author | nipkow |
Wed, 29 Nov 2000 13:44:26 +0100 | |
changeset 10538 | d1bf9ca9008d |
parent 10467 | e6e7205e9e91 |
child 12110 | f8b4b11cd79d |
permissions | -rw-r--r-- |
0 | 1 |
(* Title: CTT/ctt.thy |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 |
Copyright 1993 University of Cambridge |
|
5 |
||
6 |
Constructive Type Theory |
|
7 |
*) |
|
8 |
||
9 |
CTT = Pure + |
|
10 |
||
283 | 11 |
types |
12 |
i |
|
13 |
t |
|
14 |
o |
|
0 | 15 |
|
283 | 16 |
arities |
17 |
i,t,o :: logic |
|
0 | 18 |
|
19 |
consts |
|
20 |
(*Types*) |
|
21 |
F,T :: "t" (*F is empty, T contains one element*) |
|
22 |
contr :: "i=>i" |
|
23 |
tt :: "i" |
|
24 |
(*Natural numbers*) |
|
25 |
N :: "t" |
|
26 |
succ :: "i=>i" |
|
27 |
rec :: "[i, i, [i,i]=>i] => i" |
|
28 |
(*Unions*) |
|
29 |
inl,inr :: "i=>i" |
|
30 |
when :: "[i, i=>i, i=>i]=>i" |
|
31 |
(*General Sum and Binary Product*) |
|
32 |
Sum :: "[t, i=>t]=>t" |
|
33 |
fst,snd :: "i=>i" |
|
34 |
split :: "[i, [i,i]=>i] =>i" |
|
35 |
(*General Product and Function Space*) |
|
36 |
Prod :: "[t, i=>t]=>t" |
|
37 |
(*Equality type*) |
|
38 |
Eq :: "[t,i,i]=>t" |
|
39 |
eq :: "i" |
|
40 |
(*Judgements*) |
|
41 |
Type :: "t => prop" ("(_ type)" [10] 5) |
|
10467
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
paulson
parents:
3837
diff
changeset
|
42 |
Eqtype :: "[t,t]=>prop" ("(_ =/ _)" [10,10] 5) |
0 | 43 |
Elem :: "[i, t]=>prop" ("(_ /: _)" [10,10] 5) |
10467
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
paulson
parents:
3837
diff
changeset
|
44 |
Eqelem :: "[i,i,t]=>prop" ("(_ =/ _ :/ _)" [10,10,10] 5) |
0 | 45 |
Reduce :: "[i,i]=>prop" ("Reduce[_,_]") |
46 |
(*Types*) |
|
23 | 47 |
"@PROD" :: "[idt,t,t]=>t" ("(3PROD _:_./ _)" 10) |
48 |
"@SUM" :: "[idt,t,t]=>t" ("(3SUM _:_./ _)" 10) |
|
0 | 49 |
"+" :: "[t,t]=>t" (infixr 40) |
50 |
(*Invisible infixes!*) |
|
51 |
"@-->" :: "[t,t]=>t" ("(_ -->/ _)" [31,30] 30) |
|
52 |
"@*" :: "[t,t]=>t" ("(_ */ _)" [51,50] 50) |
|
53 |
(*Functions*) |
|
54 |
lambda :: "(i => i) => i" (binder "lam " 10) |
|
55 |
"`" :: "[i,i]=>i" (infixl 60) |
|
56 |
(*Natural numbers*) |
|
57 |
"0" :: "i" ("0") |
|
58 |
(*Pairing*) |
|
59 |
pair :: "[i,i]=>i" ("(1<_,/_>)") |
|
60 |
||
61 |
translations |
|
62 |
"PROD x:A. B" => "Prod(A, %x. B)" |
|
23 | 63 |
"A --> B" => "Prod(A, _K(B))" |
0 | 64 |
"SUM x:A. B" => "Sum(A, %x. B)" |
23 | 65 |
"A * B" => "Sum(A, _K(B))" |
0 | 66 |
|
10467
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
paulson
parents:
3837
diff
changeset
|
67 |
syntax (xsymbols) |
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
paulson
parents:
3837
diff
changeset
|
68 |
"@-->" :: "[t,t]=>t" ("(_ \\<longrightarrow>/ _)" [31,30] 30) |
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
paulson
parents:
3837
diff
changeset
|
69 |
"@*" :: "[t,t]=>t" ("(_ \\<times>/ _)" [51,50] 50) |
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
paulson
parents:
3837
diff
changeset
|
70 |
|
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
paulson
parents:
3837
diff
changeset
|
71 |
syntax (symbols) |
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
paulson
parents:
3837
diff
changeset
|
72 |
Elem :: "[i, t]=>prop" ("(_ /\\<in> _)" [10,10] 5) |
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
paulson
parents:
3837
diff
changeset
|
73 |
Eqelem :: "[i,i,t]=>prop" ("(2_ =/ _ \\<in>/ _)" [10,10,10] 5) |
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
paulson
parents:
3837
diff
changeset
|
74 |
"@SUM" :: "[idt,t,t] => t" ("(3\\<Sigma> _\\<in>_./ _)" 10) |
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
paulson
parents:
3837
diff
changeset
|
75 |
"@PROD" :: "[idt,t,t] => t" ("(3\\<Pi> _\\<in>_./ _)" 10) |
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
paulson
parents:
3837
diff
changeset
|
76 |
"lam " :: "[idts, i] => i" ("(3\\<lambda>\\<lambda>_./ _)" 10) |
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
paulson
parents:
3837
diff
changeset
|
77 |
|
0 | 78 |
rules |
79 |
||
80 |
(*Reduction: a weaker notion than equality; a hack for simplification. |
|
81 |
Reduce[a,b] means either that a=b:A for some A or else that "a" and "b" |
|
82 |
are textually identical.*) |
|
83 |
||
84 |
(*does not verify a:A! Sound because only trans_red uses a Reduce premise |
|
85 |
No new theorems can be proved about the standard judgements.*) |
|
86 |
refl_red "Reduce[a,a]" |
|
87 |
red_if_equal "a = b : A ==> Reduce[a,b]" |
|
88 |
trans_red "[| a = b : A; Reduce[b,c] |] ==> a = c : A" |
|
89 |
||
90 |
(*Reflexivity*) |
|
91 |
||
92 |
refl_type "A type ==> A = A" |
|
93 |
refl_elem "a : A ==> a = a : A" |
|
94 |
||
95 |
(*Symmetry*) |
|
96 |
||
97 |
sym_type "A = B ==> B = A" |
|
98 |
sym_elem "a = b : A ==> b = a : A" |
|
99 |
||
100 |
(*Transitivity*) |
|
101 |
||
102 |
trans_type "[| A = B; B = C |] ==> A = C" |
|
103 |
trans_elem "[| a = b : A; b = c : A |] ==> a = c : A" |
|
104 |
||
105 |
equal_types "[| a : A; A = B |] ==> a : B" |
|
106 |
equal_typesL "[| a = b : A; A = B |] ==> a = b : B" |
|
107 |
||
108 |
(*Substitution*) |
|
109 |
||
110 |
subst_type "[| a : A; !!z. z:A ==> B(z) type |] ==> B(a) type" |
|
111 |
subst_typeL "[| a = c : A; !!z. z:A ==> B(z) = D(z) |] ==> B(a) = D(c)" |
|
112 |
||
113 |
subst_elem "[| a : A; !!z. z:A ==> b(z):B(z) |] ==> b(a):B(a)" |
|
114 |
subst_elemL |
|
115 |
"[| a=c : A; !!z. z:A ==> b(z)=d(z) : B(z) |] ==> b(a)=d(c) : B(a)" |
|
116 |
||
117 |
||
118 |
(*The type N -- natural numbers*) |
|
119 |
||
120 |
NF "N type" |
|
121 |
NI0 "0 : N" |
|
122 |
NI_succ "a : N ==> succ(a) : N" |
|
123 |
NI_succL "a = b : N ==> succ(a) = succ(b) : N" |
|
124 |
||
125 |
NE |
|
1149 | 126 |
"[| p: N; a: C(0); !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] |
3837 | 127 |
==> rec(p, a, %u v. b(u,v)) : C(p)" |
0 | 128 |
|
129 |
NEL |
|
1149 | 130 |
"[| p = q : N; a = c : C(0); |
131 |
!!u v. [| u: N; v: C(u) |] ==> b(u,v) = d(u,v): C(succ(u)) |] |
|
3837 | 132 |
==> rec(p, a, %u v. b(u,v)) = rec(q,c,d) : C(p)" |
0 | 133 |
|
134 |
NC0 |
|
1149 | 135 |
"[| a: C(0); !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] |
3837 | 136 |
==> rec(0, a, %u v. b(u,v)) = a : C(0)" |
0 | 137 |
|
138 |
NC_succ |
|
1149 | 139 |
"[| p: N; a: C(0); |
140 |
!!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] ==> |
|
3837 | 141 |
rec(succ(p), a, %u v. b(u,v)) = b(p, rec(p, a, %u v. b(u,v))) : C(succ(p))" |
0 | 142 |
|
143 |
(*The fourth Peano axiom. See page 91 of Martin-Lof's book*) |
|
144 |
zero_ne_succ |
|
145 |
"[| a: N; 0 = succ(a) : N |] ==> 0: F" |
|
146 |
||
147 |
||
148 |
(*The Product of a family of types*) |
|
149 |
||
3837 | 150 |
ProdF "[| A type; !!x. x:A ==> B(x) type |] ==> PROD x:A. B(x) type" |
0 | 151 |
|
152 |
ProdFL |
|
1149 | 153 |
"[| A = C; !!x. x:A ==> B(x) = D(x) |] ==> |
3837 | 154 |
PROD x:A. B(x) = PROD x:C. D(x)" |
0 | 155 |
|
156 |
ProdI |
|
3837 | 157 |
"[| A type; !!x. x:A ==> b(x):B(x)|] ==> lam x. b(x) : PROD x:A. B(x)" |
0 | 158 |
|
159 |
ProdIL |
|
1149 | 160 |
"[| A type; !!x. x:A ==> b(x) = c(x) : B(x)|] ==> |
3837 | 161 |
lam x. b(x) = lam x. c(x) : PROD x:A. B(x)" |
0 | 162 |
|
3837 | 163 |
ProdE "[| p : PROD x:A. B(x); a : A |] ==> p`a : B(a)" |
164 |
ProdEL "[| p=q: PROD x:A. B(x); a=b : A |] ==> p`a = q`b : B(a)" |
|
0 | 165 |
|
166 |
ProdC |
|
1149 | 167 |
"[| a : A; !!x. x:A ==> b(x) : B(x)|] ==> |
3837 | 168 |
(lam x. b(x)) ` a = b(a) : B(a)" |
0 | 169 |
|
170 |
ProdC2 |
|
3837 | 171 |
"p : PROD x:A. B(x) ==> (lam x. p`x) = p : PROD x:A. B(x)" |
0 | 172 |
|
173 |
||
174 |
(*The Sum of a family of types*) |
|
175 |
||
3837 | 176 |
SumF "[| A type; !!x. x:A ==> B(x) type |] ==> SUM x:A. B(x) type" |
0 | 177 |
SumFL |
3837 | 178 |
"[| A = C; !!x. x:A ==> B(x) = D(x) |] ==> SUM x:A. B(x) = SUM x:C. D(x)" |
0 | 179 |
|
3837 | 180 |
SumI "[| a : A; b : B(a) |] ==> <a,b> : SUM x:A. B(x)" |
181 |
SumIL "[| a=c:A; b=d:B(a) |] ==> <a,b> = <c,d> : SUM x:A. B(x)" |
|
0 | 182 |
|
183 |
SumE |
|
3837 | 184 |
"[| p: SUM x:A. B(x); !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>) |] |
185 |
==> split(p, %x y. c(x,y)) : C(p)" |
|
0 | 186 |
|
187 |
SumEL |
|
3837 | 188 |
"[| p=q : SUM x:A. B(x); |
1149 | 189 |
!!x y. [| x:A; y:B(x) |] ==> c(x,y)=d(x,y): C(<x,y>)|] |
3837 | 190 |
==> split(p, %x y. c(x,y)) = split(q, % x y. d(x,y)) : C(p)" |
0 | 191 |
|
192 |
SumC |
|
1149 | 193 |
"[| a: A; b: B(a); !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>) |] |
3837 | 194 |
==> split(<a,b>, %x y. c(x,y)) = c(a,b) : C(<a,b>)" |
0 | 195 |
|
3837 | 196 |
fst_def "fst(a) == split(a, %x y. x)" |
197 |
snd_def "snd(a) == split(a, %x y. y)" |
|
0 | 198 |
|
199 |
||
200 |
(*The sum of two types*) |
|
201 |
||
202 |
PlusF "[| A type; B type |] ==> A+B type" |
|
203 |
PlusFL "[| A = C; B = D |] ==> A+B = C+D" |
|
204 |
||
205 |
PlusI_inl "[| a : A; B type |] ==> inl(a) : A+B" |
|
206 |
PlusI_inlL "[| a = c : A; B type |] ==> inl(a) = inl(c) : A+B" |
|
207 |
||
208 |
PlusI_inr "[| A type; b : B |] ==> inr(b) : A+B" |
|
209 |
PlusI_inrL "[| A type; b = d : B |] ==> inr(b) = inr(d) : A+B" |
|
210 |
||
211 |
PlusE |
|
1149 | 212 |
"[| p: A+B; !!x. x:A ==> c(x): C(inl(x)); |
213 |
!!y. y:B ==> d(y): C(inr(y)) |] |
|
3837 | 214 |
==> when(p, %x. c(x), %y. d(y)) : C(p)" |
0 | 215 |
|
216 |
PlusEL |
|
1149 | 217 |
"[| p = q : A+B; !!x. x: A ==> c(x) = e(x) : C(inl(x)); |
218 |
!!y. y: B ==> d(y) = f(y) : C(inr(y)) |] |
|
3837 | 219 |
==> when(p, %x. c(x), %y. d(y)) = when(q, %x. e(x), %y. f(y)) : C(p)" |
0 | 220 |
|
221 |
PlusC_inl |
|
1149 | 222 |
"[| a: A; !!x. x:A ==> c(x): C(inl(x)); |
223 |
!!y. y:B ==> d(y): C(inr(y)) |] |
|
3837 | 224 |
==> when(inl(a), %x. c(x), %y. d(y)) = c(a) : C(inl(a))" |
0 | 225 |
|
226 |
PlusC_inr |
|
1149 | 227 |
"[| b: B; !!x. x:A ==> c(x): C(inl(x)); |
228 |
!!y. y:B ==> d(y): C(inr(y)) |] |
|
3837 | 229 |
==> when(inr(b), %x. c(x), %y. d(y)) = d(b) : C(inr(b))" |
0 | 230 |
|
231 |
||
232 |
(*The type Eq*) |
|
233 |
||
234 |
EqF "[| A type; a : A; b : A |] ==> Eq(A,a,b) type" |
|
235 |
EqFL "[| A=B; a=c: A; b=d : A |] ==> Eq(A,a,b) = Eq(B,c,d)" |
|
236 |
EqI "a = b : A ==> eq : Eq(A,a,b)" |
|
237 |
EqE "p : Eq(A,a,b) ==> a = b : A" |
|
238 |
||
239 |
(*By equality of types, can prove C(p) from C(eq), an elimination rule*) |
|
240 |
EqC "p : Eq(A,a,b) ==> p = eq : Eq(A,a,b)" |
|
241 |
||
242 |
(*The type F*) |
|
243 |
||
244 |
FF "F type" |
|
245 |
FE "[| p: F; C type |] ==> contr(p) : C" |
|
246 |
FEL "[| p = q : F; C type |] ==> contr(p) = contr(q) : C" |
|
247 |
||
248 |
(*The type T |
|
249 |
Martin-Lof's book (page 68) discusses elimination and computation. |
|
250 |
Elimination can be derived by computation and equality of types, |
|
251 |
but with an extra premise C(x) type x:T. |
|
252 |
Also computation can be derived from elimination. *) |
|
253 |
||
254 |
TF "T type" |
|
255 |
TI "tt : T" |
|
256 |
TE "[| p : T; c : C(tt) |] ==> c : C(p)" |
|
257 |
TEL "[| p = q : T; c = d : C(tt) |] ==> c = d : C(p)" |
|
258 |
TC "p : T ==> p = tt : T" |
|
259 |
end |
|
260 |
||
261 |
||
262 |
ML |
|
263 |
||
264 |
val print_translation = |
|
265 |
[("Prod", dependent_tr' ("@PROD", "@-->")), |
|
266 |
("Sum", dependent_tr' ("@SUM", "@*"))]; |
|
267 |