+) | 
| 33324 | 4381 | thus ?thesis | 
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36360diff
changeset | 4382 | by (metis b diameter_bounded_bound order_antisym xys) | 
| 33175 | 4383 | qed | 
| 4384 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 4385 | text {* Related results with closure as the conclusion. *}
 | 
| 33175 | 4386 | |
| 4387 | lemma closed_scaling: | |
| 4388 | fixes s :: "'a::real_normed_vector set" | |
| 4389 | assumes "closed s" shows "closed ((\<lambda>x. c *\<^sub>R x) ` s)" | |
| 4390 | proof(cases "s={}")
 | |
| 4391 | case True thus ?thesis by auto | |
| 4392 | next | |
| 4393 | case False | |
| 4394 | show ?thesis | |
| 4395 | proof(cases "c=0") | |
| 4396 |     have *:"(\<lambda>x. 0) ` s = {0}" using `s\<noteq>{}` by auto
 | |
| 36668 
941ba2da372e
simplify definition of t1_space; generalize lemma closed_sing and related lemmas
 huffman parents: 
36667diff
changeset | 4397 | case True thus ?thesis apply auto unfolding * by auto | 
| 33175 | 4398 | next | 
| 4399 | case False | |
| 4400 |     { fix x l assume as:"\<forall>n::nat. x n \<in> scaleR c ` s"  "(x ---> l) sequentially"
 | |
| 4401 |       { fix n::nat have "scaleR (1 / c) (x n) \<in> s"
 | |
| 4402 | using as(1)[THEN spec[where x=n]] | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4403 | using `c\<noteq>0` by auto | 
| 33175 | 4404 | } | 
| 4405 | moreover | |
| 4406 |       { fix e::real assume "e>0"
 | |
| 4407 | hence "0 < e *\<bar>c\<bar>" using `c\<noteq>0` mult_pos_pos[of e "abs c"] by auto | |
| 4408 | then obtain N where "\<forall>n\<ge>N. dist (x n) l < e * \<bar>c\<bar>" | |
| 4409 | using as(2)[unfolded Lim_sequentially, THEN spec[where x="e * abs c"]] by auto | |
| 4410 | hence "\<exists>N. \<forall>n\<ge>N. dist (scaleR (1 / c) (x n)) (scaleR (1 / c) l) < e" | |
| 4411 | unfolding dist_norm unfolding scaleR_right_diff_distrib[THEN sym] | |
| 4412 | using mult_imp_div_pos_less[of "abs c" _ e] `c\<noteq>0` by auto } | |
| 4413 | hence "((\<lambda>n. scaleR (1 / c) (x n)) ---> scaleR (1 / c) l) sequentially" unfolding Lim_sequentially by auto | |
| 4414 | ultimately have "l \<in> scaleR c ` s" | |
| 4415 | using assms[unfolded closed_sequential_limits, THEN spec[where x="\<lambda>n. scaleR (1/c) (x n)"], THEN spec[where x="scaleR (1/c) l"]] | |
| 4416 | unfolding image_iff using `c\<noteq>0` apply(rule_tac x="scaleR (1 / c) l" in bexI) by auto } | |
| 4417 | thus ?thesis unfolding closed_sequential_limits by fast | |
| 4418 | qed | |
| 4419 | qed | |
| 4420 | ||
| 4421 | lemma closed_negations: | |
| 4422 | fixes s :: "'a::real_normed_vector set" | |
| 4423 | assumes "closed s" shows "closed ((\<lambda>x. -x) ` s)" | |
| 4424 | using closed_scaling[OF assms, of "- 1"] by simp | |
| 4425 | ||
| 4426 | lemma compact_closed_sums: | |
| 4427 | fixes s :: "'a::real_normed_vector set" | |
| 4428 |   assumes "compact s"  "closed t"  shows "closed {x + y | x y. x \<in> s \<and> y \<in> t}"
 | |
| 4429 | proof- | |
| 4430 |   let ?S = "{x + y |x y. x \<in> s \<and> y \<in> t}"
 | |
| 4431 |   { fix x l assume as:"\<forall>n. x n \<in> ?S"  "(x ---> l) sequentially"
 | |
| 4432 | from as(1) obtain f where f:"\<forall>n. x n = fst (f n) + snd (f n)" "\<forall>n. fst (f n) \<in> s" "\<forall>n. snd (f n) \<in> t" | |
| 4433 | using choice[of "\<lambda>n y. x n = (fst y) + (snd y) \<and> fst y \<in> s \<and> snd y \<in> t"] by auto | |
| 4434 | obtain l' r where "l'\<in>s" and r:"subseq r" and lr:"(((\<lambda>n. fst (f n)) \<circ> r) ---> l') sequentially" | |
| 4435 | using assms(1)[unfolded compact_def, THEN spec[where x="\<lambda> n. fst (f n)"]] using f(2) by auto | |
| 4436 | have "((\<lambda>n. snd (f (r n))) ---> l - l') sequentially" | |
| 44125 | 4437 | using tendsto_diff[OF lim_subseq[OF r as(2)] lr] and f(1) unfolding o_def by auto | 
| 33175 | 4438 | hence "l - l' \<in> t" | 
| 4439 | using assms(2)[unfolded closed_sequential_limits, THEN spec[where x="\<lambda> n. snd (f (r n))"], THEN spec[where x="l - l'"]] | |
| 4440 | using f(3) by auto | |
| 4441 | hence "l \<in> ?S" using `l' \<in> s` apply auto apply(rule_tac x=l' in exI) apply(rule_tac x="l - l'" in exI) by auto | |
| 4442 | } | |
| 4443 | thus ?thesis unfolding closed_sequential_limits by fast | |
| 4444 | qed | |
| 4445 | ||
| 4446 | lemma closed_compact_sums: | |
| 4447 | fixes s t :: "'a::real_normed_vector set" | |
| 4448 | assumes "closed s" "compact t" | |
| 4449 |   shows "closed {x + y | x y. x \<in> s \<and> y \<in> t}"
 | |
| 4450 | proof- | |
| 4451 |   have "{x + y |x y. x \<in> t \<and> y \<in> s} = {x + y |x y. x \<in> s \<and> y \<in> t}" apply auto
 | |
| 4452 | apply(rule_tac x=y in exI) apply auto apply(rule_tac x=y in exI) by auto | |
| 4453 | thus ?thesis using compact_closed_sums[OF assms(2,1)] by simp | |
| 4454 | qed | |
| 4455 | ||
| 4456 | lemma compact_closed_differences: | |
| 4457 | fixes s t :: "'a::real_normed_vector set" | |
| 4458 | assumes "compact s" "closed t" | |
| 4459 |   shows "closed {x - y | x y. x \<in> s \<and> y \<in> t}"
 | |
| 4460 | proof- | |
| 4461 |   have "{x + y |x y. x \<in> s \<and> y \<in> uminus ` t} =  {x - y |x y. x \<in> s \<and> y \<in> t}"
 | |
| 4462 | apply auto apply(rule_tac x=xa in exI) apply auto apply(rule_tac x=xa in exI) by auto | |
| 4463 | thus ?thesis using compact_closed_sums[OF assms(1) closed_negations[OF assms(2)]] by auto | |
| 4464 | qed | |
| 4465 | ||
| 4466 | lemma closed_compact_differences: | |
| 4467 | fixes s t :: "'a::real_normed_vector set" | |
| 4468 | assumes "closed s" "compact t" | |
| 4469 |   shows "closed {x - y | x y. x \<in> s \<and> y \<in> t}"
 | |
| 4470 | proof- | |
| 4471 |   have "{x + y |x y. x \<in> s \<and> y \<in> uminus ` t} = {x - y |x y. x \<in> s \<and> y \<in> t}"
 | |
| 4472 | apply auto apply(rule_tac x=xa in exI) apply auto apply(rule_tac x=xa in exI) by auto | |
| 4473 | thus ?thesis using closed_compact_sums[OF assms(1) compact_negations[OF assms(2)]] by simp | |
| 4474 | qed | |
| 4475 | ||
| 4476 | lemma closed_translation: | |
| 4477 | fixes a :: "'a::real_normed_vector" | |
| 4478 | assumes "closed s" shows "closed ((\<lambda>x. a + x) ` s)" | |
| 4479 | proof- | |
| 4480 |   have "{a + y |y. y \<in> s} = (op + a ` s)" by auto
 | |
| 4481 | thus ?thesis using compact_closed_sums[OF compact_sing[of a] assms] by auto | |
| 4482 | qed | |
| 4483 | ||
| 34105 | 4484 | lemma translation_Compl: | 
| 4485 | fixes a :: "'a::ab_group_add" | |
| 4486 | shows "(\<lambda>x. a + x) ` (- t) = - ((\<lambda>x. a + x) ` t)" | |
| 4487 | apply (auto simp add: image_iff) apply(rule_tac x="x - a" in bexI) by auto | |
| 4488 | ||
| 33175 | 4489 | lemma translation_UNIV: | 
| 4490 | fixes a :: "'a::ab_group_add" shows "range (\<lambda>x. a + x) = UNIV" | |
| 4491 | apply (auto simp add: image_iff) apply(rule_tac x="x - a" in exI) by auto | |
| 4492 | ||
| 4493 | lemma translation_diff: | |
| 4494 | fixes a :: "'a::ab_group_add" | |
| 4495 | shows "(\<lambda>x. a + x) ` (s - t) = ((\<lambda>x. a + x) ` s) - ((\<lambda>x. a + x) ` t)" | |
| 4496 | by auto | |
| 4497 | ||
| 4498 | lemma closure_translation: | |
| 4499 | fixes a :: "'a::real_normed_vector" | |
| 4500 | shows "closure ((\<lambda>x. a + x) ` s) = (\<lambda>x. a + x) ` (closure s)" | |
| 4501 | proof- | |
| 34105 | 4502 | have *:"op + a ` (- s) = - op + a ` s" | 
| 33175 | 4503 | apply auto unfolding image_iff apply(rule_tac x="x - a" in bexI) by auto | 
| 34105 | 4504 | show ?thesis unfolding closure_interior translation_Compl | 
| 4505 | using interior_translation[of a "- s"] unfolding * by auto | |
| 33175 | 4506 | qed | 
| 4507 | ||
| 4508 | lemma frontier_translation: | |
| 4509 | fixes a :: "'a::real_normed_vector" | |
| 4510 | shows "frontier((\<lambda>x. a + x) ` s) = (\<lambda>x. a + x) ` (frontier s)" | |
| 4511 | unfolding frontier_def translation_diff interior_translation closure_translation by auto | |
| 4512 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 4513 | |
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 4514 | subsection {* Separation between points and sets *}
 | 
| 33175 | 4515 | |
| 4516 | lemma separate_point_closed: | |
| 4517 | fixes s :: "'a::heine_borel set" | |
| 4518 | shows "closed s \<Longrightarrow> a \<notin> s ==> (\<exists>d>0. \<forall>x\<in>s. d \<le> dist a x)" | |
| 4519 | proof(cases "s = {}")
 | |
| 4520 | case True | |
| 4521 | thus ?thesis by(auto intro!: exI[where x=1]) | |
| 4522 | next | |
| 4523 | case False | |
| 4524 | assume "closed s" "a \<notin> s" | |
| 4525 |   then obtain x where "x\<in>s" "\<forall>y\<in>s. dist a x \<le> dist a y" using `s \<noteq> {}` distance_attains_inf [of s a] by blast
 | |
| 4526 | with `x\<in>s` show ?thesis using dist_pos_lt[of a x] and`a \<notin> s` by blast | |
| 4527 | qed | |
| 4528 | ||
| 4529 | lemma separate_compact_closed: | |
| 4530 |   fixes s t :: "'a::{heine_borel, real_normed_vector} set"
 | |
| 4531 | (* TODO: does this generalize to heine_borel? *) | |
| 4532 |   assumes "compact s" and "closed t" and "s \<inter> t = {}"
 | |
| 4533 | shows "\<exists>d>0. \<forall>x\<in>s. \<forall>y\<in>t. d \<le> dist x y" | |
| 4534 | proof- | |
| 4535 |   have "0 \<notin> {x - y |x y. x \<in> s \<and> y \<in> t}" using assms(3) by auto
 | |
| 4536 |   then obtain d where "d>0" and d:"\<forall>x\<in>{x - y |x y. x \<in> s \<and> y \<in> t}. d \<le> dist 0 x"
 | |
| 4537 | using separate_point_closed[OF compact_closed_differences[OF assms(1,2)], of 0] by auto | |
| 4538 |   { fix x y assume "x\<in>s" "y\<in>t"
 | |
| 4539 |     hence "x - y \<in> {x - y |x y. x \<in> s \<and> y \<in> t}" by auto
 | |
| 4540 | hence "d \<le> dist (x - y) 0" using d[THEN bspec[where x="x - y"]] using dist_commute | |
| 4541 | by (auto simp add: dist_commute) | |
| 4542 | hence "d \<le> dist x y" unfolding dist_norm by auto } | |
| 4543 | thus ?thesis using `d>0` by auto | |
| 4544 | qed | |
| 4545 | ||
| 4546 | lemma separate_closed_compact: | |
| 4547 |   fixes s t :: "'a::{heine_borel, real_normed_vector} set"
 | |
| 4548 |   assumes "closed s" and "compact t" and "s \<inter> t = {}"
 | |
| 4549 | shows "\<exists>d>0. \<forall>x\<in>s. \<forall>y\<in>t. d \<le> dist x y" | |
| 4550 | proof- | |
| 4551 |   have *:"t \<inter> s = {}" using assms(3) by auto
 | |
| 4552 | show ?thesis using separate_compact_closed[OF assms(2,1) *] | |
| 4553 | apply auto apply(rule_tac x=d in exI) apply auto apply (erule_tac x=y in ballE) | |
| 4554 | by (auto simp add: dist_commute) | |
| 4555 | qed | |
| 4556 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 4557 | |
| 36439 | 4558 | subsection {* Intervals *}
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4559 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4560 | lemma interval: fixes a :: "'a::ordered_euclidean_space" shows | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4561 |   "{a <..< b} = {x::'a. \<forall>i<DIM('a). a$$i < x$$i \<and> x$$i < b$$i}" and
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4562 |   "{a .. b} = {x::'a. \<forall>i<DIM('a). a$$i \<le> x$$i \<and> x$$i \<le> b$$i}"
 | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 4563 | by(auto simp add:set_eq_iff eucl_le[where 'a='a] eucl_less[where 'a='a]) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4564 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4565 | lemma mem_interval: fixes a :: "'a::ordered_euclidean_space" shows | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4566 |   "x \<in> {a<..<b} \<longleftrightarrow> (\<forall>i<DIM('a). a$$i < x$$i \<and> x$$i < b$$i)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4567 |   "x \<in> {a .. b} \<longleftrightarrow> (\<forall>i<DIM('a). a$$i \<le> x$$i \<and> x$$i \<le> b$$i)"
 | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 4568 | using interval[of a b] by(auto simp add: set_eq_iff eucl_le[where 'a='a] eucl_less[where 'a='a]) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4569 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4570 | lemma interval_eq_empty: fixes a :: "'a::ordered_euclidean_space" shows | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4571 |  "({a <..< b} = {} \<longleftrightarrow> (\<exists>i<DIM('a). b$$i \<le> a$$i))" (is ?th1) and
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4572 |  "({a  ..  b} = {} \<longleftrightarrow> (\<exists>i<DIM('a). b$$i < a$$i))" (is ?th2)
 | 
| 33175 | 4573 | proof- | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4574 |   { fix i x assume i:"i<DIM('a)" and as:"b$$i \<le> a$$i" and x:"x\<in>{a <..< b}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4575 | hence "a $$ i < x $$ i \<and> x $$ i < b $$ i" unfolding mem_interval by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4576 | hence "a$$i < b$$i" by auto | 
| 33175 | 4577 | hence False using as by auto } | 
| 4578 | moreover | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4579 |   { assume as:"\<forall>i<DIM('a). \<not> (b$$i \<le> a$$i)"
 | 
| 33175 | 4580 | let ?x = "(1/2) *\<^sub>R (a + b)" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4581 |     { fix i assume i:"i<DIM('a)" 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4582 | have "a$$i < b$$i" using as[THEN spec[where x=i]] using i by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4583 | hence "a$$i < ((1/2) *\<^sub>R (a+b)) $$ i" "((1/2) *\<^sub>R (a+b)) $$ i < b$$i" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4584 | unfolding euclidean_simps by auto } | 
| 33175 | 4585 |     hence "{a <..< b} \<noteq> {}" using mem_interval(1)[of "?x" a b] by auto  }
 | 
| 4586 | ultimately show ?th1 by blast | |
| 4587 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4588 |   { fix i x assume i:"i<DIM('a)" and as:"b$$i < a$$i" and x:"x\<in>{a .. b}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4589 | hence "a $$ i \<le> x $$ i \<and> x $$ i \<le> b $$ i" unfolding mem_interval by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4590 | hence "a$$i \<le> b$$i" by auto | 
| 33175 | 4591 | hence False using as by auto } | 
| 4592 | moreover | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4593 |   { assume as:"\<forall>i<DIM('a). \<not> (b$$i < a$$i)"
 | 
| 33175 | 4594 | let ?x = "(1/2) *\<^sub>R (a + b)" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4595 |     { fix i assume i:"i<DIM('a)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4596 | have "a$$i \<le> b$$i" using as[THEN spec[where x=i]] by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4597 | hence "a$$i \<le> ((1/2) *\<^sub>R (a+b)) $$ i" "((1/2) *\<^sub>R (a+b)) $$ i \<le> b$$i" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4598 | unfolding euclidean_simps by auto } | 
| 33175 | 4599 |     hence "{a .. b} \<noteq> {}" using mem_interval(2)[of "?x" a b] by auto  }
 | 
| 4600 | ultimately show ?th2 by blast | |
| 4601 | qed | |
| 4602 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4603 | lemma interval_ne_empty: fixes a :: "'a::ordered_euclidean_space" shows | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4604 |   "{a  ..  b} \<noteq> {} \<longleftrightarrow> (\<forall>i<DIM('a). a$$i \<le> b$$i)" and
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4605 |   "{a <..< b} \<noteq> {} \<longleftrightarrow> (\<forall>i<DIM('a). a$$i < b$$i)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4606 | unfolding interval_eq_empty[of a b] by fastsimp+ | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4607 | |
| 44584 | 4608 | lemma interval_sing: | 
| 4609 | fixes a :: "'a::ordered_euclidean_space" | |
| 4610 |   shows "{a .. a} = {a}" and "{a<..<a} = {}"
 | |
| 4611 | unfolding set_eq_iff mem_interval eq_iff [symmetric] | |
| 4612 | by (auto simp add: euclidean_eq[where 'a='a] eq_commute | |
| 4613 | eucl_less[where 'a='a] eucl_le[where 'a='a]) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4614 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4615 | lemma subset_interval_imp: fixes a :: "'a::ordered_euclidean_space" shows | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4616 |  "(\<forall>i<DIM('a). a$$i \<le> c$$i \<and> d$$i \<le> b$$i) \<Longrightarrow> {c .. d} \<subseteq> {a .. b}" and
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4617 |  "(\<forall>i<DIM('a). a$$i < c$$i \<and> d$$i < b$$i) \<Longrightarrow> {c .. d} \<subseteq> {a<..<b}" and
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4618 |  "(\<forall>i<DIM('a). a$$i \<le> c$$i \<and> d$$i \<le> b$$i) \<Longrightarrow> {c<..<d} \<subseteq> {a .. b}" and
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4619 |  "(\<forall>i<DIM('a). a$$i \<le> c$$i \<and> d$$i \<le> b$$i) \<Longrightarrow> {c<..<d} \<subseteq> {a<..<b}"
 | 
| 44584 | 4620 | unfolding subset_eq[unfolded Ball_def] unfolding mem_interval | 
| 4621 | by (best intro: order_trans less_le_trans le_less_trans less_imp_le)+ | |
| 4622 | ||
| 4623 | lemma interval_open_subset_closed: | |
| 4624 | fixes a :: "'a::ordered_euclidean_space" | |
| 4625 |   shows "{a<..<b} \<subseteq> {a .. b}"
 | |
| 4626 | unfolding subset_eq [unfolded Ball_def] mem_interval | |
| 4627 | by (fast intro: less_imp_le) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4628 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4629 | lemma subset_interval: fixes a :: "'a::ordered_euclidean_space" shows | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4630 |  "{c .. d} \<subseteq> {a .. b} \<longleftrightarrow> (\<forall>i<DIM('a). c$$i \<le> d$$i) --> (\<forall>i<DIM('a). a$$i \<le> c$$i \<and> d$$i \<le> b$$i)" (is ?th1) and
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4631 |  "{c .. d} \<subseteq> {a<..<b} \<longleftrightarrow> (\<forall>i<DIM('a). c$$i \<le> d$$i) --> (\<forall>i<DIM('a). a$$i < c$$i \<and> d$$i < b$$i)" (is ?th2) and
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4632 |  "{c<..<d} \<subseteq> {a .. b} \<longleftrightarrow> (\<forall>i<DIM('a). c$$i < d$$i) --> (\<forall>i<DIM('a). a$$i \<le> c$$i \<and> d$$i \<le> b$$i)" (is ?th3) and
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4633 |  "{c<..<d} \<subseteq> {a<..<b} \<longleftrightarrow> (\<forall>i<DIM('a). c$$i < d$$i) --> (\<forall>i<DIM('a). a$$i \<le> c$$i \<and> d$$i \<le> b$$i)" (is ?th4)
 | 
| 33175 | 4634 | proof- | 
| 4635 | show ?th1 unfolding subset_eq and Ball_def and mem_interval by (auto intro: order_trans) | |
| 4636 | show ?th2 unfolding subset_eq and Ball_def and mem_interval by (auto intro: le_less_trans less_le_trans order_trans less_imp_le) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4637 |   { assume as: "{c<..<d} \<subseteq> {a .. b}" "\<forall>i<DIM('a). c$$i < d$$i"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4638 |     hence "{c<..<d} \<noteq> {}" unfolding interval_eq_empty by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4639 |     fix i assume i:"i<DIM('a)"
 | 
| 33175 | 4640 | (** TODO combine the following two parts as done in the HOL_light version. **) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4641 |     { let ?x = "(\<chi>\<chi> j. (if j=i then ((min (a$$j) (d$$j))+c$$j)/2 else (c$$j+d$$j)/2))::'a"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4642 | assume as2: "a$$i > c$$i" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4643 |       { fix j assume j:"j<DIM('a)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4644 | hence "c $$ j < ?x $$ j \<and> ?x $$ j < d $$ j" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4645 | apply(cases "j=i") using as(2)[THEN spec[where x=j]] i | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4646 | by (auto simp add: as2) } | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4647 |       hence "?x\<in>{c<..<d}" using i unfolding mem_interval by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4648 | moreover | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4649 |       have "?x\<notin>{a .. b}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4650 | unfolding mem_interval apply auto apply(rule_tac x=i in exI) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4651 | using as(2)[THEN spec[where x=i]] and as2 i | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4652 | by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4653 | ultimately have False using as by auto } | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4654 | hence "a$$i \<le> c$$i" by(rule ccontr)auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4655 | moreover | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4656 |     { let ?x = "(\<chi>\<chi> j. (if j=i then ((max (b$$j) (c$$j))+d$$j)/2 else (c$$j+d$$j)/2))::'a"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4657 | assume as2: "b$$i < d$$i" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4658 |       { fix j assume "j<DIM('a)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4659 | hence "d $$ j > ?x $$ j \<and> ?x $$ j > c $$ j" | 
| 33175 | 4660 | apply(cases "j=i") using as(2)[THEN spec[where x=j]] | 
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36360diff
changeset | 4661 | by (auto simp add: as2) } | 
| 33175 | 4662 |       hence "?x\<in>{c<..<d}" unfolding mem_interval by auto
 | 
| 4663 | moreover | |
| 4664 |       have "?x\<notin>{a .. b}"
 | |
| 4665 | unfolding mem_interval apply auto apply(rule_tac x=i in exI) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4666 | using as(2)[THEN spec[where x=i]] and as2 using i | 
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36360diff
changeset | 4667 | by auto | 
| 33175 | 4668 | ultimately have False using as by auto } | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4669 | hence "b$$i \<ge> d$$i" by(rule ccontr)auto | 
| 33175 | 4670 | ultimately | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4671 | have "a$$i \<le> c$$i \<and> d$$i \<le> b$$i" by auto | 
| 33175 | 4672 | } note part1 = this | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4673 | show ?th3 unfolding subset_eq and Ball_def and mem_interval | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4674 | apply(rule,rule,rule,rule) apply(rule part1) unfolding subset_eq and Ball_def and mem_interval | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4675 | prefer 4 apply auto by(erule_tac x=i in allE,erule_tac x=i in allE,fastsimp)+ | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4676 |   { assume as:"{c<..<d} \<subseteq> {a<..<b}" "\<forall>i<DIM('a). c$$i < d$$i"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4677 |     fix i assume i:"i<DIM('a)"
 | 
| 33175 | 4678 |     from as(1) have "{c<..<d} \<subseteq> {a..b}" using interval_open_subset_closed[of a b] by auto
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4679 | hence "a$$i \<le> c$$i \<and> d$$i \<le> b$$i" using part1 and as(2) using i by auto } note * = this | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4680 | show ?th4 unfolding subset_eq and Ball_def and mem_interval | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4681 | apply(rule,rule,rule,rule) apply(rule *) unfolding subset_eq and Ball_def and mem_interval prefer 4 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4682 | apply auto by(erule_tac x=i in allE, simp)+ | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4683 | qed | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4684 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4685 | lemma disjoint_interval: fixes a::"'a::ordered_euclidean_space" shows | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4686 |   "{a .. b} \<inter> {c .. d} = {} \<longleftrightarrow> (\<exists>i<DIM('a). (b$$i < a$$i \<or> d$$i < c$$i \<or> b$$i < c$$i \<or> d$$i < a$$i))" (is ?th1) and
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4687 |   "{a .. b} \<inter> {c<..<d} = {} \<longleftrightarrow> (\<exists>i<DIM('a). (b$$i < a$$i \<or> d$$i \<le> c$$i \<or> b$$i \<le> c$$i \<or> d$$i \<le> a$$i))" (is ?th2) and
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4688 |   "{a<..<b} \<inter> {c .. d} = {} \<longleftrightarrow> (\<exists>i<DIM('a). (b$$i \<le> a$$i \<or> d$$i < c$$i \<or> b$$i \<le> c$$i \<or> d$$i \<le> a$$i))" (is ?th3) and
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4689 |   "{a<..<b} \<inter> {c<..<d} = {} \<longleftrightarrow> (\<exists>i<DIM('a). (b$$i \<le> a$$i \<or> d$$i \<le> c$$i \<or> b$$i \<le> c$$i \<or> d$$i \<le> a$$i))" (is ?th4)
 | 
| 33175 | 4690 | proof- | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4691 | let ?z = "(\<chi>\<chi> i. ((max (a$$i) (c$$i)) + (min (b$$i) (d$$i))) / 2)::'a" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 4692 | note * = set_eq_iff Int_iff empty_iff mem_interval all_conj_distrib[THEN sym] eq_False | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4693 | show ?th1 unfolding * apply safe apply(erule_tac x="?z" in allE) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4694 | unfolding not_all apply(erule exE,rule_tac x=x in exI) apply(erule_tac[2-] x=i in allE) by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4695 | show ?th2 unfolding * apply safe apply(erule_tac x="?z" in allE) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4696 | unfolding not_all apply(erule exE,rule_tac x=x in exI) apply(erule_tac[2-] x=i in allE) by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4697 | show ?th3 unfolding * apply safe apply(erule_tac x="?z" in allE) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4698 | unfolding not_all apply(erule exE,rule_tac x=x in exI) apply(erule_tac[2-] x=i in allE) by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4699 | show ?th4 unfolding * apply safe apply(erule_tac x="?z" in allE) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4700 | unfolding not_all apply(erule exE,rule_tac x=x in exI) apply(erule_tac[2-] x=i in allE) by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4701 | qed | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4702 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4703 | lemma inter_interval: fixes a :: "'a::ordered_euclidean_space" shows | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4704 |  "{a .. b} \<inter> {c .. d} =  {(\<chi>\<chi> i. max (a$$i) (c$$i)) .. (\<chi>\<chi> i. min (b$$i) (d$$i))}"
 | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 4705 | unfolding set_eq_iff and Int_iff and mem_interval | 
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36360diff
changeset | 4706 | by auto | 
| 33175 | 4707 | |
| 4708 | (* Moved interval_open_subset_closed a bit upwards *) | |
| 4709 | ||
| 44250 
9133bc634d9c
simplify proofs of lemmas open_interval, closed_interval
 huffman parents: 
44233diff
changeset | 4710 | lemma open_interval[intro]: | 
| 
9133bc634d9c
simplify proofs of lemmas open_interval, closed_interval
 huffman parents: 
44233diff
changeset | 4711 |   fixes a b :: "'a::ordered_euclidean_space" shows "open {a<..<b}"
 | 
| 33175 | 4712 | proof- | 
| 44250 
9133bc634d9c
simplify proofs of lemmas open_interval, closed_interval
 huffman parents: 
44233diff
changeset | 4713 |   have "open (\<Inter>i<DIM('a). (\<lambda>x. x$$i) -` {a$$i<..<b$$i})"
 | 
| 
9133bc634d9c
simplify proofs of lemmas open_interval, closed_interval
 huffman parents: 
44233diff
changeset | 4714 | by (intro open_INT finite_lessThan ballI continuous_open_vimage allI | 
| 
9133bc634d9c
simplify proofs of lemmas open_interval, closed_interval
 huffman parents: 
44233diff
changeset | 4715 | linear_continuous_at bounded_linear_euclidean_component | 
| 
9133bc634d9c
simplify proofs of lemmas open_interval, closed_interval
 huffman parents: 
44233diff
changeset | 4716 | open_real_greaterThanLessThan) | 
| 
9133bc634d9c
simplify proofs of lemmas open_interval, closed_interval
 huffman parents: 
44233diff
changeset | 4717 |   also have "(\<Inter>i<DIM('a). (\<lambda>x. x$$i) -` {a$$i<..<b$$i}) = {a<..<b}"
 | 
| 
9133bc634d9c
simplify proofs of lemmas open_interval, closed_interval
 huffman parents: 
44233diff
changeset | 4718 | by (auto simp add: eucl_less [where 'a='a]) | 
| 
9133bc634d9c
simplify proofs of lemmas open_interval, closed_interval
 huffman parents: 
44233diff
changeset | 4719 |   finally show "open {a<..<b}" .
 | 
| 
9133bc634d9c
simplify proofs of lemmas open_interval, closed_interval
 huffman parents: 
44233diff
changeset | 4720 | qed | 
| 
9133bc634d9c
simplify proofs of lemmas open_interval, closed_interval
 huffman parents: 
44233diff
changeset | 4721 | |
| 
9133bc634d9c
simplify proofs of lemmas open_interval, closed_interval
 huffman parents: 
44233diff
changeset | 4722 | lemma closed_interval[intro]: | 
| 
9133bc634d9c
simplify proofs of lemmas open_interval, closed_interval
 huffman parents: 
44233diff
changeset | 4723 |   fixes a b :: "'a::ordered_euclidean_space" shows "closed {a .. b}"
 | 
| 33175 | 4724 | proof- | 
| 44250 
9133bc634d9c
simplify proofs of lemmas open_interval, closed_interval
 huffman parents: 
44233diff
changeset | 4725 |   have "closed (\<Inter>i<DIM('a). (\<lambda>x. x$$i) -` {a$$i .. b$$i})"
 | 
| 
9133bc634d9c
simplify proofs of lemmas open_interval, closed_interval
 huffman parents: 
44233diff
changeset | 4726 | by (intro closed_INT ballI continuous_closed_vimage allI | 
| 
9133bc634d9c
simplify proofs of lemmas open_interval, closed_interval
 huffman parents: 
44233diff
changeset | 4727 | linear_continuous_at bounded_linear_euclidean_component | 
| 
9133bc634d9c
simplify proofs of lemmas open_interval, closed_interval
 huffman parents: 
44233diff
changeset | 4728 | closed_real_atLeastAtMost) | 
| 
9133bc634d9c
simplify proofs of lemmas open_interval, closed_interval
 huffman parents: 
44233diff
changeset | 4729 |   also have "(\<Inter>i<DIM('a). (\<lambda>x. x$$i) -` {a$$i .. b$$i}) = {a .. b}"
 | 
| 
9133bc634d9c
simplify proofs of lemmas open_interval, closed_interval
 huffman parents: 
44233diff
changeset | 4730 | by (auto simp add: eucl_le [where 'a='a]) | 
| 
9133bc634d9c
simplify proofs of lemmas open_interval, closed_interval
 huffman parents: 
44233diff
changeset | 4731 |   finally show "closed {a .. b}" .
 | 
| 33175 | 4732 | qed | 
| 4733 | ||
| 44519 | 4734 | lemma interior_closed_interval [intro]: | 
| 4735 | fixes a b :: "'a::ordered_euclidean_space" | |
| 4736 |   shows "interior {a..b} = {a<..<b}" (is "?L = ?R")
 | |
| 33175 | 4737 | proof(rule subset_antisym) | 
| 44519 | 4738 | show "?R \<subseteq> ?L" using interval_open_subset_closed open_interval | 
| 4739 | by (rule interior_maximal) | |
| 33175 | 4740 | next | 
| 44519 | 4741 |   { fix x assume "x \<in> interior {a..b}"
 | 
| 4742 |     then obtain s where s:"open s" "x \<in> s" "s \<subseteq> {a..b}" ..
 | |
| 33175 | 4743 |     then obtain e where "e>0" and e:"\<forall>x'. dist x' x < e \<longrightarrow> x' \<in> {a..b}" unfolding open_dist and subset_eq by auto
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4744 |     { fix i assume i:"i<DIM('a)"
 | 
| 33175 | 4745 | have "dist (x - (e / 2) *\<^sub>R basis i) x < e" | 
| 4746 | "dist (x + (e / 2) *\<^sub>R basis i) x < e" | |
| 4747 | unfolding dist_norm apply auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4748 | unfolding norm_minus_cancel using norm_basis and `e>0` by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4749 | hence "a $$ i \<le> (x - (e / 2) *\<^sub>R basis i) $$ i" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4750 | "(x + (e / 2) *\<^sub>R basis i) $$ i \<le> b $$ i" | 
| 33175 | 4751 | using e[THEN spec[where x="x - (e/2) *\<^sub>R basis i"]] | 
| 4752 | and e[THEN spec[where x="x + (e/2) *\<^sub>R basis i"]] | |
| 44584 | 4753 | unfolding mem_interval using i by blast+ | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4754 | hence "a $$ i < x $$ i" and "x $$ i < b $$ i" unfolding euclidean_simps | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4755 | unfolding basis_component using `e>0` i by auto } | 
| 33175 | 4756 |     hence "x \<in> {a<..<b}" unfolding mem_interval by auto  }
 | 
| 44519 | 4757 | thus "?L \<subseteq> ?R" .. | 
| 33175 | 4758 | qed | 
| 4759 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4760 | lemma bounded_closed_interval: fixes a :: "'a::ordered_euclidean_space" shows "bounded {a .. b}"
 | 
| 33175 | 4761 | proof- | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4762 |   let ?b = "\<Sum>i<DIM('a). \<bar>a$$i\<bar> + \<bar>b$$i\<bar>"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4763 |   { fix x::"'a" assume x:"\<forall>i<DIM('a). a $$ i \<le> x $$ i \<and> x $$ i \<le> b $$ i"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4764 |     { fix i assume "i<DIM('a)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4765 | hence "\<bar>x$$i\<bar> \<le> \<bar>a$$i\<bar> + \<bar>b$$i\<bar>" using x[THEN spec[where x=i]] by auto } | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4766 |     hence "(\<Sum>i<DIM('a). \<bar>x $$ i\<bar>) \<le> ?b" apply-apply(rule setsum_mono) by auto
 | 
| 33175 | 4767 | hence "norm x \<le> ?b" using norm_le_l1[of x] by auto } | 
| 4768 | thus ?thesis unfolding interval and bounded_iff by auto | |
| 4769 | qed | |
| 4770 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4771 | lemma bounded_interval: fixes a :: "'a::ordered_euclidean_space" shows | 
| 33175 | 4772 |  "bounded {a .. b} \<and> bounded {a<..<b}"
 | 
| 4773 | using bounded_closed_interval[of a b] | |
| 4774 | using interval_open_subset_closed[of a b] | |
| 4775 |   using bounded_subset[of "{a..b}" "{a<..<b}"]
 | |
| 4776 | by simp | |
| 4777 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4778 | lemma not_interval_univ: fixes a :: "'a::ordered_euclidean_space" shows | 
| 33175 | 4779 |  "({a .. b} \<noteq> UNIV) \<and> ({a<..<b} \<noteq> UNIV)"
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4780 | using bounded_interval[of a b] by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4781 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4782 | lemma compact_interval: fixes a :: "'a::ordered_euclidean_space" shows "compact {a .. b}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4783 |   using bounded_closed_imp_compact[of "{a..b}"] using bounded_interval[of a b]
 | 
| 33175 | 4784 | by auto | 
| 4785 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4786 | lemma open_interval_midpoint: fixes a :: "'a::ordered_euclidean_space" | 
| 33175 | 4787 |   assumes "{a<..<b} \<noteq> {}" shows "((1/2) *\<^sub>R (a + b)) \<in> {a<..<b}"
 | 
| 4788 | proof- | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4789 |   { fix i assume "i<DIM('a)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4790 | hence "a $$ i < ((1 / 2) *\<^sub>R (a + b)) $$ i \<and> ((1 / 2) *\<^sub>R (a + b)) $$ i < b $$ i" | 
| 33175 | 4791 | using assms[unfolded interval_ne_empty, THEN spec[where x=i]] | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4792 | unfolding euclidean_simps by auto } | 
| 33175 | 4793 | thus ?thesis unfolding mem_interval by auto | 
| 4794 | qed | |
| 4795 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4796 | lemma open_closed_interval_convex: fixes x :: "'a::ordered_euclidean_space" | 
| 33175 | 4797 |   assumes x:"x \<in> {a<..<b}" and y:"y \<in> {a .. b}" and e:"0 < e" "e \<le> 1"
 | 
| 4798 |   shows "(e *\<^sub>R x + (1 - e) *\<^sub>R y) \<in> {a<..<b}"
 | |
| 4799 | proof- | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4800 |   { fix i assume i:"i<DIM('a)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4801 | have "a $$ i = e * a$$i + (1 - e) * a$$i" unfolding left_diff_distrib by simp | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4802 | also have "\<dots> < e * x $$ i + (1 - e) * y $$ i" apply(rule add_less_le_mono) | 
| 33175 | 4803 | using e unfolding mult_less_cancel_left and mult_le_cancel_left apply simp_all | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4804 | using x unfolding mem_interval using i apply simp | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4805 | using y unfolding mem_interval using i apply simp | 
| 33175 | 4806 | done | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4807 | finally have "a $$ i < (e *\<^sub>R x + (1 - e) *\<^sub>R y) $$ i" unfolding euclidean_simps by auto | 
| 33175 | 4808 |     moreover {
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4809 | have "b $$ i = e * b$$i + (1 - e) * b$$i" unfolding left_diff_distrib by simp | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4810 | also have "\<dots> > e * x $$ i + (1 - e) * y $$ i" apply(rule add_less_le_mono) | 
| 33175 | 4811 | using e unfolding mult_less_cancel_left and mult_le_cancel_left apply simp_all | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4812 | using x unfolding mem_interval using i apply simp | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4813 | using y unfolding mem_interval using i apply simp | 
| 33175 | 4814 | done | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4815 | finally have "(e *\<^sub>R x + (1 - e) *\<^sub>R y) $$ i < b $$ i" unfolding euclidean_simps by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4816 | } ultimately have "a $$ i < (e *\<^sub>R x + (1 - e) *\<^sub>R y) $$ i \<and> (e *\<^sub>R x + (1 - e) *\<^sub>R y) $$ i < b $$ i" by auto } | 
| 33175 | 4817 | thus ?thesis unfolding mem_interval by auto | 
| 4818 | qed | |
| 4819 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4820 | lemma closure_open_interval: fixes a :: "'a::ordered_euclidean_space" | 
| 33175 | 4821 |   assumes "{a<..<b} \<noteq> {}"
 | 
| 4822 |   shows "closure {a<..<b} = {a .. b}"
 | |
| 4823 | proof- | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4824 | have ab:"a < b" using assms[unfolded interval_ne_empty] apply(subst eucl_less) by auto | 
| 33175 | 4825 | let ?c = "(1 / 2) *\<^sub>R (a + b)" | 
| 4826 |   { fix x assume as:"x \<in> {a .. b}"
 | |
| 4827 | def f == "\<lambda>n::nat. x + (inverse (real n + 1)) *\<^sub>R (?c - x)" | |
| 4828 |     { fix n assume fn:"f n < b \<longrightarrow> a < f n \<longrightarrow> f n = x" and xc:"x \<noteq> ?c"
 | |
| 4829 | have *:"0 < inverse (real n + 1)" "inverse (real n + 1) \<le> 1" unfolding inverse_le_1_iff by auto | |
| 4830 | have "(inverse (real n + 1)) *\<^sub>R ((1 / 2) *\<^sub>R (a + b)) + (1 - inverse (real n + 1)) *\<^sub>R x = | |
| 4831 | x + (inverse (real n + 1)) *\<^sub>R (((1 / 2) *\<^sub>R (a + b)) - x)" | |
| 4832 | by (auto simp add: algebra_simps) | |
| 4833 | hence "f n < b" and "a < f n" using open_closed_interval_convex[OF open_interval_midpoint[OF assms] as *] unfolding f_def by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4834 | hence False using fn unfolding f_def using xc by auto } | 
| 33175 | 4835 | moreover | 
| 4836 |     { assume "\<not> (f ---> x) sequentially"
 | |
| 4837 |       { fix e::real assume "e>0"
 | |
| 4838 | hence "\<exists>N::nat. inverse (real (N + 1)) < e" using real_arch_inv[of e] apply (auto simp add: Suc_pred') apply(rule_tac x="n - 1" in exI) by auto | |
| 4839 | then obtain N::nat where "inverse (real (N + 1)) < e" by auto | |
| 4840 | hence "\<forall>n\<ge>N. inverse (real n + 1) < e" by (auto, metis Suc_le_mono le_SucE less_imp_inverse_less nat_le_real_less order_less_trans real_of_nat_Suc real_of_nat_Suc_gt_zero) | |
| 4841 | hence "\<exists>N::nat. \<forall>n\<ge>N. inverse (real n + 1) < e" by auto } | |
| 4842 | hence "((\<lambda>n. inverse (real n + 1)) ---> 0) sequentially" | |
| 4843 | unfolding Lim_sequentially by(auto simp add: dist_norm) | |
| 4844 | hence "(f ---> x) sequentially" unfolding f_def | |
| 44125 | 4845 | using tendsto_add[OF tendsto_const, of "\<lambda>n::nat. (inverse (real n + 1)) *\<^sub>R ((1 / 2) *\<^sub>R (a + b) - x)" 0 sequentially x] | 
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44252diff
changeset | 4846 | using tendsto_scaleR [OF _ tendsto_const, of "\<lambda>n::nat. inverse (real n + 1)" 0 sequentially "((1 / 2) *\<^sub>R (a + b) - x)"] by auto } | 
| 33175 | 4847 |     ultimately have "x \<in> closure {a<..<b}"
 | 
| 4848 | using as and open_interval_midpoint[OF assms] unfolding closure_def unfolding islimpt_sequential by(cases "x=?c")auto } | |
| 4849 | thus ?thesis using closure_minimal[OF interval_open_subset_closed closed_interval, of a b] by blast | |
| 4850 | qed | |
| 4851 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4852 | lemma bounded_subset_open_interval_symmetric: fixes s::"('a::ordered_euclidean_space) set"
 | 
| 33175 | 4853 |   assumes "bounded s"  shows "\<exists>a. s \<subseteq> {-a<..<a}"
 | 
| 4854 | proof- | |
| 4855 | obtain b where "b>0" and b:"\<forall>x\<in>s. norm x \<le> b" using assms[unfolded bounded_pos] by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4856 | def a \<equiv> "(\<chi>\<chi> i. b+1)::'a" | 
| 33175 | 4857 |   { fix x assume "x\<in>s"
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4858 |     fix i assume i:"i<DIM('a)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4859 | hence "(-a)$$i < x$$i" and "x$$i < a$$i" using b[THEN bspec[where x=x], OF `x\<in>s`] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4860 | and component_le_norm[of x i] unfolding euclidean_simps and a_def by auto } | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4861 | thus ?thesis by(auto intro: exI[where x=a] simp add: eucl_less[where 'a='a]) | 
| 33175 | 4862 | qed | 
| 4863 | ||
| 4864 | lemma bounded_subset_open_interval: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4865 |   fixes s :: "('a::ordered_euclidean_space) set"
 | 
| 33175 | 4866 |   shows "bounded s ==> (\<exists>a b. s \<subseteq> {a<..<b})"
 | 
| 4867 | by (auto dest!: bounded_subset_open_interval_symmetric) | |
| 4868 | ||
| 4869 | lemma bounded_subset_closed_interval_symmetric: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4870 |   fixes s :: "('a::ordered_euclidean_space) set"
 | 
| 33175 | 4871 |   assumes "bounded s" shows "\<exists>a. s \<subseteq> {-a .. a}"
 | 
| 4872 | proof- | |
| 4873 |   obtain a where "s \<subseteq> {- a<..<a}" using bounded_subset_open_interval_symmetric[OF assms] by auto
 | |
| 4874 | thus ?thesis using interval_open_subset_closed[of "-a" a] by auto | |
| 4875 | qed | |
| 4876 | ||
| 4877 | lemma bounded_subset_closed_interval: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4878 |   fixes s :: "('a::ordered_euclidean_space) set"
 | 
| 33175 | 4879 |   shows "bounded s ==> (\<exists>a b. s \<subseteq> {a .. b})"
 | 
| 4880 | using bounded_subset_closed_interval_symmetric[of s] by auto | |
| 4881 | ||
| 4882 | lemma frontier_closed_interval: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4883 | fixes a b :: "'a::ordered_euclidean_space" | 
| 33175 | 4884 |   shows "frontier {a .. b} = {a .. b} - {a<..<b}"
 | 
| 4885 | unfolding frontier_def unfolding interior_closed_interval and closure_closed[OF closed_interval] .. | |
| 4886 | ||
| 4887 | lemma frontier_open_interval: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4888 | fixes a b :: "'a::ordered_euclidean_space" | 
| 33175 | 4889 |   shows "frontier {a<..<b} = (if {a<..<b} = {} then {} else {a .. b} - {a<..<b})"
 | 
| 4890 | proof(cases "{a<..<b} = {}")
 | |
| 4891 | case True thus ?thesis using frontier_empty by auto | |
| 4892 | next | |
| 4893 | case False thus ?thesis unfolding frontier_def and closure_open_interval[OF False] and interior_open[OF open_interval] by auto | |
| 4894 | qed | |
| 4895 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4896 | lemma inter_interval_mixed_eq_empty: fixes a :: "'a::ordered_euclidean_space" | 
| 33175 | 4897 |   assumes "{c<..<d} \<noteq> {}"  shows "{a<..<b} \<inter> {c .. d} = {} \<longleftrightarrow> {a<..<b} \<inter> {c<..<d} = {}"
 | 
| 4898 | unfolding closure_open_interval[OF assms, THEN sym] unfolding open_inter_closure_eq_empty[OF open_interval] .. | |
| 4899 | ||
| 4900 | ||
| 4901 | (* Some stuff for half-infinite intervals too; FIXME: notation? *) | |
| 4902 | ||
| 37673 
f69f4b079275
generalize more lemmas from ordered_euclidean_space to euclidean_space
 huffman parents: 
37649diff
changeset | 4903 | lemma closed_interval_left: fixes b::"'a::euclidean_space" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4904 |   shows "closed {x::'a. \<forall>i<DIM('a). x$$i \<le> b$$i}"
 | 
| 33175 | 4905 | proof- | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4906 |   { fix i assume i:"i<DIM('a)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4907 |     fix x::"'a" assume x:"\<forall>e>0. \<exists>x'\<in>{x. \<forall>i<DIM('a). x $$ i \<le> b $$ i}. x' \<noteq> x \<and> dist x' x < e"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4908 |     { assume "x$$i > b$$i"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4909 | then obtain y where "y $$ i \<le> b $$ i" "y \<noteq> x" "dist y x < x$$i - b$$i" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4910 | using x[THEN spec[where x="x$$i - b$$i"]] using i by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4911 | hence False using component_le_norm[of "y - x" i] unfolding dist_norm euclidean_simps using i | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4912 | by auto } | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4913 | hence "x$$i \<le> b$$i" by(rule ccontr)auto } | 
| 33175 | 4914 | thus ?thesis unfolding closed_limpt unfolding islimpt_approachable by blast | 
| 4915 | qed | |
| 4916 | ||
| 37673 
f69f4b079275
generalize more lemmas from ordered_euclidean_space to euclidean_space
 huffman parents: 
37649diff
changeset | 4917 | lemma closed_interval_right: fixes a::"'a::euclidean_space" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4918 |   shows "closed {x::'a. \<forall>i<DIM('a). a$$i \<le> x$$i}"
 | 
| 33175 | 4919 | proof- | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4920 |   { fix i assume i:"i<DIM('a)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4921 |     fix x::"'a" assume x:"\<forall>e>0. \<exists>x'\<in>{x. \<forall>i<DIM('a). a $$ i \<le> x $$ i}. x' \<noteq> x \<and> dist x' x < e"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4922 |     { assume "a$$i > x$$i"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4923 | then obtain y where "a $$ i \<le> y $$ i" "y \<noteq> x" "dist y x < a$$i - x$$i" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4924 | using x[THEN spec[where x="a$$i - x$$i"]] i by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4925 | hence False using component_le_norm[of "y - x" i] unfolding dist_norm and euclidean_simps by auto } | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4926 | hence "a$$i \<le> x$$i" by(rule ccontr)auto } | 
| 33175 | 4927 | thus ?thesis unfolding closed_limpt unfolding islimpt_approachable by blast | 
| 4928 | qed | |
| 4929 | ||
| 36439 | 4930 | text {* Intervals in general, including infinite and mixtures of open and closed. *}
 | 
| 33175 | 4931 | |
| 37732 
6432bf0d7191
generalize type of is_interval to class euclidean_space
 huffman parents: 
37680diff
changeset | 4932 | definition "is_interval (s::('a::euclidean_space) set) \<longleftrightarrow>
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4933 |   (\<forall>a\<in>s. \<forall>b\<in>s. \<forall>x. (\<forall>i<DIM('a). ((a$$i \<le> x$$i \<and> x$$i \<le> b$$i) \<or> (b$$i \<le> x$$i \<and> x$$i \<le> a$$i))) \<longrightarrow> x \<in> s)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4934 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 4935 | lemma is_interval_interval: "is_interval {a .. b::'a::ordered_euclidean_space}" (is ?th1)
 | 
| 39086 
c4b809e57fe0
preimages of open sets over continuous function are open
 hoelzl parents: 
38656diff
changeset | 4936 |   "is_interval {a<..<b}" (is ?th2) proof -
 | 
| 33175 | 4937 | show ?th1 ?th2 unfolding is_interval_def mem_interval Ball_def atLeastAtMost_iff | 
| 44584 | 4938 | by(meson order_trans le_less_trans less_le_trans less_trans)+ qed | 
| 33175 | 4939 | |
| 4940 | lemma is_interval_empty: | |
| 4941 |  "is_interval {}"
 | |
| 4942 | unfolding is_interval_def | |
| 4943 | by simp | |
| 4944 | ||
| 4945 | lemma is_interval_univ: | |
| 4946 | "is_interval UNIV" | |
| 4947 | unfolding is_interval_def | |
| 4948 | by simp | |
| 4949 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 4950 | |
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 4951 | subsection {* Closure of halfspaces and hyperplanes *}
 | 
| 33175 | 4952 | |
| 44219 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 4953 | lemma isCont_open_vimage: | 
| 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 4954 | assumes "\<And>x. isCont f x" and "open s" shows "open (f -` s)" | 
| 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 4955 | proof - | 
| 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 4956 | from assms(1) have "continuous_on UNIV f" | 
| 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 4957 | unfolding isCont_def continuous_on_def within_UNIV by simp | 
| 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 4958 |   hence "open {x \<in> UNIV. f x \<in> s}"
 | 
| 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 4959 | using open_UNIV `open s` by (rule continuous_open_preimage) | 
| 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 4960 | thus "open (f -` s)" | 
| 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 4961 | by (simp add: vimage_def) | 
| 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 4962 | qed | 
| 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 4963 | |
| 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 4964 | lemma isCont_closed_vimage: | 
| 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 4965 | assumes "\<And>x. isCont f x" and "closed s" shows "closed (f -` s)" | 
| 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 4966 | using assms unfolding closed_def vimage_Compl [symmetric] | 
| 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 4967 | by (rule isCont_open_vimage) | 
| 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 4968 | |
| 44213 
6fb54701a11b
add lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq;
 huffman parents: 
44212diff
changeset | 4969 | lemma open_Collect_less: | 
| 44219 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 4970 | fixes f g :: "'a::topological_space \<Rightarrow> real" | 
| 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 4971 | assumes f: "\<And>x. isCont f x" | 
| 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 4972 | assumes g: "\<And>x. isCont g x" | 
| 44213 
6fb54701a11b
add lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq;
 huffman parents: 
44212diff
changeset | 4973 |   shows "open {x. f x < g x}"
 | 
| 
6fb54701a11b
add lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq;
 huffman parents: 
44212diff
changeset | 4974 | proof - | 
| 
6fb54701a11b
add lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq;
 huffman parents: 
44212diff
changeset | 4975 |   have "open ((\<lambda>x. g x - f x) -` {0<..})"
 | 
| 44219 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 4976 | using isCont_diff [OF g f] open_real_greaterThan | 
| 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 4977 | by (rule isCont_open_vimage) | 
| 44213 
6fb54701a11b
add lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq;
 huffman parents: 
44212diff
changeset | 4978 |   also have "((\<lambda>x. g x - f x) -` {0<..}) = {x. f x < g x}"
 | 
| 
6fb54701a11b
add lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq;
 huffman parents: 
44212diff
changeset | 4979 | by auto | 
| 
6fb54701a11b
add lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq;
 huffman parents: 
44212diff
changeset | 4980 | finally show ?thesis . | 
| 
6fb54701a11b
add lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq;
 huffman parents: 
44212diff
changeset | 4981 | qed | 
| 
6fb54701a11b
add lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq;
 huffman parents: 
44212diff
changeset | 4982 | |
| 
6fb54701a11b
add lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq;
 huffman parents: 
44212diff
changeset | 4983 | lemma closed_Collect_le: | 
| 44219 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 4984 | fixes f g :: "'a::topological_space \<Rightarrow> real" | 
| 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 4985 | assumes f: "\<And>x. isCont f x" | 
| 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 4986 | assumes g: "\<And>x. isCont g x" | 
| 44213 
6fb54701a11b
add lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq;
 huffman parents: 
44212diff
changeset | 4987 |   shows "closed {x. f x \<le> g x}"
 | 
| 
6fb54701a11b
add lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq;
 huffman parents: 
44212diff
changeset | 4988 | proof - | 
| 
6fb54701a11b
add lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq;
 huffman parents: 
44212diff
changeset | 4989 |   have "closed ((\<lambda>x. g x - f x) -` {0..})"
 | 
| 44219 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 4990 | using isCont_diff [OF g f] closed_real_atLeast | 
| 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 4991 | by (rule isCont_closed_vimage) | 
| 44213 
6fb54701a11b
add lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq;
 huffman parents: 
44212diff
changeset | 4992 |   also have "((\<lambda>x. g x - f x) -` {0..}) = {x. f x \<le> g x}"
 | 
| 
6fb54701a11b
add lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq;
 huffman parents: 
44212diff
changeset | 4993 | by auto | 
| 
6fb54701a11b
add lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq;
 huffman parents: 
44212diff
changeset | 4994 | finally show ?thesis . | 
| 
6fb54701a11b
add lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq;
 huffman parents: 
44212diff
changeset | 4995 | qed | 
| 
6fb54701a11b
add lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq;
 huffman parents: 
44212diff
changeset | 4996 | |
| 
6fb54701a11b
add lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq;
 huffman parents: 
44212diff
changeset | 4997 | lemma closed_Collect_eq: | 
| 44219 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 4998 | fixes f g :: "'a::topological_space \<Rightarrow> 'b::t2_space" | 
| 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 4999 | assumes f: "\<And>x. isCont f x" | 
| 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 5000 | assumes g: "\<And>x. isCont g x" | 
| 44213 
6fb54701a11b
add lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq;
 huffman parents: 
44212diff
changeset | 5001 |   shows "closed {x. f x = g x}"
 | 
| 
6fb54701a11b
add lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq;
 huffman parents: 
44212diff
changeset | 5002 | proof - | 
| 44216 | 5003 |   have "open {(x::'b, y::'b). x \<noteq> y}"
 | 
| 5004 | unfolding open_prod_def by (auto dest!: hausdorff) | |
| 5005 |   hence "closed {(x::'b, y::'b). x = y}"
 | |
| 5006 | unfolding closed_def split_def Collect_neg_eq . | |
| 44219 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 5007 | with isCont_Pair [OF f g] | 
| 44216 | 5008 |   have "closed ((\<lambda>x. (f x, g x)) -` {(x, y). x = y})"
 | 
| 44219 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 5009 | by (rule isCont_closed_vimage) | 
| 44216 | 5010 |   also have "\<dots> = {x. f x = g x}" by auto
 | 
| 44213 
6fb54701a11b
add lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq;
 huffman parents: 
44212diff
changeset | 5011 | finally show ?thesis . | 
| 
6fb54701a11b
add lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq;
 huffman parents: 
44212diff
changeset | 5012 | qed | 
| 
6fb54701a11b
add lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq;
 huffman parents: 
44212diff
changeset | 5013 | |
| 33175 | 5014 | lemma continuous_at_inner: "continuous (at x) (inner a)" | 
| 5015 | unfolding continuous_at by (intro tendsto_intros) | |
| 5016 | ||
| 39086 
c4b809e57fe0
preimages of open sets over continuous function are open
 hoelzl parents: 
38656diff
changeset | 5017 | lemma continuous_at_euclidean_component[intro!, simp]: "continuous (at x) (\<lambda>x. x $$ i)" | 
| 
c4b809e57fe0
preimages of open sets over continuous function are open
 hoelzl parents: 
38656diff
changeset | 5018 | unfolding euclidean_component_def by (rule continuous_at_inner) | 
| 
c4b809e57fe0
preimages of open sets over continuous function are open
 hoelzl parents: 
38656diff
changeset | 5019 | |
| 33175 | 5020 | lemma closed_halfspace_le: "closed {x. inner a x \<le> b}"
 | 
| 44233 | 5021 | by (simp add: closed_Collect_le) | 
| 33175 | 5022 | |
| 5023 | lemma closed_halfspace_ge: "closed {x. inner a x \<ge> b}"
 | |
| 44233 | 5024 | by (simp add: closed_Collect_le) | 
| 33175 | 5025 | |
| 5026 | lemma closed_hyperplane: "closed {x. inner a x = b}"
 | |
| 44233 | 5027 | by (simp add: closed_Collect_eq) | 
| 33175 | 5028 | |
| 5029 | lemma closed_halfspace_component_le: | |
| 37673 
f69f4b079275
generalize more lemmas from ordered_euclidean_space to euclidean_space
 huffman parents: 
37649diff
changeset | 5030 |   shows "closed {x::'a::euclidean_space. x$$i \<le> a}"
 | 
| 44233 | 5031 | by (simp add: closed_Collect_le) | 
| 33175 | 5032 | |
| 5033 | lemma closed_halfspace_component_ge: | |
| 37673 
f69f4b079275
generalize more lemmas from ordered_euclidean_space to euclidean_space
 huffman parents: 
37649diff
changeset | 5034 |   shows "closed {x::'a::euclidean_space. x$$i \<ge> a}"
 | 
| 44233 | 5035 | by (simp add: closed_Collect_le) | 
| 33175 | 5036 | |
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 5037 | text {* Openness of halfspaces. *}
 | 
| 33175 | 5038 | |
| 5039 | lemma open_halfspace_lt: "open {x. inner a x < b}"
 | |
| 44233 | 5040 | by (simp add: open_Collect_less) | 
| 33175 | 5041 | |
| 5042 | lemma open_halfspace_gt: "open {x. inner a x > b}"
 | |
| 44233 | 5043 | by (simp add: open_Collect_less) | 
| 33175 | 5044 | |
| 5045 | lemma open_halfspace_component_lt: | |
| 37673 
f69f4b079275
generalize more lemmas from ordered_euclidean_space to euclidean_space
 huffman parents: 
37649diff
changeset | 5046 |   shows "open {x::'a::euclidean_space. x$$i < a}"
 | 
| 44233 | 5047 | by (simp add: open_Collect_less) | 
| 33175 | 5048 | |
| 5049 | lemma open_halfspace_component_gt: | |
| 44219 
f738e3200e24
generalize lemmas open_Collect_less, closed_Collect_le, closed_Collect_eq to class topological_space
 huffman parents: 
44216diff
changeset | 5050 |   shows "open {x::'a::euclidean_space. x$$i > a}"
 | 
| 44233 | 5051 | by (simp add: open_Collect_less) | 
| 33175 | 5052 | |
| 38656 | 5053 | text{* Instantiation for intervals on @{text ordered_euclidean_space} *}
 | 
| 5054 | ||
| 5055 | lemma eucl_lessThan_eq_halfspaces: | |
| 5056 | fixes a :: "'a\<Colon>ordered_euclidean_space" | |
| 5057 |   shows "{..<a} = (\<Inter>i<DIM('a). {x. x $$ i < a $$ i})"
 | |
| 5058 | by (auto simp: eucl_less[where 'a='a]) | |
| 5059 | ||
| 5060 | lemma eucl_greaterThan_eq_halfspaces: | |
| 5061 | fixes a :: "'a\<Colon>ordered_euclidean_space" | |
| 5062 |   shows "{a<..} = (\<Inter>i<DIM('a). {x. a $$ i < x $$ i})"
 | |
| 5063 | by (auto simp: eucl_less[where 'a='a]) | |
| 5064 | ||
| 5065 | lemma eucl_atMost_eq_halfspaces: | |
| 5066 | fixes a :: "'a\<Colon>ordered_euclidean_space" | |
| 5067 |   shows "{.. a} = (\<Inter>i<DIM('a). {x. x $$ i \<le> a $$ i})"
 | |
| 5068 | by (auto simp: eucl_le[where 'a='a]) | |
| 5069 | ||
| 5070 | lemma eucl_atLeast_eq_halfspaces: | |
| 5071 | fixes a :: "'a\<Colon>ordered_euclidean_space" | |
| 5072 |   shows "{a ..} = (\<Inter>i<DIM('a). {x. a $$ i \<le> x $$ i})"
 | |
| 5073 | by (auto simp: eucl_le[where 'a='a]) | |
| 5074 | ||
| 5075 | lemma open_eucl_lessThan[simp, intro]: | |
| 5076 | fixes a :: "'a\<Colon>ordered_euclidean_space" | |
| 5077 |   shows "open {..< a}"
 | |
| 5078 | by (auto simp: eucl_lessThan_eq_halfspaces open_halfspace_component_lt) | |
| 5079 | ||
| 5080 | lemma open_eucl_greaterThan[simp, intro]: | |
| 5081 | fixes a :: "'a\<Colon>ordered_euclidean_space" | |
| 5082 |   shows "open {a <..}"
 | |
| 5083 | by (auto simp: eucl_greaterThan_eq_halfspaces open_halfspace_component_gt) | |
| 5084 | ||
| 5085 | lemma closed_eucl_atMost[simp, intro]: | |
| 5086 | fixes a :: "'a\<Colon>ordered_euclidean_space" | |
| 5087 |   shows "closed {.. a}"
 | |
| 5088 | unfolding eucl_atMost_eq_halfspaces | |
| 44233 | 5089 | by (simp add: closed_INT closed_Collect_le) | 
| 38656 | 5090 | |
| 5091 | lemma closed_eucl_atLeast[simp, intro]: | |
| 5092 | fixes a :: "'a\<Colon>ordered_euclidean_space" | |
| 5093 |   shows "closed {a ..}"
 | |
| 5094 | unfolding eucl_atLeast_eq_halfspaces | |
| 44233 | 5095 | by (simp add: closed_INT closed_Collect_le) | 
| 38656 | 5096 | |
| 39086 
c4b809e57fe0
preimages of open sets over continuous function are open
 hoelzl parents: 
38656diff
changeset | 5097 | lemma open_vimage_euclidean_component: "open S \<Longrightarrow> open ((\<lambda>x. x $$ i) -` S)" | 
| 
c4b809e57fe0
preimages of open sets over continuous function are open
 hoelzl parents: 
38656diff
changeset | 5098 | by (auto intro!: continuous_open_vimage) | 
| 
c4b809e57fe0
preimages of open sets over continuous function are open
 hoelzl parents: 
38656diff
changeset | 5099 | |
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 5100 | text {* This gives a simple derivation of limit component bounds. *}
 | 
| 33175 | 5101 | |
| 37673 
f69f4b079275
generalize more lemmas from ordered_euclidean_space to euclidean_space
 huffman parents: 
37649diff
changeset | 5102 | lemma Lim_component_le: fixes f :: "'a \<Rightarrow> 'b::euclidean_space" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5103 | assumes "(f ---> l) net" "\<not> (trivial_limit net)" "eventually (\<lambda>x. f(x)$$i \<le> b) net" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5104 | shows "l$$i \<le> b" | 
| 33175 | 5105 | proof- | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5106 |   { fix x have "x \<in> {x::'b. inner (basis i) x \<le> b} \<longleftrightarrow> x$$i \<le> b"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5107 | unfolding euclidean_component_def by auto } note * = this | 
| 33175 | 5108 |   show ?thesis using Lim_in_closed_set[of "{x. inner (basis i) x \<le> b}" f net l] unfolding *
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5109 | using closed_halfspace_le[of "(basis i)::'b" b] and assms(1,2,3) by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5110 | qed | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5111 | |
| 37673 
f69f4b079275
generalize more lemmas from ordered_euclidean_space to euclidean_space
 huffman parents: 
37649diff
changeset | 5112 | lemma Lim_component_ge: fixes f :: "'a \<Rightarrow> 'b::euclidean_space" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5113 | assumes "(f ---> l) net" "\<not> (trivial_limit net)" "eventually (\<lambda>x. b \<le> (f x)$$i) net" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5114 | shows "b \<le> l$$i" | 
| 33175 | 5115 | proof- | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5116 |   { fix x have "x \<in> {x::'b. inner (basis i) x \<ge> b} \<longleftrightarrow> x$$i \<ge> b"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5117 | unfolding euclidean_component_def by auto } note * = this | 
| 33175 | 5118 |   show ?thesis using Lim_in_closed_set[of "{x. inner (basis i) x \<ge> b}" f net l] unfolding *
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5119 | using closed_halfspace_ge[of b "(basis i)"] and assms(1,2,3) by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5120 | qed | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5121 | |
| 37673 
f69f4b079275
generalize more lemmas from ordered_euclidean_space to euclidean_space
 huffman parents: 
37649diff
changeset | 5122 | lemma Lim_component_eq: fixes f :: "'a \<Rightarrow> 'b::euclidean_space" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5123 | assumes net:"(f ---> l) net" "~(trivial_limit net)" and ev:"eventually (\<lambda>x. f(x)$$i = b) net" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5124 | shows "l$$i = b" | 
| 44211 
bd7c586b902e
remove duplicate lemmas eventually_conjI, eventually_and, eventually_false
 huffman parents: 
44210diff
changeset | 5125 | using ev[unfolded order_eq_iff eventually_conj_iff] using Lim_component_ge[OF net, of b i] and Lim_component_le[OF net, of i b] by auto | 
| 33175 | 5126 | text{* Limits relative to a union.                                               *}
 | 
| 5127 | ||
| 5128 | lemma eventually_within_Un: | |
| 5129 | "eventually P (net within (s \<union> t)) \<longleftrightarrow> | |
| 5130 | eventually P (net within s) \<and> eventually P (net within t)" | |
| 5131 | unfolding Limits.eventually_within | |
| 5132 | by (auto elim!: eventually_rev_mp) | |
| 5133 | ||
| 5134 | lemma Lim_within_union: | |
| 5135 | "(f ---> l) (net within (s \<union> t)) \<longleftrightarrow> | |
| 5136 | (f ---> l) (net within s) \<and> (f ---> l) (net within t)" | |
| 5137 | unfolding tendsto_def | |
| 5138 | by (auto simp add: eventually_within_Un) | |
| 5139 | ||
| 36442 | 5140 | lemma Lim_topological: | 
| 5141 | "(f ---> l) net \<longleftrightarrow> | |
| 5142 | trivial_limit net \<or> | |
| 5143 | (\<forall>S. open S \<longrightarrow> l \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) net)" | |
| 5144 | unfolding tendsto_def trivial_limit_eq by auto | |
| 5145 | ||
| 33175 | 5146 | lemma continuous_on_union: | 
| 5147 | assumes "closed s" "closed t" "continuous_on s f" "continuous_on t f" | |
| 5148 | shows "continuous_on (s \<union> t) f" | |
| 36442 | 5149 | using assms unfolding continuous_on Lim_within_union | 
| 5150 | unfolding Lim_topological trivial_limit_within closed_limpt by auto | |
| 33175 | 5151 | |
| 5152 | lemma continuous_on_cases: | |
| 5153 | assumes "closed s" "closed t" "continuous_on s f" "continuous_on t g" | |
| 5154 | "\<forall>x. (x\<in>s \<and> \<not> P x) \<or> (x \<in> t \<and> P x) \<longrightarrow> f x = g x" | |
| 5155 | shows "continuous_on (s \<union> t) (\<lambda>x. if P x then f x else g x)" | |
| 5156 | proof- | |
| 5157 | let ?h = "(\<lambda>x. if P x then f x else g x)" | |
| 5158 | have "\<forall>x\<in>s. f x = (if P x then f x else g x)" using assms(5) by auto | |
| 5159 | hence "continuous_on s ?h" using continuous_on_eq[of s f ?h] using assms(3) by auto | |
| 5160 | moreover | |
| 5161 | have "\<forall>x\<in>t. g x = (if P x then f x else g x)" using assms(5) by auto | |
| 5162 | hence "continuous_on t ?h" using continuous_on_eq[of t g ?h] using assms(4) by auto | |
| 5163 | ultimately show ?thesis using continuous_on_union[OF assms(1,2), of ?h] by auto | |
| 5164 | qed | |
| 5165 | ||
| 5166 | ||
| 5167 | text{* Some more convenient intermediate-value theorem formulations.             *}
 | |
| 5168 | ||
| 5169 | lemma connected_ivt_hyperplane: | |
| 5170 | assumes "connected s" "x \<in> s" "y \<in> s" "inner a x \<le> b" "b \<le> inner a y" | |
| 5171 | shows "\<exists>z \<in> s. inner a z = b" | |
| 5172 | proof(rule ccontr) | |
| 5173 | assume as:"\<not> (\<exists>z\<in>s. inner a z = b)" | |
| 5174 |   let ?A = "{x. inner a x < b}"
 | |
| 5175 |   let ?B = "{x. inner a x > b}"
 | |
| 5176 | have "open ?A" "open ?B" using open_halfspace_lt and open_halfspace_gt by auto | |
| 5177 |   moreover have "?A \<inter> ?B = {}" by auto
 | |
| 5178 | moreover have "s \<subseteq> ?A \<union> ?B" using as by auto | |
| 5179 | ultimately show False using assms(1)[unfolded connected_def not_ex, THEN spec[where x="?A"], THEN spec[where x="?B"]] and assms(2-5) by auto | |
| 5180 | qed | |
| 5181 | ||
| 37673 
f69f4b079275
generalize more lemmas from ordered_euclidean_space to euclidean_space
 huffman parents: 
37649diff
changeset | 5182 | lemma connected_ivt_component: fixes x::"'a::euclidean_space" shows | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5183 | "connected s \<Longrightarrow> x \<in> s \<Longrightarrow> y \<in> s \<Longrightarrow> x$$k \<le> a \<Longrightarrow> a \<le> y$$k \<Longrightarrow> (\<exists>z\<in>s. z$$k = a)" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5184 | using connected_ivt_hyperplane[of s x y "(basis k)::'a" a] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5185 | unfolding euclidean_component_def by auto | 
| 33175 | 5186 | |
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 5187 | |
| 36437 | 5188 | subsection {* Homeomorphisms *}
 | 
| 33175 | 5189 | |
| 5190 | definition "homeomorphism s t f g \<equiv> | |
| 5191 | (\<forall>x\<in>s. (g(f x) = x)) \<and> (f ` s = t) \<and> continuous_on s f \<and> | |
| 5192 | (\<forall>y\<in>t. (f(g y) = y)) \<and> (g ` t = s) \<and> continuous_on t g" | |
| 5193 | ||
| 5194 | definition | |
| 5195 | homeomorphic :: "'a::metric_space set \<Rightarrow> 'b::metric_space set \<Rightarrow> bool" | |
| 5196 | (infixr "homeomorphic" 60) where | |
| 5197 | homeomorphic_def: "s homeomorphic t \<equiv> (\<exists>f g. homeomorphism s t f g)" | |
| 5198 | ||
| 5199 | lemma homeomorphic_refl: "s homeomorphic s" | |
| 5200 | unfolding homeomorphic_def | |
| 5201 | unfolding homeomorphism_def | |
| 5202 | using continuous_on_id | |
| 5203 | apply(rule_tac x = "(\<lambda>x. x)" in exI) | |
| 5204 | apply(rule_tac x = "(\<lambda>x. x)" in exI) | |
| 5205 | by blast | |
| 5206 | ||
| 5207 | lemma homeomorphic_sym: | |
| 5208 | "s homeomorphic t \<longleftrightarrow> t homeomorphic s" | |
| 5209 | unfolding homeomorphic_def | |
| 5210 | unfolding homeomorphism_def | |
| 33324 | 5211 | by blast | 
| 33175 | 5212 | |
| 5213 | lemma homeomorphic_trans: | |
| 5214 | assumes "s homeomorphic t" "t homeomorphic u" shows "s homeomorphic u" | |
| 5215 | proof- | |
| 5216 | obtain f1 g1 where fg1:"\<forall>x\<in>s. g1 (f1 x) = x" "f1 ` s = t" "continuous_on s f1" "\<forall>y\<in>t. f1 (g1 y) = y" "g1 ` t = s" "continuous_on t g1" | |
| 5217 | using assms(1) unfolding homeomorphic_def homeomorphism_def by auto | |
| 5218 | obtain f2 g2 where fg2:"\<forall>x\<in>t. g2 (f2 x) = x" "f2 ` t = u" "continuous_on t f2" "\<forall>y\<in>u. f2 (g2 y) = y" "g2 ` u = t" "continuous_on u g2" | |
| 5219 | using assms(2) unfolding homeomorphic_def homeomorphism_def by auto | |
| 5220 | ||
| 5221 |   { fix x assume "x\<in>s" hence "(g1 \<circ> g2) ((f2 \<circ> f1) x) = x" using fg1(1)[THEN bspec[where x=x]] and fg2(1)[THEN bspec[where x="f1 x"]] and fg1(2) by auto }
 | |
| 5222 | moreover have "(f2 \<circ> f1) ` s = u" using fg1(2) fg2(2) by auto | |
| 5223 | moreover have "continuous_on s (f2 \<circ> f1)" using continuous_on_compose[OF fg1(3)] and fg2(3) unfolding fg1(2) by auto | |
| 5224 |   moreover { fix y assume "y\<in>u" hence "(f2 \<circ> f1) ((g1 \<circ> g2) y) = y" using fg2(4)[THEN bspec[where x=y]] and fg1(4)[THEN bspec[where x="g2 y"]] and fg2(5) by auto }
 | |
| 5225 | moreover have "(g1 \<circ> g2) ` u = s" using fg1(5) fg2(5) by auto | |
| 5226 | moreover have "continuous_on u (g1 \<circ> g2)" using continuous_on_compose[OF fg2(6)] and fg1(6) unfolding fg2(5) by auto | |
| 5227 | ultimately show ?thesis unfolding homeomorphic_def homeomorphism_def apply(rule_tac x="f2 \<circ> f1" in exI) apply(rule_tac x="g1 \<circ> g2" in exI) by auto | |
| 5228 | qed | |
| 5229 | ||
| 5230 | lemma homeomorphic_minimal: | |
| 5231 | "s homeomorphic t \<longleftrightarrow> | |
| 5232 | (\<exists>f g. (\<forall>x\<in>s. f(x) \<in> t \<and> (g(f(x)) = x)) \<and> | |
| 5233 | (\<forall>y\<in>t. g(y) \<in> s \<and> (f(g(y)) = y)) \<and> | |
| 5234 | continuous_on s f \<and> continuous_on t g)" | |
| 5235 | unfolding homeomorphic_def homeomorphism_def | |
| 5236 | apply auto apply (rule_tac x=f in exI) apply (rule_tac x=g in exI) | |
| 5237 | apply auto apply (rule_tac x=f in exI) apply (rule_tac x=g in exI) apply auto | |
| 5238 | unfolding image_iff | |
| 5239 | apply(erule_tac x="g x" in ballE) apply(erule_tac x="x" in ballE) | |
| 5240 | apply auto apply(rule_tac x="g x" in bexI) apply auto | |
| 5241 | apply(erule_tac x="f x" in ballE) apply(erule_tac x="x" in ballE) | |
| 5242 | apply auto apply(rule_tac x="f x" in bexI) by auto | |
| 5243 | ||
| 36437 | 5244 | text {* Relatively weak hypotheses if a set is compact. *}
 | 
| 33175 | 5245 | |
| 5246 | lemma homeomorphism_compact: | |
| 5247 | fixes f :: "'a::heine_borel \<Rightarrow> 'b::heine_borel" | |
| 44647 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 5248 | (* class constraint due to continuous_on_inv *) | 
| 33175 | 5249 | assumes "compact s" "continuous_on s f" "f ` s = t" "inj_on f s" | 
| 5250 | shows "\<exists>g. homeomorphism s t f g" | |
| 5251 | proof- | |
| 5252 | def g \<equiv> "\<lambda>x. SOME y. y\<in>s \<and> f y = x" | |
| 5253 | have g:"\<forall>x\<in>s. g (f x) = x" using assms(3) assms(4)[unfolded inj_on_def] unfolding g_def by auto | |
| 5254 |   { fix y assume "y\<in>t"
 | |
| 5255 | then obtain x where x:"f x = y" "x\<in>s" using assms(3) by auto | |
| 5256 | hence "g (f x) = x" using g by auto | |
| 5257 | hence "f (g y) = y" unfolding x(1)[THEN sym] by auto } | |
| 5258 | hence g':"\<forall>x\<in>t. f (g x) = x" by auto | |
| 5259 | moreover | |
| 5260 |   { fix x
 | |
| 5261 | have "x\<in>s \<Longrightarrow> x \<in> g ` t" using g[THEN bspec[where x=x]] unfolding image_iff using assms(3) by(auto intro!: bexI[where x="f x"]) | |
| 5262 | moreover | |
| 5263 |     { assume "x\<in>g ` t"
 | |
| 5264 | then obtain y where y:"y\<in>t" "g y = x" by auto | |
| 5265 | then obtain x' where x':"x'\<in>s" "f x' = y" using assms(3) by auto | |
| 5266 | hence "x \<in> s" unfolding g_def using someI2[of "\<lambda>b. b\<in>s \<and> f b = y" x' "\<lambda>x. x\<in>s"] unfolding y(2)[THEN sym] and g_def by auto } | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36360diff
changeset | 5267 | ultimately have "x\<in>s \<longleftrightarrow> x \<in> g ` t" .. } | 
| 33175 | 5268 | hence "g ` t = s" by auto | 
| 5269 | ultimately | |
| 5270 | show ?thesis unfolding homeomorphism_def homeomorphic_def | |
| 44647 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 5271 | apply(rule_tac x=g in exI) using g and assms(3) and continuous_on_inv[OF assms(2,1), of g, unfolded assms(3)] and assms(2) by auto | 
| 33175 | 5272 | qed | 
| 5273 | ||
| 5274 | lemma homeomorphic_compact: | |
| 5275 | fixes f :: "'a::heine_borel \<Rightarrow> 'b::heine_borel" | |
| 44647 
e4de7750cdeb
modernize lemmas about 'continuous' and 'continuous_on';
 huffman parents: 
44632diff
changeset | 5276 | (* class constraint due to continuous_on_inv *) | 
| 33175 | 5277 | shows "compact s \<Longrightarrow> continuous_on s f \<Longrightarrow> (f ` s = t) \<Longrightarrow> inj_on f s | 
| 5278 | \<Longrightarrow> s homeomorphic t" | |
| 37486 
b993fac7985b
beta-eta was too much, because it transformed SOME x. P x into Eps P, which caused problems later;
 blanchet parents: 
37452diff
changeset | 5279 | unfolding homeomorphic_def by (metis homeomorphism_compact) | 
| 33175 | 5280 | |
| 5281 | text{* Preservation of topological properties.                                   *}
 | |
| 5282 | ||
| 5283 | lemma homeomorphic_compactness: | |
| 5284 | "s homeomorphic t ==> (compact s \<longleftrightarrow> compact t)" | |
| 5285 | unfolding homeomorphic_def homeomorphism_def | |
| 5286 | by (metis compact_continuous_image) | |
| 5287 | ||
| 5288 | text{* Results on translation, scaling etc.                                      *}
 | |
| 5289 | ||
| 5290 | lemma homeomorphic_scaling: | |
| 5291 | fixes s :: "'a::real_normed_vector set" | |
| 5292 | assumes "c \<noteq> 0" shows "s homeomorphic ((\<lambda>x. c *\<^sub>R x) ` s)" | |
| 5293 | unfolding homeomorphic_minimal | |
| 5294 | apply(rule_tac x="\<lambda>x. c *\<^sub>R x" in exI) | |
| 5295 | apply(rule_tac x="\<lambda>x. (1 / c) *\<^sub>R x" in exI) | |
| 44531 
1d477a2b1572
replace some continuous_on lemmas with more general versions
 huffman parents: 
44530diff
changeset | 5296 | using assms by (auto simp add: continuous_on_intros) | 
| 33175 | 5297 | |
| 5298 | lemma homeomorphic_translation: | |
| 5299 | fixes s :: "'a::real_normed_vector set" | |
| 5300 | shows "s homeomorphic ((\<lambda>x. a + x) ` s)" | |
| 5301 | unfolding homeomorphic_minimal | |
| 5302 | apply(rule_tac x="\<lambda>x. a + x" in exI) | |
| 5303 | apply(rule_tac x="\<lambda>x. -a + x" in exI) | |
| 5304 | using continuous_on_add[OF continuous_on_const continuous_on_id] by auto | |
| 5305 | ||
| 5306 | lemma homeomorphic_affinity: | |
| 5307 | fixes s :: "'a::real_normed_vector set" | |
| 5308 | assumes "c \<noteq> 0" shows "s homeomorphic ((\<lambda>x. a + c *\<^sub>R x) ` s)" | |
| 5309 | proof- | |
| 5310 | have *:"op + a ` op *\<^sub>R c ` s = (\<lambda>x. a + c *\<^sub>R x) ` s" by auto | |
| 5311 | show ?thesis | |
| 5312 | using homeomorphic_trans | |
| 5313 | using homeomorphic_scaling[OF assms, of s] | |
| 5314 | using homeomorphic_translation[of "(\<lambda>x. c *\<^sub>R x) ` s" a] unfolding * by auto | |
| 5315 | qed | |
| 5316 | ||
| 5317 | lemma homeomorphic_balls: | |
| 5318 | fixes a b ::"'a::real_normed_vector" (* FIXME: generalize to metric_space *) | |
| 5319 | assumes "0 < d" "0 < e" | |
| 5320 | shows "(ball a d) homeomorphic (ball b e)" (is ?th) | |
| 5321 | "(cball a d) homeomorphic (cball b e)" (is ?cth) | |
| 5322 | proof- | |
| 5323 | have *:"\<bar>e / d\<bar> > 0" "\<bar>d / e\<bar> >0" using assms using divide_pos_pos by auto | |
| 5324 | show ?th unfolding homeomorphic_minimal | |
| 5325 | apply(rule_tac x="\<lambda>x. b + (e/d) *\<^sub>R (x - a)" in exI) | |
| 5326 | apply(rule_tac x="\<lambda>x. a + (d/e) *\<^sub>R (x - b)" in exI) | |
| 5327 | using assms apply (auto simp add: dist_commute) | |
| 5328 | unfolding dist_norm | |
| 5329 | apply (auto simp add: pos_divide_less_eq mult_strict_left_mono) | |
| 5330 | unfolding continuous_on | |
| 36659 
f794e92784aa
adapt to removed premise on tendsto lemma (cf. 88f0125c3bd2)
 huffman parents: 
36623diff
changeset | 5331 | by (intro ballI tendsto_intros, simp)+ | 
| 33175 | 5332 | next | 
| 5333 | have *:"\<bar>e / d\<bar> > 0" "\<bar>d / e\<bar> >0" using assms using divide_pos_pos by auto | |
| 5334 | show ?cth unfolding homeomorphic_minimal | |
| 5335 | apply(rule_tac x="\<lambda>x. b + (e/d) *\<^sub>R (x - a)" in exI) | |
| 5336 | apply(rule_tac x="\<lambda>x. a + (d/e) *\<^sub>R (x - b)" in exI) | |
| 5337 | using assms apply (auto simp add: dist_commute) | |
| 5338 | unfolding dist_norm | |
| 5339 | apply (auto simp add: pos_divide_le_eq) | |
| 5340 | unfolding continuous_on | |
| 36659 
f794e92784aa
adapt to removed premise on tendsto lemma (cf. 88f0125c3bd2)
 huffman parents: 
36623diff
changeset | 5341 | by (intro ballI tendsto_intros, simp)+ | 
| 33175 | 5342 | qed | 
| 5343 | ||
| 5344 | text{* "Isometry" (up to constant bounds) of injective linear map etc.           *}
 | |
| 5345 | ||
| 5346 | lemma cauchy_isometric: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5347 | fixes x :: "nat \<Rightarrow> 'a::euclidean_space" | 
| 33175 | 5348 | assumes e:"0 < e" and s:"subspace s" and f:"bounded_linear f" and normf:"\<forall>x\<in>s. norm(f x) \<ge> e * norm(x)" and xs:"\<forall>n::nat. x n \<in> s" and cf:"Cauchy(f o x)" | 
| 5349 | shows "Cauchy x" | |
| 5350 | proof- | |
| 5351 | interpret f: bounded_linear f by fact | |
| 5352 |   { fix d::real assume "d>0"
 | |
| 5353 | then obtain N where N:"\<forall>n\<ge>N. norm (f (x n) - f (x N)) < e * d" | |
| 5354 | using cf[unfolded cauchy o_def dist_norm, THEN spec[where x="e*d"]] and e and mult_pos_pos[of e d] by auto | |
| 5355 |     { fix n assume "n\<ge>N"
 | |
| 5356 | hence "norm (f (x n - x N)) < e * d" using N[THEN spec[where x=n]] unfolding f.diff[THEN sym] by auto | |
| 5357 | moreover have "e * norm (x n - x N) \<le> norm (f (x n - x N))" | |
| 5358 | using subspace_sub[OF s, of "x n" "x N"] using xs[THEN spec[where x=N]] and xs[THEN spec[where x=n]] | |
| 5359 | using normf[THEN bspec[where x="x n - x N"]] by auto | |
| 5360 | ultimately have "norm (x n - x N) < d" using `e>0` | |
| 5361 | using mult_left_less_imp_less[of e "norm (x n - x N)" d] by auto } | |
| 5362 | hence "\<exists>N. \<forall>n\<ge>N. norm (x n - x N) < d" by auto } | |
| 5363 | thus ?thesis unfolding cauchy and dist_norm by auto | |
| 5364 | qed | |
| 5365 | ||
| 5366 | lemma complete_isometric_image: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5367 | fixes f :: "'a::euclidean_space => 'b::euclidean_space" | 
| 33175 | 5368 | assumes "0 < e" and s:"subspace s" and f:"bounded_linear f" and normf:"\<forall>x\<in>s. norm(f x) \<ge> e * norm(x)" and cs:"complete s" | 
| 5369 | shows "complete(f ` s)" | |
| 5370 | proof- | |
| 5371 |   { fix g assume as:"\<forall>n::nat. g n \<in> f ` s" and cfg:"Cauchy g"
 | |
| 33324 | 5372 | then obtain x where "\<forall>n. x n \<in> s \<and> g n = f (x n)" | 
| 33175 | 5373 | using choice[of "\<lambda> n xa. xa \<in> s \<and> g n = f xa"] by auto | 
| 5374 | hence x:"\<forall>n. x n \<in> s" "\<forall>n. g n = f (x n)" by auto | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 5375 | hence "f \<circ> x = g" unfolding fun_eq_iff by auto | 
| 33175 | 5376 | then obtain l where "l\<in>s" and l:"(x ---> l) sequentially" | 
| 5377 | using cs[unfolded complete_def, THEN spec[where x="x"]] | |
| 5378 | using cauchy_isometric[OF `0<e` s f normf] and cfg and x(1) by auto | |
| 5379 | hence "\<exists>l\<in>f ` s. (g ---> l) sequentially" | |
| 5380 | using linear_continuous_at[OF f, unfolded continuous_at_sequentially, THEN spec[where x=x], of l] | |
| 5381 | unfolding `f \<circ> x = g` by auto } | |
| 5382 | thus ?thesis unfolding complete_def by auto | |
| 5383 | qed | |
| 5384 | ||
| 5385 | lemma dist_0_norm: | |
| 5386 | fixes x :: "'a::real_normed_vector" | |
| 5387 | shows "dist 0 x = norm x" | |
| 5388 | unfolding dist_norm by simp | |
| 5389 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5390 | lemma injective_imp_isometric: fixes f::"'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 33175 | 5391 | assumes s:"closed s" "subspace s" and f:"bounded_linear f" "\<forall>x\<in>s. (f x = 0) \<longrightarrow> (x = 0)" | 
| 5392 | shows "\<exists>e>0. \<forall>x\<in>s. norm (f x) \<ge> e * norm(x)" | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5393 | proof(cases "s \<subseteq> {0::'a}")
 | 
| 33175 | 5394 | case True | 
| 5395 |   { fix x assume "x \<in> s"
 | |
| 5396 | hence "x = 0" using True by auto | |
| 5397 | hence "norm x \<le> norm (f x)" by auto } | |
| 5398 | thus ?thesis by(auto intro!: exI[where x=1]) | |
| 5399 | next | |
| 5400 | interpret f: bounded_linear f by fact | |
| 5401 | case False | |
| 5402 | then obtain a where a:"a\<noteq>0" "a\<in>s" by auto | |
| 5403 |   from False have "s \<noteq> {}" by auto
 | |
| 5404 |   let ?S = "{f x| x. (x \<in> s \<and> norm x = norm a)}"
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5405 |   let ?S' = "{x::'a. x\<in>s \<and> norm x = norm a}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5406 |   let ?S'' = "{x::'a. norm x = norm a}"
 | 
| 33175 | 5407 | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36360diff
changeset | 5408 | have "?S'' = frontier(cball 0 (norm a))" unfolding frontier_cball and dist_norm by auto | 
| 33175 | 5409 | hence "compact ?S''" using compact_frontier[OF compact_cball, of 0 "norm a"] by auto | 
| 5410 | moreover have "?S' = s \<inter> ?S''" by auto | |
| 5411 | ultimately have "compact ?S'" using closed_inter_compact[of s ?S''] using s(1) by auto | |
| 5412 | moreover have *:"f ` ?S' = ?S" by auto | |
| 5413 | ultimately have "compact ?S" using compact_continuous_image[OF linear_continuous_on[OF f(1)], of ?S'] by auto | |
| 5414 | hence "closed ?S" using compact_imp_closed by auto | |
| 5415 |   moreover have "?S \<noteq> {}" using a by auto
 | |
| 5416 | ultimately obtain b' where "b'\<in>?S" "\<forall>y\<in>?S. norm b' \<le> norm y" using distance_attains_inf[of ?S 0] unfolding dist_0_norm by auto | |
| 5417 |   then obtain b where "b\<in>s" and ba:"norm b = norm a" and b:"\<forall>x\<in>{x \<in> s. norm x = norm a}. norm (f b) \<le> norm (f x)" unfolding *[THEN sym] unfolding image_iff by auto
 | |
| 5418 | ||
| 5419 | let ?e = "norm (f b) / norm b" | |
| 5420 | have "norm b > 0" using ba and a and norm_ge_zero by auto | |
| 5421 | moreover have "norm (f b) > 0" using f(2)[THEN bspec[where x=b], OF `b\<in>s`] using `norm b >0` unfolding zero_less_norm_iff by auto | |
| 5422 | ultimately have "0 < norm (f b) / norm b" by(simp only: divide_pos_pos) | |
| 5423 | moreover | |
| 5424 |   { fix x assume "x\<in>s"
 | |
| 5425 | hence "norm (f b) / norm b * norm x \<le> norm (f x)" | |
| 5426 | proof(cases "x=0") | |
| 5427 | case True thus "norm (f b) / norm b * norm x \<le> norm (f x)" by auto | |
| 5428 | next | |
| 5429 | case False | |
| 5430 | hence *:"0 < norm a / norm x" using `a\<noteq>0` unfolding zero_less_norm_iff[THEN sym] by(simp only: divide_pos_pos) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5431 | have "\<forall>c. \<forall>x\<in>s. c *\<^sub>R x \<in> s" using s[unfolded subspace_def] by auto | 
| 33175 | 5432 |       hence "(norm a / norm x) *\<^sub>R x \<in> {x \<in> s. norm x = norm a}" using `x\<in>s` and `x\<noteq>0` by auto
 | 
| 5433 | thus "norm (f b) / norm b * norm x \<le> norm (f x)" using b[THEN bspec[where x="(norm a / norm x) *\<^sub>R x"]] | |
| 5434 | unfolding f.scaleR and ba using `x\<noteq>0` `a\<noteq>0` | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36669diff
changeset | 5435 | by (auto simp add: mult_commute pos_le_divide_eq pos_divide_le_eq) | 
| 33175 | 5436 | qed } | 
| 5437 | ultimately | |
| 5438 | show ?thesis by auto | |
| 5439 | qed | |
| 5440 | ||
| 5441 | lemma closed_injective_image_subspace: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5442 | fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" | 
| 33175 | 5443 | assumes "subspace s" "bounded_linear f" "\<forall>x\<in>s. f x = 0 --> x = 0" "closed s" | 
| 5444 | shows "closed(f ` s)" | |
| 5445 | proof- | |
| 5446 | obtain e where "e>0" and e:"\<forall>x\<in>s. e * norm x \<le> norm (f x)" using injective_imp_isometric[OF assms(4,1,2,3)] by auto | |
| 5447 | show ?thesis using complete_isometric_image[OF `e>0` assms(1,2) e] and assms(4) | |
| 5448 | unfolding complete_eq_closed[THEN sym] by auto | |
| 5449 | qed | |
| 5450 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 5451 | |
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 5452 | subsection {* Some properties of a canonical subspace *}
 | 
| 33175 | 5453 | |
| 5454 | lemma subspace_substandard: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5455 |   "subspace {x::'a::euclidean_space. (\<forall>i<DIM('a). P i \<longrightarrow> x$$i = 0)}"
 | 
| 44457 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 huffman parents: 
44365diff
changeset | 5456 | unfolding subspace_def by auto | 
| 33175 | 5457 | |
| 5458 | lemma closed_substandard: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5459 |  "closed {x::'a::euclidean_space. \<forall>i<DIM('a). P i --> x$$i = 0}" (is "closed ?A")
 | 
| 33175 | 5460 | proof- | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5461 |   let ?D = "{i. P i} \<inter> {..<DIM('a)}"
 | 
| 44457 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 huffman parents: 
44365diff
changeset | 5462 |   have "closed (\<Inter>i\<in>?D. {x::'a. x$$i = 0})"
 | 
| 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 huffman parents: 
44365diff
changeset | 5463 | by (simp add: closed_INT closed_Collect_eq) | 
| 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 huffman parents: 
44365diff
changeset | 5464 |   also have "(\<Inter>i\<in>?D. {x::'a. x$$i = 0}) = ?A"
 | 
| 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 huffman parents: 
44365diff
changeset | 5465 | by auto | 
| 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 huffman parents: 
44365diff
changeset | 5466 | finally show "closed ?A" . | 
| 33175 | 5467 | qed | 
| 5468 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5469 | lemma dim_substandard: assumes "d\<subseteq>{..<DIM('a::euclidean_space)}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5470 |   shows "dim {x::'a::euclidean_space. \<forall>i<DIM('a). i \<notin> d \<longrightarrow> x$$i = 0} = card d" (is "dim ?A = _")
 | 
| 33175 | 5471 | proof- | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5472 |   let ?D = "{..<DIM('a)}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5473 | let ?B = "(basis::nat => 'a) ` d" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5474 | let ?bas = "basis::nat \<Rightarrow> 'a" | 
| 44167 | 5475 | have "?B \<subseteq> ?A" by auto | 
| 33175 | 5476 | moreover | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5477 |   { fix x::"'a" assume "x\<in>?A"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5478 | hence "finite d" "x\<in>?A" using assms by(auto intro:finite_subset) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5479 | hence "x\<in> span ?B" | 
| 33175 | 5480 | proof(induct d arbitrary: x) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5481 | case empty hence "x=0" apply(subst euclidean_eq) by auto | 
| 33175 | 5482 |       thus ?case using subspace_0[OF subspace_span[of "{}"]] by auto
 | 
| 5483 | next | |
| 5484 | case (insert k F) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5485 |       hence *:"\<forall>i<DIM('a). i \<notin> insert k F \<longrightarrow> x $$ i = 0" by auto
 | 
| 33175 | 5486 | have **:"F \<subseteq> insert k F" by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5487 | def y \<equiv> "x - x$$k *\<^sub>R basis k" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5488 | have y:"x = y + (x$$k) *\<^sub>R basis k" unfolding y_def by auto | 
| 33175 | 5489 |       { fix i assume i':"i \<notin> F"
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5490 | hence "y $$ i = 0" unfolding y_def | 
| 44457 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 huffman parents: 
44365diff
changeset | 5491 | using *[THEN spec[where x=i]] by auto } | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5492 | hence "y \<in> span (basis ` F)" using insert(3) by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5493 | hence "y \<in> span (basis ` (insert k F))" | 
| 33175 | 5494 | using span_mono[of "?bas ` F" "?bas ` (insert k F)"] | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5495 | using image_mono[OF **, of basis] using assms by auto | 
| 33175 | 5496 | moreover | 
| 5497 | have "basis k \<in> span (?bas ` (insert k F))" by(rule span_superset, auto) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5498 | hence "x$$k *\<^sub>R basis k \<in> span (?bas ` (insert k F))" | 
| 36593 
fb69c8cd27bd
define linear algebra concepts using scaleR instead of (op *s); generalized many lemmas, though a few theorems that used to work on type int^'n are a bit less general
 huffman parents: 
36590diff
changeset | 5499 | using span_mul by auto | 
| 33175 | 5500 | ultimately | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5501 | have "y + x$$k *\<^sub>R basis k \<in> span (?bas ` (insert k F))" | 
| 33175 | 5502 | using span_add by auto | 
| 5503 | thus ?case using y by auto | |
| 5504 | qed | |
| 5505 | } | |
| 5506 | hence "?A \<subseteq> span ?B" by auto | |
| 5507 | moreover | |
| 5508 |   { fix x assume "x \<in> ?B"
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5509 |     hence "x\<in>{(basis i)::'a |i. i \<in> ?D}" using assms by auto  }
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5510 | hence "independent ?B" using independent_mono[OF independent_basis, of ?B] and assms by auto | 
| 33175 | 5511 | moreover | 
| 5512 | have "d \<subseteq> ?D" unfolding subset_eq using assms by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5513 | hence *:"inj_on (basis::nat\<Rightarrow>'a) d" using subset_inj_on[OF basis_inj, of "d"] by auto | 
| 33715 | 5514 | have "card ?B = card d" unfolding card_image[OF *] by auto | 
| 33175 | 5515 | ultimately show ?thesis using dim_unique[of "basis ` d" ?A] by auto | 
| 5516 | qed | |
| 5517 | ||
| 5518 | text{* Hence closure and completeness of all subspaces.                          *}
 | |
| 5519 | ||
| 5520 | lemma closed_subspace_lemma: "n \<le> card (UNIV::'n::finite set) \<Longrightarrow> \<exists>A::'n set. card A = n" | |
| 5521 | apply (induct n) | |
| 5522 | apply (rule_tac x="{}" in exI, simp)
 | |
| 5523 | apply clarsimp | |
| 5524 | apply (subgoal_tac "\<exists>x. x \<notin> A") | |
| 5525 | apply (erule exE) | |
| 5526 | apply (rule_tac x="insert x A" in exI, simp) | |
| 5527 | apply (subgoal_tac "A \<noteq> UNIV", auto) | |
| 5528 | done | |
| 5529 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5530 | lemma closed_subspace: fixes s::"('a::euclidean_space) set"
 | 
| 33175 | 5531 | assumes "subspace s" shows "closed s" | 
| 5532 | proof- | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5533 |   have *:"dim s \<le> DIM('a)" using dim_subset_UNIV by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5534 |   def d \<equiv> "{..<dim s}" have t:"card d = dim s" unfolding d_def by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5535 |   let ?t = "{x::'a. \<forall>i<DIM('a). i \<notin> d \<longrightarrow> x$$i = 0}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5536 |   have "\<exists>f. linear f \<and> f ` {x::'a. \<forall>i<DIM('a). i \<notin> d \<longrightarrow> x $$ i = 0} = s \<and>
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5537 |       inj_on f {x::'a. \<forall>i<DIM('a). i \<notin> d \<longrightarrow> x $$ i = 0}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5538 | apply(rule subspace_isomorphism[OF subspace_substandard[of "\<lambda>i. i \<notin> d"]]) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5539 | using dim_substandard[of d,where 'a='a] and t unfolding d_def using * assms by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5540 | then guess f apply-by(erule exE conjE)+ note f = this | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5541 | interpret f: bounded_linear f using f unfolding linear_conv_bounded_linear by auto | 
| 33175 | 5542 | have "\<forall>x\<in>?t. f x = 0 \<longrightarrow> x = 0" using f.zero using f(3)[unfolded inj_on_def] | 
| 5543 | by(erule_tac x=0 in ballE) auto | |
| 5544 | moreover have "closed ?t" using closed_substandard . | |
| 5545 | moreover have "subspace ?t" using subspace_substandard . | |
| 5546 | ultimately show ?thesis using closed_injective_image_subspace[of ?t f] | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5547 | unfolding f(2) using f(1) unfolding linear_conv_bounded_linear by auto | 
| 33175 | 5548 | qed | 
| 5549 | ||
| 5550 | lemma complete_subspace: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5551 |   fixes s :: "('a::euclidean_space) set" shows "subspace s ==> complete s"
 | 
| 33175 | 5552 | using complete_eq_closed closed_subspace | 
| 5553 | by auto | |
| 5554 | ||
| 5555 | lemma dim_closure: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5556 |   fixes s :: "('a::euclidean_space) set"
 | 
| 33175 | 5557 | shows "dim(closure s) = dim s" (is "?dc = ?d") | 
| 5558 | proof- | |
| 5559 | have "?dc \<le> ?d" using closure_minimal[OF span_inc, of s] | |
| 5560 | using closed_subspace[OF subspace_span, of s] | |
| 5561 | using dim_subset[of "closure s" "span s"] unfolding dim_span by auto | |
| 5562 | thus ?thesis using dim_subset[OF closure_subset, of s] by auto | |
| 5563 | qed | |
| 5564 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 5565 | |
| 36437 | 5566 | subsection {* Affine transformations of intervals *}
 | 
| 33175 | 5567 | |
| 5568 | lemma real_affinity_le: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34999diff
changeset | 5569 | "0 < (m::'a::linordered_field) ==> (m * x + c \<le> y \<longleftrightarrow> x \<le> inverse(m) * y + -(c / m))" | 
| 33175 | 5570 | by (simp add: field_simps inverse_eq_divide) | 
| 5571 | ||
| 5572 | lemma real_le_affinity: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34999diff
changeset | 5573 | "0 < (m::'a::linordered_field) ==> (y \<le> m * x + c \<longleftrightarrow> inverse(m) * y + -(c / m) \<le> x)" | 
| 33175 | 5574 | by (simp add: field_simps inverse_eq_divide) | 
| 5575 | ||
| 5576 | lemma real_affinity_lt: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34999diff
changeset | 5577 | "0 < (m::'a::linordered_field) ==> (m * x + c < y \<longleftrightarrow> x < inverse(m) * y + -(c / m))" | 
| 33175 | 5578 | by (simp add: field_simps inverse_eq_divide) | 
| 5579 | ||
| 5580 | lemma real_lt_affinity: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34999diff
changeset | 5581 | "0 < (m::'a::linordered_field) ==> (y < m * x + c \<longleftrightarrow> inverse(m) * y + -(c / m) < x)" | 
| 33175 | 5582 | by (simp add: field_simps inverse_eq_divide) | 
| 5583 | ||
| 5584 | lemma real_affinity_eq: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34999diff
changeset | 5585 | "(m::'a::linordered_field) \<noteq> 0 ==> (m * x + c = y \<longleftrightarrow> x = inverse(m) * y + -(c / m))" | 
| 33175 | 5586 | by (simp add: field_simps inverse_eq_divide) | 
| 5587 | ||
| 5588 | lemma real_eq_affinity: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34999diff
changeset | 5589 | "(m::'a::linordered_field) \<noteq> 0 ==> (y = m * x + c \<longleftrightarrow> inverse(m) * y + -(c / m) = x)" | 
| 33175 | 5590 | by (simp add: field_simps inverse_eq_divide) | 
| 5591 | ||
| 5592 | lemma image_affinity_interval: fixes m::real | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5593 | fixes a b c :: "'a::ordered_euclidean_space" | 
| 33175 | 5594 |   shows "(\<lambda>x. m *\<^sub>R x + c) ` {a .. b} =
 | 
| 5595 |             (if {a .. b} = {} then {}
 | |
| 5596 |             else (if 0 \<le> m then {m *\<^sub>R a + c .. m *\<^sub>R b + c}
 | |
| 5597 |             else {m *\<^sub>R b + c .. m *\<^sub>R a + c}))"
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5598 | proof(cases "m=0") | 
| 33175 | 5599 |   { fix x assume "x \<le> c" "c \<le> x"
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5600 | hence "x=c" unfolding eucl_le[where 'a='a] apply- | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5601 | apply(subst euclidean_eq) by (auto intro: order_antisym) } | 
| 33175 | 5602 | moreover case True | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5603 |   moreover have "c \<in> {m *\<^sub>R a + c..m *\<^sub>R b + c}" unfolding True by(auto simp add: eucl_le[where 'a='a])
 | 
| 33175 | 5604 | ultimately show ?thesis by auto | 
| 5605 | next | |
| 5606 | case False | |
| 5607 |   { fix y assume "a \<le> y" "y \<le> b" "m > 0"
 | |
| 5608 | hence "m *\<^sub>R a + c \<le> m *\<^sub>R y + c" "m *\<^sub>R y + c \<le> m *\<^sub>R b + c" | |
| 44457 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 huffman parents: 
44365diff
changeset | 5609 | unfolding eucl_le[where 'a='a] by auto | 
| 33175 | 5610 | } moreover | 
| 5611 |   { fix y assume "a \<le> y" "y \<le> b" "m < 0"
 | |
| 5612 | hence "m *\<^sub>R b + c \<le> m *\<^sub>R y + c" "m *\<^sub>R y + c \<le> m *\<^sub>R a + c" | |
| 44457 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 huffman parents: 
44365diff
changeset | 5613 | unfolding eucl_le[where 'a='a] by(auto simp add: mult_left_mono_neg) | 
| 33175 | 5614 | } moreover | 
| 5615 |   { fix y assume "m > 0"  "m *\<^sub>R a + c \<le> y"  "y \<le> m *\<^sub>R b + c"
 | |
| 5616 |     hence "y \<in> (\<lambda>x. m *\<^sub>R x + c) ` {a..b}"
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5617 | unfolding image_iff Bex_def mem_interval eucl_le[where 'a='a] | 
| 44516 
d9a496ae5d9d
move everything related to 'norm' method into new theory file Norm_Arith.thy
 huffman parents: 
44457diff
changeset | 5618 | apply (intro exI[where x="(1 / m) *\<^sub>R (y - c)"]) | 
| 44457 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 huffman parents: 
44365diff
changeset | 5619 | by(auto simp add: pos_le_divide_eq pos_divide_le_eq mult_commute diff_le_iff) | 
| 33175 | 5620 | } moreover | 
| 5621 |   { fix y assume "m *\<^sub>R b + c \<le> y" "y \<le> m *\<^sub>R a + c" "m < 0"
 | |
| 5622 |     hence "y \<in> (\<lambda>x. m *\<^sub>R x + c) ` {a..b}"
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5623 | unfolding image_iff Bex_def mem_interval eucl_le[where 'a='a] | 
| 44516 
d9a496ae5d9d
move everything related to 'norm' method into new theory file Norm_Arith.thy
 huffman parents: 
44457diff
changeset | 5624 | apply (intro exI[where x="(1 / m) *\<^sub>R (y - c)"]) | 
| 44457 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 huffman parents: 
44365diff
changeset | 5625 | by(auto simp add: neg_le_divide_eq neg_divide_le_eq mult_commute diff_le_iff) | 
| 33175 | 5626 | } | 
| 5627 | ultimately show ?thesis using False by auto | |
| 5628 | qed | |
| 5629 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
37452diff
changeset | 5630 | lemma image_smult_interval:"(\<lambda>x. m *\<^sub>R (x::_::ordered_euclidean_space)) ` {a..b} =
 | 
| 33175 | 5631 |   (if {a..b} = {} then {} else if 0 \<le> m then {m *\<^sub>R a..m *\<^sub>R b} else {m *\<^sub>R b..m *\<^sub>R a})"
 | 
| 5632 | using image_affinity_interval[of m 0 a b] by auto | |
| 5633 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 5634 | |
| 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 5635 | subsection {* Banach fixed point theorem (not really topological...) *}
 | 
| 33175 | 5636 | |
| 5637 | lemma banach_fix: | |
| 5638 |   assumes s:"complete s" "s \<noteq> {}" and c:"0 \<le> c" "c < 1" and f:"(f ` s) \<subseteq> s" and
 | |
| 5639 | lipschitz:"\<forall>x\<in>s. \<forall>y\<in>s. dist (f x) (f y) \<le> c * dist x y" | |
| 5640 | shows "\<exists>! x\<in>s. (f x = x)" | |
| 5641 | proof- | |
| 5642 | have "1 - c > 0" using c by auto | |
| 5643 | ||
| 5644 | from s(2) obtain z0 where "z0 \<in> s" by auto | |
| 5645 | def z \<equiv> "\<lambda>n. (f ^^ n) z0" | |
| 5646 |   { fix n::nat
 | |
| 5647 | have "z n \<in> s" unfolding z_def | |
| 5648 | proof(induct n) case 0 thus ?case using `z0 \<in>s` by auto | |
| 5649 | next case Suc thus ?case using f by auto qed } | |
| 5650 | note z_in_s = this | |
| 5651 | ||
| 5652 | def d \<equiv> "dist (z 0) (z 1)" | |
| 5653 | ||
| 5654 | have fzn:"\<And>n. f (z n) = z (Suc n)" unfolding z_def by auto | |
| 5655 |   { fix n::nat
 | |
| 5656 | have "dist (z n) (z (Suc n)) \<le> (c ^ n) * d" | |
| 5657 | proof(induct n) | |
| 5658 | case 0 thus ?case unfolding d_def by auto | |
| 5659 | next | |
| 5660 | case (Suc m) | |
| 5661 | hence "c * dist (z m) (z (Suc m)) \<le> c ^ Suc m * d" | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37732diff
changeset | 5662 | using `0 \<le> c` using mult_left_mono[of "dist (z m) (z (Suc m))" "c ^ m * d" c] by auto | 
| 33175 | 5663 | thus ?case using lipschitz[THEN bspec[where x="z m"], OF z_in_s, THEN bspec[where x="z (Suc m)"], OF z_in_s] | 
| 5664 | unfolding fzn and mult_le_cancel_left by auto | |
| 5665 | qed | |
| 5666 | } note cf_z = this | |
| 5667 | ||
| 5668 |   { fix n m::nat
 | |
| 5669 | have "(1 - c) * dist (z m) (z (m+n)) \<le> (c ^ m) * d * (1 - c ^ n)" | |
| 5670 | proof(induct n) | |
| 5671 | case 0 show ?case by auto | |
| 5672 | next | |
| 5673 | case (Suc k) | |
| 5674 | have "(1 - c) * dist (z m) (z (m + Suc k)) \<le> (1 - c) * (dist (z m) (z (m + k)) + dist (z (m + k)) (z (Suc (m + k))))" | |
| 5675 | using dist_triangle and c by(auto simp add: dist_triangle) | |
| 5676 | also have "\<dots> \<le> (1 - c) * (dist (z m) (z (m + k)) + c ^ (m + k) * d)" | |
| 5677 | using cf_z[of "m + k"] and c by auto | |
| 5678 | also have "\<dots> \<le> c ^ m * d * (1 - c ^ k) + (1 - c) * c ^ (m + k) * d" | |
| 36350 | 5679 | using Suc by (auto simp add: field_simps) | 
| 33175 | 5680 | also have "\<dots> = (c ^ m) * (d * (1 - c ^ k) + (1 - c) * c ^ k * d)" | 
| 36350 | 5681 | unfolding power_add by (auto simp add: field_simps) | 
| 33175 | 5682 | also have "\<dots> \<le> (c ^ m) * d * (1 - c ^ Suc k)" | 
| 36350 | 5683 | using c by (auto simp add: field_simps) | 
| 33175 | 5684 | finally show ?case by auto | 
| 5685 | qed | |
| 5686 | } note cf_z2 = this | |
| 5687 |   { fix e::real assume "e>0"
 | |
| 5688 | hence "\<exists>N. \<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (z m) (z n) < e" | |
| 5689 | proof(cases "d = 0") | |
| 5690 | case True | |
| 41863 | 5691 | have *: "\<And>x. ((1 - c) * x \<le> 0) = (x \<le> 0)" using `1 - c > 0` | 
| 5692 | by (metis mult_zero_left real_mult_commute real_mult_le_cancel_iff1) | |
| 5693 | from True have "\<And>n. z n = z0" using cf_z2[of 0] and c unfolding z_def | |
| 5694 | by (simp add: *) | |
| 33175 | 5695 | thus ?thesis using `e>0` by auto | 
| 5696 | next | |
| 5697 | case False hence "d>0" unfolding d_def using zero_le_dist[of "z 0" "z 1"] | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36669diff
changeset | 5698 | by (metis False d_def less_le) | 
| 33175 | 5699 | hence "0 < e * (1 - c) / d" using `e>0` and `1-c>0` | 
| 5700 | using divide_pos_pos[of "e * (1 - c)" d] and mult_pos_pos[of e "1 - c"] by auto | |
| 5701 | then obtain N where N:"c ^ N < e * (1 - c) / d" using real_arch_pow_inv[of "e * (1 - c) / d" c] and c by auto | |
| 5702 |       { fix m n::nat assume "m>n" and as:"m\<ge>N" "n\<ge>N"
 | |
| 5703 | have *:"c ^ n \<le> c ^ N" using `n\<ge>N` and c using power_decreasing[OF `n\<ge>N`, of c] by auto | |
| 5704 | have "1 - c ^ (m - n) > 0" using c and power_strict_mono[of c 1 "m - n"] using `m>n` by auto | |
| 5705 | hence **:"d * (1 - c ^ (m - n)) / (1 - c) > 0" | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36669diff
changeset | 5706 | using mult_pos_pos[OF `d>0`, of "1 - c ^ (m - n)"] | 
| 33175 | 5707 | using divide_pos_pos[of "d * (1 - c ^ (m - n))" "1 - c"] | 
| 5708 | using `0 < 1 - c` by auto | |
| 5709 | ||
| 5710 | have "dist (z m) (z n) \<le> c ^ n * d * (1 - c ^ (m - n)) / (1 - c)" | |
| 5711 | using cf_z2[of n "m - n"] and `m>n` unfolding pos_le_divide_eq[OF `1-c>0`] | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36669diff
changeset | 5712 | by (auto simp add: mult_commute dist_commute) | 
| 33175 | 5713 | also have "\<dots> \<le> c ^ N * d * (1 - c ^ (m - n)) / (1 - c)" | 
| 5714 | using mult_right_mono[OF * order_less_imp_le[OF **]] | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36669diff
changeset | 5715 | unfolding mult_assoc by auto | 
| 33175 | 5716 | also have "\<dots> < (e * (1 - c) / d) * d * (1 - c ^ (m - n)) / (1 - c)" | 
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36669diff
changeset | 5717 | using mult_strict_right_mono[OF N **] unfolding mult_assoc by auto | 
| 33175 | 5718 | also have "\<dots> = e * (1 - c ^ (m - n))" using c and `d>0` and `1 - c > 0` by auto | 
| 5719 | also have "\<dots> \<le> e" using c and `1 - c ^ (m - n) > 0` and `e>0` using mult_right_le_one_le[of e "1 - c ^ (m - n)"] by auto | |
| 5720 | finally have "dist (z m) (z n) < e" by auto | |
| 5721 | } note * = this | |
| 5722 |       { fix m n::nat assume as:"N\<le>m" "N\<le>n"
 | |
| 5723 | hence "dist (z n) (z m) < e" | |
| 5724 | proof(cases "n = m") | |
| 5725 | case True thus ?thesis using `e>0` by auto | |
| 5726 | next | |
| 5727 | case False thus ?thesis using as and *[of n m] *[of m n] unfolding nat_neq_iff by (auto simp add: dist_commute) | |
| 5728 | qed } | |
| 5729 | thus ?thesis by auto | |
| 5730 | qed | |
| 5731 | } | |
| 5732 | hence "Cauchy z" unfolding cauchy_def by auto | |
| 5733 | then obtain x where "x\<in>s" and x:"(z ---> x) sequentially" using s(1)[unfolded compact_def complete_def, THEN spec[where x=z]] and z_in_s by auto | |
| 5734 | ||
| 5735 | def e \<equiv> "dist (f x) x" | |
| 5736 | have "e = 0" proof(rule ccontr) | |
| 5737 | assume "e \<noteq> 0" hence "e>0" unfolding e_def using zero_le_dist[of "f x" x] | |
| 5738 | by (metis dist_eq_0_iff dist_nz e_def) | |
| 5739 | then obtain N where N:"\<forall>n\<ge>N. dist (z n) x < e / 2" | |
| 5740 | using x[unfolded Lim_sequentially, THEN spec[where x="e/2"]] by auto | |
| 5741 | hence N':"dist (z N) x < e / 2" by auto | |
| 5742 | ||
| 5743 | have *:"c * dist (z N) x \<le> dist (z N) x" unfolding mult_le_cancel_right2 | |
| 5744 | using zero_le_dist[of "z N" x] and c | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36669diff
changeset | 5745 | by (metis dist_eq_0_iff dist_nz order_less_asym less_le) | 
| 33175 | 5746 | have "dist (f (z N)) (f x) \<le> c * dist (z N) x" using lipschitz[THEN bspec[where x="z N"], THEN bspec[where x=x]] | 
| 5747 | using z_in_s[of N] `x\<in>s` using c by auto | |
| 5748 | also have "\<dots> < e / 2" using N' and c using * by auto | |
| 5749 | finally show False unfolding fzn | |
| 5750 | using N[THEN spec[where x="Suc N"]] and dist_triangle_half_r[of "z (Suc N)" "f x" e x] | |
| 5751 | unfolding e_def by auto | |
| 5752 | qed | |
| 5753 | hence "f x = x" unfolding e_def by auto | |
| 5754 | moreover | |
| 5755 |   { fix y assume "f y = y" "y\<in>s"
 | |
| 5756 | hence "dist x y \<le> c * dist x y" using lipschitz[THEN bspec[where x=x], THEN bspec[where x=y]] | |
| 5757 | using `x\<in>s` and `f x = x` by auto | |
| 5758 | hence "dist x y = 0" unfolding mult_le_cancel_right1 | |
| 5759 | using c and zero_le_dist[of x y] by auto | |
| 5760 | hence "y = x" by auto | |
| 5761 | } | |
| 34999 
5312d2ffee3b
Changed 'bounded unique existential quantifiers' from a constant to syntax translation.
 hoelzl parents: 
34964diff
changeset | 5762 | ultimately show ?thesis using `x\<in>s` by blast+ | 
| 33175 | 5763 | qed | 
| 5764 | ||
| 44210 
eba74571833b
Topology_Euclidean_Space.thy: organize section headings
 huffman parents: 
44207diff
changeset | 5765 | subsection {* Edelstein fixed point theorem *}
 | 
| 33175 | 5766 | |
| 5767 | lemma edelstein_fix: | |
| 5768 | fixes s :: "'a::real_normed_vector set" | |
| 5769 |   assumes s:"compact s" "s \<noteq> {}" and gs:"(g ` s) \<subseteq> s"
 | |
| 5770 | and dist:"\<forall>x\<in>s. \<forall>y\<in>s. x \<noteq> y \<longrightarrow> dist (g x) (g y) < dist x y" | |
| 5771 | shows "\<exists>! x\<in>s. g x = x" | |
| 5772 | proof(cases "\<exists>x\<in>s. g x \<noteq> x") | |
| 5773 | obtain x where "x\<in>s" using s(2) by auto | |
| 5774 | case False hence g:"\<forall>x\<in>s. g x = x" by auto | |
| 5775 |   { fix y assume "y\<in>s"
 | |
| 5776 | hence "x = y" using `x\<in>s` and dist[THEN bspec[where x=x], THEN bspec[where x=y]] | |
| 5777 | unfolding g[THEN bspec[where x=x], OF `x\<in>s`] | |
| 5778 | unfolding g[THEN bspec[where x=y], OF `y\<in>s`] by auto } | |
| 34999 
5312d2ffee3b
Changed 'bounded unique existential quantifiers' from a constant to syntax translation.
 hoelzl parents: 
34964diff
changeset | 5779 | thus ?thesis using `x\<in>s` and g by blast+ | 
| 33175 | 5780 | next | 
| 5781 | case True | |
| 5782 | then obtain x where [simp]:"x\<in>s" and "g x \<noteq> x" by auto | |
| 5783 |   { fix x y assume "x \<in> s" "y \<in> s"
 | |
| 5784 | hence "dist (g x) (g y) \<le> dist x y" | |
| 5785 | using dist[THEN bspec[where x=x], THEN bspec[where x=y]] by auto } note dist' = this | |
| 5786 | def y \<equiv> "g x" | |
| 5787 | have [simp]:"y\<in>s" unfolding y_def using gs[unfolded image_subset_iff] and `x\<in>s` by blast | |
| 5788 | def f \<equiv> "\<lambda>n. g ^^ n" | |
| 5789 | have [simp]:"\<And>n z. g (f n z) = f (Suc n) z" unfolding f_def by auto | |
| 5790 | have [simp]:"\<And>z. f 0 z = z" unfolding f_def by auto | |
| 5791 |   { fix n::nat and z assume "z\<in>s"
 | |
| 5792 | have "f n z \<in> s" unfolding f_def | |
| 5793 | proof(induct n) | |
| 5794 | case 0 thus ?case using `z\<in>s` by simp | |
| 5795 | next | |
| 5796 | case (Suc n) thus ?case using gs[unfolded image_subset_iff] by auto | |
| 5797 | qed } note fs = this | |
| 5798 |   { fix m n ::nat assume "m\<le>n"
 | |
| 5799 | fix w z assume "w\<in>s" "z\<in>s" | |
| 5800 | have "dist (f n w) (f n z) \<le> dist (f m w) (f m z)" using `m\<le>n` | |
| 5801 | proof(induct n) | |
| 5802 | case 0 thus ?case by auto | |
| 5803 | next | |
| 5804 | case (Suc n) | |
| 5805 | thus ?case proof(cases "m\<le>n") | |
| 5806 | case True thus ?thesis using Suc(1) | |
| 5807 | using dist'[OF fs fs, OF `w\<in>s` `z\<in>s`, of n n] by auto | |
| 5808 | next | |
| 5809 | case False hence mn:"m = Suc n" using Suc(2) by simp | |
| 5810 | show ?thesis unfolding mn by auto | |
| 5811 | qed | |
| 5812 | qed } note distf = this | |
| 5813 | ||
| 5814 | def h \<equiv> "\<lambda>n. (f n x, f n y)" | |
| 5815 | let ?s2 = "s \<times> s" | |
| 5816 | obtain l r where "l\<in>?s2" and r:"subseq r" and lr:"((h \<circ> r) ---> l) sequentially" | |
| 5817 | using compact_Times [OF s(1) s(1), unfolded compact_def, THEN spec[where x=h]] unfolding h_def | |
| 5818 | using fs[OF `x\<in>s`] and fs[OF `y\<in>s`] by blast | |
| 5819 | def a \<equiv> "fst l" def b \<equiv> "snd l" | |
| 5820 | have lab:"l = (a, b)" unfolding a_def b_def by simp | |
| 5821 | have [simp]:"a\<in>s" "b\<in>s" unfolding a_def b_def using `l\<in>?s2` by auto | |
| 5822 | ||
| 5823 | have lima:"((fst \<circ> (h \<circ> r)) ---> a) sequentially" | |
| 5824 | and limb:"((snd \<circ> (h \<circ> r)) ---> b) sequentially" | |
| 5825 | using lr | |
| 44167 | 5826 | unfolding o_def a_def b_def by (rule tendsto_intros)+ | 
| 33175 | 5827 | |
| 5828 |   { fix n::nat
 | |
| 5829 | have *:"\<And>fx fy (x::'a) y. dist fx fy \<le> dist x y \<Longrightarrow> \<not> (dist (fx - fy) (a - b) < dist a b - dist x y)" unfolding dist_norm by norm | |
| 5830 |     { fix x y :: 'a
 | |
| 5831 | have "dist (-x) (-y) = dist x y" unfolding dist_norm | |
| 5832 | using norm_minus_cancel[of "x - y"] by (auto simp add: uminus_add_conv_diff) } note ** = this | |
| 5833 | ||
| 5834 |     { assume as:"dist a b > dist (f n x) (f n y)"
 | |
| 5835 | then obtain Na Nb where "\<forall>m\<ge>Na. dist (f (r m) x) a < (dist a b - dist (f n x) (f n y)) / 2" | |
| 5836 | and "\<forall>m\<ge>Nb. dist (f (r m) y) b < (dist a b - dist (f n x) (f n y)) / 2" | |
| 5837 | using lima limb unfolding h_def Lim_sequentially by (fastsimp simp del: less_divide_eq_number_of1) | |
| 5838 | hence "dist (f (r (Na + Nb + n)) x - f (r (Na + Nb + n)) y) (a - b) < dist a b - dist (f n x) (f n y)" | |
| 5839 | apply(erule_tac x="Na+Nb+n" in allE) | |
| 5840 | apply(erule_tac x="Na+Nb+n" in allE) apply simp | |
| 5841 | using dist_triangle_add_half[of a "f (r (Na + Nb + n)) x" "dist a b - dist (f n x) (f n y)" | |
| 5842 | "-b" "- f (r (Na + Nb + n)) y"] | |
| 36350 | 5843 | unfolding ** by (auto simp add: algebra_simps dist_commute) | 
| 33175 | 5844 | moreover | 
| 5845 | have "dist (f (r (Na + Nb + n)) x - f (r (Na + Nb + n)) y) (a - b) \<ge> dist a b - dist (f n x) (f n y)" | |
| 5846 | using distf[of n "r (Na+Nb+n)", OF _ `x\<in>s` `y\<in>s`] | |
| 5847 | using subseq_bigger[OF r, of "Na+Nb+n"] | |
| 5848 | using *[of "f (r (Na + Nb + n)) x" "f (r (Na + Nb + n)) y" "f n x" "f n y"] by auto | |
| 5849 | ultimately have False by simp | |
| 5850 | } | |
| 5851 | hence "dist a b \<le> dist (f n x) (f n y)" by(rule ccontr)auto } | |
| 5852 | note ab_fn = this | |
| 5853 | ||
| 5854 | have [simp]:"a = b" proof(rule ccontr) | |
| 5855 | def e \<equiv> "dist a b - dist (g a) (g b)" | |
| 5856 | assume "a\<noteq>b" hence "e > 0" unfolding e_def using dist by fastsimp | |
| 5857 | hence "\<exists>n. dist (f n x) a < e/2 \<and> dist (f n y) b < e/2" | |
| 5858 | using lima limb unfolding Lim_sequentially | |
| 5859 | apply (auto elim!: allE[where x="e/2"]) apply(rule_tac x="r (max N Na)" in exI) unfolding h_def by fastsimp | |
| 5860 | then obtain n where n:"dist (f n x) a < e/2 \<and> dist (f n y) b < e/2" by auto | |
| 5861 | have "dist (f (Suc n) x) (g a) \<le> dist (f n x) a" | |
| 5862 | using dist[THEN bspec[where x="f n x"], THEN bspec[where x="a"]] and fs by auto | |
| 5863 | moreover have "dist (f (Suc n) y) (g b) \<le> dist (f n y) b" | |
| 5864 | using dist[THEN bspec[where x="f n y"], THEN bspec[where x="b"]] and fs by auto | |
| 5865 | ultimately have "dist (f (Suc n) x) (g a) + dist (f (Suc n) y) (g b) < e" using n by auto | |
| 5866 | thus False unfolding e_def using ab_fn[of "Suc n"] by norm | |
| 5867 | qed | |
| 5868 | ||
| 5869 | have [simp]:"\<And>n. f (Suc n) x = f n y" unfolding f_def y_def by(induct_tac n)auto | |
| 5870 |   { fix x y assume "x\<in>s" "y\<in>s" moreover
 | |
| 5871 | fix e::real assume "e>0" ultimately | |
| 5872 | have "dist y x < e \<longrightarrow> dist (g y) (g x) < e" using dist by fastsimp } | |
| 36359 | 5873 | hence "continuous_on s g" unfolding continuous_on_iff by auto | 
| 33175 | 5874 | |
| 5875 | hence "((snd \<circ> h \<circ> r) ---> g a) sequentially" unfolding continuous_on_sequentially | |
| 5876 | apply (rule allE[where x="\<lambda>n. (fst \<circ> h \<circ> r) n"]) apply (erule ballE[where x=a]) | |
| 5877 | using lima unfolding h_def o_def using fs[OF `x\<in>s`] by (auto simp add: y_def) | |
| 41970 | 5878 | hence "g a = a" using tendsto_unique[OF trivial_limit_sequentially limb, of "g a"] | 
| 33175 | 5879 | unfolding `a=b` and o_assoc by auto | 
| 5880 | moreover | |
| 5881 |   { fix x assume "x\<in>s" "g x = x" "x\<noteq>a"
 | |
| 5882 | hence "False" using dist[THEN bspec[where x=a], THEN bspec[where x=x]] | |
| 5883 | using `g a = a` and `a\<in>s` by auto } | |
| 34999 
5312d2ffee3b
Changed 'bounded unique existential quantifiers' from a constant to syntax translation.
 hoelzl parents: 
34964diff
changeset | 5884 | ultimately show "\<exists>!x\<in>s. g x = x" using `a\<in>s` by blast | 
| 33175 | 5885 | qed | 
| 5886 | ||
| 44131 
5fc334b94e00
declare tendsto_const [intro] (accidentally removed in 230a8665c919)
 huffman parents: 
44129diff
changeset | 5887 | declare tendsto_const [intro] (* FIXME: move *) | 
| 
5fc334b94e00
declare tendsto_const [intro] (accidentally removed in 230a8665c919)
 huffman parents: 
44129diff
changeset | 5888 | |
| 33175 | 5889 | end |