| author | wenzelm | 
| Thu, 12 Oct 2017 21:22:02 +0200 | |
| changeset 66852 | d20a668b394e | 
| parent 66804 | 3f9bb52082c4 | 
| child 67399 | eab6ce8368fa | 
| permissions | -rw-r--r-- | 
| 63627 | 1 | (* Title: HOL/Analysis/Determinants.thy | 
| 41959 | 2 | Author: Amine Chaieb, University of Cambridge | 
| 33175 | 3 | *) | 
| 4 | ||
| 60420 | 5 | section \<open>Traces, Determinant of square matrices and some properties\<close> | 
| 33175 | 6 | |
| 7 | theory Determinants | |
| 44228 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 huffman parents: 
41959diff
changeset | 8 | imports | 
| 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 huffman parents: 
41959diff
changeset | 9 | Cartesian_Euclidean_Space | 
| 66453 
cc19f7ca2ed6
session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
 wenzelm parents: 
64272diff
changeset | 10 | "HOL-Library.Permutations" | 
| 33175 | 11 | begin | 
| 12 | ||
| 60420 | 13 | subsection \<open>Trace\<close> | 
| 33175 | 14 | |
| 53253 | 15 | definition trace :: "'a::semiring_1^'n^'n \<Rightarrow> 'a" | 
| 64267 | 16 | where "trace A = sum (\<lambda>i. ((A$i)$i)) (UNIV::'n set)" | 
| 33175 | 17 | |
| 53854 | 18 | lemma trace_0: "trace (mat 0) = 0" | 
| 33175 | 19 | by (simp add: trace_def mat_def) | 
| 20 | ||
| 53854 | 21 | lemma trace_I: "trace (mat 1 :: 'a::semiring_1^'n^'n) = of_nat(CARD('n))"
 | 
| 33175 | 22 | by (simp add: trace_def mat_def) | 
| 23 | ||
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 24 | lemma trace_add: "trace ((A::'a::comm_semiring_1^'n^'n) + B) = trace A + trace B" | 
| 64267 | 25 | by (simp add: trace_def sum.distrib) | 
| 33175 | 26 | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 27 | lemma trace_sub: "trace ((A::'a::comm_ring_1^'n^'n) - B) = trace A - trace B" | 
| 64267 | 28 | by (simp add: trace_def sum_subtractf) | 
| 33175 | 29 | |
| 53854 | 30 | lemma trace_mul_sym: "trace ((A::'a::comm_semiring_1^'n^'m) ** B) = trace (B**A)" | 
| 33175 | 31 | apply (simp add: trace_def matrix_matrix_mult_def) | 
| 66804 
3f9bb52082c4
avoid name clashes on interpretation of abstract locales
 haftmann parents: 
66453diff
changeset | 32 | apply (subst sum.swap) | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 33 | apply (simp add: mult.commute) | 
| 53253 | 34 | done | 
| 33175 | 35 | |
| 60420 | 36 | text \<open>Definition of determinant.\<close> | 
| 33175 | 37 | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 38 | definition det:: "'a::comm_ring_1^'n^'n \<Rightarrow> 'a" where | 
| 53253 | 39 | "det A = | 
| 64272 | 40 | sum (\<lambda>p. of_int (sign p) * prod (\<lambda>i. A$i$p i) (UNIV :: 'n set)) | 
| 53253 | 41 |       {p. p permutes (UNIV :: 'n set)}"
 | 
| 33175 | 42 | |
| 60420 | 43 | text \<open>A few general lemmas we need below.\<close> | 
| 33175 | 44 | |
| 64272 | 45 | lemma prod_permute: | 
| 33175 | 46 | assumes p: "p permutes S" | 
| 64272 | 47 | shows "prod f S = prod (f \<circ> p) S" | 
| 48 | using assms by (fact prod.permute) | |
| 33175 | 49 | |
| 64272 | 50 | lemma product_permute_nat_interval: | 
| 53854 | 51 | fixes m n :: nat | 
| 64272 | 52 |   shows "p permutes {m..n} \<Longrightarrow> prod f {m..n} = prod (f \<circ> p) {m..n}"
 | 
| 53 | by (blast intro!: prod_permute) | |
| 33175 | 54 | |
| 60420 | 55 | text \<open>Basic determinant properties.\<close> | 
| 33175 | 56 | |
| 35150 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 hoelzl parents: 
35028diff
changeset | 57 | lemma det_transpose: "det (transpose A) = det (A::'a::comm_ring_1 ^'n^'n)" | 
| 53253 | 58 | proof - | 
| 33175 | 59 | let ?di = "\<lambda>A i j. A$i$j" | 
| 60 | let ?U = "(UNIV :: 'n set)" | |
| 61 | have fU: "finite ?U" by simp | |
| 53253 | 62 |   {
 | 
| 63 | fix p | |
| 64 |     assume p: "p \<in> {p. p permutes ?U}"
 | |
| 53854 | 65 | from p have pU: "p permutes ?U" | 
| 66 | by blast | |
| 33175 | 67 | have sth: "sign (inv p) = sign p" | 
| 44260 
7784fa3232ce
Determinants.thy: avoid using mem_def/Collect_def
 huffman parents: 
44228diff
changeset | 68 | by (metis sign_inverse fU p mem_Collect_eq permutation_permutes) | 
| 33175 | 69 | from permutes_inj[OF pU] | 
| 53854 | 70 | have pi: "inj_on p ?U" | 
| 71 | by (blast intro: subset_inj_on) | |
| 33175 | 72 | from permutes_image[OF pU] | 
| 64272 | 73 | have "prod (\<lambda>i. ?di (transpose A) i (inv p i)) ?U = | 
| 74 | prod (\<lambda>i. ?di (transpose A) i (inv p i)) (p ` ?U)" | |
| 53854 | 75 | by simp | 
| 64272 | 76 | also have "\<dots> = prod ((\<lambda>i. ?di (transpose A) i (inv p i)) \<circ> p) ?U" | 
| 77 | unfolding prod.reindex[OF pi] .. | |
| 78 | also have "\<dots> = prod (\<lambda>i. ?di A i (p i)) ?U" | |
| 53253 | 79 | proof - | 
| 80 |       {
 | |
| 81 | fix i | |
| 82 | assume i: "i \<in> ?U" | |
| 33175 | 83 | from i permutes_inv_o[OF pU] permutes_in_image[OF pU] | 
| 53854 | 84 | have "((\<lambda>i. ?di (transpose A) i (inv p i)) \<circ> p) i = ?di A i (p i)" | 
| 53253 | 85 | unfolding transpose_def by (simp add: fun_eq_iff) | 
| 86 | } | |
| 64272 | 87 | then show "prod ((\<lambda>i. ?di (transpose A) i (inv p i)) \<circ> p) ?U = | 
| 88 | prod (\<lambda>i. ?di A i (p i)) ?U" | |
| 89 | by (auto intro: prod.cong) | |
| 33175 | 90 | qed | 
| 64272 | 91 | finally have "of_int (sign (inv p)) * (prod (\<lambda>i. ?di (transpose A) i (inv p i)) ?U) = | 
| 92 | of_int (sign p) * (prod (\<lambda>i. ?di A i (p i)) ?U)" | |
| 53854 | 93 | using sth by simp | 
| 53253 | 94 | } | 
| 95 | then show ?thesis | |
| 96 | unfolding det_def | |
| 64267 | 97 | apply (subst sum_permutations_inverse) | 
| 98 | apply (rule sum.cong) | |
| 57418 | 99 | apply (rule refl) | 
| 53253 | 100 | apply blast | 
| 101 | done | |
| 33175 | 102 | qed | 
| 103 | ||
| 104 | lemma det_lowerdiagonal: | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 105 |   fixes A :: "'a::comm_ring_1^('n::{finite,wellorder})^('n::{finite,wellorder})"
 | 
| 33175 | 106 | assumes ld: "\<And>i j. i < j \<Longrightarrow> A$i$j = 0" | 
| 64272 | 107 | shows "det A = prod (\<lambda>i. A$i$i) (UNIV:: 'n set)" | 
| 53253 | 108 | proof - | 
| 33175 | 109 | let ?U = "UNIV:: 'n set" | 
| 110 |   let ?PU = "{p. p permutes ?U}"
 | |
| 64272 | 111 | let ?pp = "\<lambda>p. of_int (sign p) * prod (\<lambda>i. A$i$p i) (UNIV :: 'n set)" | 
| 53854 | 112 | have fU: "finite ?U" | 
| 113 | by simp | |
| 33175 | 114 | from finite_permutations[OF fU] have fPU: "finite ?PU" . | 
| 53854 | 115 |   have id0: "{id} \<subseteq> ?PU"
 | 
| 116 | by (auto simp add: permutes_id) | |
| 53253 | 117 |   {
 | 
| 118 | fix p | |
| 53854 | 119 |     assume p: "p \<in> ?PU - {id}"
 | 
| 53253 | 120 | from p have pU: "p permutes ?U" and pid: "p \<noteq> id" | 
| 121 | by blast+ | |
| 122 | from permutes_natset_le[OF pU] pid obtain i where i: "p i > i" | |
| 123 | by (metis not_le) | |
| 124 | from ld[OF i] have ex:"\<exists>i \<in> ?U. A$i$p i = 0" | |
| 125 | by blast | |
| 64272 | 126 | from prod_zero[OF fU ex] have "?pp p = 0" | 
| 53253 | 127 | by simp | 
| 128 | } | |
| 53854 | 129 |   then have p0: "\<forall>p \<in> ?PU - {id}. ?pp p = 0"
 | 
| 53253 | 130 | by blast | 
| 64267 | 131 | from sum.mono_neutral_cong_left[OF fPU id0 p0] show ?thesis | 
| 33175 | 132 | unfolding det_def by (simp add: sign_id) | 
| 133 | qed | |
| 134 | ||
| 135 | lemma det_upperdiagonal: | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 136 |   fixes A :: "'a::comm_ring_1^'n::{finite,wellorder}^'n::{finite,wellorder}"
 | 
| 33175 | 137 | assumes ld: "\<And>i j. i > j \<Longrightarrow> A$i$j = 0" | 
| 64272 | 138 | shows "det A = prod (\<lambda>i. A$i$i) (UNIV:: 'n set)" | 
| 53253 | 139 | proof - | 
| 33175 | 140 | let ?U = "UNIV:: 'n set" | 
| 141 |   let ?PU = "{p. p permutes ?U}"
 | |
| 64272 | 142 | let ?pp = "(\<lambda>p. of_int (sign p) * prod (\<lambda>i. A$i$p i) (UNIV :: 'n set))" | 
| 53854 | 143 | have fU: "finite ?U" | 
| 144 | by simp | |
| 33175 | 145 | from finite_permutations[OF fU] have fPU: "finite ?PU" . | 
| 53854 | 146 |   have id0: "{id} \<subseteq> ?PU"
 | 
| 147 | by (auto simp add: permutes_id) | |
| 53253 | 148 |   {
 | 
| 149 | fix p | |
| 53854 | 150 |     assume p: "p \<in> ?PU - {id}"
 | 
| 53253 | 151 | from p have pU: "p permutes ?U" and pid: "p \<noteq> id" | 
| 152 | by blast+ | |
| 153 | from permutes_natset_ge[OF pU] pid obtain i where i: "p i < i" | |
| 154 | by (metis not_le) | |
| 53854 | 155 | from ld[OF i] have ex:"\<exists>i \<in> ?U. A$i$p i = 0" | 
| 156 | by blast | |
| 64272 | 157 | from prod_zero[OF fU ex] have "?pp p = 0" | 
| 53854 | 158 | by simp | 
| 53253 | 159 | } | 
| 160 |   then have p0: "\<forall>p \<in> ?PU -{id}. ?pp p = 0"
 | |
| 161 | by blast | |
| 64267 | 162 | from sum.mono_neutral_cong_left[OF fPU id0 p0] show ?thesis | 
| 33175 | 163 | unfolding det_def by (simp add: sign_id) | 
| 164 | qed | |
| 165 | ||
| 166 | lemma det_diagonal: | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 167 | fixes A :: "'a::comm_ring_1^'n^'n" | 
| 33175 | 168 | assumes ld: "\<And>i j. i \<noteq> j \<Longrightarrow> A$i$j = 0" | 
| 64272 | 169 | shows "det A = prod (\<lambda>i. A$i$i) (UNIV::'n set)" | 
| 53253 | 170 | proof - | 
| 33175 | 171 | let ?U = "UNIV:: 'n set" | 
| 172 |   let ?PU = "{p. p permutes ?U}"
 | |
| 64272 | 173 | let ?pp = "\<lambda>p. of_int (sign p) * prod (\<lambda>i. A$i$p i) (UNIV :: 'n set)" | 
| 33175 | 174 | have fU: "finite ?U" by simp | 
| 175 | from finite_permutations[OF fU] have fPU: "finite ?PU" . | |
| 53854 | 176 |   have id0: "{id} \<subseteq> ?PU"
 | 
| 177 | by (auto simp add: permutes_id) | |
| 53253 | 178 |   {
 | 
| 179 | fix p | |
| 180 |     assume p: "p \<in> ?PU - {id}"
 | |
| 53854 | 181 | then have "p \<noteq> id" | 
| 182 | by simp | |
| 183 | then obtain i where i: "p i \<noteq> i" | |
| 184 | unfolding fun_eq_iff by auto | |
| 185 | from ld [OF i [symmetric]] have ex:"\<exists>i \<in> ?U. A$i$p i = 0" | |
| 186 | by blast | |
| 64272 | 187 | from prod_zero [OF fU ex] have "?pp p = 0" | 
| 53854 | 188 | by simp | 
| 189 | } | |
| 190 |   then have p0: "\<forall>p \<in> ?PU - {id}. ?pp p = 0"
 | |
| 191 | by blast | |
| 64267 | 192 | from sum.mono_neutral_cong_left[OF fPU id0 p0] show ?thesis | 
| 33175 | 193 | unfolding det_def by (simp add: sign_id) | 
| 194 | qed | |
| 195 | ||
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 196 | lemma det_I: "det (mat 1 :: 'a::comm_ring_1^'n^'n) = 1" | 
| 53253 | 197 | proof - | 
| 33175 | 198 | let ?A = "mat 1 :: 'a::comm_ring_1^'n^'n" | 
| 199 | let ?U = "UNIV :: 'n set" | |
| 200 | let ?f = "\<lambda>i j. ?A$i$j" | |
| 53253 | 201 |   {
 | 
| 202 | fix i | |
| 203 | assume i: "i \<in> ?U" | |
| 53854 | 204 | have "?f i i = 1" | 
| 205 | using i by (vector mat_def) | |
| 53253 | 206 | } | 
| 64272 | 207 | then have th: "prod (\<lambda>i. ?f i i) ?U = prod (\<lambda>x. 1) ?U" | 
| 208 | by (auto intro: prod.cong) | |
| 53253 | 209 |   {
 | 
| 210 | fix i j | |
| 211 | assume i: "i \<in> ?U" and j: "j \<in> ?U" and ij: "i \<noteq> j" | |
| 53854 | 212 | have "?f i j = 0" using i j ij | 
| 213 | by (vector mat_def) | |
| 53253 | 214 | } | 
| 64272 | 215 | then have "det ?A = prod (\<lambda>i. ?f i i) ?U" | 
| 53854 | 216 | using det_diagonal by blast | 
| 217 | also have "\<dots> = 1" | |
| 64272 | 218 | unfolding th prod.neutral_const .. | 
| 33175 | 219 | finally show ?thesis . | 
| 220 | qed | |
| 221 | ||
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 222 | lemma det_0: "det (mat 0 :: 'a::comm_ring_1^'n^'n) = 0" | 
| 64272 | 223 | by (simp add: det_def prod_zero) | 
| 33175 | 224 | |
| 225 | lemma det_permute_rows: | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 226 | fixes A :: "'a::comm_ring_1^'n^'n" | 
| 33175 | 227 | assumes p: "p permutes (UNIV :: 'n::finite set)" | 
| 53854 | 228 | shows "det (\<chi> i. A$p i :: 'a^'n^'n) = of_int (sign p) * det A" | 
| 64267 | 229 | apply (simp add: det_def sum_distrib_left mult.assoc[symmetric]) | 
| 33175 | 230 | apply (subst sum_permutations_compose_right[OF p]) | 
| 64267 | 231 | proof (rule sum.cong) | 
| 33175 | 232 | let ?U = "UNIV :: 'n set" | 
| 233 |   let ?PU = "{p. p permutes ?U}"
 | |
| 53253 | 234 | fix q | 
| 235 | assume qPU: "q \<in> ?PU" | |
| 53854 | 236 | have fU: "finite ?U" | 
| 237 | by simp | |
| 53253 | 238 | from qPU have q: "q permutes ?U" | 
| 239 | by blast | |
| 33175 | 240 | from p q have pp: "permutation p" and qp: "permutation q" | 
| 241 | by (metis fU permutation_permutes)+ | |
| 242 | from permutes_inv[OF p] have ip: "inv p permutes ?U" . | |
| 64272 | 243 | have "prod (\<lambda>i. A$p i$ (q \<circ> p) i) ?U = prod ((\<lambda>i. A$p i$(q \<circ> p) i) \<circ> inv p) ?U" | 
| 244 | by (simp only: prod_permute[OF ip, symmetric]) | |
| 245 | also have "\<dots> = prod (\<lambda>i. A $ (p \<circ> inv p) i $ (q \<circ> (p \<circ> inv p)) i) ?U" | |
| 53253 | 246 | by (simp only: o_def) | 
| 64272 | 247 | also have "\<dots> = prod (\<lambda>i. A$i$q i) ?U" | 
| 53253 | 248 | by (simp only: o_def permutes_inverses[OF p]) | 
| 64272 | 249 | finally have thp: "prod (\<lambda>i. A$p i$ (q \<circ> p) i) ?U = prod (\<lambda>i. A$i$q i) ?U" | 
| 53253 | 250 | by blast | 
| 64272 | 251 | show "of_int (sign (q \<circ> p)) * prod (\<lambda>i. A$ p i$ (q \<circ> p) i) ?U = | 
| 252 | of_int (sign p) * of_int (sign q) * prod (\<lambda>i. A$i$q i) ?U" | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 253 | by (simp only: thp sign_compose[OF qp pp] mult.commute of_int_mult) | 
| 57418 | 254 | qed rule | 
| 33175 | 255 | |
| 256 | lemma det_permute_columns: | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 257 | fixes A :: "'a::comm_ring_1^'n^'n" | 
| 33175 | 258 | assumes p: "p permutes (UNIV :: 'n set)" | 
| 259 | shows "det(\<chi> i j. A$i$ p j :: 'a^'n^'n) = of_int (sign p) * det A" | |
| 53253 | 260 | proof - | 
| 33175 | 261 | let ?Ap = "\<chi> i j. A$i$ p j :: 'a^'n^'n" | 
| 35150 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 hoelzl parents: 
35028diff
changeset | 262 | let ?At = "transpose A" | 
| 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 hoelzl parents: 
35028diff
changeset | 263 | have "of_int (sign p) * det A = det (transpose (\<chi> i. transpose A $ p i))" | 
| 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 hoelzl parents: 
35028diff
changeset | 264 | unfolding det_permute_rows[OF p, of ?At] det_transpose .. | 
| 33175 | 265 | moreover | 
| 35150 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 hoelzl parents: 
35028diff
changeset | 266 | have "?Ap = transpose (\<chi> i. transpose A $ p i)" | 
| 44228 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 huffman parents: 
41959diff
changeset | 267 | by (simp add: transpose_def vec_eq_iff) | 
| 53854 | 268 | ultimately show ?thesis | 
| 269 | by simp | |
| 33175 | 270 | qed | 
| 271 | ||
| 272 | lemma det_identical_rows: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34291diff
changeset | 273 | fixes A :: "'a::linordered_idom^'n^'n" | 
| 33175 | 274 | assumes ij: "i \<noteq> j" | 
| 53253 | 275 | and r: "row i A = row j A" | 
| 33175 | 276 | shows "det A = 0" | 
| 277 | proof- | |
| 53253 | 278 | have tha: "\<And>(a::'a) b. a = b \<Longrightarrow> b = - a \<Longrightarrow> a = 0" | 
| 33175 | 279 | by simp | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
44457diff
changeset | 280 | have th1: "of_int (-1) = - 1" by simp | 
| 33175 | 281 | let ?p = "Fun.swap i j id" | 
| 282 | let ?A = "\<chi> i. A $ ?p i" | |
| 56545 | 283 | from r have "A = ?A" by (simp add: vec_eq_iff row_def Fun.swap_def) | 
| 53253 | 284 | then have "det A = det ?A" by simp | 
| 33175 | 285 | moreover have "det A = - det ?A" | 
| 286 | by (simp add: det_permute_rows[OF permutes_swap_id] sign_swap_id ij th1) | |
| 287 | ultimately show "det A = 0" by (metis tha) | |
| 288 | qed | |
| 289 | ||
| 290 | lemma det_identical_columns: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34291diff
changeset | 291 | fixes A :: "'a::linordered_idom^'n^'n" | 
| 33175 | 292 | assumes ij: "i \<noteq> j" | 
| 53253 | 293 | and r: "column i A = column j A" | 
| 33175 | 294 | shows "det A = 0" | 
| 53253 | 295 | apply (subst det_transpose[symmetric]) | 
| 296 | apply (rule det_identical_rows[OF ij]) | |
| 297 | apply (metis row_transpose r) | |
| 298 | done | |
| 33175 | 299 | |
| 300 | lemma det_zero_row: | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 301 |   fixes A :: "'a::{idom, ring_char_0}^'n^'n"
 | 
| 33175 | 302 | assumes r: "row i A = 0" | 
| 303 | shows "det A = 0" | |
| 53253 | 304 | using r | 
| 305 | apply (simp add: row_def det_def vec_eq_iff) | |
| 64267 | 306 | apply (rule sum.neutral) | 
| 53253 | 307 | apply (auto simp: sign_nz) | 
| 308 | done | |
| 33175 | 309 | |
| 310 | lemma det_zero_column: | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 311 |   fixes A :: "'a::{idom,ring_char_0}^'n^'n"
 | 
| 33175 | 312 | assumes r: "column i A = 0" | 
| 313 | shows "det A = 0" | |
| 35150 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 hoelzl parents: 
35028diff
changeset | 314 | apply (subst det_transpose[symmetric]) | 
| 33175 | 315 | apply (rule det_zero_row [of i]) | 
| 53253 | 316 | apply (metis row_transpose r) | 
| 317 | done | |
| 33175 | 318 | |
| 319 | lemma det_row_add: | |
| 320 | fixes a b c :: "'n::finite \<Rightarrow> _ ^ 'n" | |
| 321 | shows "det((\<chi> i. if i = k then a i + b i else c i)::'a::comm_ring_1^'n^'n) = | |
| 53253 | 322 | det((\<chi> i. if i = k then a i else c i)::'a::comm_ring_1^'n^'n) + | 
| 323 | det((\<chi> i. if i = k then b i else c i)::'a::comm_ring_1^'n^'n)" | |
| 64267 | 324 | unfolding det_def vec_lambda_beta sum.distrib[symmetric] | 
| 325 | proof (rule sum.cong) | |
| 33175 | 326 | let ?U = "UNIV :: 'n set" | 
| 327 |   let ?pU = "{p. p permutes ?U}"
 | |
| 328 | let ?f = "(\<lambda>i. if i = k then a i + b i else c i)::'n \<Rightarrow> 'a::comm_ring_1^'n" | |
| 329 | let ?g = "(\<lambda> i. if i = k then a i else c i)::'n \<Rightarrow> 'a::comm_ring_1^'n" | |
| 330 | let ?h = "(\<lambda> i. if i = k then b i else c i)::'n \<Rightarrow> 'a::comm_ring_1^'n" | |
| 53253 | 331 | fix p | 
| 332 | assume p: "p \<in> ?pU" | |
| 33175 | 333 |   let ?Uk = "?U - {k}"
 | 
| 53854 | 334 | from p have pU: "p permutes ?U" | 
| 335 | by blast | |
| 336 | have kU: "?U = insert k ?Uk" | |
| 337 | by blast | |
| 53253 | 338 |   {
 | 
| 339 | fix j | |
| 340 | assume j: "j \<in> ?Uk" | |
| 33175 | 341 | from j have "?f j $ p j = ?g j $ p j" and "?f j $ p j= ?h j $ p j" | 
| 53253 | 342 | by simp_all | 
| 343 | } | |
| 64272 | 344 | then have th1: "prod (\<lambda>i. ?f i $ p i) ?Uk = prod (\<lambda>i. ?g i $ p i) ?Uk" | 
| 345 | and th2: "prod (\<lambda>i. ?f i $ p i) ?Uk = prod (\<lambda>i. ?h i $ p i) ?Uk" | |
| 33175 | 346 | apply - | 
| 64272 | 347 | apply (rule prod.cong, simp_all)+ | 
| 33175 | 348 | done | 
| 53854 | 349 | have th3: "finite ?Uk" "k \<notin> ?Uk" | 
| 350 | by auto | |
| 64272 | 351 | have "prod (\<lambda>i. ?f i $ p i) ?U = prod (\<lambda>i. ?f i $ p i) (insert k ?Uk)" | 
| 33175 | 352 | unfolding kU[symmetric] .. | 
| 64272 | 353 | also have "\<dots> = ?f k $ p k * prod (\<lambda>i. ?f i $ p i) ?Uk" | 
| 354 | apply (rule prod.insert) | |
| 33175 | 355 | apply simp | 
| 53253 | 356 | apply blast | 
| 357 | done | |
| 64272 | 358 | also have "\<dots> = (a k $ p k * prod (\<lambda>i. ?f i $ p i) ?Uk) + (b k$ p k * prod (\<lambda>i. ?f i $ p i) ?Uk)" | 
| 53253 | 359 | by (simp add: field_simps) | 
| 64272 | 360 | also have "\<dots> = (a k $ p k * prod (\<lambda>i. ?g i $ p i) ?Uk) + (b k$ p k * prod (\<lambda>i. ?h i $ p i) ?Uk)" | 
| 53253 | 361 | by (metis th1 th2) | 
| 64272 | 362 | also have "\<dots> = prod (\<lambda>i. ?g i $ p i) (insert k ?Uk) + prod (\<lambda>i. ?h i $ p i) (insert k ?Uk)" | 
| 363 | unfolding prod.insert[OF th3] by simp | |
| 364 | finally have "prod (\<lambda>i. ?f i $ p i) ?U = prod (\<lambda>i. ?g i $ p i) ?U + prod (\<lambda>i. ?h i $ p i) ?U" | |
| 53854 | 365 | unfolding kU[symmetric] . | 
| 64272 | 366 | then show "of_int (sign p) * prod (\<lambda>i. ?f i $ p i) ?U = | 
| 367 | of_int (sign p) * prod (\<lambda>i. ?g i $ p i) ?U + of_int (sign p) * prod (\<lambda>i. ?h i $ p i) ?U" | |
| 36350 | 368 | by (simp add: field_simps) | 
| 57418 | 369 | qed rule | 
| 33175 | 370 | |
| 371 | lemma det_row_mul: | |
| 372 | fixes a b :: "'n::finite \<Rightarrow> _ ^ 'n" | |
| 373 | shows "det((\<chi> i. if i = k then c *s a i else b i)::'a::comm_ring_1^'n^'n) = | |
| 53253 | 374 | c * det((\<chi> i. if i = k then a i else b i)::'a::comm_ring_1^'n^'n)" | 
| 64267 | 375 | unfolding det_def vec_lambda_beta sum_distrib_left | 
| 376 | proof (rule sum.cong) | |
| 33175 | 377 | let ?U = "UNIV :: 'n set" | 
| 378 |   let ?pU = "{p. p permutes ?U}"
 | |
| 379 | let ?f = "(\<lambda>i. if i = k then c*s a i else b i)::'n \<Rightarrow> 'a::comm_ring_1^'n" | |
| 380 | let ?g = "(\<lambda> i. if i = k then a i else b i)::'n \<Rightarrow> 'a::comm_ring_1^'n" | |
| 53253 | 381 | fix p | 
| 382 | assume p: "p \<in> ?pU" | |
| 33175 | 383 |   let ?Uk = "?U - {k}"
 | 
| 53854 | 384 | from p have pU: "p permutes ?U" | 
| 385 | by blast | |
| 386 | have kU: "?U = insert k ?Uk" | |
| 387 | by blast | |
| 53253 | 388 |   {
 | 
| 389 | fix j | |
| 390 | assume j: "j \<in> ?Uk" | |
| 53854 | 391 | from j have "?f j $ p j = ?g j $ p j" | 
| 392 | by simp | |
| 53253 | 393 | } | 
| 64272 | 394 | then have th1: "prod (\<lambda>i. ?f i $ p i) ?Uk = prod (\<lambda>i. ?g i $ p i) ?Uk" | 
| 33175 | 395 | apply - | 
| 64272 | 396 | apply (rule prod.cong) | 
| 53253 | 397 | apply simp_all | 
| 33175 | 398 | done | 
| 53854 | 399 | have th3: "finite ?Uk" "k \<notin> ?Uk" | 
| 400 | by auto | |
| 64272 | 401 | have "prod (\<lambda>i. ?f i $ p i) ?U = prod (\<lambda>i. ?f i $ p i) (insert k ?Uk)" | 
| 33175 | 402 | unfolding kU[symmetric] .. | 
| 64272 | 403 | also have "\<dots> = ?f k $ p k * prod (\<lambda>i. ?f i $ p i) ?Uk" | 
| 404 | apply (rule prod.insert) | |
| 33175 | 405 | apply simp | 
| 53253 | 406 | apply blast | 
| 407 | done | |
| 64272 | 408 | also have "\<dots> = (c*s a k) $ p k * prod (\<lambda>i. ?f i $ p i) ?Uk" | 
| 53253 | 409 | by (simp add: field_simps) | 
| 64272 | 410 | also have "\<dots> = c* (a k $ p k * prod (\<lambda>i. ?g i $ p i) ?Uk)" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 411 | unfolding th1 by (simp add: ac_simps) | 
| 64272 | 412 | also have "\<dots> = c* (prod (\<lambda>i. ?g i $ p i) (insert k ?Uk))" | 
| 413 | unfolding prod.insert[OF th3] by simp | |
| 414 | finally have "prod (\<lambda>i. ?f i $ p i) ?U = c* (prod (\<lambda>i. ?g i $ p i) ?U)" | |
| 53253 | 415 | unfolding kU[symmetric] . | 
| 64272 | 416 | then show "of_int (sign p) * prod (\<lambda>i. ?f i $ p i) ?U = | 
| 417 | c * (of_int (sign p) * prod (\<lambda>i. ?g i $ p i) ?U)" | |
| 36350 | 418 | by (simp add: field_simps) | 
| 57418 | 419 | qed rule | 
| 33175 | 420 | |
| 421 | lemma det_row_0: | |
| 422 | fixes b :: "'n::finite \<Rightarrow> _ ^ 'n" | |
| 423 | shows "det((\<chi> i. if i = k then 0 else b i)::'a::comm_ring_1^'n^'n) = 0" | |
| 53253 | 424 | using det_row_mul[of k 0 "\<lambda>i. 1" b] | 
| 425 | apply simp | |
| 426 | apply (simp only: vector_smult_lzero) | |
| 427 | done | |
| 33175 | 428 | |
| 429 | lemma det_row_operation: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34291diff
changeset | 430 | fixes A :: "'a::linordered_idom^'n^'n" | 
| 33175 | 431 | assumes ij: "i \<noteq> j" | 
| 432 | shows "det (\<chi> k. if k = i then row i A + c *s row j A else row k A) = det A" | |
| 53253 | 433 | proof - | 
| 33175 | 434 | let ?Z = "(\<chi> k. if k = i then row j A else row k A) :: 'a ^'n^'n" | 
| 435 | have th: "row i ?Z = row j ?Z" by (vector row_def) | |
| 436 | have th2: "((\<chi> k. if k = i then row i A else row k A) :: 'a^'n^'n) = A" | |
| 437 | by (vector row_def) | |
| 438 | show ?thesis | |
| 439 | unfolding det_row_add [of i] det_row_mul[of i] det_identical_rows[OF ij th] th2 | |
| 440 | by simp | |
| 441 | qed | |
| 442 | ||
| 443 | lemma det_row_span: | |
| 36593 
fb69c8cd27bd
define linear algebra concepts using scaleR instead of (op *s); generalized many lemmas, though a few theorems that used to work on type int^'n are a bit less general
 huffman parents: 
36585diff
changeset | 444 | fixes A :: "real^'n^'n" | 
| 33175 | 445 |   assumes x: "x \<in> span {row j A |j. j \<noteq> i}"
 | 
| 446 | shows "det (\<chi> k. if k = i then row i A + x else row k A) = det A" | |
| 53253 | 447 | proof - | 
| 33175 | 448 | let ?U = "UNIV :: 'n set" | 
| 449 |   let ?S = "{row j A |j. j \<noteq> i}"
 | |
| 450 | let ?d = "\<lambda>x. det (\<chi> k. if k = i then x else row k A)" | |
| 451 | let ?P = "\<lambda>x. ?d (row i A + x) = det A" | |
| 53253 | 452 |   {
 | 
| 453 | fix k | |
| 53854 | 454 | have "(if k = i then row i A + 0 else row k A) = row k A" | 
| 455 | by simp | |
| 53253 | 456 | } | 
| 33175 | 457 | then have P0: "?P 0" | 
| 458 | apply - | |
| 459 | apply (rule cong[of det, OF refl]) | |
| 53253 | 460 | apply (vector row_def) | 
| 461 | done | |
| 33175 | 462 | moreover | 
| 53253 | 463 |   {
 | 
| 464 | fix c z y | |
| 465 | assume zS: "z \<in> ?S" and Py: "?P y" | |
| 53854 | 466 | from zS obtain j where j: "z = row j A" "i \<noteq> j" | 
| 467 | by blast | |
| 33175 | 468 | let ?w = "row i A + y" | 
| 53854 | 469 | have th0: "row i A + (c*s z + y) = ?w + c*s z" | 
| 470 | by vector | |
| 33175 | 471 | have thz: "?d z = 0" | 
| 472 | apply (rule det_identical_rows[OF j(2)]) | |
| 53253 | 473 | using j | 
| 474 | apply (vector row_def) | |
| 475 | done | |
| 476 | have "?d (row i A + (c*s z + y)) = ?d (?w + c*s z)" | |
| 477 | unfolding th0 .. | |
| 478 | then have "?P (c*s z + y)" | |
| 479 | unfolding thz Py det_row_mul[of i] det_row_add[of i] | |
| 480 | by simp | |
| 481 | } | |
| 33175 | 482 | ultimately show ?thesis | 
| 483 | apply - | |
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
47108diff
changeset | 484 | apply (rule span_induct_alt[of ?P ?S, OF P0, folded scalar_mult_eq_scaleR]) | 
| 33175 | 485 | apply blast | 
| 486 | apply (rule x) | |
| 487 | done | |
| 488 | qed | |
| 489 | ||
| 60420 | 490 | text \<open> | 
| 53854 | 491 | May as well do this, though it's a bit unsatisfactory since it ignores | 
| 492 | exact duplicates by considering the rows/columns as a set. | |
| 60420 | 493 | \<close> | 
| 33175 | 494 | |
| 495 | lemma det_dependent_rows: | |
| 36593 
fb69c8cd27bd
define linear algebra concepts using scaleR instead of (op *s); generalized many lemmas, though a few theorems that used to work on type int^'n are a bit less general
 huffman parents: 
36585diff
changeset | 496 | fixes A:: "real^'n^'n" | 
| 33175 | 497 | assumes d: "dependent (rows A)" | 
| 498 | shows "det A = 0" | |
| 53253 | 499 | proof - | 
| 33175 | 500 | let ?U = "UNIV :: 'n set" | 
| 501 |   from d obtain i where i: "row i A \<in> span (rows A - {row i A})"
 | |
| 502 | unfolding dependent_def rows_def by blast | |
| 53253 | 503 |   {
 | 
| 504 | fix j k | |
| 505 | assume jk: "j \<noteq> k" and c: "row j A = row k A" | |
| 506 | from det_identical_rows[OF jk c] have ?thesis . | |
| 507 | } | |
| 33175 | 508 | moreover | 
| 53253 | 509 |   {
 | 
| 510 | assume H: "\<And> i j. i \<noteq> j \<Longrightarrow> row i A \<noteq> row j A" | |
| 33175 | 511 |     have th0: "- row i A \<in> span {row j A|j. j \<noteq> i}"
 | 
| 512 | apply (rule span_neg) | |
| 513 | apply (rule set_rev_mp) | |
| 514 | apply (rule i) | |
| 515 | apply (rule span_mono) | |
| 53253 | 516 | using H i | 
| 517 | apply (auto simp add: rows_def) | |
| 518 | done | |
| 33175 | 519 | from det_row_span[OF th0] | 
| 520 | have "det A = det (\<chi> k. if k = i then 0 *s 1 else row k A)" | |
| 521 | unfolding right_minus vector_smult_lzero .. | |
| 36593 
fb69c8cd27bd
define linear algebra concepts using scaleR instead of (op *s); generalized many lemmas, though a few theorems that used to work on type int^'n are a bit less general
 huffman parents: 
36585diff
changeset | 522 | with det_row_mul[of i "0::real" "\<lambda>i. 1"] | 
| 53253 | 523 | have "det A = 0" by simp | 
| 524 | } | |
| 33175 | 525 | ultimately show ?thesis by blast | 
| 526 | qed | |
| 527 | ||
| 53253 | 528 | lemma det_dependent_columns: | 
| 529 | assumes d: "dependent (columns (A::real^'n^'n))" | |
| 530 | shows "det A = 0" | |
| 531 | by (metis d det_dependent_rows rows_transpose det_transpose) | |
| 33175 | 532 | |
| 60420 | 533 | text \<open>Multilinearity and the multiplication formula.\<close> | 
| 33175 | 534 | |
| 44228 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 huffman parents: 
41959diff
changeset | 535 | lemma Cart_lambda_cong: "(\<And>x. f x = g x) \<Longrightarrow> (vec_lambda f::'a^'n) = (vec_lambda g :: 'a^'n)" | 
| 53253 | 536 | by (rule iffD1[OF vec_lambda_unique]) vector | 
| 33175 | 537 | |
| 64267 | 538 | lemma det_linear_row_sum: | 
| 33175 | 539 | assumes fS: "finite S" | 
| 64267 | 540 | shows "det ((\<chi> i. if i = k then sum (a i) S else c i)::'a::comm_ring_1^'n^'n) = | 
| 541 | sum (\<lambda>j. det ((\<chi> i. if i = k then a i j else c i)::'a^'n^'n)) S" | |
| 53253 | 542 | proof (induct rule: finite_induct[OF fS]) | 
| 543 | case 1 | |
| 544 | then show ?case | |
| 545 | apply simp | |
| 64267 | 546 | unfolding sum.empty det_row_0[of k] | 
| 53253 | 547 | apply rule | 
| 548 | done | |
| 33175 | 549 | next | 
| 550 | case (2 x F) | |
| 53253 | 551 | then show ?case | 
| 552 | by (simp add: det_row_add cong del: if_weak_cong) | |
| 33175 | 553 | qed | 
| 554 | ||
| 555 | lemma finite_bounded_functions: | |
| 556 | assumes fS: "finite S" | |
| 557 |   shows "finite {f. (\<forall>i \<in> {1.. (k::nat)}. f i \<in> S) \<and> (\<forall>i. i \<notin> {1 .. k} \<longrightarrow> f i = i)}"
 | |
| 53253 | 558 | proof (induct k) | 
| 33175 | 559 | case 0 | 
| 53854 | 560 |   have th: "{f. \<forall>i. f i = i} = {id}"
 | 
| 561 | by auto | |
| 562 | show ?case | |
| 563 | by (auto simp add: th) | |
| 33175 | 564 | next | 
| 565 | case (Suc k) | |
| 566 | let ?f = "\<lambda>(y::nat,g) i. if i = Suc k then y else g i" | |
| 567 |   let ?S = "?f ` (S \<times> {f. (\<forall>i\<in>{1..k}. f i \<in> S) \<and> (\<forall>i. i \<notin> {1..k} \<longrightarrow> f i = i)})"
 | |
| 568 |   have "?S = {f. (\<forall>i\<in>{1.. Suc k}. f i \<in> S) \<and> (\<forall>i. i \<notin> {1.. Suc k} \<longrightarrow> f i = i)}"
 | |
| 569 | apply (auto simp add: image_iff) | |
| 570 | apply (rule_tac x="x (Suc k)" in bexI) | |
| 571 | apply (rule_tac x = "\<lambda>i. if i = Suc k then i else x i" in exI) | |
| 44457 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 huffman parents: 
44260diff
changeset | 572 | apply auto | 
| 33175 | 573 | done | 
| 574 | with finite_imageI[OF finite_cartesian_product[OF fS Suc.hyps(1)], of ?f] | |
| 53854 | 575 | show ?case | 
| 576 | by metis | |
| 33175 | 577 | qed | 
| 578 | ||
| 579 | ||
| 64267 | 580 | lemma det_linear_rows_sum_lemma: | 
| 53854 | 581 | assumes fS: "finite S" | 
| 582 | and fT: "finite T" | |
| 64267 | 583 | shows "det ((\<chi> i. if i \<in> T then sum (a i) S else c i):: 'a::comm_ring_1^'n^'n) = | 
| 584 | sum (\<lambda>f. det((\<chi> i. if i \<in> T then a i (f i) else c i)::'a^'n^'n)) | |
| 53253 | 585 |       {f. (\<forall>i \<in> T. f i \<in> S) \<and> (\<forall>i. i \<notin> T \<longrightarrow> f i = i)}"
 | 
| 586 | using fT | |
| 587 | proof (induct T arbitrary: a c set: finite) | |
| 33175 | 588 | case empty | 
| 53253 | 589 |   have th0: "\<And>x y. (\<chi> i. if i \<in> {} then x i else y i) = (\<chi> i. y i)"
 | 
| 590 | by vector | |
| 53854 | 591 | from empty.prems show ?case | 
| 62408 
86f27b264d3d
Conformal_mappings: a big development in complex analysis (+ some lemmas)
 paulson <lp15@cam.ac.uk> parents: 
61286diff
changeset | 592 | unfolding th0 by (simp add: eq_id_iff) | 
| 33175 | 593 | next | 
| 594 | case (insert z T a c) | |
| 595 |   let ?F = "\<lambda>T. {f. (\<forall>i \<in> T. f i \<in> S) \<and> (\<forall>i. i \<notin> T \<longrightarrow> f i = i)}"
 | |
| 596 | let ?h = "\<lambda>(y,g) i. if i = z then y else g i" | |
| 597 | let ?k = "\<lambda>h. (h(z),(\<lambda>i. if i = z then i else h i))" | |
| 598 | let ?s = "\<lambda> k a c f. det((\<chi> i. if i \<in> T then a i (f i) else c i)::'a^'n^'n)" | |
| 57129 
7edb7550663e
introduce more powerful reindexing rules for big operators
 hoelzl parents: 
56545diff
changeset | 599 | let ?c = "\<lambda>j i. if i = z then a i j else c i" | 
| 53253 | 600 | have thif: "\<And>a b c d. (if a \<or> b then c else d) = (if a then c else if b then c else d)" | 
| 601 | by simp | |
| 33175 | 602 | have thif2: "\<And>a b c d e. (if a then b else if c then d else e) = | 
| 53253 | 603 | (if c then (if a then b else d) else (if a then b else e))" | 
| 604 | by simp | |
| 60420 | 605 | from \<open>z \<notin> T\<close> have nz: "\<And>i. i \<in> T \<Longrightarrow> i = z \<longleftrightarrow> False" | 
| 53253 | 606 | by auto | 
| 64267 | 607 | have "det (\<chi> i. if i \<in> insert z T then sum (a i) S else c i) = | 
| 608 | det (\<chi> i. if i = z then sum (a i) S else if i \<in> T then sum (a i) S else c i)" | |
| 33175 | 609 | unfolding insert_iff thif .. | 
| 64267 | 610 | also have "\<dots> = (\<Sum>j\<in>S. det (\<chi> i. if i \<in> T then sum (a i) S else if i = z then a i j else c i))" | 
| 611 | unfolding det_linear_row_sum[OF fS] | |
| 33175 | 612 | apply (subst thif2) | 
| 53253 | 613 | using nz | 
| 614 | apply (simp cong del: if_weak_cong cong add: if_cong) | |
| 615 | done | |
| 33175 | 616 | finally have tha: | 
| 64267 | 617 | "det (\<chi> i. if i \<in> insert z T then sum (a i) S else c i) = | 
| 33175 | 618 | (\<Sum>(j, f)\<in>S \<times> ?F T. det (\<chi> i. if i \<in> T then a i (f i) | 
| 619 | else if i = z then a i j | |
| 620 | else c i))" | |
| 64267 | 621 | unfolding insert.hyps unfolding sum.cartesian_product by blast | 
| 33175 | 622 | show ?case unfolding tha | 
| 60420 | 623 | using \<open>z \<notin> T\<close> | 
| 64267 | 624 | by (intro sum.reindex_bij_witness[where i="?k" and j="?h"]) | 
| 57129 
7edb7550663e
introduce more powerful reindexing rules for big operators
 hoelzl parents: 
56545diff
changeset | 625 | (auto intro!: cong[OF refl[of det]] simp: vec_eq_iff) | 
| 33175 | 626 | qed | 
| 627 | ||
| 64267 | 628 | lemma det_linear_rows_sum: | 
| 53854 | 629 | fixes S :: "'n::finite set" | 
| 630 | assumes fS: "finite S" | |
| 64267 | 631 | shows "det (\<chi> i. sum (a i) S) = | 
| 632 |     sum (\<lambda>f. det (\<chi> i. a i (f i) :: 'a::comm_ring_1 ^ 'n^'n)) {f. \<forall>i. f i \<in> S}"
 | |
| 53253 | 633 | proof - | 
| 634 | have th0: "\<And>x y. ((\<chi> i. if i \<in> (UNIV:: 'n set) then x i else y i) :: 'a^'n^'n) = (\<chi> i. x i)" | |
| 635 | by vector | |
| 64267 | 636 | from det_linear_rows_sum_lemma[OF fS, of "UNIV :: 'n set" a, unfolded th0, OF finite] | 
| 53253 | 637 | show ?thesis by simp | 
| 33175 | 638 | qed | 
| 639 | ||
| 64267 | 640 | lemma matrix_mul_sum_alt: | 
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 641 | fixes A B :: "'a::comm_ring_1^'n^'n" | 
| 64267 | 642 | shows "A ** B = (\<chi> i. sum (\<lambda>k. A$i$k *s B $ k) (UNIV :: 'n set))" | 
| 643 | by (vector matrix_matrix_mult_def sum_component) | |
| 33175 | 644 | |
| 645 | lemma det_rows_mul: | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 646 | "det((\<chi> i. c i *s a i)::'a::comm_ring_1^'n^'n) = | 
| 64272 | 647 | prod (\<lambda>i. c i) (UNIV:: 'n set) * det((\<chi> i. a i)::'a^'n^'n)" | 
| 648 | proof (simp add: det_def sum_distrib_left cong add: prod.cong, rule sum.cong) | |
| 33175 | 649 | let ?U = "UNIV :: 'n set" | 
| 650 |   let ?PU = "{p. p permutes ?U}"
 | |
| 53253 | 651 | fix p | 
| 652 | assume pU: "p \<in> ?PU" | |
| 33175 | 653 | let ?s = "of_int (sign p)" | 
| 53253 | 654 | from pU have p: "p permutes ?U" | 
| 655 | by blast | |
| 64272 | 656 | have "prod (\<lambda>i. c i * a i $ p i) ?U = prod c ?U * prod (\<lambda>i. a i $ p i) ?U" | 
| 657 | unfolding prod.distrib .. | |
| 33175 | 658 | then show "?s * (\<Prod>xa\<in>?U. c xa * a xa $ p xa) = | 
| 64272 | 659 | prod c ?U * (?s* (\<Prod>xa\<in>?U. a xa $ p xa))" | 
| 53854 | 660 | by (simp add: field_simps) | 
| 57418 | 661 | qed rule | 
| 33175 | 662 | |
| 663 | lemma det_mul: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34291diff
changeset | 664 | fixes A B :: "'a::linordered_idom^'n^'n" | 
| 33175 | 665 | shows "det (A ** B) = det A * det B" | 
| 53253 | 666 | proof - | 
| 33175 | 667 | let ?U = "UNIV :: 'n set" | 
| 668 |   let ?F = "{f. (\<forall>i\<in> ?U. f i \<in> ?U) \<and> (\<forall>i. i \<notin> ?U \<longrightarrow> f i = i)}"
 | |
| 669 |   let ?PU = "{p. p permutes ?U}"
 | |
| 53854 | 670 | have fU: "finite ?U" | 
| 671 | by simp | |
| 672 | have fF: "finite ?F" | |
| 673 | by (rule finite) | |
| 53253 | 674 |   {
 | 
| 675 | fix p | |
| 676 | assume p: "p permutes ?U" | |
| 33175 | 677 | have "p \<in> ?F" unfolding mem_Collect_eq permutes_in_image[OF p] | 
| 53253 | 678 | using p[unfolded permutes_def] by simp | 
| 679 | } | |
| 53854 | 680 | then have PUF: "?PU \<subseteq> ?F" by blast | 
| 53253 | 681 |   {
 | 
| 682 | fix f | |
| 683 | assume fPU: "f \<in> ?F - ?PU" | |
| 53854 | 684 | have fUU: "f ` ?U \<subseteq> ?U" | 
| 685 | using fPU by auto | |
| 53253 | 686 | from fPU have f: "\<forall>i \<in> ?U. f i \<in> ?U" "\<forall>i. i \<notin> ?U \<longrightarrow> f i = i" "\<not>(\<forall>y. \<exists>!x. f x = y)" | 
| 687 | unfolding permutes_def by auto | |
| 33175 | 688 | |
| 689 | let ?A = "(\<chi> i. A$i$f i *s B$f i) :: 'a^'n^'n" | |
| 690 | let ?B = "(\<chi> i. B$f i) :: 'a^'n^'n" | |
| 53253 | 691 |     {
 | 
| 692 | assume fni: "\<not> inj_on f ?U" | |
| 33175 | 693 | then obtain i j where ij: "f i = f j" "i \<noteq> j" | 
| 694 | unfolding inj_on_def by blast | |
| 695 | from ij | |
| 53854 | 696 | have rth: "row i ?B = row j ?B" | 
| 697 | by (vector row_def) | |
| 33175 | 698 | from det_identical_rows[OF ij(2) rth] | 
| 699 | have "det (\<chi> i. A$i$f i *s B$f i) = 0" | |
| 53253 | 700 | unfolding det_rows_mul by simp | 
| 701 | } | |
| 33175 | 702 | moreover | 
| 53253 | 703 |     {
 | 
| 704 | assume fi: "inj_on f ?U" | |
| 33175 | 705 | from f fi have fith: "\<And>i j. f i = f j \<Longrightarrow> i = j" | 
| 706 | unfolding inj_on_def by metis | |
| 707 | note fs = fi[unfolded surjective_iff_injective_gen[OF fU fU refl fUU, symmetric]] | |
| 53253 | 708 |       {
 | 
| 709 | fix y | |
| 53854 | 710 | from fs f have "\<exists>x. f x = y" | 
| 711 | by blast | |
| 712 | then obtain x where x: "f x = y" | |
| 713 | by blast | |
| 53253 | 714 |         {
 | 
| 715 | fix z | |
| 716 | assume z: "f z = y" | |
| 53854 | 717 | from fith x z have "z = x" | 
| 718 | by metis | |
| 53253 | 719 | } | 
| 53854 | 720 | with x have "\<exists>!x. f x = y" | 
| 721 | by blast | |
| 53253 | 722 | } | 
| 53854 | 723 | with f(3) have "det (\<chi> i. A$i$f i *s B$f i) = 0" | 
| 724 | by blast | |
| 53253 | 725 | } | 
| 53854 | 726 | ultimately have "det (\<chi> i. A$i$f i *s B$f i) = 0" | 
| 727 | by blast | |
| 53253 | 728 | } | 
| 53854 | 729 | then have zth: "\<forall> f\<in> ?F - ?PU. det (\<chi> i. A$i$f i *s B$f i) = 0" | 
| 53253 | 730 | by simp | 
| 731 |   {
 | |
| 732 | fix p | |
| 733 | assume pU: "p \<in> ?PU" | |
| 53854 | 734 | from pU have p: "p permutes ?U" | 
| 735 | by blast | |
| 33175 | 736 | let ?s = "\<lambda>p. of_int (sign p)" | 
| 53253 | 737 | let ?f = "\<lambda>q. ?s p * (\<Prod>i\<in> ?U. A $ i $ p i) * (?s q * (\<Prod>i\<in> ?U. B $ i $ q i))" | 
| 64267 | 738 | have "(sum (\<lambda>q. ?s q * | 
| 53253 | 739 | (\<Prod>i\<in> ?U. (\<chi> i. A $ i $ p i *s B $ p i :: 'a^'n^'n) $ i $ q i)) ?PU) = | 
| 64267 | 740 | (sum (\<lambda>q. ?s p * (\<Prod>i\<in> ?U. A $ i $ p i) * (?s q * (\<Prod>i\<in> ?U. B $ i $ q i))) ?PU)" | 
| 33175 | 741 | unfolding sum_permutations_compose_right[OF permutes_inv[OF p], of ?f] | 
| 64267 | 742 | proof (rule sum.cong) | 
| 53253 | 743 | fix q | 
| 744 | assume qU: "q \<in> ?PU" | |
| 53854 | 745 | then have q: "q permutes ?U" | 
| 746 | by blast | |
| 33175 | 747 | from p q have pp: "permutation p" and pq: "permutation q" | 
| 748 | unfolding permutation_permutes by auto | |
| 749 | have th00: "of_int (sign p) * of_int (sign p) = (1::'a)" | |
| 750 | "\<And>a. of_int (sign p) * (of_int (sign p) * a) = a" | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 751 | unfolding mult.assoc[symmetric] | 
| 53854 | 752 | unfolding of_int_mult[symmetric] | 
| 33175 | 753 | by (simp_all add: sign_idempotent) | 
| 53854 | 754 | have ths: "?s q = ?s p * ?s (q \<circ> inv p)" | 
| 33175 | 755 | using pp pq permutation_inverse[OF pp] sign_inverse[OF pp] | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 756 | by (simp add: th00 ac_simps sign_idempotent sign_compose) | 
| 64272 | 757 | have th001: "prod (\<lambda>i. B$i$ q (inv p i)) ?U = prod ((\<lambda>i. B$i$ q (inv p i)) \<circ> p) ?U" | 
| 758 | by (rule prod_permute[OF p]) | |
| 759 | have thp: "prod (\<lambda>i. (\<chi> i. A$i$p i *s B$p i :: 'a^'n^'n) $i $ q i) ?U = | |
| 760 | prod (\<lambda>i. A$i$p i) ?U * prod (\<lambda>i. B$i$ q (inv p i)) ?U" | |
| 761 | unfolding th001 prod.distrib[symmetric] o_def permutes_inverses[OF p] | |
| 762 | apply (rule prod.cong[OF refl]) | |
| 53253 | 763 | using permutes_in_image[OF q] | 
| 764 | apply vector | |
| 765 | done | |
| 64272 | 766 | show "?s q * prod (\<lambda>i. (((\<chi> i. A$i$p i *s B$p i) :: 'a^'n^'n)$i$q i)) ?U = | 
| 767 | ?s p * (prod (\<lambda>i. A$i$p i) ?U) * (?s (q \<circ> inv p) * prod (\<lambda>i. B$i$(q \<circ> inv p) i) ?U)" | |
| 33175 | 768 | using ths thp pp pq permutation_inverse[OF pp] sign_inverse[OF pp] | 
| 36350 | 769 | by (simp add: sign_nz th00 field_simps sign_idempotent sign_compose) | 
| 57418 | 770 | qed rule | 
| 33175 | 771 | } | 
| 64267 | 772 | then have th2: "sum (\<lambda>f. det (\<chi> i. A$i$f i *s B$f i)) ?PU = det A * det B" | 
| 773 | unfolding det_def sum_product | |
| 774 | by (rule sum.cong [OF refl]) | |
| 775 | have "det (A**B) = sum (\<lambda>f. det (\<chi> i. A $ i $ f i *s B $ f i)) ?F" | |
| 776 | unfolding matrix_mul_sum_alt det_linear_rows_sum[OF fU] | |
| 53854 | 777 | by simp | 
| 64267 | 778 | also have "\<dots> = sum (\<lambda>f. det (\<chi> i. A$i$f i *s B$f i)) ?PU" | 
| 779 | using sum.mono_neutral_cong_left[OF fF PUF zth, symmetric] | |
| 33175 | 780 | unfolding det_rows_mul by auto | 
| 781 | finally show ?thesis unfolding th2 . | |
| 782 | qed | |
| 783 | ||
| 60420 | 784 | text \<open>Relation to invertibility.\<close> | 
| 33175 | 785 | |
| 786 | lemma invertible_left_inverse: | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 787 | fixes A :: "real^'n^'n" | 
| 33175 | 788 | shows "invertible A \<longleftrightarrow> (\<exists>(B::real^'n^'n). B** A = mat 1)" | 
| 789 | by (metis invertible_def matrix_left_right_inverse) | |
| 790 | ||
| 791 | lemma invertible_righ_inverse: | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 792 | fixes A :: "real^'n^'n" | 
| 33175 | 793 | shows "invertible A \<longleftrightarrow> (\<exists>(B::real^'n^'n). A** B = mat 1)" | 
| 794 | by (metis invertible_def matrix_left_right_inverse) | |
| 795 | ||
| 796 | lemma invertible_det_nz: | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 797 | fixes A::"real ^'n^'n" | 
| 33175 | 798 | shows "invertible A \<longleftrightarrow> det A \<noteq> 0" | 
| 53253 | 799 | proof - | 
| 800 |   {
 | |
| 801 | assume "invertible A" | |
| 33175 | 802 | then obtain B :: "real ^'n^'n" where B: "A ** B = mat 1" | 
| 803 | unfolding invertible_righ_inverse by blast | |
| 53854 | 804 | then have "det (A ** B) = det (mat 1 :: real ^'n^'n)" | 
| 805 | by simp | |
| 806 | then have "det A \<noteq> 0" | |
| 807 | by (simp add: det_mul det_I) algebra | |
| 53253 | 808 | } | 
| 33175 | 809 | moreover | 
| 53253 | 810 |   {
 | 
| 811 | assume H: "\<not> invertible A" | |
| 33175 | 812 | let ?U = "UNIV :: 'n set" | 
| 53854 | 813 | have fU: "finite ?U" | 
| 814 | by simp | |
| 64267 | 815 | from H obtain c i where c: "sum (\<lambda>i. c i *s row i A) ?U = 0" | 
| 53854 | 816 | and iU: "i \<in> ?U" | 
| 817 | and ci: "c i \<noteq> 0" | |
| 33175 | 818 | unfolding invertible_righ_inverse | 
| 53854 | 819 | unfolding matrix_right_invertible_independent_rows | 
| 820 | by blast | |
| 53253 | 821 | have *: "\<And>(a::real^'n) b. a + b = 0 \<Longrightarrow> -a = b" | 
| 33175 | 822 | apply (drule_tac f="op + (- a)" in cong[OF refl]) | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 823 | apply (simp only: ab_left_minus add.assoc[symmetric]) | 
| 33175 | 824 | apply simp | 
| 825 | done | |
| 826 | from c ci | |
| 64267 | 827 |     have thr0: "- row i A = sum (\<lambda>j. (1/ c i) *s (c j *s row j A)) (?U - {i})"
 | 
| 828 | unfolding sum.remove[OF fU iU] sum_cmul | |
| 33175 | 829 | apply - | 
| 830 | apply (rule vector_mul_lcancel_imp[OF ci]) | |
| 44457 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 huffman parents: 
44260diff
changeset | 831 | apply (auto simp add: field_simps) | 
| 53854 | 832 | unfolding * | 
| 833 | apply rule | |
| 834 | done | |
| 33175 | 835 |     have thr: "- row i A \<in> span {row j A| j. j \<noteq> i}"
 | 
| 836 | unfolding thr0 | |
| 64267 | 837 | apply (rule span_sum) | 
| 33175 | 838 | apply simp | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
47108diff
changeset | 839 | apply (rule span_mul [where 'a="real^'n", folded scalar_mult_eq_scaleR])+ | 
| 33175 | 840 | apply (rule span_superset) | 
| 841 | apply auto | |
| 842 | done | |
| 843 | let ?B = "(\<chi> k. if k = i then 0 else row k A) :: real ^'n^'n" | |
| 844 | have thrb: "row i ?B = 0" using iU by (vector row_def) | |
| 845 | have "det A = 0" | |
| 846 | unfolding det_row_span[OF thr, symmetric] right_minus | |
| 53253 | 847 | unfolding det_zero_row[OF thrb] .. | 
| 848 | } | |
| 53854 | 849 | ultimately show ?thesis | 
| 850 | by blast | |
| 33175 | 851 | qed | 
| 852 | ||
| 60420 | 853 | text \<open>Cramer's rule.\<close> | 
| 33175 | 854 | |
| 35150 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 hoelzl parents: 
35028diff
changeset | 855 | lemma cramer_lemma_transpose: | 
| 53854 | 856 | fixes A:: "real^'n^'n" | 
| 857 | and x :: "real^'n" | |
| 64267 | 858 | shows "det ((\<chi> i. if i = k then sum (\<lambda>i. x$i *s row i A) (UNIV::'n set) | 
| 53854 | 859 | else row i A)::real^'n^'n) = x$k * det A" | 
| 33175 | 860 | (is "?lhs = ?rhs") | 
| 53253 | 861 | proof - | 
| 33175 | 862 | let ?U = "UNIV :: 'n set" | 
| 863 |   let ?Uk = "?U - {k}"
 | |
| 53854 | 864 | have U: "?U = insert k ?Uk" | 
| 865 | by blast | |
| 866 | have fUk: "finite ?Uk" | |
| 867 | by simp | |
| 868 | have kUk: "k \<notin> ?Uk" | |
| 869 | by simp | |
| 33175 | 870 | have th00: "\<And>k s. x$k *s row k A + s = (x$k - 1) *s row k A + row k A + s" | 
| 36350 | 871 | by (vector field_simps) | 
| 53854 | 872 | have th001: "\<And>f k . (\<lambda>x. if x = k then f k else f x) = f" | 
| 873 | by auto | |
| 33175 | 874 | have "(\<chi> i. row i A) = A" by (vector row_def) | 
| 53253 | 875 | then have thd1: "det (\<chi> i. row i A) = det A" | 
| 876 | by simp | |
| 33175 | 877 | have thd0: "det (\<chi> i. if i = k then row k A + (\<Sum>i \<in> ?Uk. x $ i *s row i A) else row i A) = det A" | 
| 878 | apply (rule det_row_span) | |
| 64267 | 879 | apply (rule span_sum) | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
47108diff
changeset | 880 | apply (rule span_mul [where 'a="real^'n", folded scalar_mult_eq_scaleR])+ | 
| 33175 | 881 | apply (rule span_superset) | 
| 882 | apply auto | |
| 883 | done | |
| 884 | show "?lhs = x$k * det A" | |
| 885 | apply (subst U) | |
| 64267 | 886 | unfolding sum.insert[OF fUk kUk] | 
| 33175 | 887 | apply (subst th00) | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 888 | unfolding add.assoc | 
| 33175 | 889 | apply (subst det_row_add) | 
| 890 | unfolding thd0 | |
| 891 | unfolding det_row_mul | |
| 892 | unfolding th001[of k "\<lambda>i. row i A"] | |
| 53253 | 893 | unfolding thd1 | 
| 894 | apply (simp add: field_simps) | |
| 895 | done | |
| 33175 | 896 | qed | 
| 897 | ||
| 898 | lemma cramer_lemma: | |
| 36593 
fb69c8cd27bd
define linear algebra concepts using scaleR instead of (op *s); generalized many lemmas, though a few theorems that used to work on type int^'n are a bit less general
 huffman parents: 
36585diff
changeset | 899 | fixes A :: "real^'n^'n" | 
| 
fb69c8cd27bd
define linear algebra concepts using scaleR instead of (op *s); generalized many lemmas, though a few theorems that used to work on type int^'n are a bit less general
 huffman parents: 
36585diff
changeset | 900 | shows "det((\<chi> i j. if j = k then (A *v x)$i else A$i$j):: real^'n^'n) = x$k * det A" | 
| 53253 | 901 | proof - | 
| 33175 | 902 | let ?U = "UNIV :: 'n set" | 
| 64267 | 903 | have *: "\<And>c. sum (\<lambda>i. c i *s row i (transpose A)) ?U = sum (\<lambda>i. c i *s column i A) ?U" | 
| 904 | by (auto simp add: row_transpose intro: sum.cong) | |
| 53854 | 905 | show ?thesis | 
| 906 | unfolding matrix_mult_vsum | |
| 53253 | 907 | unfolding cramer_lemma_transpose[of k x "transpose A", unfolded det_transpose, symmetric] | 
| 908 | unfolding *[of "\<lambda>i. x$i"] | |
| 909 | apply (subst det_transpose[symmetric]) | |
| 910 | apply (rule cong[OF refl[of det]]) | |
| 911 | apply (vector transpose_def column_def row_def) | |
| 912 | done | |
| 33175 | 913 | qed | 
| 914 | ||
| 915 | lemma cramer: | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 916 | fixes A ::"real^'n^'n" | 
| 33175 | 917 | assumes d0: "det A \<noteq> 0" | 
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
35542diff
changeset | 918 | shows "A *v x = b \<longleftrightarrow> x = (\<chi> k. det(\<chi> i j. if j=k then b$i else A$i$j) / det A)" | 
| 53253 | 919 | proof - | 
| 33175 | 920 | from d0 obtain B where B: "A ** B = mat 1" "B ** A = mat 1" | 
| 53854 | 921 | unfolding invertible_det_nz[symmetric] invertible_def | 
| 922 | by blast | |
| 923 | have "(A ** B) *v b = b" | |
| 924 | by (simp add: B matrix_vector_mul_lid) | |
| 925 | then have "A *v (B *v b) = b" | |
| 926 | by (simp add: matrix_vector_mul_assoc) | |
| 927 | then have xe: "\<exists>x. A *v x = b" | |
| 928 | by blast | |
| 53253 | 929 |   {
 | 
| 930 | fix x | |
| 931 | assume x: "A *v x = b" | |
| 932 | have "x = (\<chi> k. det(\<chi> i j. if j=k then b$i else A$i$j) / det A)" | |
| 933 | unfolding x[symmetric] | |
| 934 | using d0 by (simp add: vec_eq_iff cramer_lemma field_simps) | |
| 935 | } | |
| 53854 | 936 | with xe show ?thesis | 
| 937 | by auto | |
| 33175 | 938 | qed | 
| 939 | ||
| 60420 | 940 | text \<open>Orthogonality of a transformation and matrix.\<close> | 
| 33175 | 941 | |
| 942 | definition "orthogonal_transformation f \<longleftrightarrow> linear f \<and> (\<forall>v w. f v \<bullet> f w = v \<bullet> w)" | |
| 943 | ||
| 53253 | 944 | lemma orthogonal_transformation: | 
| 945 | "orthogonal_transformation f \<longleftrightarrow> linear f \<and> (\<forall>(v::real ^_). norm (f v) = norm v)" | |
| 33175 | 946 | unfolding orthogonal_transformation_def | 
| 947 | apply auto | |
| 948 | apply (erule_tac x=v in allE)+ | |
| 35542 | 949 | apply (simp add: norm_eq_sqrt_inner) | 
| 53253 | 950 | apply (simp add: dot_norm linear_add[symmetric]) | 
| 951 | done | |
| 33175 | 952 | |
| 53253 | 953 | definition "orthogonal_matrix (Q::'a::semiring_1^'n^'n) \<longleftrightarrow> | 
| 954 | transpose Q ** Q = mat 1 \<and> Q ** transpose Q = mat 1" | |
| 33175 | 955 | |
| 53253 | 956 | lemma orthogonal_matrix: "orthogonal_matrix (Q:: real ^'n^'n) \<longleftrightarrow> transpose Q ** Q = mat 1" | 
| 33175 | 957 | by (metis matrix_left_right_inverse orthogonal_matrix_def) | 
| 958 | ||
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 959 | lemma orthogonal_matrix_id: "orthogonal_matrix (mat 1 :: _^'n^'n)" | 
| 35150 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 hoelzl parents: 
35028diff
changeset | 960 | by (simp add: orthogonal_matrix_def transpose_mat matrix_mul_lid) | 
| 33175 | 961 | |
| 962 | lemma orthogonal_matrix_mul: | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 963 | fixes A :: "real ^'n^'n" | 
| 33175 | 964 | assumes oA : "orthogonal_matrix A" | 
| 53253 | 965 | and oB: "orthogonal_matrix B" | 
| 33175 | 966 | shows "orthogonal_matrix(A ** B)" | 
| 967 | using oA oB | |
| 35150 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 hoelzl parents: 
35028diff
changeset | 968 | unfolding orthogonal_matrix matrix_transpose_mul | 
| 33175 | 969 | apply (subst matrix_mul_assoc) | 
| 970 | apply (subst matrix_mul_assoc[symmetric]) | |
| 53253 | 971 | apply (simp add: matrix_mul_rid) | 
| 972 | done | |
| 33175 | 973 | |
| 974 | lemma orthogonal_transformation_matrix: | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 975 | fixes f:: "real^'n \<Rightarrow> real^'n" | 
| 33175 | 976 | shows "orthogonal_transformation f \<longleftrightarrow> linear f \<and> orthogonal_matrix(matrix f)" | 
| 977 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 53253 | 978 | proof - | 
| 33175 | 979 | let ?mf = "matrix f" | 
| 980 | let ?ot = "orthogonal_transformation f" | |
| 981 | let ?U = "UNIV :: 'n set" | |
| 982 | have fU: "finite ?U" by simp | |
| 983 | let ?m1 = "mat 1 :: real ^'n^'n" | |
| 53253 | 984 |   {
 | 
| 985 | assume ot: ?ot | |
| 33175 | 986 | from ot have lf: "linear f" and fd: "\<forall>v w. f v \<bullet> f w = v \<bullet> w" | 
| 987 | unfolding orthogonal_transformation_def orthogonal_matrix by blast+ | |
| 53253 | 988 |     {
 | 
| 989 | fix i j | |
| 35150 
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
 hoelzl parents: 
35028diff
changeset | 990 | let ?A = "transpose ?mf ** ?mf" | 
| 33175 | 991 | have th0: "\<And>b (x::'a::comm_ring_1). (if b then 1 else 0)*x = (if b then x else 0)" | 
| 992 | "\<And>b (x::'a::comm_ring_1). x*(if b then 1 else 0) = (if b then x else 0)" | |
| 993 | by simp_all | |
| 63170 | 994 | from fd[rule_format, of "axis i 1" "axis j 1", | 
| 995 | simplified matrix_works[OF lf, symmetric] dot_matrix_vector_mul] | |
| 33175 | 996 | have "?A$i$j = ?m1 $ i $ j" | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
47108diff
changeset | 997 | by (simp add: inner_vec_def matrix_matrix_mult_def columnvector_def rowvector_def | 
| 64267 | 998 | th0 sum.delta[OF fU] mat_def axis_def) | 
| 53253 | 999 | } | 
| 53854 | 1000 | then have "orthogonal_matrix ?mf" | 
| 1001 | unfolding orthogonal_matrix | |
| 53253 | 1002 | by vector | 
| 53854 | 1003 | with lf have ?rhs | 
| 1004 | by blast | |
| 53253 | 1005 | } | 
| 33175 | 1006 | moreover | 
| 53253 | 1007 |   {
 | 
| 1008 | assume lf: "linear f" and om: "orthogonal_matrix ?mf" | |
| 33175 | 1009 | from lf om have ?lhs | 
| 63170 | 1010 | apply (simp only: orthogonal_matrix_def norm_eq orthogonal_transformation) | 
| 1011 | apply (simp only: matrix_works[OF lf, symmetric]) | |
| 33175 | 1012 | apply (subst dot_matrix_vector_mul) | 
| 53253 | 1013 | apply (simp add: dot_matrix_product matrix_mul_lid) | 
| 1014 | done | |
| 1015 | } | |
| 53854 | 1016 | ultimately show ?thesis | 
| 1017 | by blast | |
| 33175 | 1018 | qed | 
| 1019 | ||
| 1020 | lemma det_orthogonal_matrix: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34291diff
changeset | 1021 | fixes Q:: "'a::linordered_idom^'n^'n" | 
| 33175 | 1022 | assumes oQ: "orthogonal_matrix Q" | 
| 1023 | shows "det Q = 1 \<or> det Q = - 1" | |
| 53253 | 1024 | proof - | 
| 33175 | 1025 | have th: "\<And>x::'a. x = 1 \<or> x = - 1 \<longleftrightarrow> x*x = 1" (is "\<And>x::'a. ?ths x") | 
| 53253 | 1026 | proof - | 
| 33175 | 1027 | fix x:: 'a | 
| 53854 | 1028 | have th0: "x * x - 1 = (x - 1) * (x + 1)" | 
| 53253 | 1029 | by (simp add: field_simps) | 
| 33175 | 1030 | have th1: "\<And>(x::'a) y. x = - y \<longleftrightarrow> x + y = 0" | 
| 53253 | 1031 | apply (subst eq_iff_diff_eq_0) | 
| 1032 | apply simp | |
| 1033 | done | |
| 53854 | 1034 | have "x * x = 1 \<longleftrightarrow> x * x - 1 = 0" | 
| 1035 | by simp | |
| 1036 | also have "\<dots> \<longleftrightarrow> x = 1 \<or> x = - 1" | |
| 1037 | unfolding th0 th1 by simp | |
| 33175 | 1038 | finally show "?ths x" .. | 
| 1039 | qed | |
| 53253 | 1040 | from oQ have "Q ** transpose Q = mat 1" | 
| 1041 | by (metis orthogonal_matrix_def) | |
| 1042 | then have "det (Q ** transpose Q) = det (mat 1:: 'a^'n^'n)" | |
| 1043 | by simp | |
| 1044 | then have "det Q * det Q = 1" | |
| 1045 | by (simp add: det_mul det_I det_transpose) | |
| 33175 | 1046 | then show ?thesis unfolding th . | 
| 1047 | qed | |
| 1048 | ||
| 60420 | 1049 | text \<open>Linearity of scaling, and hence isometry, that preserves origin.\<close> | 
| 53854 | 1050 | |
| 33175 | 1051 | lemma scaling_linear: | 
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 1052 | fixes f :: "real ^'n \<Rightarrow> real ^'n" | 
| 53253 | 1053 | assumes f0: "f 0 = 0" | 
| 1054 | and fd: "\<forall>x y. dist (f x) (f y) = c * dist x y" | |
| 33175 | 1055 | shows "linear f" | 
| 53253 | 1056 | proof - | 
| 1057 |   {
 | |
| 1058 | fix v w | |
| 1059 |     {
 | |
| 1060 | fix x | |
| 1061 | note fd[rule_format, of x 0, unfolded dist_norm f0 diff_0_right] | |
| 1062 | } | |
| 33175 | 1063 | note th0 = this | 
| 53077 | 1064 | have "f v \<bullet> f w = c\<^sup>2 * (v \<bullet> w)" | 
| 33175 | 1065 | unfolding dot_norm_neg dist_norm[symmetric] | 
| 1066 | unfolding th0 fd[rule_format] by (simp add: power2_eq_square field_simps)} | |
| 1067 | note fc = this | |
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
47108diff
changeset | 1068 | show ?thesis | 
| 53600 
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
 huffman parents: 
53253diff
changeset | 1069 | unfolding linear_iff vector_eq[where 'a="real^'n"] scalar_mult_eq_scaleR | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
47108diff
changeset | 1070 | by (simp add: inner_add fc field_simps) | 
| 33175 | 1071 | qed | 
| 1072 | ||
| 1073 | lemma isometry_linear: | |
| 53253 | 1074 | "f (0:: real^'n) = (0:: real^'n) \<Longrightarrow> \<forall>x y. dist(f x) (f y) = dist x y \<Longrightarrow> linear f" | 
| 1075 | by (rule scaling_linear[where c=1]) simp_all | |
| 33175 | 1076 | |
| 60420 | 1077 | text \<open>Hence another formulation of orthogonal transformation.\<close> | 
| 33175 | 1078 | |
| 1079 | lemma orthogonal_transformation_isometry: | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 1080 | "orthogonal_transformation f \<longleftrightarrow> f(0::real^'n) = (0::real^'n) \<and> (\<forall>x y. dist(f x) (f y) = dist x y)" | 
| 33175 | 1081 | unfolding orthogonal_transformation | 
| 1082 | apply (rule iffI) | |
| 1083 | apply clarify | |
| 63469 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 paulson <lp15@cam.ac.uk> parents: 
63170diff
changeset | 1084 | apply (clarsimp simp add: linear_0 linear_diff[symmetric] dist_norm) | 
| 33175 | 1085 | apply (rule conjI) | 
| 1086 | apply (rule isometry_linear) | |
| 1087 | apply simp | |
| 1088 | apply simp | |
| 1089 | apply clarify | |
| 1090 | apply (erule_tac x=v in allE) | |
| 1091 | apply (erule_tac x=0 in allE) | |
| 53253 | 1092 | apply (simp add: dist_norm) | 
| 1093 | done | |
| 33175 | 1094 | |
| 60420 | 1095 | text \<open>Can extend an isometry from unit sphere.\<close> | 
| 33175 | 1096 | |
| 1097 | lemma isometry_sphere_extend: | |
| 34291 
4e896680897e
finite annotation on cartesian product is now implicit.
 hoelzl parents: 
34289diff
changeset | 1098 | fixes f:: "real ^'n \<Rightarrow> real ^'n" | 
| 33175 | 1099 | assumes f1: "\<forall>x. norm x = 1 \<longrightarrow> norm (f x) = 1" | 
| 53253 | 1100 | and fd1: "\<forall> x y. norm x = 1 \<longrightarrow> norm y = 1 \<longrightarrow> dist (f x) (f y) = dist x y" | 
| 33175 | 1101 | shows "\<exists>g. orthogonal_transformation g \<and> (\<forall>x. norm x = 1 \<longrightarrow> g x = f x)" | 
| 53253 | 1102 | proof - | 
| 1103 |   {
 | |
| 1104 | fix x y x' y' x0 y0 x0' y0' :: "real ^'n" | |
| 1105 | assume H: | |
| 1106 | "x = norm x *\<^sub>R x0" | |
| 1107 | "y = norm y *\<^sub>R y0" | |
| 1108 | "x' = norm x *\<^sub>R x0'" "y' = norm y *\<^sub>R y0'" | |
| 1109 | "norm x0 = 1" "norm x0' = 1" "norm y0 = 1" "norm y0' = 1" | |
| 1110 | "norm(x0' - y0') = norm(x0 - y0)" | |
| 53854 | 1111 | then have *: "x0 \<bullet> y0 = x0' \<bullet> y0' + y0' \<bullet> x0' - y0 \<bullet> x0 " | 
| 53253 | 1112 | by (simp add: norm_eq norm_eq_1 inner_add inner_diff) | 
| 33175 | 1113 | have "norm(x' - y') = norm(x - y)" | 
| 1114 | apply (subst H(1)) | |
| 1115 | apply (subst H(2)) | |
| 1116 | apply (subst H(3)) | |
| 1117 | apply (subst H(4)) | |
| 1118 | using H(5-9) | |
| 1119 | apply (simp add: norm_eq norm_eq_1) | |
| 53854 | 1120 | apply (simp add: inner_diff scalar_mult_eq_scaleR) | 
| 1121 | unfolding * | |
| 53253 | 1122 | apply (simp add: field_simps) | 
| 1123 | done | |
| 1124 | } | |
| 33175 | 1125 | note th0 = this | 
| 44228 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 huffman parents: 
41959diff
changeset | 1126 | let ?g = "\<lambda>x. if x = 0 then 0 else norm x *\<^sub>R f (inverse (norm x) *\<^sub>R x)" | 
| 53253 | 1127 |   {
 | 
| 1128 | fix x:: "real ^'n" | |
| 1129 | assume nx: "norm x = 1" | |
| 53854 | 1130 | have "?g x = f x" | 
| 1131 | using nx by auto | |
| 53253 | 1132 | } | 
| 1133 | then have thfg: "\<forall>x. norm x = 1 \<longrightarrow> ?g x = f x" | |
| 1134 | by blast | |
| 53854 | 1135 | have g0: "?g 0 = 0" | 
| 1136 | by simp | |
| 53253 | 1137 |   {
 | 
| 1138 | fix x y :: "real ^'n" | |
| 1139 |     {
 | |
| 1140 | assume "x = 0" "y = 0" | |
| 53854 | 1141 | then have "dist (?g x) (?g y) = dist x y" | 
| 1142 | by simp | |
| 53253 | 1143 | } | 
| 33175 | 1144 | moreover | 
| 53253 | 1145 |     {
 | 
| 1146 | assume "x = 0" "y \<noteq> 0" | |
| 33175 | 1147 | then have "dist (?g x) (?g y) = dist x y" | 
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
35542diff
changeset | 1148 | apply (simp add: dist_norm) | 
| 33175 | 1149 | apply (rule f1[rule_format]) | 
| 53253 | 1150 | apply (simp add: field_simps) | 
| 1151 | done | |
| 1152 | } | |
| 33175 | 1153 | moreover | 
| 53253 | 1154 |     {
 | 
| 1155 | assume "x \<noteq> 0" "y = 0" | |
| 33175 | 1156 | then have "dist (?g x) (?g y) = dist x y" | 
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
35542diff
changeset | 1157 | apply (simp add: dist_norm) | 
| 33175 | 1158 | apply (rule f1[rule_format]) | 
| 53253 | 1159 | apply (simp add: field_simps) | 
| 1160 | done | |
| 1161 | } | |
| 33175 | 1162 | moreover | 
| 53253 | 1163 |     {
 | 
| 1164 | assume z: "x \<noteq> 0" "y \<noteq> 0" | |
| 1165 | have th00: | |
| 1166 | "x = norm x *\<^sub>R (inverse (norm x) *\<^sub>R x)" | |
| 1167 | "y = norm y *\<^sub>R (inverse (norm y) *\<^sub>R y)" | |
| 1168 | "norm x *\<^sub>R f ((inverse (norm x) *\<^sub>R x)) = norm x *\<^sub>R f (inverse (norm x) *\<^sub>R x)" | |
| 44228 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 huffman parents: 
41959diff
changeset | 1169 | "norm y *\<^sub>R f (inverse (norm y) *\<^sub>R y) = norm y *\<^sub>R f (inverse (norm y) *\<^sub>R y)" | 
| 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 huffman parents: 
41959diff
changeset | 1170 | "norm (inverse (norm x) *\<^sub>R x) = 1" | 
| 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 huffman parents: 
41959diff
changeset | 1171 | "norm (f (inverse (norm x) *\<^sub>R x)) = 1" | 
| 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 huffman parents: 
41959diff
changeset | 1172 | "norm (inverse (norm y) *\<^sub>R y) = 1" | 
| 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 huffman parents: 
41959diff
changeset | 1173 | "norm (f (inverse (norm y) *\<^sub>R y)) = 1" | 
| 
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
 huffman parents: 
41959diff
changeset | 1174 | "norm (f (inverse (norm x) *\<^sub>R x) - f (inverse (norm y) *\<^sub>R y)) = | 
| 53253 | 1175 | norm (inverse (norm x) *\<^sub>R x - inverse (norm y) *\<^sub>R y)" | 
| 33175 | 1176 | using z | 
| 44457 
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
 huffman parents: 
44260diff
changeset | 1177 | by (auto simp add: field_simps intro: f1[rule_format] fd1[rule_format, unfolded dist_norm]) | 
| 33175 | 1178 | from z th0[OF th00] have "dist (?g x) (?g y) = dist x y" | 
| 53253 | 1179 | by (simp add: dist_norm) | 
| 1180 | } | |
| 53854 | 1181 | ultimately have "dist (?g x) (?g y) = dist x y" | 
| 1182 | by blast | |
| 53253 | 1183 | } | 
| 33175 | 1184 | note thd = this | 
| 1185 | show ?thesis | |
| 1186 | apply (rule exI[where x= ?g]) | |
| 1187 | unfolding orthogonal_transformation_isometry | |
| 53253 | 1188 | using g0 thfg thd | 
| 1189 | apply metis | |
| 1190 | done | |
| 33175 | 1191 | qed | 
| 1192 | ||
| 60420 | 1193 | text \<open>Rotation, reflection, rotoinversion.\<close> | 
| 33175 | 1194 | |
| 1195 | definition "rotation_matrix Q \<longleftrightarrow> orthogonal_matrix Q \<and> det Q = 1" | |
| 1196 | definition "rotoinversion_matrix Q \<longleftrightarrow> orthogonal_matrix Q \<and> det Q = - 1" | |
| 1197 | ||
| 1198 | lemma orthogonal_rotation_or_rotoinversion: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34291diff
changeset | 1199 | fixes Q :: "'a::linordered_idom^'n^'n" | 
| 33175 | 1200 | shows " orthogonal_matrix Q \<longleftrightarrow> rotation_matrix Q \<or> rotoinversion_matrix Q" | 
| 1201 | by (metis rotoinversion_matrix_def rotation_matrix_def det_orthogonal_matrix) | |
| 53253 | 1202 | |
| 60420 | 1203 | text \<open>Explicit formulas for low dimensions.\<close> | 
| 33175 | 1204 | |
| 64272 | 1205 | lemma prod_neutral_const: "prod f {(1::nat)..1} = f 1"
 | 
| 61286 | 1206 | by simp | 
| 33175 | 1207 | |
| 64272 | 1208 | lemma prod_2: "prod f {(1::nat)..2} = f 1 * f 2"
 | 
| 61286 | 1209 | by (simp add: eval_nat_numeral atLeastAtMostSuc_conv mult.commute) | 
| 53253 | 1210 | |
| 64272 | 1211 | lemma prod_3: "prod f {(1::nat)..3} = f 1 * f 2 * f 3"
 | 
| 61286 | 1212 | by (simp add: eval_nat_numeral atLeastAtMostSuc_conv mult.commute) | 
| 33175 | 1213 | |
| 1214 | lemma det_1: "det (A::'a::comm_ring_1^1^1) = A$1$1" | |
| 61286 | 1215 | by (simp add: det_def of_nat_Suc sign_id) | 
| 33175 | 1216 | |
| 1217 | lemma det_2: "det (A::'a::comm_ring_1^2^2) = A$1$1 * A$2$2 - A$1$2 * A$2$1" | |
| 53253 | 1218 | proof - | 
| 33175 | 1219 |   have f12: "finite {2::2}" "1 \<notin> {2::2}" by auto
 | 
| 1220 | show ?thesis | |
| 53253 | 1221 | unfolding det_def UNIV_2 | 
| 64267 | 1222 | unfolding sum_over_permutations_insert[OF f12] | 
| 53253 | 1223 | unfolding permutes_sing | 
| 1224 | by (simp add: sign_swap_id sign_id swap_id_eq) | |
| 33175 | 1225 | qed | 
| 1226 | ||
| 53253 | 1227 | lemma det_3: | 
| 1228 | "det (A::'a::comm_ring_1^3^3) = | |
| 1229 | A$1$1 * A$2$2 * A$3$3 + | |
| 1230 | A$1$2 * A$2$3 * A$3$1 + | |
| 1231 | A$1$3 * A$2$1 * A$3$2 - | |
| 1232 | A$1$1 * A$2$3 * A$3$2 - | |
| 1233 | A$1$2 * A$2$1 * A$3$3 - | |
| 1234 | A$1$3 * A$2$2 * A$3$1" | |
| 1235 | proof - | |
| 53854 | 1236 |   have f123: "finite {2::3, 3}" "1 \<notin> {2::3, 3}"
 | 
| 1237 | by auto | |
| 1238 |   have f23: "finite {3::3}" "2 \<notin> {3::3}"
 | |
| 1239 | by auto | |
| 33175 | 1240 | |
| 1241 | show ?thesis | |
| 53253 | 1242 | unfolding det_def UNIV_3 | 
| 64267 | 1243 | unfolding sum_over_permutations_insert[OF f123] | 
| 1244 | unfolding sum_over_permutations_insert[OF f23] | |
| 53253 | 1245 | unfolding permutes_sing | 
| 1246 | by (simp add: sign_swap_id permutation_swap_id sign_compose sign_id swap_id_eq) | |
| 33175 | 1247 | qed | 
| 1248 | ||
| 1249 | end |