author | paulson <lp15@cam.ac.uk> |
Wed, 30 Sep 2015 17:09:12 +0100 | |
changeset 61286 | dcf7be51bf5d |
parent 60420 | 884f54e01427 |
child 62408 | 86f27b264d3d |
permissions | -rw-r--r-- |
41959 | 1 |
(* Title: HOL/Multivariate_Analysis/Determinants.thy |
2 |
Author: Amine Chaieb, University of Cambridge |
|
33175 | 3 |
*) |
4 |
||
60420 | 5 |
section \<open>Traces, Determinant of square matrices and some properties\<close> |
33175 | 6 |
|
7 |
theory Determinants |
|
44228
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
huffman
parents:
41959
diff
changeset
|
8 |
imports |
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
huffman
parents:
41959
diff
changeset
|
9 |
Cartesian_Euclidean_Space |
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
huffman
parents:
41959
diff
changeset
|
10 |
"~~/src/HOL/Library/Permutations" |
33175 | 11 |
begin |
12 |
||
60420 | 13 |
subsection \<open>Trace\<close> |
33175 | 14 |
|
53253 | 15 |
definition trace :: "'a::semiring_1^'n^'n \<Rightarrow> 'a" |
16 |
where "trace A = setsum (\<lambda>i. ((A$i)$i)) (UNIV::'n set)" |
|
33175 | 17 |
|
53854 | 18 |
lemma trace_0: "trace (mat 0) = 0" |
33175 | 19 |
by (simp add: trace_def mat_def) |
20 |
||
53854 | 21 |
lemma trace_I: "trace (mat 1 :: 'a::semiring_1^'n^'n) = of_nat(CARD('n))" |
33175 | 22 |
by (simp add: trace_def mat_def) |
23 |
||
34291
4e896680897e
finite annotation on cartesian product is now implicit.
hoelzl
parents:
34289
diff
changeset
|
24 |
lemma trace_add: "trace ((A::'a::comm_semiring_1^'n^'n) + B) = trace A + trace B" |
57418 | 25 |
by (simp add: trace_def setsum.distrib) |
33175 | 26 |
|
34291
4e896680897e
finite annotation on cartesian product is now implicit.
hoelzl
parents:
34289
diff
changeset
|
27 |
lemma trace_sub: "trace ((A::'a::comm_ring_1^'n^'n) - B) = trace A - trace B" |
33175 | 28 |
by (simp add: trace_def setsum_subtractf) |
29 |
||
53854 | 30 |
lemma trace_mul_sym: "trace ((A::'a::comm_semiring_1^'n^'m) ** B) = trace (B**A)" |
33175 | 31 |
apply (simp add: trace_def matrix_matrix_mult_def) |
57418 | 32 |
apply (subst setsum.commute) |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
57418
diff
changeset
|
33 |
apply (simp add: mult.commute) |
53253 | 34 |
done |
33175 | 35 |
|
60420 | 36 |
text \<open>Definition of determinant.\<close> |
33175 | 37 |
|
34291
4e896680897e
finite annotation on cartesian product is now implicit.
hoelzl
parents:
34289
diff
changeset
|
38 |
definition det:: "'a::comm_ring_1^'n^'n \<Rightarrow> 'a" where |
53253 | 39 |
"det A = |
40 |
setsum (\<lambda>p. of_int (sign p) * setprod (\<lambda>i. A$i$p i) (UNIV :: 'n set)) |
|
41 |
{p. p permutes (UNIV :: 'n set)}" |
|
33175 | 42 |
|
60420 | 43 |
text \<open>A few general lemmas we need below.\<close> |
33175 | 44 |
|
45 |
lemma setprod_permute: |
|
46 |
assumes p: "p permutes S" |
|
53854 | 47 |
shows "setprod f S = setprod (f \<circ> p) S" |
51489 | 48 |
using assms by (fact setprod.permute) |
33175 | 49 |
|
53253 | 50 |
lemma setproduct_permute_nat_interval: |
53854 | 51 |
fixes m n :: nat |
52 |
shows "p permutes {m..n} \<Longrightarrow> setprod f {m..n} = setprod (f \<circ> p) {m..n}" |
|
33175 | 53 |
by (blast intro!: setprod_permute) |
54 |
||
60420 | 55 |
text \<open>Basic determinant properties.\<close> |
33175 | 56 |
|
35150
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
hoelzl
parents:
35028
diff
changeset
|
57 |
lemma det_transpose: "det (transpose A) = det (A::'a::comm_ring_1 ^'n^'n)" |
53253 | 58 |
proof - |
33175 | 59 |
let ?di = "\<lambda>A i j. A$i$j" |
60 |
let ?U = "(UNIV :: 'n set)" |
|
61 |
have fU: "finite ?U" by simp |
|
53253 | 62 |
{ |
63 |
fix p |
|
64 |
assume p: "p \<in> {p. p permutes ?U}" |
|
53854 | 65 |
from p have pU: "p permutes ?U" |
66 |
by blast |
|
33175 | 67 |
have sth: "sign (inv p) = sign p" |
44260
7784fa3232ce
Determinants.thy: avoid using mem_def/Collect_def
huffman
parents:
44228
diff
changeset
|
68 |
by (metis sign_inverse fU p mem_Collect_eq permutation_permutes) |
33175 | 69 |
from permutes_inj[OF pU] |
53854 | 70 |
have pi: "inj_on p ?U" |
71 |
by (blast intro: subset_inj_on) |
|
33175 | 72 |
from permutes_image[OF pU] |
53253 | 73 |
have "setprod (\<lambda>i. ?di (transpose A) i (inv p i)) ?U = |
53854 | 74 |
setprod (\<lambda>i. ?di (transpose A) i (inv p i)) (p ` ?U)" |
75 |
by simp |
|
76 |
also have "\<dots> = setprod ((\<lambda>i. ?di (transpose A) i (inv p i)) \<circ> p) ?U" |
|
57418 | 77 |
unfolding setprod.reindex[OF pi] .. |
33175 | 78 |
also have "\<dots> = setprod (\<lambda>i. ?di A i (p i)) ?U" |
53253 | 79 |
proof - |
80 |
{ |
|
81 |
fix i |
|
82 |
assume i: "i \<in> ?U" |
|
33175 | 83 |
from i permutes_inv_o[OF pU] permutes_in_image[OF pU] |
53854 | 84 |
have "((\<lambda>i. ?di (transpose A) i (inv p i)) \<circ> p) i = ?di A i (p i)" |
53253 | 85 |
unfolding transpose_def by (simp add: fun_eq_iff) |
86 |
} |
|
53854 | 87 |
then show "setprod ((\<lambda>i. ?di (transpose A) i (inv p i)) \<circ> p) ?U = |
88 |
setprod (\<lambda>i. ?di A i (p i)) ?U" |
|
57418 | 89 |
by (auto intro: setprod.cong) |
33175 | 90 |
qed |
53253 | 91 |
finally have "of_int (sign (inv p)) * (setprod (\<lambda>i. ?di (transpose A) i (inv p i)) ?U) = |
53854 | 92 |
of_int (sign p) * (setprod (\<lambda>i. ?di A i (p i)) ?U)" |
93 |
using sth by simp |
|
53253 | 94 |
} |
95 |
then show ?thesis |
|
96 |
unfolding det_def |
|
97 |
apply (subst setsum_permutations_inverse) |
|
57418 | 98 |
apply (rule setsum.cong) |
99 |
apply (rule refl) |
|
53253 | 100 |
apply blast |
101 |
done |
|
33175 | 102 |
qed |
103 |
||
104 |
lemma det_lowerdiagonal: |
|
34291
4e896680897e
finite annotation on cartesian product is now implicit.
hoelzl
parents:
34289
diff
changeset
|
105 |
fixes A :: "'a::comm_ring_1^('n::{finite,wellorder})^('n::{finite,wellorder})" |
33175 | 106 |
assumes ld: "\<And>i j. i < j \<Longrightarrow> A$i$j = 0" |
107 |
shows "det A = setprod (\<lambda>i. A$i$i) (UNIV:: 'n set)" |
|
53253 | 108 |
proof - |
33175 | 109 |
let ?U = "UNIV:: 'n set" |
110 |
let ?PU = "{p. p permutes ?U}" |
|
111 |
let ?pp = "\<lambda>p. of_int (sign p) * setprod (\<lambda>i. A$i$p i) (UNIV :: 'n set)" |
|
53854 | 112 |
have fU: "finite ?U" |
113 |
by simp |
|
33175 | 114 |
from finite_permutations[OF fU] have fPU: "finite ?PU" . |
53854 | 115 |
have id0: "{id} \<subseteq> ?PU" |
116 |
by (auto simp add: permutes_id) |
|
53253 | 117 |
{ |
118 |
fix p |
|
53854 | 119 |
assume p: "p \<in> ?PU - {id}" |
53253 | 120 |
from p have pU: "p permutes ?U" and pid: "p \<noteq> id" |
121 |
by blast+ |
|
122 |
from permutes_natset_le[OF pU] pid obtain i where i: "p i > i" |
|
123 |
by (metis not_le) |
|
124 |
from ld[OF i] have ex:"\<exists>i \<in> ?U. A$i$p i = 0" |
|
125 |
by blast |
|
126 |
from setprod_zero[OF fU ex] have "?pp p = 0" |
|
127 |
by simp |
|
128 |
} |
|
53854 | 129 |
then have p0: "\<forall>p \<in> ?PU - {id}. ?pp p = 0" |
53253 | 130 |
by blast |
57418 | 131 |
from setsum.mono_neutral_cong_left[OF fPU id0 p0] show ?thesis |
33175 | 132 |
unfolding det_def by (simp add: sign_id) |
133 |
qed |
|
134 |
||
135 |
lemma det_upperdiagonal: |
|
34291
4e896680897e
finite annotation on cartesian product is now implicit.
hoelzl
parents:
34289
diff
changeset
|
136 |
fixes A :: "'a::comm_ring_1^'n::{finite,wellorder}^'n::{finite,wellorder}" |
33175 | 137 |
assumes ld: "\<And>i j. i > j \<Longrightarrow> A$i$j = 0" |
138 |
shows "det A = setprod (\<lambda>i. A$i$i) (UNIV:: 'n set)" |
|
53253 | 139 |
proof - |
33175 | 140 |
let ?U = "UNIV:: 'n set" |
141 |
let ?PU = "{p. p permutes ?U}" |
|
142 |
let ?pp = "(\<lambda>p. of_int (sign p) * setprod (\<lambda>i. A$i$p i) (UNIV :: 'n set))" |
|
53854 | 143 |
have fU: "finite ?U" |
144 |
by simp |
|
33175 | 145 |
from finite_permutations[OF fU] have fPU: "finite ?PU" . |
53854 | 146 |
have id0: "{id} \<subseteq> ?PU" |
147 |
by (auto simp add: permutes_id) |
|
53253 | 148 |
{ |
149 |
fix p |
|
53854 | 150 |
assume p: "p \<in> ?PU - {id}" |
53253 | 151 |
from p have pU: "p permutes ?U" and pid: "p \<noteq> id" |
152 |
by blast+ |
|
153 |
from permutes_natset_ge[OF pU] pid obtain i where i: "p i < i" |
|
154 |
by (metis not_le) |
|
53854 | 155 |
from ld[OF i] have ex:"\<exists>i \<in> ?U. A$i$p i = 0" |
156 |
by blast |
|
157 |
from setprod_zero[OF fU ex] have "?pp p = 0" |
|
158 |
by simp |
|
53253 | 159 |
} |
160 |
then have p0: "\<forall>p \<in> ?PU -{id}. ?pp p = 0" |
|
161 |
by blast |
|
57418 | 162 |
from setsum.mono_neutral_cong_left[OF fPU id0 p0] show ?thesis |
33175 | 163 |
unfolding det_def by (simp add: sign_id) |
164 |
qed |
|
165 |
||
166 |
lemma det_diagonal: |
|
34291
4e896680897e
finite annotation on cartesian product is now implicit.
hoelzl
parents:
34289
diff
changeset
|
167 |
fixes A :: "'a::comm_ring_1^'n^'n" |
33175 | 168 |
assumes ld: "\<And>i j. i \<noteq> j \<Longrightarrow> A$i$j = 0" |
169 |
shows "det A = setprod (\<lambda>i. A$i$i) (UNIV::'n set)" |
|
53253 | 170 |
proof - |
33175 | 171 |
let ?U = "UNIV:: 'n set" |
172 |
let ?PU = "{p. p permutes ?U}" |
|
173 |
let ?pp = "\<lambda>p. of_int (sign p) * setprod (\<lambda>i. A$i$p i) (UNIV :: 'n set)" |
|
174 |
have fU: "finite ?U" by simp |
|
175 |
from finite_permutations[OF fU] have fPU: "finite ?PU" . |
|
53854 | 176 |
have id0: "{id} \<subseteq> ?PU" |
177 |
by (auto simp add: permutes_id) |
|
53253 | 178 |
{ |
179 |
fix p |
|
180 |
assume p: "p \<in> ?PU - {id}" |
|
53854 | 181 |
then have "p \<noteq> id" |
182 |
by simp |
|
183 |
then obtain i where i: "p i \<noteq> i" |
|
184 |
unfolding fun_eq_iff by auto |
|
185 |
from ld [OF i [symmetric]] have ex:"\<exists>i \<in> ?U. A$i$p i = 0" |
|
186 |
by blast |
|
187 |
from setprod_zero [OF fU ex] have "?pp p = 0" |
|
188 |
by simp |
|
189 |
} |
|
190 |
then have p0: "\<forall>p \<in> ?PU - {id}. ?pp p = 0" |
|
191 |
by blast |
|
57418 | 192 |
from setsum.mono_neutral_cong_left[OF fPU id0 p0] show ?thesis |
33175 | 193 |
unfolding det_def by (simp add: sign_id) |
194 |
qed |
|
195 |
||
34291
4e896680897e
finite annotation on cartesian product is now implicit.
hoelzl
parents:
34289
diff
changeset
|
196 |
lemma det_I: "det (mat 1 :: 'a::comm_ring_1^'n^'n) = 1" |
53253 | 197 |
proof - |
33175 | 198 |
let ?A = "mat 1 :: 'a::comm_ring_1^'n^'n" |
199 |
let ?U = "UNIV :: 'n set" |
|
200 |
let ?f = "\<lambda>i j. ?A$i$j" |
|
53253 | 201 |
{ |
202 |
fix i |
|
203 |
assume i: "i \<in> ?U" |
|
53854 | 204 |
have "?f i i = 1" |
205 |
using i by (vector mat_def) |
|
53253 | 206 |
} |
207 |
then have th: "setprod (\<lambda>i. ?f i i) ?U = setprod (\<lambda>x. 1) ?U" |
|
57418 | 208 |
by (auto intro: setprod.cong) |
53253 | 209 |
{ |
210 |
fix i j |
|
211 |
assume i: "i \<in> ?U" and j: "j \<in> ?U" and ij: "i \<noteq> j" |
|
53854 | 212 |
have "?f i j = 0" using i j ij |
213 |
by (vector mat_def) |
|
53253 | 214 |
} |
53854 | 215 |
then have "det ?A = setprod (\<lambda>i. ?f i i) ?U" |
216 |
using det_diagonal by blast |
|
217 |
also have "\<dots> = 1" |
|
57418 | 218 |
unfolding th setprod.neutral_const .. |
33175 | 219 |
finally show ?thesis . |
220 |
qed |
|
221 |
||
34291
4e896680897e
finite annotation on cartesian product is now implicit.
hoelzl
parents:
34289
diff
changeset
|
222 |
lemma det_0: "det (mat 0 :: 'a::comm_ring_1^'n^'n) = 0" |
33175 | 223 |
by (simp add: det_def setprod_zero) |
224 |
||
225 |
lemma det_permute_rows: |
|
34291
4e896680897e
finite annotation on cartesian product is now implicit.
hoelzl
parents:
34289
diff
changeset
|
226 |
fixes A :: "'a::comm_ring_1^'n^'n" |
33175 | 227 |
assumes p: "p permutes (UNIV :: 'n::finite set)" |
53854 | 228 |
shows "det (\<chi> i. A$p i :: 'a^'n^'n) = of_int (sign p) * det A" |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
57418
diff
changeset
|
229 |
apply (simp add: det_def setsum_right_distrib mult.assoc[symmetric]) |
33175 | 230 |
apply (subst sum_permutations_compose_right[OF p]) |
57418 | 231 |
proof (rule setsum.cong) |
33175 | 232 |
let ?U = "UNIV :: 'n set" |
233 |
let ?PU = "{p. p permutes ?U}" |
|
53253 | 234 |
fix q |
235 |
assume qPU: "q \<in> ?PU" |
|
53854 | 236 |
have fU: "finite ?U" |
237 |
by simp |
|
53253 | 238 |
from qPU have q: "q permutes ?U" |
239 |
by blast |
|
33175 | 240 |
from p q have pp: "permutation p" and qp: "permutation q" |
241 |
by (metis fU permutation_permutes)+ |
|
242 |
from permutes_inv[OF p] have ip: "inv p permutes ?U" . |
|
53854 | 243 |
have "setprod (\<lambda>i. A$p i$ (q \<circ> p) i) ?U = setprod ((\<lambda>i. A$p i$(q \<circ> p) i) \<circ> inv p) ?U" |
53253 | 244 |
by (simp only: setprod_permute[OF ip, symmetric]) |
53854 | 245 |
also have "\<dots> = setprod (\<lambda>i. A $ (p \<circ> inv p) i $ (q \<circ> (p \<circ> inv p)) i) ?U" |
53253 | 246 |
by (simp only: o_def) |
247 |
also have "\<dots> = setprod (\<lambda>i. A$i$q i) ?U" |
|
248 |
by (simp only: o_def permutes_inverses[OF p]) |
|
53854 | 249 |
finally have thp: "setprod (\<lambda>i. A$p i$ (q \<circ> p) i) ?U = setprod (\<lambda>i. A$i$q i) ?U" |
53253 | 250 |
by blast |
53854 | 251 |
show "of_int (sign (q \<circ> p)) * setprod (\<lambda>i. A$ p i$ (q \<circ> p) i) ?U = |
53253 | 252 |
of_int (sign p) * of_int (sign q) * setprod (\<lambda>i. A$i$q i) ?U" |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
57418
diff
changeset
|
253 |
by (simp only: thp sign_compose[OF qp pp] mult.commute of_int_mult) |
57418 | 254 |
qed rule |
33175 | 255 |
|
256 |
lemma det_permute_columns: |
|
34291
4e896680897e
finite annotation on cartesian product is now implicit.
hoelzl
parents:
34289
diff
changeset
|
257 |
fixes A :: "'a::comm_ring_1^'n^'n" |
33175 | 258 |
assumes p: "p permutes (UNIV :: 'n set)" |
259 |
shows "det(\<chi> i j. A$i$ p j :: 'a^'n^'n) = of_int (sign p) * det A" |
|
53253 | 260 |
proof - |
33175 | 261 |
let ?Ap = "\<chi> i j. A$i$ p j :: 'a^'n^'n" |
35150
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
hoelzl
parents:
35028
diff
changeset
|
262 |
let ?At = "transpose A" |
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
hoelzl
parents:
35028
diff
changeset
|
263 |
have "of_int (sign p) * det A = det (transpose (\<chi> i. transpose A $ p i))" |
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
hoelzl
parents:
35028
diff
changeset
|
264 |
unfolding det_permute_rows[OF p, of ?At] det_transpose .. |
33175 | 265 |
moreover |
35150
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
hoelzl
parents:
35028
diff
changeset
|
266 |
have "?Ap = transpose (\<chi> i. transpose A $ p i)" |
44228
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
huffman
parents:
41959
diff
changeset
|
267 |
by (simp add: transpose_def vec_eq_iff) |
53854 | 268 |
ultimately show ?thesis |
269 |
by simp |
|
33175 | 270 |
qed |
271 |
||
272 |
lemma det_identical_rows: |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34291
diff
changeset
|
273 |
fixes A :: "'a::linordered_idom^'n^'n" |
33175 | 274 |
assumes ij: "i \<noteq> j" |
53253 | 275 |
and r: "row i A = row j A" |
33175 | 276 |
shows "det A = 0" |
277 |
proof- |
|
53253 | 278 |
have tha: "\<And>(a::'a) b. a = b \<Longrightarrow> b = - a \<Longrightarrow> a = 0" |
33175 | 279 |
by simp |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
44457
diff
changeset
|
280 |
have th1: "of_int (-1) = - 1" by simp |
33175 | 281 |
let ?p = "Fun.swap i j id" |
282 |
let ?A = "\<chi> i. A $ ?p i" |
|
56545 | 283 |
from r have "A = ?A" by (simp add: vec_eq_iff row_def Fun.swap_def) |
53253 | 284 |
then have "det A = det ?A" by simp |
33175 | 285 |
moreover have "det A = - det ?A" |
286 |
by (simp add: det_permute_rows[OF permutes_swap_id] sign_swap_id ij th1) |
|
287 |
ultimately show "det A = 0" by (metis tha) |
|
288 |
qed |
|
289 |
||
290 |
lemma det_identical_columns: |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34291
diff
changeset
|
291 |
fixes A :: "'a::linordered_idom^'n^'n" |
33175 | 292 |
assumes ij: "i \<noteq> j" |
53253 | 293 |
and r: "column i A = column j A" |
33175 | 294 |
shows "det A = 0" |
53253 | 295 |
apply (subst det_transpose[symmetric]) |
296 |
apply (rule det_identical_rows[OF ij]) |
|
297 |
apply (metis row_transpose r) |
|
298 |
done |
|
33175 | 299 |
|
300 |
lemma det_zero_row: |
|
34291
4e896680897e
finite annotation on cartesian product is now implicit.
hoelzl
parents:
34289
diff
changeset
|
301 |
fixes A :: "'a::{idom, ring_char_0}^'n^'n" |
33175 | 302 |
assumes r: "row i A = 0" |
303 |
shows "det A = 0" |
|
53253 | 304 |
using r |
305 |
apply (simp add: row_def det_def vec_eq_iff) |
|
57418 | 306 |
apply (rule setsum.neutral) |
53253 | 307 |
apply (auto simp: sign_nz) |
308 |
done |
|
33175 | 309 |
|
310 |
lemma det_zero_column: |
|
34291
4e896680897e
finite annotation on cartesian product is now implicit.
hoelzl
parents:
34289
diff
changeset
|
311 |
fixes A :: "'a::{idom,ring_char_0}^'n^'n" |
33175 | 312 |
assumes r: "column i A = 0" |
313 |
shows "det A = 0" |
|
35150
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
hoelzl
parents:
35028
diff
changeset
|
314 |
apply (subst det_transpose[symmetric]) |
33175 | 315 |
apply (rule det_zero_row [of i]) |
53253 | 316 |
apply (metis row_transpose r) |
317 |
done |
|
33175 | 318 |
|
319 |
lemma det_row_add: |
|
320 |
fixes a b c :: "'n::finite \<Rightarrow> _ ^ 'n" |
|
321 |
shows "det((\<chi> i. if i = k then a i + b i else c i)::'a::comm_ring_1^'n^'n) = |
|
53253 | 322 |
det((\<chi> i. if i = k then a i else c i)::'a::comm_ring_1^'n^'n) + |
323 |
det((\<chi> i. if i = k then b i else c i)::'a::comm_ring_1^'n^'n)" |
|
57418 | 324 |
unfolding det_def vec_lambda_beta setsum.distrib[symmetric] |
325 |
proof (rule setsum.cong) |
|
33175 | 326 |
let ?U = "UNIV :: 'n set" |
327 |
let ?pU = "{p. p permutes ?U}" |
|
328 |
let ?f = "(\<lambda>i. if i = k then a i + b i else c i)::'n \<Rightarrow> 'a::comm_ring_1^'n" |
|
329 |
let ?g = "(\<lambda> i. if i = k then a i else c i)::'n \<Rightarrow> 'a::comm_ring_1^'n" |
|
330 |
let ?h = "(\<lambda> i. if i = k then b i else c i)::'n \<Rightarrow> 'a::comm_ring_1^'n" |
|
53253 | 331 |
fix p |
332 |
assume p: "p \<in> ?pU" |
|
33175 | 333 |
let ?Uk = "?U - {k}" |
53854 | 334 |
from p have pU: "p permutes ?U" |
335 |
by blast |
|
336 |
have kU: "?U = insert k ?Uk" |
|
337 |
by blast |
|
53253 | 338 |
{ |
339 |
fix j |
|
340 |
assume j: "j \<in> ?Uk" |
|
33175 | 341 |
from j have "?f j $ p j = ?g j $ p j" and "?f j $ p j= ?h j $ p j" |
53253 | 342 |
by simp_all |
343 |
} |
|
33175 | 344 |
then have th1: "setprod (\<lambda>i. ?f i $ p i) ?Uk = setprod (\<lambda>i. ?g i $ p i) ?Uk" |
345 |
and th2: "setprod (\<lambda>i. ?f i $ p i) ?Uk = setprod (\<lambda>i. ?h i $ p i) ?Uk" |
|
346 |
apply - |
|
57418 | 347 |
apply (rule setprod.cong, simp_all)+ |
33175 | 348 |
done |
53854 | 349 |
have th3: "finite ?Uk" "k \<notin> ?Uk" |
350 |
by auto |
|
33175 | 351 |
have "setprod (\<lambda>i. ?f i $ p i) ?U = setprod (\<lambda>i. ?f i $ p i) (insert k ?Uk)" |
352 |
unfolding kU[symmetric] .. |
|
53854 | 353 |
also have "\<dots> = ?f k $ p k * setprod (\<lambda>i. ?f i $ p i) ?Uk" |
57418 | 354 |
apply (rule setprod.insert) |
33175 | 355 |
apply simp |
53253 | 356 |
apply blast |
357 |
done |
|
358 |
also have "\<dots> = (a k $ p k * setprod (\<lambda>i. ?f i $ p i) ?Uk) + (b k$ p k * setprod (\<lambda>i. ?f i $ p i) ?Uk)" |
|
359 |
by (simp add: field_simps) |
|
360 |
also have "\<dots> = (a k $ p k * setprod (\<lambda>i. ?g i $ p i) ?Uk) + (b k$ p k * setprod (\<lambda>i. ?h i $ p i) ?Uk)" |
|
361 |
by (metis th1 th2) |
|
33175 | 362 |
also have "\<dots> = setprod (\<lambda>i. ?g i $ p i) (insert k ?Uk) + setprod (\<lambda>i. ?h i $ p i) (insert k ?Uk)" |
57418 | 363 |
unfolding setprod.insert[OF th3] by simp |
53854 | 364 |
finally have "setprod (\<lambda>i. ?f i $ p i) ?U = setprod (\<lambda>i. ?g i $ p i) ?U + setprod (\<lambda>i. ?h i $ p i) ?U" |
365 |
unfolding kU[symmetric] . |
|
53253 | 366 |
then show "of_int (sign p) * setprod (\<lambda>i. ?f i $ p i) ?U = |
367 |
of_int (sign p) * setprod (\<lambda>i. ?g i $ p i) ?U + of_int (sign p) * setprod (\<lambda>i. ?h i $ p i) ?U" |
|
36350 | 368 |
by (simp add: field_simps) |
57418 | 369 |
qed rule |
33175 | 370 |
|
371 |
lemma det_row_mul: |
|
372 |
fixes a b :: "'n::finite \<Rightarrow> _ ^ 'n" |
|
373 |
shows "det((\<chi> i. if i = k then c *s a i else b i)::'a::comm_ring_1^'n^'n) = |
|
53253 | 374 |
c * det((\<chi> i. if i = k then a i else b i)::'a::comm_ring_1^'n^'n)" |
375 |
unfolding det_def vec_lambda_beta setsum_right_distrib |
|
57418 | 376 |
proof (rule setsum.cong) |
33175 | 377 |
let ?U = "UNIV :: 'n set" |
378 |
let ?pU = "{p. p permutes ?U}" |
|
379 |
let ?f = "(\<lambda>i. if i = k then c*s a i else b i)::'n \<Rightarrow> 'a::comm_ring_1^'n" |
|
380 |
let ?g = "(\<lambda> i. if i = k then a i else b i)::'n \<Rightarrow> 'a::comm_ring_1^'n" |
|
53253 | 381 |
fix p |
382 |
assume p: "p \<in> ?pU" |
|
33175 | 383 |
let ?Uk = "?U - {k}" |
53854 | 384 |
from p have pU: "p permutes ?U" |
385 |
by blast |
|
386 |
have kU: "?U = insert k ?Uk" |
|
387 |
by blast |
|
53253 | 388 |
{ |
389 |
fix j |
|
390 |
assume j: "j \<in> ?Uk" |
|
53854 | 391 |
from j have "?f j $ p j = ?g j $ p j" |
392 |
by simp |
|
53253 | 393 |
} |
33175 | 394 |
then have th1: "setprod (\<lambda>i. ?f i $ p i) ?Uk = setprod (\<lambda>i. ?g i $ p i) ?Uk" |
395 |
apply - |
|
57418 | 396 |
apply (rule setprod.cong) |
53253 | 397 |
apply simp_all |
33175 | 398 |
done |
53854 | 399 |
have th3: "finite ?Uk" "k \<notin> ?Uk" |
400 |
by auto |
|
33175 | 401 |
have "setprod (\<lambda>i. ?f i $ p i) ?U = setprod (\<lambda>i. ?f i $ p i) (insert k ?Uk)" |
402 |
unfolding kU[symmetric] .. |
|
403 |
also have "\<dots> = ?f k $ p k * setprod (\<lambda>i. ?f i $ p i) ?Uk" |
|
57418 | 404 |
apply (rule setprod.insert) |
33175 | 405 |
apply simp |
53253 | 406 |
apply blast |
407 |
done |
|
408 |
also have "\<dots> = (c*s a k) $ p k * setprod (\<lambda>i. ?f i $ p i) ?Uk" |
|
409 |
by (simp add: field_simps) |
|
33175 | 410 |
also have "\<dots> = c* (a k $ p k * setprod (\<lambda>i. ?g i $ p i) ?Uk)" |
57514
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents:
57512
diff
changeset
|
411 |
unfolding th1 by (simp add: ac_simps) |
33175 | 412 |
also have "\<dots> = c* (setprod (\<lambda>i. ?g i $ p i) (insert k ?Uk))" |
57418 | 413 |
unfolding setprod.insert[OF th3] by simp |
53253 | 414 |
finally have "setprod (\<lambda>i. ?f i $ p i) ?U = c* (setprod (\<lambda>i. ?g i $ p i) ?U)" |
415 |
unfolding kU[symmetric] . |
|
416 |
then show "of_int (sign p) * setprod (\<lambda>i. ?f i $ p i) ?U = |
|
417 |
c * (of_int (sign p) * setprod (\<lambda>i. ?g i $ p i) ?U)" |
|
36350 | 418 |
by (simp add: field_simps) |
57418 | 419 |
qed rule |
33175 | 420 |
|
421 |
lemma det_row_0: |
|
422 |
fixes b :: "'n::finite \<Rightarrow> _ ^ 'n" |
|
423 |
shows "det((\<chi> i. if i = k then 0 else b i)::'a::comm_ring_1^'n^'n) = 0" |
|
53253 | 424 |
using det_row_mul[of k 0 "\<lambda>i. 1" b] |
425 |
apply simp |
|
426 |
apply (simp only: vector_smult_lzero) |
|
427 |
done |
|
33175 | 428 |
|
429 |
lemma det_row_operation: |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34291
diff
changeset
|
430 |
fixes A :: "'a::linordered_idom^'n^'n" |
33175 | 431 |
assumes ij: "i \<noteq> j" |
432 |
shows "det (\<chi> k. if k = i then row i A + c *s row j A else row k A) = det A" |
|
53253 | 433 |
proof - |
33175 | 434 |
let ?Z = "(\<chi> k. if k = i then row j A else row k A) :: 'a ^'n^'n" |
435 |
have th: "row i ?Z = row j ?Z" by (vector row_def) |
|
436 |
have th2: "((\<chi> k. if k = i then row i A else row k A) :: 'a^'n^'n) = A" |
|
437 |
by (vector row_def) |
|
438 |
show ?thesis |
|
439 |
unfolding det_row_add [of i] det_row_mul[of i] det_identical_rows[OF ij th] th2 |
|
440 |
by simp |
|
441 |
qed |
|
442 |
||
443 |
lemma det_row_span: |
|
36593
fb69c8cd27bd
define linear algebra concepts using scaleR instead of (op *s); generalized many lemmas, though a few theorems that used to work on type int^'n are a bit less general
huffman
parents:
36585
diff
changeset
|
444 |
fixes A :: "real^'n^'n" |
33175 | 445 |
assumes x: "x \<in> span {row j A |j. j \<noteq> i}" |
446 |
shows "det (\<chi> k. if k = i then row i A + x else row k A) = det A" |
|
53253 | 447 |
proof - |
33175 | 448 |
let ?U = "UNIV :: 'n set" |
449 |
let ?S = "{row j A |j. j \<noteq> i}" |
|
450 |
let ?d = "\<lambda>x. det (\<chi> k. if k = i then x else row k A)" |
|
451 |
let ?P = "\<lambda>x. ?d (row i A + x) = det A" |
|
53253 | 452 |
{ |
453 |
fix k |
|
53854 | 454 |
have "(if k = i then row i A + 0 else row k A) = row k A" |
455 |
by simp |
|
53253 | 456 |
} |
33175 | 457 |
then have P0: "?P 0" |
458 |
apply - |
|
459 |
apply (rule cong[of det, OF refl]) |
|
53253 | 460 |
apply (vector row_def) |
461 |
done |
|
33175 | 462 |
moreover |
53253 | 463 |
{ |
464 |
fix c z y |
|
465 |
assume zS: "z \<in> ?S" and Py: "?P y" |
|
53854 | 466 |
from zS obtain j where j: "z = row j A" "i \<noteq> j" |
467 |
by blast |
|
33175 | 468 |
let ?w = "row i A + y" |
53854 | 469 |
have th0: "row i A + (c*s z + y) = ?w + c*s z" |
470 |
by vector |
|
33175 | 471 |
have thz: "?d z = 0" |
472 |
apply (rule det_identical_rows[OF j(2)]) |
|
53253 | 473 |
using j |
474 |
apply (vector row_def) |
|
475 |
done |
|
476 |
have "?d (row i A + (c*s z + y)) = ?d (?w + c*s z)" |
|
477 |
unfolding th0 .. |
|
478 |
then have "?P (c*s z + y)" |
|
479 |
unfolding thz Py det_row_mul[of i] det_row_add[of i] |
|
480 |
by simp |
|
481 |
} |
|
33175 | 482 |
ultimately show ?thesis |
483 |
apply - |
|
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
47108
diff
changeset
|
484 |
apply (rule span_induct_alt[of ?P ?S, OF P0, folded scalar_mult_eq_scaleR]) |
33175 | 485 |
apply blast |
486 |
apply (rule x) |
|
487 |
done |
|
488 |
qed |
|
489 |
||
60420 | 490 |
text \<open> |
53854 | 491 |
May as well do this, though it's a bit unsatisfactory since it ignores |
492 |
exact duplicates by considering the rows/columns as a set. |
|
60420 | 493 |
\<close> |
33175 | 494 |
|
495 |
lemma det_dependent_rows: |
|
36593
fb69c8cd27bd
define linear algebra concepts using scaleR instead of (op *s); generalized many lemmas, though a few theorems that used to work on type int^'n are a bit less general
huffman
parents:
36585
diff
changeset
|
496 |
fixes A:: "real^'n^'n" |
33175 | 497 |
assumes d: "dependent (rows A)" |
498 |
shows "det A = 0" |
|
53253 | 499 |
proof - |
33175 | 500 |
let ?U = "UNIV :: 'n set" |
501 |
from d obtain i where i: "row i A \<in> span (rows A - {row i A})" |
|
502 |
unfolding dependent_def rows_def by blast |
|
53253 | 503 |
{ |
504 |
fix j k |
|
505 |
assume jk: "j \<noteq> k" and c: "row j A = row k A" |
|
506 |
from det_identical_rows[OF jk c] have ?thesis . |
|
507 |
} |
|
33175 | 508 |
moreover |
53253 | 509 |
{ |
510 |
assume H: "\<And> i j. i \<noteq> j \<Longrightarrow> row i A \<noteq> row j A" |
|
33175 | 511 |
have th0: "- row i A \<in> span {row j A|j. j \<noteq> i}" |
512 |
apply (rule span_neg) |
|
513 |
apply (rule set_rev_mp) |
|
514 |
apply (rule i) |
|
515 |
apply (rule span_mono) |
|
53253 | 516 |
using H i |
517 |
apply (auto simp add: rows_def) |
|
518 |
done |
|
33175 | 519 |
from det_row_span[OF th0] |
520 |
have "det A = det (\<chi> k. if k = i then 0 *s 1 else row k A)" |
|
521 |
unfolding right_minus vector_smult_lzero .. |
|
36593
fb69c8cd27bd
define linear algebra concepts using scaleR instead of (op *s); generalized many lemmas, though a few theorems that used to work on type int^'n are a bit less general
huffman
parents:
36585
diff
changeset
|
522 |
with det_row_mul[of i "0::real" "\<lambda>i. 1"] |
53253 | 523 |
have "det A = 0" by simp |
524 |
} |
|
33175 | 525 |
ultimately show ?thesis by blast |
526 |
qed |
|
527 |
||
53253 | 528 |
lemma det_dependent_columns: |
529 |
assumes d: "dependent (columns (A::real^'n^'n))" |
|
530 |
shows "det A = 0" |
|
531 |
by (metis d det_dependent_rows rows_transpose det_transpose) |
|
33175 | 532 |
|
60420 | 533 |
text \<open>Multilinearity and the multiplication formula.\<close> |
33175 | 534 |
|
44228
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
huffman
parents:
41959
diff
changeset
|
535 |
lemma Cart_lambda_cong: "(\<And>x. f x = g x) \<Longrightarrow> (vec_lambda f::'a^'n) = (vec_lambda g :: 'a^'n)" |
53253 | 536 |
by (rule iffD1[OF vec_lambda_unique]) vector |
33175 | 537 |
|
538 |
lemma det_linear_row_setsum: |
|
539 |
assumes fS: "finite S" |
|
53253 | 540 |
shows "det ((\<chi> i. if i = k then setsum (a i) S else c i)::'a::comm_ring_1^'n^'n) = |
541 |
setsum (\<lambda>j. det ((\<chi> i. if i = k then a i j else c i)::'a^'n^'n)) S" |
|
542 |
proof (induct rule: finite_induct[OF fS]) |
|
543 |
case 1 |
|
544 |
then show ?case |
|
545 |
apply simp |
|
57418 | 546 |
unfolding setsum.empty det_row_0[of k] |
53253 | 547 |
apply rule |
548 |
done |
|
33175 | 549 |
next |
550 |
case (2 x F) |
|
53253 | 551 |
then show ?case |
552 |
by (simp add: det_row_add cong del: if_weak_cong) |
|
33175 | 553 |
qed |
554 |
||
555 |
lemma finite_bounded_functions: |
|
556 |
assumes fS: "finite S" |
|
557 |
shows "finite {f. (\<forall>i \<in> {1.. (k::nat)}. f i \<in> S) \<and> (\<forall>i. i \<notin> {1 .. k} \<longrightarrow> f i = i)}" |
|
53253 | 558 |
proof (induct k) |
33175 | 559 |
case 0 |
53854 | 560 |
have th: "{f. \<forall>i. f i = i} = {id}" |
561 |
by auto |
|
562 |
show ?case |
|
563 |
by (auto simp add: th) |
|
33175 | 564 |
next |
565 |
case (Suc k) |
|
566 |
let ?f = "\<lambda>(y::nat,g) i. if i = Suc k then y else g i" |
|
567 |
let ?S = "?f ` (S \<times> {f. (\<forall>i\<in>{1..k}. f i \<in> S) \<and> (\<forall>i. i \<notin> {1..k} \<longrightarrow> f i = i)})" |
|
568 |
have "?S = {f. (\<forall>i\<in>{1.. Suc k}. f i \<in> S) \<and> (\<forall>i. i \<notin> {1.. Suc k} \<longrightarrow> f i = i)}" |
|
569 |
apply (auto simp add: image_iff) |
|
570 |
apply (rule_tac x="x (Suc k)" in bexI) |
|
571 |
apply (rule_tac x = "\<lambda>i. if i = Suc k then i else x i" in exI) |
|
44457
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
huffman
parents:
44260
diff
changeset
|
572 |
apply auto |
33175 | 573 |
done |
574 |
with finite_imageI[OF finite_cartesian_product[OF fS Suc.hyps(1)], of ?f] |
|
53854 | 575 |
show ?case |
576 |
by metis |
|
33175 | 577 |
qed |
578 |
||
579 |
||
53854 | 580 |
lemma eq_id_iff[simp]: "(\<forall>x. f x = x) \<longleftrightarrow> f = id" |
581 |
by auto |
|
33175 | 582 |
|
583 |
lemma det_linear_rows_setsum_lemma: |
|
53854 | 584 |
assumes fS: "finite S" |
585 |
and fT: "finite T" |
|
586 |
shows "det ((\<chi> i. if i \<in> T then setsum (a i) S else c i):: 'a::comm_ring_1^'n^'n) = |
|
53253 | 587 |
setsum (\<lambda>f. det((\<chi> i. if i \<in> T then a i (f i) else c i)::'a^'n^'n)) |
588 |
{f. (\<forall>i \<in> T. f i \<in> S) \<and> (\<forall>i. i \<notin> T \<longrightarrow> f i = i)}" |
|
589 |
using fT |
|
590 |
proof (induct T arbitrary: a c set: finite) |
|
33175 | 591 |
case empty |
53253 | 592 |
have th0: "\<And>x y. (\<chi> i. if i \<in> {} then x i else y i) = (\<chi> i. y i)" |
593 |
by vector |
|
53854 | 594 |
from empty.prems show ?case |
595 |
unfolding th0 by simp |
|
33175 | 596 |
next |
597 |
case (insert z T a c) |
|
598 |
let ?F = "\<lambda>T. {f. (\<forall>i \<in> T. f i \<in> S) \<and> (\<forall>i. i \<notin> T \<longrightarrow> f i = i)}" |
|
599 |
let ?h = "\<lambda>(y,g) i. if i = z then y else g i" |
|
600 |
let ?k = "\<lambda>h. (h(z),(\<lambda>i. if i = z then i else h i))" |
|
601 |
let ?s = "\<lambda> k a c f. det((\<chi> i. if i \<in> T then a i (f i) else c i)::'a^'n^'n)" |
|
57129
7edb7550663e
introduce more powerful reindexing rules for big operators
hoelzl
parents:
56545
diff
changeset
|
602 |
let ?c = "\<lambda>j i. if i = z then a i j else c i" |
53253 | 603 |
have thif: "\<And>a b c d. (if a \<or> b then c else d) = (if a then c else if b then c else d)" |
604 |
by simp |
|
33175 | 605 |
have thif2: "\<And>a b c d e. (if a then b else if c then d else e) = |
53253 | 606 |
(if c then (if a then b else d) else (if a then b else e))" |
607 |
by simp |
|
60420 | 608 |
from \<open>z \<notin> T\<close> have nz: "\<And>i. i \<in> T \<Longrightarrow> i = z \<longleftrightarrow> False" |
53253 | 609 |
by auto |
33175 | 610 |
have "det (\<chi> i. if i \<in> insert z T then setsum (a i) S else c i) = |
53253 | 611 |
det (\<chi> i. if i = z then setsum (a i) S else if i \<in> T then setsum (a i) S else c i)" |
33175 | 612 |
unfolding insert_iff thif .. |
53253 | 613 |
also have "\<dots> = (\<Sum>j\<in>S. det (\<chi> i. if i \<in> T then setsum (a i) S else if i = z then a i j else c i))" |
33175 | 614 |
unfolding det_linear_row_setsum[OF fS] |
615 |
apply (subst thif2) |
|
53253 | 616 |
using nz |
617 |
apply (simp cong del: if_weak_cong cong add: if_cong) |
|
618 |
done |
|
33175 | 619 |
finally have tha: |
620 |
"det (\<chi> i. if i \<in> insert z T then setsum (a i) S else c i) = |
|
621 |
(\<Sum>(j, f)\<in>S \<times> ?F T. det (\<chi> i. if i \<in> T then a i (f i) |
|
622 |
else if i = z then a i j |
|
623 |
else c i))" |
|
57418 | 624 |
unfolding insert.hyps unfolding setsum.cartesian_product by blast |
33175 | 625 |
show ?case unfolding tha |
60420 | 626 |
using \<open>z \<notin> T\<close> |
57129
7edb7550663e
introduce more powerful reindexing rules for big operators
hoelzl
parents:
56545
diff
changeset
|
627 |
by (intro setsum.reindex_bij_witness[where i="?k" and j="?h"]) |
7edb7550663e
introduce more powerful reindexing rules for big operators
hoelzl
parents:
56545
diff
changeset
|
628 |
(auto intro!: cong[OF refl[of det]] simp: vec_eq_iff) |
33175 | 629 |
qed |
630 |
||
631 |
lemma det_linear_rows_setsum: |
|
53854 | 632 |
fixes S :: "'n::finite set" |
633 |
assumes fS: "finite S" |
|
53253 | 634 |
shows "det (\<chi> i. setsum (a i) S) = |
635 |
setsum (\<lambda>f. det (\<chi> i. a i (f i) :: 'a::comm_ring_1 ^ 'n^'n)) {f. \<forall>i. f i \<in> S}" |
|
636 |
proof - |
|
637 |
have th0: "\<And>x y. ((\<chi> i. if i \<in> (UNIV:: 'n set) then x i else y i) :: 'a^'n^'n) = (\<chi> i. x i)" |
|
638 |
by vector |
|
639 |
from det_linear_rows_setsum_lemma[OF fS, of "UNIV :: 'n set" a, unfolded th0, OF finite] |
|
640 |
show ?thesis by simp |
|
33175 | 641 |
qed |
642 |
||
643 |
lemma matrix_mul_setsum_alt: |
|
34291
4e896680897e
finite annotation on cartesian product is now implicit.
hoelzl
parents:
34289
diff
changeset
|
644 |
fixes A B :: "'a::comm_ring_1^'n^'n" |
33175 | 645 |
shows "A ** B = (\<chi> i. setsum (\<lambda>k. A$i$k *s B $ k) (UNIV :: 'n set))" |
646 |
by (vector matrix_matrix_mult_def setsum_component) |
|
647 |
||
648 |
lemma det_rows_mul: |
|
34291
4e896680897e
finite annotation on cartesian product is now implicit.
hoelzl
parents:
34289
diff
changeset
|
649 |
"det((\<chi> i. c i *s a i)::'a::comm_ring_1^'n^'n) = |
53253 | 650 |
setprod (\<lambda>i. c i) (UNIV:: 'n set) * det((\<chi> i. a i)::'a^'n^'n)" |
57418 | 651 |
proof (simp add: det_def setsum_right_distrib cong add: setprod.cong, rule setsum.cong) |
33175 | 652 |
let ?U = "UNIV :: 'n set" |
653 |
let ?PU = "{p. p permutes ?U}" |
|
53253 | 654 |
fix p |
655 |
assume pU: "p \<in> ?PU" |
|
33175 | 656 |
let ?s = "of_int (sign p)" |
53253 | 657 |
from pU have p: "p permutes ?U" |
658 |
by blast |
|
33175 | 659 |
have "setprod (\<lambda>i. c i * a i $ p i) ?U = setprod c ?U * setprod (\<lambda>i. a i $ p i) ?U" |
57418 | 660 |
unfolding setprod.distrib .. |
33175 | 661 |
then show "?s * (\<Prod>xa\<in>?U. c xa * a xa $ p xa) = |
53854 | 662 |
setprod c ?U * (?s* (\<Prod>xa\<in>?U. a xa $ p xa))" |
663 |
by (simp add: field_simps) |
|
57418 | 664 |
qed rule |
33175 | 665 |
|
666 |
lemma det_mul: |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34291
diff
changeset
|
667 |
fixes A B :: "'a::linordered_idom^'n^'n" |
33175 | 668 |
shows "det (A ** B) = det A * det B" |
53253 | 669 |
proof - |
33175 | 670 |
let ?U = "UNIV :: 'n set" |
671 |
let ?F = "{f. (\<forall>i\<in> ?U. f i \<in> ?U) \<and> (\<forall>i. i \<notin> ?U \<longrightarrow> f i = i)}" |
|
672 |
let ?PU = "{p. p permutes ?U}" |
|
53854 | 673 |
have fU: "finite ?U" |
674 |
by simp |
|
675 |
have fF: "finite ?F" |
|
676 |
by (rule finite) |
|
53253 | 677 |
{ |
678 |
fix p |
|
679 |
assume p: "p permutes ?U" |
|
33175 | 680 |
have "p \<in> ?F" unfolding mem_Collect_eq permutes_in_image[OF p] |
53253 | 681 |
using p[unfolded permutes_def] by simp |
682 |
} |
|
53854 | 683 |
then have PUF: "?PU \<subseteq> ?F" by blast |
53253 | 684 |
{ |
685 |
fix f |
|
686 |
assume fPU: "f \<in> ?F - ?PU" |
|
53854 | 687 |
have fUU: "f ` ?U \<subseteq> ?U" |
688 |
using fPU by auto |
|
53253 | 689 |
from fPU have f: "\<forall>i \<in> ?U. f i \<in> ?U" "\<forall>i. i \<notin> ?U \<longrightarrow> f i = i" "\<not>(\<forall>y. \<exists>!x. f x = y)" |
690 |
unfolding permutes_def by auto |
|
33175 | 691 |
|
692 |
let ?A = "(\<chi> i. A$i$f i *s B$f i) :: 'a^'n^'n" |
|
693 |
let ?B = "(\<chi> i. B$f i) :: 'a^'n^'n" |
|
53253 | 694 |
{ |
695 |
assume fni: "\<not> inj_on f ?U" |
|
33175 | 696 |
then obtain i j where ij: "f i = f j" "i \<noteq> j" |
697 |
unfolding inj_on_def by blast |
|
698 |
from ij |
|
53854 | 699 |
have rth: "row i ?B = row j ?B" |
700 |
by (vector row_def) |
|
33175 | 701 |
from det_identical_rows[OF ij(2) rth] |
702 |
have "det (\<chi> i. A$i$f i *s B$f i) = 0" |
|
53253 | 703 |
unfolding det_rows_mul by simp |
704 |
} |
|
33175 | 705 |
moreover |
53253 | 706 |
{ |
707 |
assume fi: "inj_on f ?U" |
|
33175 | 708 |
from f fi have fith: "\<And>i j. f i = f j \<Longrightarrow> i = j" |
709 |
unfolding inj_on_def by metis |
|
710 |
note fs = fi[unfolded surjective_iff_injective_gen[OF fU fU refl fUU, symmetric]] |
|
53253 | 711 |
{ |
712 |
fix y |
|
53854 | 713 |
from fs f have "\<exists>x. f x = y" |
714 |
by blast |
|
715 |
then obtain x where x: "f x = y" |
|
716 |
by blast |
|
53253 | 717 |
{ |
718 |
fix z |
|
719 |
assume z: "f z = y" |
|
53854 | 720 |
from fith x z have "z = x" |
721 |
by metis |
|
53253 | 722 |
} |
53854 | 723 |
with x have "\<exists>!x. f x = y" |
724 |
by blast |
|
53253 | 725 |
} |
53854 | 726 |
with f(3) have "det (\<chi> i. A$i$f i *s B$f i) = 0" |
727 |
by blast |
|
53253 | 728 |
} |
53854 | 729 |
ultimately have "det (\<chi> i. A$i$f i *s B$f i) = 0" |
730 |
by blast |
|
53253 | 731 |
} |
53854 | 732 |
then have zth: "\<forall> f\<in> ?F - ?PU. det (\<chi> i. A$i$f i *s B$f i) = 0" |
53253 | 733 |
by simp |
734 |
{ |
|
735 |
fix p |
|
736 |
assume pU: "p \<in> ?PU" |
|
53854 | 737 |
from pU have p: "p permutes ?U" |
738 |
by blast |
|
33175 | 739 |
let ?s = "\<lambda>p. of_int (sign p)" |
53253 | 740 |
let ?f = "\<lambda>q. ?s p * (\<Prod>i\<in> ?U. A $ i $ p i) * (?s q * (\<Prod>i\<in> ?U. B $ i $ q i))" |
33175 | 741 |
have "(setsum (\<lambda>q. ?s q * |
53253 | 742 |
(\<Prod>i\<in> ?U. (\<chi> i. A $ i $ p i *s B $ p i :: 'a^'n^'n) $ i $ q i)) ?PU) = |
743 |
(setsum (\<lambda>q. ?s p * (\<Prod>i\<in> ?U. A $ i $ p i) * (?s q * (\<Prod>i\<in> ?U. B $ i $ q i))) ?PU)" |
|
33175 | 744 |
unfolding sum_permutations_compose_right[OF permutes_inv[OF p], of ?f] |
57418 | 745 |
proof (rule setsum.cong) |
53253 | 746 |
fix q |
747 |
assume qU: "q \<in> ?PU" |
|
53854 | 748 |
then have q: "q permutes ?U" |
749 |
by blast |
|
33175 | 750 |
from p q have pp: "permutation p" and pq: "permutation q" |
751 |
unfolding permutation_permutes by auto |
|
752 |
have th00: "of_int (sign p) * of_int (sign p) = (1::'a)" |
|
753 |
"\<And>a. of_int (sign p) * (of_int (sign p) * a) = a" |
|
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
57418
diff
changeset
|
754 |
unfolding mult.assoc[symmetric] |
53854 | 755 |
unfolding of_int_mult[symmetric] |
33175 | 756 |
by (simp_all add: sign_idempotent) |
53854 | 757 |
have ths: "?s q = ?s p * ?s (q \<circ> inv p)" |
33175 | 758 |
using pp pq permutation_inverse[OF pp] sign_inverse[OF pp] |
57514
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents:
57512
diff
changeset
|
759 |
by (simp add: th00 ac_simps sign_idempotent sign_compose) |
53854 | 760 |
have th001: "setprod (\<lambda>i. B$i$ q (inv p i)) ?U = setprod ((\<lambda>i. B$i$ q (inv p i)) \<circ> p) ?U" |
33175 | 761 |
by (rule setprod_permute[OF p]) |
53253 | 762 |
have thp: "setprod (\<lambda>i. (\<chi> i. A$i$p i *s B$p i :: 'a^'n^'n) $i $ q i) ?U = |
763 |
setprod (\<lambda>i. A$i$p i) ?U * setprod (\<lambda>i. B$i$ q (inv p i)) ?U" |
|
57418 | 764 |
unfolding th001 setprod.distrib[symmetric] o_def permutes_inverses[OF p] |
765 |
apply (rule setprod.cong[OF refl]) |
|
53253 | 766 |
using permutes_in_image[OF q] |
767 |
apply vector |
|
768 |
done |
|
769 |
show "?s q * setprod (\<lambda>i. (((\<chi> i. A$i$p i *s B$p i) :: 'a^'n^'n)$i$q i)) ?U = |
|
53854 | 770 |
?s p * (setprod (\<lambda>i. A$i$p i) ?U) * (?s (q \<circ> inv p) * setprod (\<lambda>i. B$i$(q \<circ> inv p) i) ?U)" |
33175 | 771 |
using ths thp pp pq permutation_inverse[OF pp] sign_inverse[OF pp] |
36350 | 772 |
by (simp add: sign_nz th00 field_simps sign_idempotent sign_compose) |
57418 | 773 |
qed rule |
33175 | 774 |
} |
775 |
then have th2: "setsum (\<lambda>f. det (\<chi> i. A$i$f i *s B$f i)) ?PU = det A * det B" |
|
776 |
unfolding det_def setsum_product |
|
57418 | 777 |
by (rule setsum.cong [OF refl]) |
33175 | 778 |
have "det (A**B) = setsum (\<lambda>f. det (\<chi> i. A $ i $ f i *s B $ f i)) ?F" |
53854 | 779 |
unfolding matrix_mul_setsum_alt det_linear_rows_setsum[OF fU] |
780 |
by simp |
|
33175 | 781 |
also have "\<dots> = setsum (\<lambda>f. det (\<chi> i. A$i$f i *s B$f i)) ?PU" |
57418 | 782 |
using setsum.mono_neutral_cong_left[OF fF PUF zth, symmetric] |
33175 | 783 |
unfolding det_rows_mul by auto |
784 |
finally show ?thesis unfolding th2 . |
|
785 |
qed |
|
786 |
||
60420 | 787 |
text \<open>Relation to invertibility.\<close> |
33175 | 788 |
|
789 |
lemma invertible_left_inverse: |
|
34291
4e896680897e
finite annotation on cartesian product is now implicit.
hoelzl
parents:
34289
diff
changeset
|
790 |
fixes A :: "real^'n^'n" |
33175 | 791 |
shows "invertible A \<longleftrightarrow> (\<exists>(B::real^'n^'n). B** A = mat 1)" |
792 |
by (metis invertible_def matrix_left_right_inverse) |
|
793 |
||
794 |
lemma invertible_righ_inverse: |
|
34291
4e896680897e
finite annotation on cartesian product is now implicit.
hoelzl
parents:
34289
diff
changeset
|
795 |
fixes A :: "real^'n^'n" |
33175 | 796 |
shows "invertible A \<longleftrightarrow> (\<exists>(B::real^'n^'n). A** B = mat 1)" |
797 |
by (metis invertible_def matrix_left_right_inverse) |
|
798 |
||
799 |
lemma invertible_det_nz: |
|
34291
4e896680897e
finite annotation on cartesian product is now implicit.
hoelzl
parents:
34289
diff
changeset
|
800 |
fixes A::"real ^'n^'n" |
33175 | 801 |
shows "invertible A \<longleftrightarrow> det A \<noteq> 0" |
53253 | 802 |
proof - |
803 |
{ |
|
804 |
assume "invertible A" |
|
33175 | 805 |
then obtain B :: "real ^'n^'n" where B: "A ** B = mat 1" |
806 |
unfolding invertible_righ_inverse by blast |
|
53854 | 807 |
then have "det (A ** B) = det (mat 1 :: real ^'n^'n)" |
808 |
by simp |
|
809 |
then have "det A \<noteq> 0" |
|
810 |
by (simp add: det_mul det_I) algebra |
|
53253 | 811 |
} |
33175 | 812 |
moreover |
53253 | 813 |
{ |
814 |
assume H: "\<not> invertible A" |
|
33175 | 815 |
let ?U = "UNIV :: 'n set" |
53854 | 816 |
have fU: "finite ?U" |
817 |
by simp |
|
33175 | 818 |
from H obtain c i where c: "setsum (\<lambda>i. c i *s row i A) ?U = 0" |
53854 | 819 |
and iU: "i \<in> ?U" |
820 |
and ci: "c i \<noteq> 0" |
|
33175 | 821 |
unfolding invertible_righ_inverse |
53854 | 822 |
unfolding matrix_right_invertible_independent_rows |
823 |
by blast |
|
53253 | 824 |
have *: "\<And>(a::real^'n) b. a + b = 0 \<Longrightarrow> -a = b" |
33175 | 825 |
apply (drule_tac f="op + (- a)" in cong[OF refl]) |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
57418
diff
changeset
|
826 |
apply (simp only: ab_left_minus add.assoc[symmetric]) |
33175 | 827 |
apply simp |
828 |
done |
|
829 |
from c ci |
|
830 |
have thr0: "- row i A = setsum (\<lambda>j. (1/ c i) *s (c j *s row j A)) (?U - {i})" |
|
57418 | 831 |
unfolding setsum.remove[OF fU iU] setsum_cmul |
33175 | 832 |
apply - |
833 |
apply (rule vector_mul_lcancel_imp[OF ci]) |
|
44457
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
huffman
parents:
44260
diff
changeset
|
834 |
apply (auto simp add: field_simps) |
53854 | 835 |
unfolding * |
836 |
apply rule |
|
837 |
done |
|
33175 | 838 |
have thr: "- row i A \<in> span {row j A| j. j \<noteq> i}" |
839 |
unfolding thr0 |
|
840 |
apply (rule span_setsum) |
|
841 |
apply simp |
|
842 |
apply (rule ballI) |
|
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
47108
diff
changeset
|
843 |
apply (rule span_mul [where 'a="real^'n", folded scalar_mult_eq_scaleR])+ |
33175 | 844 |
apply (rule span_superset) |
845 |
apply auto |
|
846 |
done |
|
847 |
let ?B = "(\<chi> k. if k = i then 0 else row k A) :: real ^'n^'n" |
|
848 |
have thrb: "row i ?B = 0" using iU by (vector row_def) |
|
849 |
have "det A = 0" |
|
850 |
unfolding det_row_span[OF thr, symmetric] right_minus |
|
53253 | 851 |
unfolding det_zero_row[OF thrb] .. |
852 |
} |
|
53854 | 853 |
ultimately show ?thesis |
854 |
by blast |
|
33175 | 855 |
qed |
856 |
||
60420 | 857 |
text \<open>Cramer's rule.\<close> |
33175 | 858 |
|
35150
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
hoelzl
parents:
35028
diff
changeset
|
859 |
lemma cramer_lemma_transpose: |
53854 | 860 |
fixes A:: "real^'n^'n" |
861 |
and x :: "real^'n" |
|
33175 | 862 |
shows "det ((\<chi> i. if i = k then setsum (\<lambda>i. x$i *s row i A) (UNIV::'n set) |
53854 | 863 |
else row i A)::real^'n^'n) = x$k * det A" |
33175 | 864 |
(is "?lhs = ?rhs") |
53253 | 865 |
proof - |
33175 | 866 |
let ?U = "UNIV :: 'n set" |
867 |
let ?Uk = "?U - {k}" |
|
53854 | 868 |
have U: "?U = insert k ?Uk" |
869 |
by blast |
|
870 |
have fUk: "finite ?Uk" |
|
871 |
by simp |
|
872 |
have kUk: "k \<notin> ?Uk" |
|
873 |
by simp |
|
33175 | 874 |
have th00: "\<And>k s. x$k *s row k A + s = (x$k - 1) *s row k A + row k A + s" |
36350 | 875 |
by (vector field_simps) |
53854 | 876 |
have th001: "\<And>f k . (\<lambda>x. if x = k then f k else f x) = f" |
877 |
by auto |
|
33175 | 878 |
have "(\<chi> i. row i A) = A" by (vector row_def) |
53253 | 879 |
then have thd1: "det (\<chi> i. row i A) = det A" |
880 |
by simp |
|
33175 | 881 |
have thd0: "det (\<chi> i. if i = k then row k A + (\<Sum>i \<in> ?Uk. x $ i *s row i A) else row i A) = det A" |
882 |
apply (rule det_row_span) |
|
56196
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents:
53854
diff
changeset
|
883 |
apply (rule span_setsum) |
33175 | 884 |
apply (rule ballI) |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
47108
diff
changeset
|
885 |
apply (rule span_mul [where 'a="real^'n", folded scalar_mult_eq_scaleR])+ |
33175 | 886 |
apply (rule span_superset) |
887 |
apply auto |
|
888 |
done |
|
889 |
show "?lhs = x$k * det A" |
|
890 |
apply (subst U) |
|
57418 | 891 |
unfolding setsum.insert[OF fUk kUk] |
33175 | 892 |
apply (subst th00) |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
57418
diff
changeset
|
893 |
unfolding add.assoc |
33175 | 894 |
apply (subst det_row_add) |
895 |
unfolding thd0 |
|
896 |
unfolding det_row_mul |
|
897 |
unfolding th001[of k "\<lambda>i. row i A"] |
|
53253 | 898 |
unfolding thd1 |
899 |
apply (simp add: field_simps) |
|
900 |
done |
|
33175 | 901 |
qed |
902 |
||
903 |
lemma cramer_lemma: |
|
36593
fb69c8cd27bd
define linear algebra concepts using scaleR instead of (op *s); generalized many lemmas, though a few theorems that used to work on type int^'n are a bit less general
huffman
parents:
36585
diff
changeset
|
904 |
fixes A :: "real^'n^'n" |
fb69c8cd27bd
define linear algebra concepts using scaleR instead of (op *s); generalized many lemmas, though a few theorems that used to work on type int^'n are a bit less general
huffman
parents:
36585
diff
changeset
|
905 |
shows "det((\<chi> i j. if j = k then (A *v x)$i else A$i$j):: real^'n^'n) = x$k * det A" |
53253 | 906 |
proof - |
33175 | 907 |
let ?U = "UNIV :: 'n set" |
53253 | 908 |
have *: "\<And>c. setsum (\<lambda>i. c i *s row i (transpose A)) ?U = setsum (\<lambda>i. c i *s column i A) ?U" |
57418 | 909 |
by (auto simp add: row_transpose intro: setsum.cong) |
53854 | 910 |
show ?thesis |
911 |
unfolding matrix_mult_vsum |
|
53253 | 912 |
unfolding cramer_lemma_transpose[of k x "transpose A", unfolded det_transpose, symmetric] |
913 |
unfolding *[of "\<lambda>i. x$i"] |
|
914 |
apply (subst det_transpose[symmetric]) |
|
915 |
apply (rule cong[OF refl[of det]]) |
|
916 |
apply (vector transpose_def column_def row_def) |
|
917 |
done |
|
33175 | 918 |
qed |
919 |
||
920 |
lemma cramer: |
|
34291
4e896680897e
finite annotation on cartesian product is now implicit.
hoelzl
parents:
34289
diff
changeset
|
921 |
fixes A ::"real^'n^'n" |
33175 | 922 |
assumes d0: "det A \<noteq> 0" |
36362
06475a1547cb
fix lots of looping simp calls and other warnings
huffman
parents:
35542
diff
changeset
|
923 |
shows "A *v x = b \<longleftrightarrow> x = (\<chi> k. det(\<chi> i j. if j=k then b$i else A$i$j) / det A)" |
53253 | 924 |
proof - |
33175 | 925 |
from d0 obtain B where B: "A ** B = mat 1" "B ** A = mat 1" |
53854 | 926 |
unfolding invertible_det_nz[symmetric] invertible_def |
927 |
by blast |
|
928 |
have "(A ** B) *v b = b" |
|
929 |
by (simp add: B matrix_vector_mul_lid) |
|
930 |
then have "A *v (B *v b) = b" |
|
931 |
by (simp add: matrix_vector_mul_assoc) |
|
932 |
then have xe: "\<exists>x. A *v x = b" |
|
933 |
by blast |
|
53253 | 934 |
{ |
935 |
fix x |
|
936 |
assume x: "A *v x = b" |
|
937 |
have "x = (\<chi> k. det(\<chi> i j. if j=k then b$i else A$i$j) / det A)" |
|
938 |
unfolding x[symmetric] |
|
939 |
using d0 by (simp add: vec_eq_iff cramer_lemma field_simps) |
|
940 |
} |
|
53854 | 941 |
with xe show ?thesis |
942 |
by auto |
|
33175 | 943 |
qed |
944 |
||
60420 | 945 |
text \<open>Orthogonality of a transformation and matrix.\<close> |
33175 | 946 |
|
947 |
definition "orthogonal_transformation f \<longleftrightarrow> linear f \<and> (\<forall>v w. f v \<bullet> f w = v \<bullet> w)" |
|
948 |
||
53253 | 949 |
lemma orthogonal_transformation: |
950 |
"orthogonal_transformation f \<longleftrightarrow> linear f \<and> (\<forall>(v::real ^_). norm (f v) = norm v)" |
|
33175 | 951 |
unfolding orthogonal_transformation_def |
952 |
apply auto |
|
953 |
apply (erule_tac x=v in allE)+ |
|
35542 | 954 |
apply (simp add: norm_eq_sqrt_inner) |
53253 | 955 |
apply (simp add: dot_norm linear_add[symmetric]) |
956 |
done |
|
33175 | 957 |
|
53253 | 958 |
definition "orthogonal_matrix (Q::'a::semiring_1^'n^'n) \<longleftrightarrow> |
959 |
transpose Q ** Q = mat 1 \<and> Q ** transpose Q = mat 1" |
|
33175 | 960 |
|
53253 | 961 |
lemma orthogonal_matrix: "orthogonal_matrix (Q:: real ^'n^'n) \<longleftrightarrow> transpose Q ** Q = mat 1" |
33175 | 962 |
by (metis matrix_left_right_inverse orthogonal_matrix_def) |
963 |
||
34291
4e896680897e
finite annotation on cartesian product is now implicit.
hoelzl
parents:
34289
diff
changeset
|
964 |
lemma orthogonal_matrix_id: "orthogonal_matrix (mat 1 :: _^'n^'n)" |
35150
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
hoelzl
parents:
35028
diff
changeset
|
965 |
by (simp add: orthogonal_matrix_def transpose_mat matrix_mul_lid) |
33175 | 966 |
|
967 |
lemma orthogonal_matrix_mul: |
|
34291
4e896680897e
finite annotation on cartesian product is now implicit.
hoelzl
parents:
34289
diff
changeset
|
968 |
fixes A :: "real ^'n^'n" |
33175 | 969 |
assumes oA : "orthogonal_matrix A" |
53253 | 970 |
and oB: "orthogonal_matrix B" |
33175 | 971 |
shows "orthogonal_matrix(A ** B)" |
972 |
using oA oB |
|
35150
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
hoelzl
parents:
35028
diff
changeset
|
973 |
unfolding orthogonal_matrix matrix_transpose_mul |
33175 | 974 |
apply (subst matrix_mul_assoc) |
975 |
apply (subst matrix_mul_assoc[symmetric]) |
|
53253 | 976 |
apply (simp add: matrix_mul_rid) |
977 |
done |
|
33175 | 978 |
|
979 |
lemma orthogonal_transformation_matrix: |
|
34291
4e896680897e
finite annotation on cartesian product is now implicit.
hoelzl
parents:
34289
diff
changeset
|
980 |
fixes f:: "real^'n \<Rightarrow> real^'n" |
33175 | 981 |
shows "orthogonal_transformation f \<longleftrightarrow> linear f \<and> orthogonal_matrix(matrix f)" |
982 |
(is "?lhs \<longleftrightarrow> ?rhs") |
|
53253 | 983 |
proof - |
33175 | 984 |
let ?mf = "matrix f" |
985 |
let ?ot = "orthogonal_transformation f" |
|
986 |
let ?U = "UNIV :: 'n set" |
|
987 |
have fU: "finite ?U" by simp |
|
988 |
let ?m1 = "mat 1 :: real ^'n^'n" |
|
53253 | 989 |
{ |
990 |
assume ot: ?ot |
|
33175 | 991 |
from ot have lf: "linear f" and fd: "\<forall>v w. f v \<bullet> f w = v \<bullet> w" |
992 |
unfolding orthogonal_transformation_def orthogonal_matrix by blast+ |
|
53253 | 993 |
{ |
994 |
fix i j |
|
35150
082fa4bd403d
Rename transp to transpose in HOL-Multivariate_Analysis. (by himmelma)
hoelzl
parents:
35028
diff
changeset
|
995 |
let ?A = "transpose ?mf ** ?mf" |
33175 | 996 |
have th0: "\<And>b (x::'a::comm_ring_1). (if b then 1 else 0)*x = (if b then x else 0)" |
997 |
"\<And>b (x::'a::comm_ring_1). x*(if b then 1 else 0) = (if b then x else 0)" |
|
998 |
by simp_all |
|
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
47108
diff
changeset
|
999 |
from fd[rule_format, of "axis i 1" "axis j 1", unfolded matrix_works[OF lf, symmetric] dot_matrix_vector_mul] |
33175 | 1000 |
have "?A$i$j = ?m1 $ i $ j" |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
47108
diff
changeset
|
1001 |
by (simp add: inner_vec_def matrix_matrix_mult_def columnvector_def rowvector_def |
57418 | 1002 |
th0 setsum.delta[OF fU] mat_def axis_def) |
53253 | 1003 |
} |
53854 | 1004 |
then have "orthogonal_matrix ?mf" |
1005 |
unfolding orthogonal_matrix |
|
53253 | 1006 |
by vector |
53854 | 1007 |
with lf have ?rhs |
1008 |
by blast |
|
53253 | 1009 |
} |
33175 | 1010 |
moreover |
53253 | 1011 |
{ |
1012 |
assume lf: "linear f" and om: "orthogonal_matrix ?mf" |
|
33175 | 1013 |
from lf om have ?lhs |
1014 |
unfolding orthogonal_matrix_def norm_eq orthogonal_transformation |
|
1015 |
unfolding matrix_works[OF lf, symmetric] |
|
1016 |
apply (subst dot_matrix_vector_mul) |
|
53253 | 1017 |
apply (simp add: dot_matrix_product matrix_mul_lid) |
1018 |
done |
|
1019 |
} |
|
53854 | 1020 |
ultimately show ?thesis |
1021 |
by blast |
|
33175 | 1022 |
qed |
1023 |
||
1024 |
lemma det_orthogonal_matrix: |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34291
diff
changeset
|
1025 |
fixes Q:: "'a::linordered_idom^'n^'n" |
33175 | 1026 |
assumes oQ: "orthogonal_matrix Q" |
1027 |
shows "det Q = 1 \<or> det Q = - 1" |
|
53253 | 1028 |
proof - |
33175 | 1029 |
have th: "\<And>x::'a. x = 1 \<or> x = - 1 \<longleftrightarrow> x*x = 1" (is "\<And>x::'a. ?ths x") |
53253 | 1030 |
proof - |
33175 | 1031 |
fix x:: 'a |
53854 | 1032 |
have th0: "x * x - 1 = (x - 1) * (x + 1)" |
53253 | 1033 |
by (simp add: field_simps) |
33175 | 1034 |
have th1: "\<And>(x::'a) y. x = - y \<longleftrightarrow> x + y = 0" |
53253 | 1035 |
apply (subst eq_iff_diff_eq_0) |
1036 |
apply simp |
|
1037 |
done |
|
53854 | 1038 |
have "x * x = 1 \<longleftrightarrow> x * x - 1 = 0" |
1039 |
by simp |
|
1040 |
also have "\<dots> \<longleftrightarrow> x = 1 \<or> x = - 1" |
|
1041 |
unfolding th0 th1 by simp |
|
33175 | 1042 |
finally show "?ths x" .. |
1043 |
qed |
|
53253 | 1044 |
from oQ have "Q ** transpose Q = mat 1" |
1045 |
by (metis orthogonal_matrix_def) |
|
1046 |
then have "det (Q ** transpose Q) = det (mat 1:: 'a^'n^'n)" |
|
1047 |
by simp |
|
1048 |
then have "det Q * det Q = 1" |
|
1049 |
by (simp add: det_mul det_I det_transpose) |
|
33175 | 1050 |
then show ?thesis unfolding th . |
1051 |
qed |
|
1052 |
||
60420 | 1053 |
text \<open>Linearity of scaling, and hence isometry, that preserves origin.\<close> |
53854 | 1054 |
|
33175 | 1055 |
lemma scaling_linear: |
34291
4e896680897e
finite annotation on cartesian product is now implicit.
hoelzl
parents:
34289
diff
changeset
|
1056 |
fixes f :: "real ^'n \<Rightarrow> real ^'n" |
53253 | 1057 |
assumes f0: "f 0 = 0" |
1058 |
and fd: "\<forall>x y. dist (f x) (f y) = c * dist x y" |
|
33175 | 1059 |
shows "linear f" |
53253 | 1060 |
proof - |
1061 |
{ |
|
1062 |
fix v w |
|
1063 |
{ |
|
1064 |
fix x |
|
1065 |
note fd[rule_format, of x 0, unfolded dist_norm f0 diff_0_right] |
|
1066 |
} |
|
33175 | 1067 |
note th0 = this |
53077 | 1068 |
have "f v \<bullet> f w = c\<^sup>2 * (v \<bullet> w)" |
33175 | 1069 |
unfolding dot_norm_neg dist_norm[symmetric] |
1070 |
unfolding th0 fd[rule_format] by (simp add: power2_eq_square field_simps)} |
|
1071 |
note fc = this |
|
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
47108
diff
changeset
|
1072 |
show ?thesis |
53600
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53253
diff
changeset
|
1073 |
unfolding linear_iff vector_eq[where 'a="real^'n"] scalar_mult_eq_scaleR |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
47108
diff
changeset
|
1074 |
by (simp add: inner_add fc field_simps) |
33175 | 1075 |
qed |
1076 |
||
1077 |
lemma isometry_linear: |
|
53253 | 1078 |
"f (0:: real^'n) = (0:: real^'n) \<Longrightarrow> \<forall>x y. dist(f x) (f y) = dist x y \<Longrightarrow> linear f" |
1079 |
by (rule scaling_linear[where c=1]) simp_all |
|
33175 | 1080 |
|
60420 | 1081 |
text \<open>Hence another formulation of orthogonal transformation.\<close> |
33175 | 1082 |
|
1083 |
lemma orthogonal_transformation_isometry: |
|
34291
4e896680897e
finite annotation on cartesian product is now implicit.
hoelzl
parents:
34289
diff
changeset
|
1084 |
"orthogonal_transformation f \<longleftrightarrow> f(0::real^'n) = (0::real^'n) \<and> (\<forall>x y. dist(f x) (f y) = dist x y)" |
33175 | 1085 |
unfolding orthogonal_transformation |
1086 |
apply (rule iffI) |
|
1087 |
apply clarify |
|
1088 |
apply (clarsimp simp add: linear_0 linear_sub[symmetric] dist_norm) |
|
1089 |
apply (rule conjI) |
|
1090 |
apply (rule isometry_linear) |
|
1091 |
apply simp |
|
1092 |
apply simp |
|
1093 |
apply clarify |
|
1094 |
apply (erule_tac x=v in allE) |
|
1095 |
apply (erule_tac x=0 in allE) |
|
53253 | 1096 |
apply (simp add: dist_norm) |
1097 |
done |
|
33175 | 1098 |
|
60420 | 1099 |
text \<open>Can extend an isometry from unit sphere.\<close> |
33175 | 1100 |
|
1101 |
lemma isometry_sphere_extend: |
|
34291
4e896680897e
finite annotation on cartesian product is now implicit.
hoelzl
parents:
34289
diff
changeset
|
1102 |
fixes f:: "real ^'n \<Rightarrow> real ^'n" |
33175 | 1103 |
assumes f1: "\<forall>x. norm x = 1 \<longrightarrow> norm (f x) = 1" |
53253 | 1104 |
and fd1: "\<forall> x y. norm x = 1 \<longrightarrow> norm y = 1 \<longrightarrow> dist (f x) (f y) = dist x y" |
33175 | 1105 |
shows "\<exists>g. orthogonal_transformation g \<and> (\<forall>x. norm x = 1 \<longrightarrow> g x = f x)" |
53253 | 1106 |
proof - |
1107 |
{ |
|
1108 |
fix x y x' y' x0 y0 x0' y0' :: "real ^'n" |
|
1109 |
assume H: |
|
1110 |
"x = norm x *\<^sub>R x0" |
|
1111 |
"y = norm y *\<^sub>R y0" |
|
1112 |
"x' = norm x *\<^sub>R x0'" "y' = norm y *\<^sub>R y0'" |
|
1113 |
"norm x0 = 1" "norm x0' = 1" "norm y0 = 1" "norm y0' = 1" |
|
1114 |
"norm(x0' - y0') = norm(x0 - y0)" |
|
53854 | 1115 |
then have *: "x0 \<bullet> y0 = x0' \<bullet> y0' + y0' \<bullet> x0' - y0 \<bullet> x0 " |
53253 | 1116 |
by (simp add: norm_eq norm_eq_1 inner_add inner_diff) |
33175 | 1117 |
have "norm(x' - y') = norm(x - y)" |
1118 |
apply (subst H(1)) |
|
1119 |
apply (subst H(2)) |
|
1120 |
apply (subst H(3)) |
|
1121 |
apply (subst H(4)) |
|
1122 |
using H(5-9) |
|
1123 |
apply (simp add: norm_eq norm_eq_1) |
|
53854 | 1124 |
apply (simp add: inner_diff scalar_mult_eq_scaleR) |
1125 |
unfolding * |
|
53253 | 1126 |
apply (simp add: field_simps) |
1127 |
done |
|
1128 |
} |
|
33175 | 1129 |
note th0 = this |
44228
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
huffman
parents:
41959
diff
changeset
|
1130 |
let ?g = "\<lambda>x. if x = 0 then 0 else norm x *\<^sub>R f (inverse (norm x) *\<^sub>R x)" |
53253 | 1131 |
{ |
1132 |
fix x:: "real ^'n" |
|
1133 |
assume nx: "norm x = 1" |
|
53854 | 1134 |
have "?g x = f x" |
1135 |
using nx by auto |
|
53253 | 1136 |
} |
1137 |
then have thfg: "\<forall>x. norm x = 1 \<longrightarrow> ?g x = f x" |
|
1138 |
by blast |
|
53854 | 1139 |
have g0: "?g 0 = 0" |
1140 |
by simp |
|
53253 | 1141 |
{ |
1142 |
fix x y :: "real ^'n" |
|
1143 |
{ |
|
1144 |
assume "x = 0" "y = 0" |
|
53854 | 1145 |
then have "dist (?g x) (?g y) = dist x y" |
1146 |
by simp |
|
53253 | 1147 |
} |
33175 | 1148 |
moreover |
53253 | 1149 |
{ |
1150 |
assume "x = 0" "y \<noteq> 0" |
|
33175 | 1151 |
then have "dist (?g x) (?g y) = dist x y" |
36362
06475a1547cb
fix lots of looping simp calls and other warnings
huffman
parents:
35542
diff
changeset
|
1152 |
apply (simp add: dist_norm) |
33175 | 1153 |
apply (rule f1[rule_format]) |
53253 | 1154 |
apply (simp add: field_simps) |
1155 |
done |
|
1156 |
} |
|
33175 | 1157 |
moreover |
53253 | 1158 |
{ |
1159 |
assume "x \<noteq> 0" "y = 0" |
|
33175 | 1160 |
then have "dist (?g x) (?g y) = dist x y" |
36362
06475a1547cb
fix lots of looping simp calls and other warnings
huffman
parents:
35542
diff
changeset
|
1161 |
apply (simp add: dist_norm) |
33175 | 1162 |
apply (rule f1[rule_format]) |
53253 | 1163 |
apply (simp add: field_simps) |
1164 |
done |
|
1165 |
} |
|
33175 | 1166 |
moreover |
53253 | 1167 |
{ |
1168 |
assume z: "x \<noteq> 0" "y \<noteq> 0" |
|
1169 |
have th00: |
|
1170 |
"x = norm x *\<^sub>R (inverse (norm x) *\<^sub>R x)" |
|
1171 |
"y = norm y *\<^sub>R (inverse (norm y) *\<^sub>R y)" |
|
1172 |
"norm x *\<^sub>R f ((inverse (norm x) *\<^sub>R x)) = norm x *\<^sub>R f (inverse (norm x) *\<^sub>R x)" |
|
44228
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
huffman
parents:
41959
diff
changeset
|
1173 |
"norm y *\<^sub>R f (inverse (norm y) *\<^sub>R y) = norm y *\<^sub>R f (inverse (norm y) *\<^sub>R y)" |
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
huffman
parents:
41959
diff
changeset
|
1174 |
"norm (inverse (norm x) *\<^sub>R x) = 1" |
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
huffman
parents:
41959
diff
changeset
|
1175 |
"norm (f (inverse (norm x) *\<^sub>R x)) = 1" |
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
huffman
parents:
41959
diff
changeset
|
1176 |
"norm (inverse (norm y) *\<^sub>R y) = 1" |
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
huffman
parents:
41959
diff
changeset
|
1177 |
"norm (f (inverse (norm y) *\<^sub>R y)) = 1" |
5f974bead436
get Multivariate_Analysis/Determinants.thy compiled and working again
huffman
parents:
41959
diff
changeset
|
1178 |
"norm (f (inverse (norm x) *\<^sub>R x) - f (inverse (norm y) *\<^sub>R y)) = |
53253 | 1179 |
norm (inverse (norm x) *\<^sub>R x - inverse (norm y) *\<^sub>R y)" |
33175 | 1180 |
using z |
44457
d366fa5551ef
declare euclidean_simps [simp] at the point they are proved;
huffman
parents:
44260
diff
changeset
|
1181 |
by (auto simp add: field_simps intro: f1[rule_format] fd1[rule_format, unfolded dist_norm]) |
33175 | 1182 |
from z th0[OF th00] have "dist (?g x) (?g y) = dist x y" |
53253 | 1183 |
by (simp add: dist_norm) |
1184 |
} |
|
53854 | 1185 |
ultimately have "dist (?g x) (?g y) = dist x y" |
1186 |
by blast |
|
53253 | 1187 |
} |
33175 | 1188 |
note thd = this |
1189 |
show ?thesis |
|
1190 |
apply (rule exI[where x= ?g]) |
|
1191 |
unfolding orthogonal_transformation_isometry |
|
53253 | 1192 |
using g0 thfg thd |
1193 |
apply metis |
|
1194 |
done |
|
33175 | 1195 |
qed |
1196 |
||
60420 | 1197 |
text \<open>Rotation, reflection, rotoinversion.\<close> |
33175 | 1198 |
|
1199 |
definition "rotation_matrix Q \<longleftrightarrow> orthogonal_matrix Q \<and> det Q = 1" |
|
1200 |
definition "rotoinversion_matrix Q \<longleftrightarrow> orthogonal_matrix Q \<and> det Q = - 1" |
|
1201 |
||
1202 |
lemma orthogonal_rotation_or_rotoinversion: |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34291
diff
changeset
|
1203 |
fixes Q :: "'a::linordered_idom^'n^'n" |
33175 | 1204 |
shows " orthogonal_matrix Q \<longleftrightarrow> rotation_matrix Q \<or> rotoinversion_matrix Q" |
1205 |
by (metis rotoinversion_matrix_def rotation_matrix_def det_orthogonal_matrix) |
|
53253 | 1206 |
|
60420 | 1207 |
text \<open>Explicit formulas for low dimensions.\<close> |
33175 | 1208 |
|
57418 | 1209 |
lemma setprod_neutral_const: "setprod f {(1::nat)..1} = f 1" |
61286 | 1210 |
by simp |
33175 | 1211 |
|
1212 |
lemma setprod_2: "setprod f {(1::nat)..2} = f 1 * f 2" |
|
61286 | 1213 |
by (simp add: eval_nat_numeral atLeastAtMostSuc_conv mult.commute) |
53253 | 1214 |
|
33175 | 1215 |
lemma setprod_3: "setprod f {(1::nat)..3} = f 1 * f 2 * f 3" |
61286 | 1216 |
by (simp add: eval_nat_numeral atLeastAtMostSuc_conv mult.commute) |
33175 | 1217 |
|
1218 |
lemma det_1: "det (A::'a::comm_ring_1^1^1) = A$1$1" |
|
61286 | 1219 |
by (simp add: det_def of_nat_Suc sign_id) |
33175 | 1220 |
|
1221 |
lemma det_2: "det (A::'a::comm_ring_1^2^2) = A$1$1 * A$2$2 - A$1$2 * A$2$1" |
|
53253 | 1222 |
proof - |
33175 | 1223 |
have f12: "finite {2::2}" "1 \<notin> {2::2}" by auto |
1224 |
show ?thesis |
|
53253 | 1225 |
unfolding det_def UNIV_2 |
1226 |
unfolding setsum_over_permutations_insert[OF f12] |
|
1227 |
unfolding permutes_sing |
|
1228 |
by (simp add: sign_swap_id sign_id swap_id_eq) |
|
33175 | 1229 |
qed |
1230 |
||
53253 | 1231 |
lemma det_3: |
1232 |
"det (A::'a::comm_ring_1^3^3) = |
|
1233 |
A$1$1 * A$2$2 * A$3$3 + |
|
1234 |
A$1$2 * A$2$3 * A$3$1 + |
|
1235 |
A$1$3 * A$2$1 * A$3$2 - |
|
1236 |
A$1$1 * A$2$3 * A$3$2 - |
|
1237 |
A$1$2 * A$2$1 * A$3$3 - |
|
1238 |
A$1$3 * A$2$2 * A$3$1" |
|
1239 |
proof - |
|
53854 | 1240 |
have f123: "finite {2::3, 3}" "1 \<notin> {2::3, 3}" |
1241 |
by auto |
|
1242 |
have f23: "finite {3::3}" "2 \<notin> {3::3}" |
|
1243 |
by auto |
|
33175 | 1244 |
|
1245 |
show ?thesis |
|
53253 | 1246 |
unfolding det_def UNIV_3 |
1247 |
unfolding setsum_over_permutations_insert[OF f123] |
|
1248 |
unfolding setsum_over_permutations_insert[OF f23] |
|
1249 |
unfolding permutes_sing |
|
1250 |
by (simp add: sign_swap_id permutation_swap_id sign_compose sign_id swap_id_eq) |
|
33175 | 1251 |
qed |
1252 |
||
1253 |
end |