| author | wenzelm | 
| Thu, 16 Apr 2015 15:22:44 +0200 | |
| changeset 60097 | d20ca79d50e4 | 
| parent 60060 | 3630ecde4e7c | 
| child 60172 | 423273355b55 | 
| permissions | -rw-r--r-- | 
| 43920 | 1  | 
(* Title: HOL/Library/Extended_Real.thy  | 
| 41983 | 2  | 
Author: Johannes Hölzl, TU München  | 
3  | 
Author: Robert Himmelmann, TU München  | 
|
4  | 
Author: Armin Heller, TU München  | 
|
5  | 
Author: Bogdan Grechuk, University of Edinburgh  | 
|
6  | 
*)  | 
|
| 41973 | 7  | 
|
| 58881 | 8  | 
section {* Extended real number line *}
 | 
| 41973 | 9  | 
|
| 43920 | 10  | 
theory Extended_Real  | 
| 
51340
 
5e6296afe08d
move Liminf / Limsup lemmas on complete_lattices to its own file
 
hoelzl 
parents: 
51329 
diff
changeset
 | 
11  | 
imports Complex_Main Extended_Nat Liminf_Limsup  | 
| 41973 | 12  | 
begin  | 
13  | 
||
| 
51022
 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 
hoelzl 
parents: 
51000 
diff
changeset
 | 
14  | 
text {*
 | 
| 
 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 
hoelzl 
parents: 
51000 
diff
changeset
 | 
15  | 
|
| 
59115
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
16  | 
This should be part of @{theory Extended_Nat}, but then the AFP-entry @{text "Jinja_Thread"} fails, as it does
 | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
17  | 
overload certain named from @{theory Complex_Main}.
 | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
18  | 
|
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
19  | 
*}  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
20  | 
|
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
21  | 
instantiation enat :: linorder_topology  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
22  | 
begin  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
23  | 
|
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
24  | 
definition open_enat :: "enat set \<Rightarrow> bool" where  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
25  | 
"open_enat = generate_topology (range lessThan \<union> range greaterThan)"  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
26  | 
|
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
27  | 
instance  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
28  | 
proof qed (rule open_enat_def)  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
29  | 
|
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
30  | 
end  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
31  | 
|
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
32  | 
lemma open_enat: "open {enat n}"
 | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
33  | 
proof (cases n)  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
34  | 
case 0  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
35  | 
  then have "{enat n} = {..< eSuc 0}"
 | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
36  | 
by (auto simp: enat_0)  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
37  | 
then show ?thesis  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
38  | 
by simp  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
39  | 
next  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
40  | 
case (Suc n')  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
41  | 
  then have "{enat n} = {enat n' <..< enat (Suc n)}"
 | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
42  | 
apply auto  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
43  | 
apply (case_tac x)  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
44  | 
apply auto  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
45  | 
done  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
46  | 
then show ?thesis  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
47  | 
by simp  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
48  | 
qed  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
49  | 
|
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
50  | 
lemma open_enat_iff:  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
51  | 
fixes A :: "enat set"  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
52  | 
  shows "open A \<longleftrightarrow> (\<infinity> \<in> A \<longrightarrow> (\<exists>n::nat. {n <..} \<subseteq> A))"
 | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
53  | 
proof safe  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
54  | 
assume "\<infinity> \<notin> A"  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
55  | 
  then have "A = (\<Union>n\<in>{n. enat n \<in> A}. {enat n})"
 | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
56  | 
apply auto  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
57  | 
apply (case_tac x)  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
58  | 
apply auto  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
59  | 
done  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
60  | 
moreover have "open \<dots>"  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
61  | 
by (auto intro: open_enat)  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
62  | 
ultimately show "open A"  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
63  | 
by simp  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
64  | 
next  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
65  | 
  fix n assume "{enat n <..} \<subseteq> A"
 | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
66  | 
  then have "A = (\<Union>n\<in>{n. enat n \<in> A}. {enat n}) \<union> {enat n <..}"
 | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
67  | 
apply auto  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
68  | 
apply (case_tac x)  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
69  | 
apply auto  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
70  | 
done  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
71  | 
moreover have "open \<dots>"  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
72  | 
by (intro open_Un open_UN ballI open_enat open_greaterThan)  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
73  | 
ultimately show "open A"  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
74  | 
by simp  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
75  | 
next  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
76  | 
assume "open A" "\<infinity> \<in> A"  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
77  | 
then have "generate_topology (range lessThan \<union> range greaterThan) A" "\<infinity> \<in> A"  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
78  | 
unfolding open_enat_def by auto  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
79  | 
  then show "\<exists>n::nat. {n <..} \<subseteq> A"
 | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
80  | 
proof induction  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
81  | 
case (Int A B)  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
82  | 
    then obtain n m where "{enat n<..} \<subseteq> A" "{enat m<..} \<subseteq> B"
 | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
83  | 
by auto  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
84  | 
    then have "{enat (max n m) <..} \<subseteq> A \<inter> B"
 | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
85  | 
by (auto simp add: subset_eq Ball_def max_def enat_ord_code(1)[symmetric] simp del: enat_ord_code(1))  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
86  | 
then show ?case  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
87  | 
by auto  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
88  | 
next  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
89  | 
case (UN K)  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
90  | 
then obtain k where "k \<in> K" "\<infinity> \<in> k"  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
91  | 
by auto  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
92  | 
with UN.IH[OF this] show ?case  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
93  | 
by auto  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
94  | 
qed auto  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
95  | 
qed  | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
96  | 
|
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
97  | 
|
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
98  | 
text {*
 | 
| 
 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 
hoelzl 
parents: 
59023 
diff
changeset
 | 
99  | 
|
| 
51022
 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 
hoelzl 
parents: 
51000 
diff
changeset
 | 
100  | 
For more lemmas about the extended real numbers go to  | 
| 
 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 
hoelzl 
parents: 
51000 
diff
changeset
 | 
101  | 
  @{file "~~/src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy"}
 | 
| 
 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 
hoelzl 
parents: 
51000 
diff
changeset
 | 
102  | 
|
| 
 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 
hoelzl 
parents: 
51000 
diff
changeset
 | 
103  | 
*}  | 
| 
 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 
hoelzl 
parents: 
51000 
diff
changeset
 | 
104  | 
|
| 41973 | 105  | 
subsection {* Definition and basic properties *}
 | 
106  | 
||
| 58310 | 107  | 
datatype ereal = ereal real | PInfty | MInfty  | 
| 41973 | 108  | 
|
| 43920 | 109  | 
instantiation ereal :: uminus  | 
| 41973 | 110  | 
begin  | 
| 53873 | 111  | 
|
112  | 
fun uminus_ereal where  | 
|
113  | 
"- (ereal r) = ereal (- r)"  | 
|
114  | 
| "- PInfty = MInfty"  | 
|
115  | 
| "- MInfty = PInfty"  | 
|
116  | 
||
117  | 
instance ..  | 
|
118  | 
||
| 41973 | 119  | 
end  | 
120  | 
||
| 43923 | 121  | 
instantiation ereal :: infinity  | 
122  | 
begin  | 
|
| 53873 | 123  | 
|
124  | 
definition "(\<infinity>::ereal) = PInfty"  | 
|
125  | 
instance ..  | 
|
126  | 
||
| 43923 | 127  | 
end  | 
| 41973 | 128  | 
|
| 43923 | 129  | 
declare [[coercion "ereal :: real \<Rightarrow> ereal"]]  | 
| 41973 | 130  | 
|
| 43920 | 131  | 
lemma ereal_uminus_uminus[simp]:  | 
| 53873 | 132  | 
fixes a :: ereal  | 
133  | 
shows "- (- a) = a"  | 
|
| 41973 | 134  | 
by (cases a) simp_all  | 
135  | 
||
| 43923 | 136  | 
lemma  | 
137  | 
shows PInfty_eq_infinity[simp]: "PInfty = \<infinity>"  | 
|
138  | 
and MInfty_eq_minfinity[simp]: "MInfty = - \<infinity>"  | 
|
139  | 
and MInfty_neq_PInfty[simp]: "\<infinity> \<noteq> - (\<infinity>::ereal)" "- \<infinity> \<noteq> (\<infinity>::ereal)"  | 
|
140  | 
and MInfty_neq_ereal[simp]: "ereal r \<noteq> - \<infinity>" "- \<infinity> \<noteq> ereal r"  | 
|
141  | 
and PInfty_neq_ereal[simp]: "ereal r \<noteq> \<infinity>" "\<infinity> \<noteq> ereal r"  | 
|
142  | 
and PInfty_cases[simp]: "(case \<infinity> of ereal r \<Rightarrow> f r | PInfty \<Rightarrow> y | MInfty \<Rightarrow> z) = y"  | 
|
143  | 
and MInfty_cases[simp]: "(case - \<infinity> of ereal r \<Rightarrow> f r | PInfty \<Rightarrow> y | MInfty \<Rightarrow> z) = z"  | 
|
144  | 
by (simp_all add: infinity_ereal_def)  | 
|
| 41973 | 145  | 
|
| 43933 | 146  | 
declare  | 
147  | 
PInfty_eq_infinity[code_post]  | 
|
148  | 
MInfty_eq_minfinity[code_post]  | 
|
149  | 
||
150  | 
lemma [code_unfold]:  | 
|
151  | 
"\<infinity> = PInfty"  | 
|
| 53873 | 152  | 
"- PInfty = MInfty"  | 
| 43933 | 153  | 
by simp_all  | 
154  | 
||
| 43923 | 155  | 
lemma inj_ereal[simp]: "inj_on ereal A"  | 
156  | 
unfolding inj_on_def by auto  | 
|
| 41973 | 157  | 
|
| 55913 | 158  | 
lemma ereal_cases[cases type: ereal]:  | 
159  | 
obtains (real) r where "x = ereal r"  | 
|
160  | 
| (PInf) "x = \<infinity>"  | 
|
161  | 
| (MInf) "x = -\<infinity>"  | 
|
| 41973 | 162  | 
using assms by (cases x) auto  | 
163  | 
||
| 43920 | 164  | 
lemmas ereal2_cases = ereal_cases[case_product ereal_cases]  | 
165  | 
lemmas ereal3_cases = ereal2_cases[case_product ereal_cases]  | 
|
| 41973 | 166  | 
|
| 
57447
 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 
hoelzl 
parents: 
57025 
diff
changeset
 | 
167  | 
lemma ereal_all_split: "\<And>P. (\<forall>x::ereal. P x) \<longleftrightarrow> P \<infinity> \<and> (\<forall>x. P (ereal x)) \<and> P (-\<infinity>)"  | 
| 
 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 
hoelzl 
parents: 
57025 
diff
changeset
 | 
168  | 
by (metis ereal_cases)  | 
| 
 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 
hoelzl 
parents: 
57025 
diff
changeset
 | 
169  | 
|
| 
 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 
hoelzl 
parents: 
57025 
diff
changeset
 | 
170  | 
lemma ereal_ex_split: "\<And>P. (\<exists>x::ereal. P x) \<longleftrightarrow> P \<infinity> \<or> (\<exists>x. P (ereal x)) \<or> P (-\<infinity>)"  | 
| 
 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 
hoelzl 
parents: 
57025 
diff
changeset
 | 
171  | 
by (metis ereal_cases)  | 
| 
 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 
hoelzl 
parents: 
57025 
diff
changeset
 | 
172  | 
|
| 43920 | 173  | 
lemma ereal_uminus_eq_iff[simp]:  | 
| 53873 | 174  | 
fixes a b :: ereal  | 
175  | 
shows "-a = -b \<longleftrightarrow> a = b"  | 
|
| 43920 | 176  | 
by (cases rule: ereal2_cases[of a b]) simp_all  | 
| 41973 | 177  | 
|
| 
58042
 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 
hoelzl 
parents: 
57512 
diff
changeset
 | 
178  | 
instantiation ereal :: real_of  | 
| 
 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 
hoelzl 
parents: 
57512 
diff
changeset
 | 
179  | 
begin  | 
| 
 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 
hoelzl 
parents: 
57512 
diff
changeset
 | 
180  | 
|
| 
 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 
hoelzl 
parents: 
57512 
diff
changeset
 | 
181  | 
function real_ereal :: "ereal \<Rightarrow> real" where  | 
| 
 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 
hoelzl 
parents: 
57512 
diff
changeset
 | 
182  | 
"real_ereal (ereal r) = r"  | 
| 
 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 
hoelzl 
parents: 
57512 
diff
changeset
 | 
183  | 
| "real_ereal \<infinity> = 0"  | 
| 
 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 
hoelzl 
parents: 
57512 
diff
changeset
 | 
184  | 
| "real_ereal (-\<infinity>) = 0"  | 
| 43920 | 185  | 
by (auto intro: ereal_cases)  | 
| 53873 | 186  | 
termination by default (rule wf_empty)  | 
| 41973 | 187  | 
|
| 
58042
 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 
hoelzl 
parents: 
57512 
diff
changeset
 | 
188  | 
instance ..  | 
| 
 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 
hoelzl 
parents: 
57512 
diff
changeset
 | 
189  | 
end  | 
| 41973 | 190  | 
|
| 43920 | 191  | 
lemma real_of_ereal[simp]:  | 
| 53873 | 192  | 
"real (- x :: ereal) = - (real x)"  | 
| 
58042
 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 
hoelzl 
parents: 
57512 
diff
changeset
 | 
193  | 
by (cases x) simp_all  | 
| 41973 | 194  | 
|
| 43920 | 195  | 
lemma range_ereal[simp]: "range ereal = UNIV - {\<infinity>, -\<infinity>}"
 | 
| 41973 | 196  | 
proof safe  | 
| 53873 | 197  | 
fix x  | 
198  | 
assume "x \<notin> range ereal" "x \<noteq> \<infinity>"  | 
|
199  | 
then show "x = -\<infinity>"  | 
|
200  | 
by (cases x) auto  | 
|
| 41973 | 201  | 
qed auto  | 
202  | 
||
| 43920 | 203  | 
lemma ereal_range_uminus[simp]: "range uminus = (UNIV::ereal set)"  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
204  | 
proof safe  | 
| 53873 | 205  | 
fix x :: ereal  | 
206  | 
show "x \<in> range uminus"  | 
|
207  | 
by (intro image_eqI[of _ _ "-x"]) auto  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
208  | 
qed auto  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
209  | 
|
| 43920 | 210  | 
instantiation ereal :: abs  | 
| 41976 | 211  | 
begin  | 
| 53873 | 212  | 
|
213  | 
function abs_ereal where  | 
|
214  | 
"\<bar>ereal r\<bar> = ereal \<bar>r\<bar>"  | 
|
215  | 
| "\<bar>-\<infinity>\<bar> = (\<infinity>::ereal)"  | 
|
216  | 
| "\<bar>\<infinity>\<bar> = (\<infinity>::ereal)"  | 
|
217  | 
by (auto intro: ereal_cases)  | 
|
218  | 
termination proof qed (rule wf_empty)  | 
|
219  | 
||
220  | 
instance ..  | 
|
221  | 
||
| 41976 | 222  | 
end  | 
223  | 
||
| 53873 | 224  | 
lemma abs_eq_infinity_cases[elim!]:  | 
225  | 
fixes x :: ereal  | 
|
226  | 
assumes "\<bar>x\<bar> = \<infinity>"  | 
|
227  | 
obtains "x = \<infinity>" | "x = -\<infinity>"  | 
|
228  | 
using assms by (cases x) auto  | 
|
| 41976 | 229  | 
|
| 53873 | 230  | 
lemma abs_neq_infinity_cases[elim!]:  | 
231  | 
fixes x :: ereal  | 
|
232  | 
assumes "\<bar>x\<bar> \<noteq> \<infinity>"  | 
|
233  | 
obtains r where "x = ereal r"  | 
|
234  | 
using assms by (cases x) auto  | 
|
235  | 
||
236  | 
lemma abs_ereal_uminus[simp]:  | 
|
237  | 
fixes x :: ereal  | 
|
238  | 
shows "\<bar>- x\<bar> = \<bar>x\<bar>"  | 
|
| 41976 | 239  | 
by (cases x) auto  | 
240  | 
||
| 53873 | 241  | 
lemma ereal_infinity_cases:  | 
242  | 
fixes a :: ereal  | 
|
243  | 
shows "a \<noteq> \<infinity> \<Longrightarrow> a \<noteq> -\<infinity> \<Longrightarrow> \<bar>a\<bar> \<noteq> \<infinity>"  | 
|
244  | 
by auto  | 
|
| 41976 | 245  | 
|
| 50104 | 246  | 
|
| 41973 | 247  | 
subsubsection "Addition"  | 
248  | 
||
| 54408 | 249  | 
instantiation ereal :: "{one,comm_monoid_add,zero_neq_one}"
 | 
| 41973 | 250  | 
begin  | 
251  | 
||
| 43920 | 252  | 
definition "0 = ereal 0"  | 
| 51351 | 253  | 
definition "1 = ereal 1"  | 
| 41973 | 254  | 
|
| 43920 | 255  | 
function plus_ereal where  | 
| 53873 | 256  | 
"ereal r + ereal p = ereal (r + p)"  | 
257  | 
| "\<infinity> + a = (\<infinity>::ereal)"  | 
|
258  | 
| "a + \<infinity> = (\<infinity>::ereal)"  | 
|
259  | 
| "ereal r + -\<infinity> = - \<infinity>"  | 
|
260  | 
| "-\<infinity> + ereal p = -(\<infinity>::ereal)"  | 
|
261  | 
| "-\<infinity> + -\<infinity> = -(\<infinity>::ereal)"  | 
|
| 41973 | 262  | 
proof -  | 
263  | 
case (goal1 P x)  | 
|
| 53873 | 264  | 
then obtain a b where "x = (a, b)"  | 
265  | 
by (cases x) auto  | 
|
| 
53374
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
53216 
diff
changeset
 | 
266  | 
with goal1 show P  | 
| 43920 | 267  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
| 41973 | 268  | 
qed auto  | 
| 
53374
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
53216 
diff
changeset
 | 
269  | 
termination by default (rule wf_empty)  | 
| 41973 | 270  | 
|
271  | 
lemma Infty_neq_0[simp]:  | 
|
| 43923 | 272  | 
"(\<infinity>::ereal) \<noteq> 0" "0 \<noteq> (\<infinity>::ereal)"  | 
273  | 
"-(\<infinity>::ereal) \<noteq> 0" "0 \<noteq> -(\<infinity>::ereal)"  | 
|
| 43920 | 274  | 
by (simp_all add: zero_ereal_def)  | 
| 41973 | 275  | 
|
| 43920 | 276  | 
lemma ereal_eq_0[simp]:  | 
277  | 
"ereal r = 0 \<longleftrightarrow> r = 0"  | 
|
278  | 
"0 = ereal r \<longleftrightarrow> r = 0"  | 
|
279  | 
unfolding zero_ereal_def by simp_all  | 
|
| 41973 | 280  | 
|
| 54416 | 281  | 
lemma ereal_eq_1[simp]:  | 
282  | 
"ereal r = 1 \<longleftrightarrow> r = 1"  | 
|
283  | 
"1 = ereal r \<longleftrightarrow> r = 1"  | 
|
284  | 
unfolding one_ereal_def by simp_all  | 
|
285  | 
||
| 41973 | 286  | 
instance  | 
287  | 
proof  | 
|
| 47082 | 288  | 
fix a b c :: ereal  | 
289  | 
show "0 + a = a"  | 
|
| 43920 | 290  | 
by (cases a) (simp_all add: zero_ereal_def)  | 
| 47082 | 291  | 
show "a + b = b + a"  | 
| 43920 | 292  | 
by (cases rule: ereal2_cases[of a b]) simp_all  | 
| 47082 | 293  | 
show "a + b + c = a + (b + c)"  | 
| 43920 | 294  | 
by (cases rule: ereal3_cases[of a b c]) simp_all  | 
| 54408 | 295  | 
show "0 \<noteq> (1::ereal)"  | 
296  | 
by (simp add: one_ereal_def zero_ereal_def)  | 
|
| 41973 | 297  | 
qed  | 
| 53873 | 298  | 
|
| 41973 | 299  | 
end  | 
300  | 
||
| 60060 | 301  | 
lemma ereal_0_plus [simp]: "ereal 0 + x = x"  | 
302  | 
and plus_ereal_0 [simp]: "x + ereal 0 = x"  | 
|
303  | 
by(simp_all add: zero_ereal_def[symmetric])  | 
|
304  | 
||
| 51351 | 305  | 
instance ereal :: numeral ..  | 
306  | 
||
| 43920 | 307  | 
lemma real_of_ereal_0[simp]: "real (0::ereal) = 0"  | 
| 
58042
 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 
hoelzl 
parents: 
57512 
diff
changeset
 | 
308  | 
unfolding zero_ereal_def by simp  | 
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
309  | 
|
| 43920 | 310  | 
lemma abs_ereal_zero[simp]: "\<bar>0\<bar> = (0::ereal)"  | 
311  | 
unfolding zero_ereal_def abs_ereal.simps by simp  | 
|
| 41976 | 312  | 
|
| 53873 | 313  | 
lemma ereal_uminus_zero[simp]: "- 0 = (0::ereal)"  | 
| 43920 | 314  | 
by (simp add: zero_ereal_def)  | 
| 41973 | 315  | 
|
| 43920 | 316  | 
lemma ereal_uminus_zero_iff[simp]:  | 
| 53873 | 317  | 
fixes a :: ereal  | 
318  | 
shows "-a = 0 \<longleftrightarrow> a = 0"  | 
|
| 41973 | 319  | 
by (cases a) simp_all  | 
320  | 
||
| 43920 | 321  | 
lemma ereal_plus_eq_PInfty[simp]:  | 
| 53873 | 322  | 
fixes a b :: ereal  | 
323  | 
shows "a + b = \<infinity> \<longleftrightarrow> a = \<infinity> \<or> b = \<infinity>"  | 
|
| 43920 | 324  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
| 41973 | 325  | 
|
| 43920 | 326  | 
lemma ereal_plus_eq_MInfty[simp]:  | 
| 53873 | 327  | 
fixes a b :: ereal  | 
328  | 
shows "a + b = -\<infinity> \<longleftrightarrow> (a = -\<infinity> \<or> b = -\<infinity>) \<and> a \<noteq> \<infinity> \<and> b \<noteq> \<infinity>"  | 
|
| 43920 | 329  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
| 41973 | 330  | 
|
| 43920 | 331  | 
lemma ereal_add_cancel_left:  | 
| 53873 | 332  | 
fixes a b :: ereal  | 
333  | 
assumes "a \<noteq> -\<infinity>"  | 
|
334  | 
shows "a + b = a + c \<longleftrightarrow> a = \<infinity> \<or> b = c"  | 
|
| 43920 | 335  | 
using assms by (cases rule: ereal3_cases[of a b c]) auto  | 
| 41973 | 336  | 
|
| 43920 | 337  | 
lemma ereal_add_cancel_right:  | 
| 53873 | 338  | 
fixes a b :: ereal  | 
339  | 
assumes "a \<noteq> -\<infinity>"  | 
|
340  | 
shows "b + a = c + a \<longleftrightarrow> a = \<infinity> \<or> b = c"  | 
|
| 43920 | 341  | 
using assms by (cases rule: ereal3_cases[of a b c]) auto  | 
| 41973 | 342  | 
|
| 53873 | 343  | 
lemma ereal_real: "ereal (real x) = (if \<bar>x\<bar> = \<infinity> then 0 else x)"  | 
| 41973 | 344  | 
by (cases x) simp_all  | 
345  | 
||
| 43920 | 346  | 
lemma real_of_ereal_add:  | 
347  | 
fixes a b :: ereal  | 
|
| 47082 | 348  | 
shows "real (a + b) =  | 
349  | 
(if (\<bar>a\<bar> = \<infinity>) \<and> (\<bar>b\<bar> = \<infinity>) \<or> (\<bar>a\<bar> \<noteq> \<infinity>) \<and> (\<bar>b\<bar> \<noteq> \<infinity>) then real a + real b else 0)"  | 
|
| 43920 | 350  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
351  | 
|
| 53873 | 352  | 
|
| 43920 | 353  | 
subsubsection "Linear order on @{typ ereal}"
 | 
| 41973 | 354  | 
|
| 43920 | 355  | 
instantiation ereal :: linorder  | 
| 41973 | 356  | 
begin  | 
357  | 
||
| 47082 | 358  | 
function less_ereal  | 
359  | 
where  | 
|
360  | 
" ereal x < ereal y \<longleftrightarrow> x < y"  | 
|
361  | 
| "(\<infinity>::ereal) < a \<longleftrightarrow> False"  | 
|
362  | 
| " a < -(\<infinity>::ereal) \<longleftrightarrow> False"  | 
|
363  | 
| "ereal x < \<infinity> \<longleftrightarrow> True"  | 
|
364  | 
| " -\<infinity> < ereal r \<longleftrightarrow> True"  | 
|
365  | 
| " -\<infinity> < (\<infinity>::ereal) \<longleftrightarrow> True"  | 
|
| 41973 | 366  | 
proof -  | 
367  | 
case (goal1 P x)  | 
|
| 
53374
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
53216 
diff
changeset
 | 
368  | 
then obtain a b where "x = (a,b)" by (cases x) auto  | 
| 
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
53216 
diff
changeset
 | 
369  | 
with goal1 show P by (cases rule: ereal2_cases[of a b]) auto  | 
| 41973 | 370  | 
qed simp_all  | 
371  | 
termination by (relation "{}") simp
 | 
|
372  | 
||
| 43920 | 373  | 
definition "x \<le> (y::ereal) \<longleftrightarrow> x < y \<or> x = y"  | 
| 41973 | 374  | 
|
| 43920 | 375  | 
lemma ereal_infty_less[simp]:  | 
| 43923 | 376  | 
fixes x :: ereal  | 
377  | 
shows "x < \<infinity> \<longleftrightarrow> (x \<noteq> \<infinity>)"  | 
|
378  | 
"-\<infinity> < x \<longleftrightarrow> (x \<noteq> -\<infinity>)"  | 
|
| 41973 | 379  | 
by (cases x, simp_all) (cases x, simp_all)  | 
380  | 
||
| 43920 | 381  | 
lemma ereal_infty_less_eq[simp]:  | 
| 43923 | 382  | 
fixes x :: ereal  | 
383  | 
shows "\<infinity> \<le> x \<longleftrightarrow> x = \<infinity>"  | 
|
| 53873 | 384  | 
and "x \<le> -\<infinity> \<longleftrightarrow> x = -\<infinity>"  | 
| 43920 | 385  | 
by (auto simp add: less_eq_ereal_def)  | 
| 41973 | 386  | 
|
| 43920 | 387  | 
lemma ereal_less[simp]:  | 
388  | 
"ereal r < 0 \<longleftrightarrow> (r < 0)"  | 
|
389  | 
"0 < ereal r \<longleftrightarrow> (0 < r)"  | 
|
| 54416 | 390  | 
"ereal r < 1 \<longleftrightarrow> (r < 1)"  | 
391  | 
"1 < ereal r \<longleftrightarrow> (1 < r)"  | 
|
| 43923 | 392  | 
"0 < (\<infinity>::ereal)"  | 
393  | 
"-(\<infinity>::ereal) < 0"  | 
|
| 54416 | 394  | 
by (simp_all add: zero_ereal_def one_ereal_def)  | 
| 41973 | 395  | 
|
| 43920 | 396  | 
lemma ereal_less_eq[simp]:  | 
| 43923 | 397  | 
"x \<le> (\<infinity>::ereal)"  | 
398  | 
"-(\<infinity>::ereal) \<le> x"  | 
|
| 43920 | 399  | 
"ereal r \<le> ereal p \<longleftrightarrow> r \<le> p"  | 
400  | 
"ereal r \<le> 0 \<longleftrightarrow> r \<le> 0"  | 
|
401  | 
"0 \<le> ereal r \<longleftrightarrow> 0 \<le> r"  | 
|
| 54416 | 402  | 
"ereal r \<le> 1 \<longleftrightarrow> r \<le> 1"  | 
403  | 
"1 \<le> ereal r \<longleftrightarrow> 1 \<le> r"  | 
|
404  | 
by (auto simp add: less_eq_ereal_def zero_ereal_def one_ereal_def)  | 
|
| 41973 | 405  | 
|
| 43920 | 406  | 
lemma ereal_infty_less_eq2:  | 
| 43923 | 407  | 
"a \<le> b \<Longrightarrow> a = \<infinity> \<Longrightarrow> b = (\<infinity>::ereal)"  | 
408  | 
"a \<le> b \<Longrightarrow> b = -\<infinity> \<Longrightarrow> a = -(\<infinity>::ereal)"  | 
|
| 41973 | 409  | 
by simp_all  | 
410  | 
||
411  | 
instance  | 
|
412  | 
proof  | 
|
| 47082 | 413  | 
fix x y z :: ereal  | 
414  | 
show "x \<le> x"  | 
|
| 41973 | 415  | 
by (cases x) simp_all  | 
| 47082 | 416  | 
show "x < y \<longleftrightarrow> x \<le> y \<and> \<not> y \<le> x"  | 
| 43920 | 417  | 
by (cases rule: ereal2_cases[of x y]) auto  | 
| 41973 | 418  | 
show "x \<le> y \<or> y \<le> x "  | 
| 43920 | 419  | 
by (cases rule: ereal2_cases[of x y]) auto  | 
| 53873 | 420  | 
  {
 | 
421  | 
assume "x \<le> y" "y \<le> x"  | 
|
422  | 
then show "x = y"  | 
|
423  | 
by (cases rule: ereal2_cases[of x y]) auto  | 
|
424  | 
}  | 
|
425  | 
  {
 | 
|
426  | 
assume "x \<le> y" "y \<le> z"  | 
|
427  | 
then show "x \<le> z"  | 
|
428  | 
by (cases rule: ereal3_cases[of x y z]) auto  | 
|
429  | 
}  | 
|
| 41973 | 430  | 
qed  | 
| 47082 | 431  | 
|
| 41973 | 432  | 
end  | 
433  | 
||
| 
51329
 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 
hoelzl 
parents: 
51328 
diff
changeset
 | 
434  | 
lemma ereal_dense2: "x < y \<Longrightarrow> \<exists>z. x < ereal z \<and> ereal z < y"  | 
| 
 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 
hoelzl 
parents: 
51328 
diff
changeset
 | 
435  | 
using lt_ex gt_ex dense by (cases x y rule: ereal2_cases) auto  | 
| 
 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 
hoelzl 
parents: 
51328 
diff
changeset
 | 
436  | 
|
| 53216 | 437  | 
instance ereal :: dense_linorder  | 
| 
51329
 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 
hoelzl 
parents: 
51328 
diff
changeset
 | 
438  | 
by default (blast dest: ereal_dense2)  | 
| 
 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 
hoelzl 
parents: 
51328 
diff
changeset
 | 
439  | 
|
| 43920 | 440  | 
instance ereal :: ordered_ab_semigroup_add  | 
| 41978 | 441  | 
proof  | 
| 53873 | 442  | 
fix a b c :: ereal  | 
443  | 
assume "a \<le> b"  | 
|
444  | 
then show "c + a \<le> c + b"  | 
|
| 43920 | 445  | 
by (cases rule: ereal3_cases[of a b c]) auto  | 
| 41978 | 446  | 
qed  | 
447  | 
||
| 43920 | 448  | 
lemma real_of_ereal_positive_mono:  | 
| 53873 | 449  | 
fixes x y :: ereal  | 
450  | 
shows "0 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> y \<noteq> \<infinity> \<Longrightarrow> real x \<le> real y"  | 
|
| 43920 | 451  | 
by (cases rule: ereal2_cases[of x y]) auto  | 
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
452  | 
|
| 43920 | 453  | 
lemma ereal_MInfty_lessI[intro, simp]:  | 
| 53873 | 454  | 
fixes a :: ereal  | 
455  | 
shows "a \<noteq> -\<infinity> \<Longrightarrow> -\<infinity> < a"  | 
|
| 41973 | 456  | 
by (cases a) auto  | 
457  | 
||
| 43920 | 458  | 
lemma ereal_less_PInfty[intro, simp]:  | 
| 53873 | 459  | 
fixes a :: ereal  | 
460  | 
shows "a \<noteq> \<infinity> \<Longrightarrow> a < \<infinity>"  | 
|
| 41973 | 461  | 
by (cases a) auto  | 
462  | 
||
| 43920 | 463  | 
lemma ereal_less_ereal_Ex:  | 
464  | 
fixes a b :: ereal  | 
|
465  | 
shows "x < ereal r \<longleftrightarrow> x = -\<infinity> \<or> (\<exists>p. p < r \<and> x = ereal p)"  | 
|
| 41973 | 466  | 
by (cases x) auto  | 
467  | 
||
| 43920 | 468  | 
lemma less_PInf_Ex_of_nat: "x \<noteq> \<infinity> \<longleftrightarrow> (\<exists>n::nat. x < ereal (real n))"  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
469  | 
proof (cases x)  | 
| 53873 | 470  | 
case (real r)  | 
471  | 
then show ?thesis  | 
|
| 
41980
 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 
hoelzl 
parents: 
41979 
diff
changeset
 | 
472  | 
using reals_Archimedean2[of r] by simp  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
473  | 
qed simp_all  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
474  | 
|
| 43920 | 475  | 
lemma ereal_add_mono:  | 
| 53873 | 476  | 
fixes a b c d :: ereal  | 
477  | 
assumes "a \<le> b"  | 
|
478  | 
and "c \<le> d"  | 
|
479  | 
shows "a + c \<le> b + d"  | 
|
| 41973 | 480  | 
using assms  | 
481  | 
apply (cases a)  | 
|
| 43920 | 482  | 
apply (cases rule: ereal3_cases[of b c d], auto)  | 
483  | 
apply (cases rule: ereal3_cases[of b c d], auto)  | 
|
| 41973 | 484  | 
done  | 
485  | 
||
| 43920 | 486  | 
lemma ereal_minus_le_minus[simp]:  | 
| 53873 | 487  | 
fixes a b :: ereal  | 
488  | 
shows "- a \<le> - b \<longleftrightarrow> b \<le> a"  | 
|
| 43920 | 489  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
| 41973 | 490  | 
|
| 43920 | 491  | 
lemma ereal_minus_less_minus[simp]:  | 
| 53873 | 492  | 
fixes a b :: ereal  | 
493  | 
shows "- a < - b \<longleftrightarrow> b < a"  | 
|
| 43920 | 494  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
| 41973 | 495  | 
|
| 43920 | 496  | 
lemma ereal_le_real_iff:  | 
| 53873 | 497  | 
"x \<le> real y \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> ereal x \<le> y) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> x \<le> 0)"  | 
| 41973 | 498  | 
by (cases y) auto  | 
499  | 
||
| 43920 | 500  | 
lemma real_le_ereal_iff:  | 
| 53873 | 501  | 
"real y \<le> x \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> y \<le> ereal x) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> 0 \<le> x)"  | 
| 41973 | 502  | 
by (cases y) auto  | 
503  | 
||
| 43920 | 504  | 
lemma ereal_less_real_iff:  | 
| 53873 | 505  | 
"x < real y \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> ereal x < y) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> x < 0)"  | 
| 41973 | 506  | 
by (cases y) auto  | 
507  | 
||
| 43920 | 508  | 
lemma real_less_ereal_iff:  | 
| 53873 | 509  | 
"real y < x \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> y < ereal x) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> 0 < x)"  | 
| 41973 | 510  | 
by (cases y) auto  | 
511  | 
||
| 43920 | 512  | 
lemma real_of_ereal_pos:  | 
| 53873 | 513  | 
fixes x :: ereal  | 
514  | 
shows "0 \<le> x \<Longrightarrow> 0 \<le> real x" by (cases x) auto  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
515  | 
|
| 43920 | 516  | 
lemmas real_of_ereal_ord_simps =  | 
517  | 
ereal_le_real_iff real_le_ereal_iff ereal_less_real_iff real_less_ereal_iff  | 
|
| 41973 | 518  | 
|
| 43920 | 519  | 
lemma abs_ereal_ge0[simp]: "0 \<le> x \<Longrightarrow> \<bar>x :: ereal\<bar> = x"  | 
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
520  | 
by (cases x) auto  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
521  | 
|
| 43920 | 522  | 
lemma abs_ereal_less0[simp]: "x < 0 \<Longrightarrow> \<bar>x :: ereal\<bar> = -x"  | 
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
523  | 
by (cases x) auto  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
524  | 
|
| 43920 | 525  | 
lemma abs_ereal_pos[simp]: "0 \<le> \<bar>x :: ereal\<bar>"  | 
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
526  | 
by (cases x) auto  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
527  | 
|
| 53873 | 528  | 
lemma real_of_ereal_le_0[simp]: "real (x :: ereal) \<le> 0 \<longleftrightarrow> x \<le> 0 \<or> x = \<infinity>"  | 
| 43923 | 529  | 
by (cases x) auto  | 
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
530  | 
|
| 43923 | 531  | 
lemma abs_real_of_ereal[simp]: "\<bar>real (x :: ereal)\<bar> = real \<bar>x\<bar>"  | 
532  | 
by (cases x) auto  | 
|
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
533  | 
|
| 43923 | 534  | 
lemma zero_less_real_of_ereal:  | 
| 53873 | 535  | 
fixes x :: ereal  | 
536  | 
shows "0 < real x \<longleftrightarrow> 0 < x \<and> x \<noteq> \<infinity>"  | 
|
| 43923 | 537  | 
by (cases x) auto  | 
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
538  | 
|
| 43920 | 539  | 
lemma ereal_0_le_uminus_iff[simp]:  | 
| 53873 | 540  | 
fixes a :: ereal  | 
541  | 
shows "0 \<le> - a \<longleftrightarrow> a \<le> 0"  | 
|
| 43920 | 542  | 
by (cases rule: ereal2_cases[of a]) auto  | 
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
543  | 
|
| 43920 | 544  | 
lemma ereal_uminus_le_0_iff[simp]:  | 
| 53873 | 545  | 
fixes a :: ereal  | 
546  | 
shows "- a \<le> 0 \<longleftrightarrow> 0 \<le> a"  | 
|
| 43920 | 547  | 
by (cases rule: ereal2_cases[of a]) auto  | 
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
548  | 
|
| 43920 | 549  | 
lemma ereal_add_strict_mono:  | 
550  | 
fixes a b c d :: ereal  | 
|
| 
56993
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
551  | 
assumes "a \<le> b"  | 
| 53873 | 552  | 
and "0 \<le> a"  | 
553  | 
and "a \<noteq> \<infinity>"  | 
|
554  | 
and "c < d"  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
555  | 
shows "a + c < b + d"  | 
| 53873 | 556  | 
using assms  | 
557  | 
by (cases rule: ereal3_cases[case_product ereal_cases, of a b c d]) auto  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
558  | 
|
| 53873 | 559  | 
lemma ereal_less_add:  | 
560  | 
fixes a b c :: ereal  | 
|
561  | 
shows "\<bar>a\<bar> \<noteq> \<infinity> \<Longrightarrow> c < b \<Longrightarrow> a + c < a + b"  | 
|
| 43920 | 562  | 
by (cases rule: ereal2_cases[of b c]) auto  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
563  | 
|
| 54416 | 564  | 
lemma ereal_add_nonneg_eq_0_iff:  | 
565  | 
fixes a b :: ereal  | 
|
566  | 
shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> a + b = 0 \<longleftrightarrow> a = 0 \<and> b = 0"  | 
|
567  | 
by (cases a b rule: ereal2_cases) auto  | 
|
568  | 
||
| 53873 | 569  | 
lemma ereal_uminus_eq_reorder: "- a = b \<longleftrightarrow> a = (-b::ereal)"  | 
570  | 
by auto  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
571  | 
|
| 43920 | 572  | 
lemma ereal_uminus_less_reorder: "- a < b \<longleftrightarrow> -b < (a::ereal)"  | 
573  | 
by (subst (3) ereal_uminus_uminus[symmetric]) (simp only: ereal_minus_less_minus)  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
574  | 
|
| 
59452
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
575  | 
lemma ereal_less_uminus_reorder: "a < - b \<longleftrightarrow> b < - (a::ereal)"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
576  | 
by (subst (3) ereal_uminus_uminus[symmetric]) (simp only: ereal_minus_less_minus)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
577  | 
|
| 43920 | 578  | 
lemma ereal_uminus_le_reorder: "- a \<le> b \<longleftrightarrow> -b \<le> (a::ereal)"  | 
579  | 
by (subst (3) ereal_uminus_uminus[symmetric]) (simp only: ereal_minus_le_minus)  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
580  | 
|
| 43920 | 581  | 
lemmas ereal_uminus_reorder =  | 
582  | 
ereal_uminus_eq_reorder ereal_uminus_less_reorder ereal_uminus_le_reorder  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
583  | 
|
| 43920 | 584  | 
lemma ereal_bot:  | 
| 53873 | 585  | 
fixes x :: ereal  | 
586  | 
assumes "\<And>B. x \<le> ereal B"  | 
|
587  | 
shows "x = - \<infinity>"  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
588  | 
proof (cases x)  | 
| 53873 | 589  | 
case (real r)  | 
590  | 
with assms[of "r - 1"] show ?thesis  | 
|
591  | 
by auto  | 
|
| 47082 | 592  | 
next  | 
| 53873 | 593  | 
case PInf  | 
594  | 
with assms[of 0] show ?thesis  | 
|
595  | 
by auto  | 
|
| 47082 | 596  | 
next  | 
| 53873 | 597  | 
case MInf  | 
598  | 
then show ?thesis  | 
|
599  | 
by simp  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
600  | 
qed  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
601  | 
|
| 43920 | 602  | 
lemma ereal_top:  | 
| 53873 | 603  | 
fixes x :: ereal  | 
604  | 
assumes "\<And>B. x \<ge> ereal B"  | 
|
605  | 
shows "x = \<infinity>"  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
606  | 
proof (cases x)  | 
| 53873 | 607  | 
case (real r)  | 
608  | 
with assms[of "r + 1"] show ?thesis  | 
|
609  | 
by auto  | 
|
| 47082 | 610  | 
next  | 
| 53873 | 611  | 
case MInf  | 
612  | 
with assms[of 0] show ?thesis  | 
|
613  | 
by auto  | 
|
| 47082 | 614  | 
next  | 
| 53873 | 615  | 
case PInf  | 
616  | 
then show ?thesis  | 
|
617  | 
by simp  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
618  | 
qed  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
619  | 
|
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
620  | 
lemma  | 
| 43920 | 621  | 
shows ereal_max[simp]: "ereal (max x y) = max (ereal x) (ereal y)"  | 
622  | 
and ereal_min[simp]: "ereal (min x y) = min (ereal x) (ereal y)"  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
623  | 
by (simp_all add: min_def max_def)  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
624  | 
|
| 43920 | 625  | 
lemma ereal_max_0: "max 0 (ereal r) = ereal (max 0 r)"  | 
626  | 
by (auto simp: zero_ereal_def)  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
627  | 
|
| 41978 | 628  | 
lemma  | 
| 43920 | 629  | 
fixes f :: "nat \<Rightarrow> ereal"  | 
| 54416 | 630  | 
shows ereal_incseq_uminus[simp]: "incseq (\<lambda>x. - f x) \<longleftrightarrow> decseq f"  | 
631  | 
and ereal_decseq_uminus[simp]: "decseq (\<lambda>x. - f x) \<longleftrightarrow> incseq f"  | 
|
| 41978 | 632  | 
unfolding decseq_def incseq_def by auto  | 
633  | 
||
| 43920 | 634  | 
lemma incseq_ereal: "incseq f \<Longrightarrow> incseq (\<lambda>x. ereal (f x))"  | 
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
635  | 
unfolding incseq_def by auto  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
636  | 
|
| 56537 | 637  | 
lemma ereal_add_nonneg_nonneg[simp]:  | 
| 53873 | 638  | 
fixes a b :: ereal  | 
639  | 
shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a + b"  | 
|
| 41978 | 640  | 
using add_mono[of 0 a 0 b] by simp  | 
641  | 
||
| 53873 | 642  | 
lemma image_eqD: "f ` A = B \<Longrightarrow> \<forall>x\<in>A. f x \<in> B"  | 
| 41978 | 643  | 
by auto  | 
644  | 
||
645  | 
lemma incseq_setsumI:  | 
|
| 53873 | 646  | 
  fixes f :: "nat \<Rightarrow> 'a::{comm_monoid_add,ordered_ab_semigroup_add}"
 | 
| 41978 | 647  | 
assumes "\<And>i. 0 \<le> f i"  | 
648  | 
  shows "incseq (\<lambda>i. setsum f {..< i})"
 | 
|
649  | 
proof (intro incseq_SucI)  | 
|
| 53873 | 650  | 
fix n  | 
651  | 
  have "setsum f {..< n} + 0 \<le> setsum f {..<n} + f n"
 | 
|
| 41978 | 652  | 
using assms by (rule add_left_mono)  | 
653  | 
  then show "setsum f {..< n} \<le> setsum f {..< Suc n}"
 | 
|
654  | 
by auto  | 
|
655  | 
qed  | 
|
656  | 
||
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
657  | 
lemma incseq_setsumI2:  | 
| 53873 | 658  | 
  fixes f :: "'i \<Rightarrow> nat \<Rightarrow> 'a::{comm_monoid_add,ordered_ab_semigroup_add}"
 | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
659  | 
assumes "\<And>n. n \<in> A \<Longrightarrow> incseq (f n)"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
660  | 
shows "incseq (\<lambda>i. \<Sum>n\<in>A. f n i)"  | 
| 53873 | 661  | 
using assms  | 
662  | 
unfolding incseq_def by (auto intro: setsum_mono)  | 
|
663  | 
||
| 59000 | 664  | 
lemma setsum_ereal[simp]: "(\<Sum>x\<in>A. ereal (f x)) = ereal (\<Sum>x\<in>A. f x)"  | 
665  | 
proof (cases "finite A")  | 
|
666  | 
case True  | 
|
667  | 
then show ?thesis by induct auto  | 
|
668  | 
next  | 
|
669  | 
case False  | 
|
670  | 
then show ?thesis by simp  | 
|
671  | 
qed  | 
|
672  | 
||
673  | 
lemma setsum_Pinfty:  | 
|
674  | 
fixes f :: "'a \<Rightarrow> ereal"  | 
|
675  | 
shows "(\<Sum>x\<in>P. f x) = \<infinity> \<longleftrightarrow> finite P \<and> (\<exists>i\<in>P. f i = \<infinity>)"  | 
|
676  | 
proof safe  | 
|
677  | 
assume *: "setsum f P = \<infinity>"  | 
|
678  | 
show "finite P"  | 
|
679  | 
proof (rule ccontr)  | 
|
680  | 
assume "\<not> finite P"  | 
|
681  | 
with * show False  | 
|
682  | 
by auto  | 
|
683  | 
qed  | 
|
684  | 
show "\<exists>i\<in>P. f i = \<infinity>"  | 
|
685  | 
proof (rule ccontr)  | 
|
686  | 
assume "\<not> ?thesis"  | 
|
687  | 
then have "\<And>i. i \<in> P \<Longrightarrow> f i \<noteq> \<infinity>"  | 
|
688  | 
by auto  | 
|
689  | 
with `finite P` have "setsum f P \<noteq> \<infinity>"  | 
|
690  | 
by induct auto  | 
|
691  | 
with * show False  | 
|
692  | 
by auto  | 
|
693  | 
qed  | 
|
694  | 
next  | 
|
695  | 
fix i  | 
|
696  | 
assume "finite P" and "i \<in> P" and "f i = \<infinity>"  | 
|
697  | 
then show "setsum f P = \<infinity>"  | 
|
698  | 
proof induct  | 
|
699  | 
case (insert x A)  | 
|
700  | 
show ?case using insert by (cases "x = i") auto  | 
|
701  | 
qed simp  | 
|
702  | 
qed  | 
|
703  | 
||
704  | 
lemma setsum_Inf:  | 
|
705  | 
fixes f :: "'a \<Rightarrow> ereal"  | 
|
706  | 
shows "\<bar>setsum f A\<bar> = \<infinity> \<longleftrightarrow> finite A \<and> (\<exists>i\<in>A. \<bar>f i\<bar> = \<infinity>)"  | 
|
707  | 
proof  | 
|
708  | 
assume *: "\<bar>setsum f A\<bar> = \<infinity>"  | 
|
709  | 
have "finite A"  | 
|
710  | 
by (rule ccontr) (insert *, auto)  | 
|
711  | 
moreover have "\<exists>i\<in>A. \<bar>f i\<bar> = \<infinity>"  | 
|
712  | 
proof (rule ccontr)  | 
|
713  | 
assume "\<not> ?thesis"  | 
|
714  | 
then have "\<forall>i\<in>A. \<exists>r. f i = ereal r"  | 
|
715  | 
by auto  | 
|
716  | 
from bchoice[OF this] obtain r where "\<forall>x\<in>A. f x = ereal (r x)" ..  | 
|
717  | 
with * show False  | 
|
718  | 
by auto  | 
|
719  | 
qed  | 
|
720  | 
ultimately show "finite A \<and> (\<exists>i\<in>A. \<bar>f i\<bar> = \<infinity>)"  | 
|
721  | 
by auto  | 
|
722  | 
next  | 
|
723  | 
assume "finite A \<and> (\<exists>i\<in>A. \<bar>f i\<bar> = \<infinity>)"  | 
|
724  | 
then obtain i where "finite A" "i \<in> A" and "\<bar>f i\<bar> = \<infinity>"  | 
|
725  | 
by auto  | 
|
726  | 
then show "\<bar>setsum f A\<bar> = \<infinity>"  | 
|
727  | 
proof induct  | 
|
728  | 
case (insert j A)  | 
|
729  | 
then show ?case  | 
|
730  | 
by (cases rule: ereal3_cases[of "f i" "f j" "setsum f A"]) auto  | 
|
731  | 
qed simp  | 
|
732  | 
qed  | 
|
733  | 
||
734  | 
lemma setsum_real_of_ereal:  | 
|
735  | 
fixes f :: "'i \<Rightarrow> ereal"  | 
|
736  | 
assumes "\<And>x. x \<in> S \<Longrightarrow> \<bar>f x\<bar> \<noteq> \<infinity>"  | 
|
737  | 
shows "(\<Sum>x\<in>S. real (f x)) = real (setsum f S)"  | 
|
738  | 
proof -  | 
|
739  | 
have "\<forall>x\<in>S. \<exists>r. f x = ereal r"  | 
|
740  | 
proof  | 
|
741  | 
fix x  | 
|
742  | 
assume "x \<in> S"  | 
|
743  | 
from assms[OF this] show "\<exists>r. f x = ereal r"  | 
|
744  | 
by (cases "f x") auto  | 
|
745  | 
qed  | 
|
746  | 
from bchoice[OF this] obtain r where "\<forall>x\<in>S. f x = ereal (r x)" ..  | 
|
747  | 
then show ?thesis  | 
|
748  | 
by simp  | 
|
749  | 
qed  | 
|
750  | 
||
751  | 
lemma setsum_ereal_0:  | 
|
752  | 
fixes f :: "'a \<Rightarrow> ereal"  | 
|
753  | 
assumes "finite A"  | 
|
754  | 
and "\<And>i. i \<in> A \<Longrightarrow> 0 \<le> f i"  | 
|
755  | 
shows "(\<Sum>x\<in>A. f x) = 0 \<longleftrightarrow> (\<forall>i\<in>A. f i = 0)"  | 
|
756  | 
proof  | 
|
757  | 
assume "setsum f A = 0" with assms show "\<forall>i\<in>A. f i = 0"  | 
|
758  | 
proof (induction A)  | 
|
759  | 
case (insert a A)  | 
|
760  | 
then have "f a = 0 \<and> (\<Sum>a\<in>A. f a) = 0"  | 
|
761  | 
by (subst ereal_add_nonneg_eq_0_iff[symmetric]) (simp_all add: setsum_nonneg)  | 
|
762  | 
with insert show ?case  | 
|
763  | 
by simp  | 
|
764  | 
qed simp  | 
|
765  | 
qed auto  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
766  | 
|
| 41973 | 767  | 
subsubsection "Multiplication"  | 
768  | 
||
| 53873 | 769  | 
instantiation ereal :: "{comm_monoid_mult,sgn}"
 | 
| 41973 | 770  | 
begin  | 
771  | 
||
| 51351 | 772  | 
function sgn_ereal :: "ereal \<Rightarrow> ereal" where  | 
| 43920 | 773  | 
"sgn (ereal r) = ereal (sgn r)"  | 
| 43923 | 774  | 
| "sgn (\<infinity>::ereal) = 1"  | 
775  | 
| "sgn (-\<infinity>::ereal) = -1"  | 
|
| 43920 | 776  | 
by (auto intro: ereal_cases)  | 
| 53873 | 777  | 
termination by default (rule wf_empty)  | 
| 41976 | 778  | 
|
| 43920 | 779  | 
function times_ereal where  | 
| 53873 | 780  | 
"ereal r * ereal p = ereal (r * p)"  | 
781  | 
| "ereal r * \<infinity> = (if r = 0 then 0 else if r > 0 then \<infinity> else -\<infinity>)"  | 
|
782  | 
| "\<infinity> * ereal r = (if r = 0 then 0 else if r > 0 then \<infinity> else -\<infinity>)"  | 
|
783  | 
| "ereal r * -\<infinity> = (if r = 0 then 0 else if r > 0 then -\<infinity> else \<infinity>)"  | 
|
784  | 
| "-\<infinity> * ereal r = (if r = 0 then 0 else if r > 0 then -\<infinity> else \<infinity>)"  | 
|
785  | 
| "(\<infinity>::ereal) * \<infinity> = \<infinity>"  | 
|
786  | 
| "-(\<infinity>::ereal) * \<infinity> = -\<infinity>"  | 
|
787  | 
| "(\<infinity>::ereal) * -\<infinity> = -\<infinity>"  | 
|
788  | 
| "-(\<infinity>::ereal) * -\<infinity> = \<infinity>"  | 
|
| 41973 | 789  | 
proof -  | 
790  | 
case (goal1 P x)  | 
|
| 53873 | 791  | 
then obtain a b where "x = (a, b)"  | 
792  | 
by (cases x) auto  | 
|
793  | 
with goal1 show P  | 
|
794  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
|
| 41973 | 795  | 
qed simp_all  | 
796  | 
termination by (relation "{}") simp
 | 
|
797  | 
||
798  | 
instance  | 
|
799  | 
proof  | 
|
| 53873 | 800  | 
fix a b c :: ereal  | 
801  | 
show "1 * a = a"  | 
|
| 43920 | 802  | 
by (cases a) (simp_all add: one_ereal_def)  | 
| 47082 | 803  | 
show "a * b = b * a"  | 
| 43920 | 804  | 
by (cases rule: ereal2_cases[of a b]) simp_all  | 
| 47082 | 805  | 
show "a * b * c = a * (b * c)"  | 
| 43920 | 806  | 
by (cases rule: ereal3_cases[of a b c])  | 
807  | 
(simp_all add: zero_ereal_def zero_less_mult_iff)  | 
|
| 41973 | 808  | 
qed  | 
| 53873 | 809  | 
|
| 41973 | 810  | 
end  | 
811  | 
||
| 59000 | 812  | 
lemma one_not_le_zero_ereal[simp]: "\<not> (1 \<le> (0::ereal))"  | 
813  | 
by (simp add: one_ereal_def zero_ereal_def)  | 
|
814  | 
||
| 50104 | 815  | 
lemma real_ereal_1[simp]: "real (1::ereal) = 1"  | 
816  | 
unfolding one_ereal_def by simp  | 
|
817  | 
||
| 43920 | 818  | 
lemma real_of_ereal_le_1:  | 
| 53873 | 819  | 
fixes a :: ereal  | 
820  | 
shows "a \<le> 1 \<Longrightarrow> real a \<le> 1"  | 
|
| 43920 | 821  | 
by (cases a) (auto simp: one_ereal_def)  | 
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
822  | 
|
| 43920 | 823  | 
lemma abs_ereal_one[simp]: "\<bar>1\<bar> = (1::ereal)"  | 
824  | 
unfolding one_ereal_def by simp  | 
|
| 41976 | 825  | 
|
| 43920 | 826  | 
lemma ereal_mult_zero[simp]:  | 
| 53873 | 827  | 
fixes a :: ereal  | 
828  | 
shows "a * 0 = 0"  | 
|
| 43920 | 829  | 
by (cases a) (simp_all add: zero_ereal_def)  | 
| 41973 | 830  | 
|
| 43920 | 831  | 
lemma ereal_zero_mult[simp]:  | 
| 53873 | 832  | 
fixes a :: ereal  | 
833  | 
shows "0 * a = 0"  | 
|
| 43920 | 834  | 
by (cases a) (simp_all add: zero_ereal_def)  | 
| 41973 | 835  | 
|
| 53873 | 836  | 
lemma ereal_m1_less_0[simp]: "-(1::ereal) < 0"  | 
| 43920 | 837  | 
by (simp add: zero_ereal_def one_ereal_def)  | 
| 41973 | 838  | 
|
| 43920 | 839  | 
lemma ereal_times[simp]:  | 
| 43923 | 840  | 
"1 \<noteq> (\<infinity>::ereal)" "(\<infinity>::ereal) \<noteq> 1"  | 
841  | 
"1 \<noteq> -(\<infinity>::ereal)" "-(\<infinity>::ereal) \<noteq> 1"  | 
|
| 43920 | 842  | 
by (auto simp add: times_ereal_def one_ereal_def)  | 
| 41973 | 843  | 
|
| 43920 | 844  | 
lemma ereal_plus_1[simp]:  | 
| 53873 | 845  | 
"1 + ereal r = ereal (r + 1)"  | 
846  | 
"ereal r + 1 = ereal (r + 1)"  | 
|
847  | 
"1 + -(\<infinity>::ereal) = -\<infinity>"  | 
|
848  | 
"-(\<infinity>::ereal) + 1 = -\<infinity>"  | 
|
| 43920 | 849  | 
unfolding one_ereal_def by auto  | 
| 41973 | 850  | 
|
| 43920 | 851  | 
lemma ereal_zero_times[simp]:  | 
| 53873 | 852  | 
fixes a b :: ereal  | 
853  | 
shows "a * b = 0 \<longleftrightarrow> a = 0 \<or> b = 0"  | 
|
| 43920 | 854  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
| 41973 | 855  | 
|
| 43920 | 856  | 
lemma ereal_mult_eq_PInfty[simp]:  | 
| 53873 | 857  | 
"a * b = (\<infinity>::ereal) \<longleftrightarrow>  | 
| 41973 | 858  | 
(a = \<infinity> \<and> b > 0) \<or> (a > 0 \<and> b = \<infinity>) \<or> (a = -\<infinity> \<and> b < 0) \<or> (a < 0 \<and> b = -\<infinity>)"  | 
| 43920 | 859  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
| 41973 | 860  | 
|
| 43920 | 861  | 
lemma ereal_mult_eq_MInfty[simp]:  | 
| 53873 | 862  | 
"a * b = -(\<infinity>::ereal) \<longleftrightarrow>  | 
| 41973 | 863  | 
(a = \<infinity> \<and> b < 0) \<or> (a < 0 \<and> b = \<infinity>) \<or> (a = -\<infinity> \<and> b > 0) \<or> (a > 0 \<and> b = -\<infinity>)"  | 
| 43920 | 864  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
| 41973 | 865  | 
|
| 54416 | 866  | 
lemma ereal_abs_mult: "\<bar>x * y :: ereal\<bar> = \<bar>x\<bar> * \<bar>y\<bar>"  | 
867  | 
by (cases x y rule: ereal2_cases) (auto simp: abs_mult)  | 
|
868  | 
||
| 43920 | 869  | 
lemma ereal_0_less_1[simp]: "0 < (1::ereal)"  | 
870  | 
by (simp_all add: zero_ereal_def one_ereal_def)  | 
|
| 41973 | 871  | 
|
| 43920 | 872  | 
lemma ereal_mult_minus_left[simp]:  | 
| 53873 | 873  | 
fixes a b :: ereal  | 
874  | 
shows "-a * b = - (a * b)"  | 
|
| 43920 | 875  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
| 41973 | 876  | 
|
| 43920 | 877  | 
lemma ereal_mult_minus_right[simp]:  | 
| 53873 | 878  | 
fixes a b :: ereal  | 
879  | 
shows "a * -b = - (a * b)"  | 
|
| 43920 | 880  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
| 41973 | 881  | 
|
| 43920 | 882  | 
lemma ereal_mult_infty[simp]:  | 
| 43923 | 883  | 
"a * (\<infinity>::ereal) = (if a = 0 then 0 else if 0 < a then \<infinity> else - \<infinity>)"  | 
| 41973 | 884  | 
by (cases a) auto  | 
885  | 
||
| 43920 | 886  | 
lemma ereal_infty_mult[simp]:  | 
| 43923 | 887  | 
"(\<infinity>::ereal) * a = (if a = 0 then 0 else if 0 < a then \<infinity> else - \<infinity>)"  | 
| 41973 | 888  | 
by (cases a) auto  | 
889  | 
||
| 43920 | 890  | 
lemma ereal_mult_strict_right_mono:  | 
| 53873 | 891  | 
assumes "a < b"  | 
892  | 
and "0 < c"  | 
|
893  | 
and "c < (\<infinity>::ereal)"  | 
|
| 41973 | 894  | 
shows "a * c < b * c"  | 
895  | 
using assms  | 
|
| 53873 | 896  | 
by (cases rule: ereal3_cases[of a b c]) (auto simp: zero_le_mult_iff)  | 
| 41973 | 897  | 
|
| 43920 | 898  | 
lemma ereal_mult_strict_left_mono:  | 
| 53873 | 899  | 
"a < b \<Longrightarrow> 0 < c \<Longrightarrow> c < (\<infinity>::ereal) \<Longrightarrow> c * a < c * b"  | 
900  | 
using ereal_mult_strict_right_mono  | 
|
| 
57512
 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 
haftmann 
parents: 
57447 
diff
changeset
 | 
901  | 
by (simp add: mult.commute[of c])  | 
| 41973 | 902  | 
|
| 43920 | 903  | 
lemma ereal_mult_right_mono:  | 
| 53873 | 904  | 
fixes a b c :: ereal  | 
905  | 
shows "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * c"  | 
|
| 41973 | 906  | 
using assms  | 
| 53873 | 907  | 
apply (cases "c = 0")  | 
908  | 
apply simp  | 
|
909  | 
apply (cases rule: ereal3_cases[of a b c])  | 
|
910  | 
apply (auto simp: zero_le_mult_iff)  | 
|
911  | 
done  | 
|
| 41973 | 912  | 
|
| 43920 | 913  | 
lemma ereal_mult_left_mono:  | 
| 53873 | 914  | 
fixes a b c :: ereal  | 
915  | 
shows "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b"  | 
|
916  | 
using ereal_mult_right_mono  | 
|
| 
57512
 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 
haftmann 
parents: 
57447 
diff
changeset
 | 
917  | 
by (simp add: mult.commute[of c])  | 
| 41973 | 918  | 
|
| 43920 | 919  | 
lemma zero_less_one_ereal[simp]: "0 \<le> (1::ereal)"  | 
920  | 
by (simp add: one_ereal_def zero_ereal_def)  | 
|
| 41978 | 921  | 
|
| 43920 | 922  | 
lemma ereal_0_le_mult[simp]: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a * (b :: ereal)"  | 
| 56536 | 923  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
924  | 
|
| 43920 | 925  | 
lemma ereal_right_distrib:  | 
| 53873 | 926  | 
fixes r a b :: ereal  | 
927  | 
shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> r * (a + b) = r * a + r * b"  | 
|
| 43920 | 928  | 
by (cases rule: ereal3_cases[of r a b]) (simp_all add: field_simps)  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
929  | 
|
| 43920 | 930  | 
lemma ereal_left_distrib:  | 
| 53873 | 931  | 
fixes r a b :: ereal  | 
932  | 
shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> (a + b) * r = a * r + b * r"  | 
|
| 43920 | 933  | 
by (cases rule: ereal3_cases[of r a b]) (simp_all add: field_simps)  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
934  | 
|
| 43920 | 935  | 
lemma ereal_mult_le_0_iff:  | 
936  | 
fixes a b :: ereal  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
937  | 
shows "a * b \<le> 0 \<longleftrightarrow> (0 \<le> a \<and> b \<le> 0) \<or> (a \<le> 0 \<and> 0 \<le> b)"  | 
| 43920 | 938  | 
by (cases rule: ereal2_cases[of a b]) (simp_all add: mult_le_0_iff)  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
939  | 
|
| 43920 | 940  | 
lemma ereal_zero_le_0_iff:  | 
941  | 
fixes a b :: ereal  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
942  | 
shows "0 \<le> a * b \<longleftrightarrow> (0 \<le> a \<and> 0 \<le> b) \<or> (a \<le> 0 \<and> b \<le> 0)"  | 
| 43920 | 943  | 
by (cases rule: ereal2_cases[of a b]) (simp_all add: zero_le_mult_iff)  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
944  | 
|
| 43920 | 945  | 
lemma ereal_mult_less_0_iff:  | 
946  | 
fixes a b :: ereal  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
947  | 
shows "a * b < 0 \<longleftrightarrow> (0 < a \<and> b < 0) \<or> (a < 0 \<and> 0 < b)"  | 
| 43920 | 948  | 
by (cases rule: ereal2_cases[of a b]) (simp_all add: mult_less_0_iff)  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
949  | 
|
| 43920 | 950  | 
lemma ereal_zero_less_0_iff:  | 
951  | 
fixes a b :: ereal  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
952  | 
shows "0 < a * b \<longleftrightarrow> (0 < a \<and> 0 < b) \<or> (a < 0 \<and> b < 0)"  | 
| 43920 | 953  | 
by (cases rule: ereal2_cases[of a b]) (simp_all add: zero_less_mult_iff)  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
954  | 
|
| 50104 | 955  | 
lemma ereal_left_mult_cong:  | 
956  | 
fixes a b c :: ereal  | 
|
| 
59002
 
2c8b2fb54b88
cleaning up some theorem names; remove unnecessary assumptions; more complete pmf theory
 
hoelzl 
parents: 
59000 
diff
changeset
 | 
957  | 
shows "c = d \<Longrightarrow> (d \<noteq> 0 \<Longrightarrow> a = b) \<Longrightarrow> a * c = b * d"  | 
| 50104 | 958  | 
by (cases "c = 0") simp_all  | 
959  | 
||
| 59000 | 960  | 
lemma ereal_right_mult_cong:  | 
| 
59002
 
2c8b2fb54b88
cleaning up some theorem names; remove unnecessary assumptions; more complete pmf theory
 
hoelzl 
parents: 
59000 
diff
changeset
 | 
961  | 
fixes a b c :: ereal  | 
| 59000 | 962  | 
shows "c = d \<Longrightarrow> (d \<noteq> 0 \<Longrightarrow> a = b) \<Longrightarrow> c * a = d * b"  | 
| 
59002
 
2c8b2fb54b88
cleaning up some theorem names; remove unnecessary assumptions; more complete pmf theory
 
hoelzl 
parents: 
59000 
diff
changeset
 | 
963  | 
by (cases "c = 0") simp_all  | 
| 50104 | 964  | 
|
| 43920 | 965  | 
lemma ereal_distrib:  | 
966  | 
fixes a b c :: ereal  | 
|
| 53873 | 967  | 
assumes "a \<noteq> \<infinity> \<or> b \<noteq> -\<infinity>"  | 
968  | 
and "a \<noteq> -\<infinity> \<or> b \<noteq> \<infinity>"  | 
|
969  | 
and "\<bar>c\<bar> \<noteq> \<infinity>"  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
970  | 
shows "(a + b) * c = a * c + b * c"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
971  | 
using assms  | 
| 43920 | 972  | 
by (cases rule: ereal3_cases[of a b c]) (simp_all add: field_simps)  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
973  | 
|
| 
47108
 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 
huffman 
parents: 
47082 
diff
changeset
 | 
974  | 
lemma numeral_eq_ereal [simp]: "numeral w = ereal (numeral w)"  | 
| 
 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 
huffman 
parents: 
47082 
diff
changeset
 | 
975  | 
apply (induct w rule: num_induct)  | 
| 
 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 
huffman 
parents: 
47082 
diff
changeset
 | 
976  | 
apply (simp only: numeral_One one_ereal_def)  | 
| 
 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 
huffman 
parents: 
47082 
diff
changeset
 | 
977  | 
apply (simp only: numeral_inc ereal_plus_1)  | 
| 
 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 
huffman 
parents: 
47082 
diff
changeset
 | 
978  | 
done  | 
| 
 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 
huffman 
parents: 
47082 
diff
changeset
 | 
979  | 
|
| 59000 | 980  | 
lemma setsum_ereal_right_distrib:  | 
981  | 
fixes f :: "'a \<Rightarrow> ereal"  | 
|
982  | 
shows "(\<And>i. i \<in> A \<Longrightarrow> 0 \<le> f i) \<Longrightarrow> r * setsum f A = (\<Sum>n\<in>A. r * f n)"  | 
|
983  | 
by (induct A rule: infinite_finite_induct) (auto simp: ereal_right_distrib setsum_nonneg)  | 
|
984  | 
||
| 
59002
 
2c8b2fb54b88
cleaning up some theorem names; remove unnecessary assumptions; more complete pmf theory
 
hoelzl 
parents: 
59000 
diff
changeset
 | 
985  | 
lemma setsum_ereal_left_distrib:  | 
| 
 
2c8b2fb54b88
cleaning up some theorem names; remove unnecessary assumptions; more complete pmf theory
 
hoelzl 
parents: 
59000 
diff
changeset
 | 
986  | 
"(\<And>i. i \<in> A \<Longrightarrow> 0 \<le> f i) \<Longrightarrow> setsum f A * r = (\<Sum>n\<in>A. f n * r :: ereal)"  | 
| 
 
2c8b2fb54b88
cleaning up some theorem names; remove unnecessary assumptions; more complete pmf theory
 
hoelzl 
parents: 
59000 
diff
changeset
 | 
987  | 
using setsum_ereal_right_distrib[of A f r] by (simp add: mult_ac)  | 
| 
 
2c8b2fb54b88
cleaning up some theorem names; remove unnecessary assumptions; more complete pmf theory
 
hoelzl 
parents: 
59000 
diff
changeset
 | 
988  | 
|
| 43920 | 989  | 
lemma ereal_le_epsilon:  | 
990  | 
fixes x y :: ereal  | 
|
| 53873 | 991  | 
assumes "\<forall>e. 0 < e \<longrightarrow> x \<le> y + e"  | 
992  | 
shows "x \<le> y"  | 
|
993  | 
proof -  | 
|
994  | 
  {
 | 
|
995  | 
assume a: "\<exists>r. y = ereal r"  | 
|
996  | 
then obtain r where r_def: "y = ereal r"  | 
|
997  | 
by auto  | 
|
998  | 
    {
 | 
|
999  | 
assume "x = -\<infinity>"  | 
|
1000  | 
then have ?thesis by auto  | 
|
1001  | 
}  | 
|
1002  | 
moreover  | 
|
1003  | 
    {
 | 
|
1004  | 
assume "x \<noteq> -\<infinity>"  | 
|
1005  | 
then obtain p where p_def: "x = ereal p"  | 
|
1006  | 
using a assms[rule_format, of 1]  | 
|
1007  | 
by (cases x) auto  | 
|
1008  | 
      {
 | 
|
1009  | 
fix e  | 
|
1010  | 
have "0 < e \<longrightarrow> p \<le> r + e"  | 
|
1011  | 
using assms[rule_format, of "ereal e"] p_def r_def by auto  | 
|
1012  | 
}  | 
|
1013  | 
then have "p \<le> r"  | 
|
1014  | 
apply (subst field_le_epsilon)  | 
|
1015  | 
apply auto  | 
|
1016  | 
done  | 
|
1017  | 
then have ?thesis  | 
|
1018  | 
using r_def p_def by auto  | 
|
1019  | 
}  | 
|
1020  | 
ultimately have ?thesis  | 
|
1021  | 
by blast  | 
|
1022  | 
}  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1023  | 
moreover  | 
| 53873 | 1024  | 
  {
 | 
1025  | 
assume "y = -\<infinity> | y = \<infinity>"  | 
|
1026  | 
then have ?thesis  | 
|
1027  | 
using assms[rule_format, of 1] by (cases x) auto  | 
|
1028  | 
}  | 
|
1029  | 
ultimately show ?thesis  | 
|
1030  | 
by (cases y) auto  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1031  | 
qed  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1032  | 
|
| 43920 | 1033  | 
lemma ereal_le_epsilon2:  | 
1034  | 
fixes x y :: ereal  | 
|
| 53873 | 1035  | 
assumes "\<forall>e. 0 < e \<longrightarrow> x \<le> y + ereal e"  | 
1036  | 
shows "x \<le> y"  | 
|
1037  | 
proof -  | 
|
1038  | 
  {
 | 
|
1039  | 
fix e :: ereal  | 
|
1040  | 
assume "e > 0"  | 
|
1041  | 
    {
 | 
|
1042  | 
assume "e = \<infinity>"  | 
|
1043  | 
then have "x \<le> y + e"  | 
|
1044  | 
by auto  | 
|
1045  | 
}  | 
|
1046  | 
moreover  | 
|
1047  | 
    {
 | 
|
1048  | 
assume "e \<noteq> \<infinity>"  | 
|
1049  | 
then obtain r where "e = ereal r"  | 
|
1050  | 
using `e > 0` by (cases e) auto  | 
|
1051  | 
then have "x \<le> y + e"  | 
|
1052  | 
using assms[rule_format, of r] `e>0` by auto  | 
|
1053  | 
}  | 
|
1054  | 
ultimately have "x \<le> y + e"  | 
|
1055  | 
by blast  | 
|
1056  | 
}  | 
|
1057  | 
then show ?thesis  | 
|
1058  | 
using ereal_le_epsilon by auto  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1059  | 
qed  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1060  | 
|
| 43920 | 1061  | 
lemma ereal_le_real:  | 
1062  | 
fixes x y :: ereal  | 
|
| 53873 | 1063  | 
assumes "\<forall>z. x \<le> ereal z \<longrightarrow> y \<le> ereal z"  | 
1064  | 
shows "y \<le> x"  | 
|
1065  | 
by (metis assms ereal_bot ereal_cases ereal_infty_less_eq(2) ereal_less_eq(1) linorder_le_cases)  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1066  | 
|
| 43920 | 1067  | 
lemma setprod_ereal_0:  | 
1068  | 
fixes f :: "'a \<Rightarrow> ereal"  | 
|
| 53873 | 1069  | 
shows "(\<Prod>i\<in>A. f i) = 0 \<longleftrightarrow> finite A \<and> (\<exists>i\<in>A. f i = 0)"  | 
1070  | 
proof (cases "finite A")  | 
|
1071  | 
case True  | 
|
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
1072  | 
then show ?thesis by (induct A) auto  | 
| 53873 | 1073  | 
next  | 
1074  | 
case False  | 
|
1075  | 
then show ?thesis by auto  | 
|
1076  | 
qed  | 
|
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
1077  | 
|
| 43920 | 1078  | 
lemma setprod_ereal_pos:  | 
| 53873 | 1079  | 
fixes f :: "'a \<Rightarrow> ereal"  | 
1080  | 
assumes pos: "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i"  | 
|
1081  | 
shows "0 \<le> (\<Prod>i\<in>I. f i)"  | 
|
1082  | 
proof (cases "finite I")  | 
|
1083  | 
case True  | 
|
1084  | 
from this pos show ?thesis  | 
|
1085  | 
by induct auto  | 
|
1086  | 
next  | 
|
1087  | 
case False  | 
|
1088  | 
then show ?thesis by simp  | 
|
1089  | 
qed  | 
|
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
1090  | 
|
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
1091  | 
lemma setprod_PInf:  | 
| 43923 | 1092  | 
fixes f :: "'a \<Rightarrow> ereal"  | 
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
1093  | 
assumes "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i"  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
1094  | 
shows "(\<Prod>i\<in>I. f i) = \<infinity> \<longleftrightarrow> finite I \<and> (\<exists>i\<in>I. f i = \<infinity>) \<and> (\<forall>i\<in>I. f i \<noteq> 0)"  | 
| 53873 | 1095  | 
proof (cases "finite I")  | 
1096  | 
case True  | 
|
1097  | 
from this assms show ?thesis  | 
|
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
1098  | 
proof (induct I)  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
1099  | 
case (insert i I)  | 
| 53873 | 1100  | 
then have pos: "0 \<le> f i" "0 \<le> setprod f I"  | 
1101  | 
by (auto intro!: setprod_ereal_pos)  | 
|
1102  | 
from insert have "(\<Prod>j\<in>insert i I. f j) = \<infinity> \<longleftrightarrow> setprod f I * f i = \<infinity>"  | 
|
1103  | 
by auto  | 
|
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
1104  | 
also have "\<dots> \<longleftrightarrow> (setprod f I = \<infinity> \<or> f i = \<infinity>) \<and> f i \<noteq> 0 \<and> setprod f I \<noteq> 0"  | 
| 43920 | 1105  | 
using setprod_ereal_pos[of I f] pos  | 
1106  | 
by (cases rule: ereal2_cases[of "f i" "setprod f I"]) auto  | 
|
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
1107  | 
also have "\<dots> \<longleftrightarrow> finite (insert i I) \<and> (\<exists>j\<in>insert i I. f j = \<infinity>) \<and> (\<forall>j\<in>insert i I. f j \<noteq> 0)"  | 
| 43920 | 1108  | 
using insert by (auto simp: setprod_ereal_0)  | 
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
1109  | 
finally show ?case .  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
1110  | 
qed simp  | 
| 53873 | 1111  | 
next  | 
1112  | 
case False  | 
|
1113  | 
then show ?thesis by simp  | 
|
1114  | 
qed  | 
|
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
1115  | 
|
| 43920 | 1116  | 
lemma setprod_ereal: "(\<Prod>i\<in>A. ereal (f i)) = ereal (setprod f A)"  | 
| 53873 | 1117  | 
proof (cases "finite A")  | 
1118  | 
case True  | 
|
1119  | 
then show ?thesis  | 
|
| 43920 | 1120  | 
by induct (auto simp: one_ereal_def)  | 
| 53873 | 1121  | 
next  | 
1122  | 
case False  | 
|
1123  | 
then show ?thesis  | 
|
1124  | 
by (simp add: one_ereal_def)  | 
|
1125  | 
qed  | 
|
1126  | 
||
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
1127  | 
|
| 41978 | 1128  | 
subsubsection {* Power *}
 | 
1129  | 
||
| 43920 | 1130  | 
lemma ereal_power[simp]: "(ereal x) ^ n = ereal (x^n)"  | 
1131  | 
by (induct n) (auto simp: one_ereal_def)  | 
|
| 41978 | 1132  | 
|
| 43923 | 1133  | 
lemma ereal_power_PInf[simp]: "(\<infinity>::ereal) ^ n = (if n = 0 then 1 else \<infinity>)"  | 
| 43920 | 1134  | 
by (induct n) (auto simp: one_ereal_def)  | 
| 41978 | 1135  | 
|
| 43920 | 1136  | 
lemma ereal_power_uminus[simp]:  | 
1137  | 
fixes x :: ereal  | 
|
| 41978 | 1138  | 
shows "(- x) ^ n = (if even n then x ^ n else - (x^n))"  | 
| 43920 | 1139  | 
by (induct n) (auto simp: one_ereal_def)  | 
| 41978 | 1140  | 
|
| 
47108
 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 
huffman 
parents: 
47082 
diff
changeset
 | 
1141  | 
lemma ereal_power_numeral[simp]:  | 
| 
 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 
huffman 
parents: 
47082 
diff
changeset
 | 
1142  | 
"(numeral num :: ereal) ^ n = ereal (numeral num ^ n)"  | 
| 43920 | 1143  | 
by (induct n) (auto simp: one_ereal_def)  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1144  | 
|
| 43920 | 1145  | 
lemma zero_le_power_ereal[simp]:  | 
| 53873 | 1146  | 
fixes a :: ereal  | 
1147  | 
assumes "0 \<le> a"  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1148  | 
shows "0 \<le> a ^ n"  | 
| 43920 | 1149  | 
using assms by (induct n) (auto simp: ereal_zero_le_0_iff)  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1150  | 
|
| 53873 | 1151  | 
|
| 41973 | 1152  | 
subsubsection {* Subtraction *}
 | 
1153  | 
||
| 43920 | 1154  | 
lemma ereal_minus_minus_image[simp]:  | 
1155  | 
fixes S :: "ereal set"  | 
|
| 41973 | 1156  | 
shows "uminus ` uminus ` S = S"  | 
1157  | 
by (auto simp: image_iff)  | 
|
1158  | 
||
| 43920 | 1159  | 
lemma ereal_uminus_lessThan[simp]:  | 
| 53873 | 1160  | 
fixes a :: ereal  | 
1161  | 
  shows "uminus ` {..<a} = {-a<..}"
 | 
|
| 47082 | 1162  | 
proof -  | 
1163  | 
  {
 | 
|
| 53873 | 1164  | 
fix x  | 
1165  | 
assume "-a < x"  | 
|
1166  | 
then have "- x < - (- a)"  | 
|
1167  | 
by (simp del: ereal_uminus_uminus)  | 
|
1168  | 
then have "- x < a"  | 
|
1169  | 
by simp  | 
|
| 47082 | 1170  | 
}  | 
| 53873 | 1171  | 
then show ?thesis  | 
| 54416 | 1172  | 
by force  | 
| 47082 | 1173  | 
qed  | 
| 41973 | 1174  | 
|
| 53873 | 1175  | 
lemma ereal_uminus_greaterThan[simp]: "uminus ` {(a::ereal)<..} = {..<-a}"
 | 
1176  | 
by (metis ereal_uminus_lessThan ereal_uminus_uminus ereal_minus_minus_image)  | 
|
| 41973 | 1177  | 
|
| 43920 | 1178  | 
instantiation ereal :: minus  | 
| 41973 | 1179  | 
begin  | 
| 53873 | 1180  | 
|
| 43920 | 1181  | 
definition "x - y = x + -(y::ereal)"  | 
| 41973 | 1182  | 
instance ..  | 
| 53873 | 1183  | 
|
| 41973 | 1184  | 
end  | 
1185  | 
||
| 43920 | 1186  | 
lemma ereal_minus[simp]:  | 
1187  | 
"ereal r - ereal p = ereal (r - p)"  | 
|
1188  | 
"-\<infinity> - ereal r = -\<infinity>"  | 
|
1189  | 
"ereal r - \<infinity> = -\<infinity>"  | 
|
| 43923 | 1190  | 
"(\<infinity>::ereal) - x = \<infinity>"  | 
1191  | 
"-(\<infinity>::ereal) - \<infinity> = -\<infinity>"  | 
|
| 41973 | 1192  | 
"x - -y = x + y"  | 
1193  | 
"x - 0 = x"  | 
|
1194  | 
"0 - x = -x"  | 
|
| 43920 | 1195  | 
by (simp_all add: minus_ereal_def)  | 
| 41973 | 1196  | 
|
| 53873 | 1197  | 
lemma ereal_x_minus_x[simp]: "x - x = (if \<bar>x\<bar> = \<infinity> then \<infinity> else 0::ereal)"  | 
| 41973 | 1198  | 
by (cases x) simp_all  | 
1199  | 
||
| 43920 | 1200  | 
lemma ereal_eq_minus_iff:  | 
1201  | 
fixes x y z :: ereal  | 
|
| 41973 | 1202  | 
shows "x = z - y \<longleftrightarrow>  | 
| 41976 | 1203  | 
(\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x + y = z) \<and>  | 
| 41973 | 1204  | 
(y = -\<infinity> \<longrightarrow> x = \<infinity>) \<and>  | 
1205  | 
(y = \<infinity> \<longrightarrow> z = \<infinity> \<longrightarrow> x = \<infinity>) \<and>  | 
|
1206  | 
(y = \<infinity> \<longrightarrow> z \<noteq> \<infinity> \<longrightarrow> x = -\<infinity>)"  | 
|
| 43920 | 1207  | 
by (cases rule: ereal3_cases[of x y z]) auto  | 
| 41973 | 1208  | 
|
| 43920 | 1209  | 
lemma ereal_eq_minus:  | 
1210  | 
fixes x y z :: ereal  | 
|
| 41976 | 1211  | 
shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x = z - y \<longleftrightarrow> x + y = z"  | 
| 43920 | 1212  | 
by (auto simp: ereal_eq_minus_iff)  | 
| 41973 | 1213  | 
|
| 43920 | 1214  | 
lemma ereal_less_minus_iff:  | 
1215  | 
fixes x y z :: ereal  | 
|
| 41973 | 1216  | 
shows "x < z - y \<longleftrightarrow>  | 
1217  | 
(y = \<infinity> \<longrightarrow> z = \<infinity> \<and> x \<noteq> \<infinity>) \<and>  | 
|
1218  | 
(y = -\<infinity> \<longrightarrow> x \<noteq> \<infinity>) \<and>  | 
|
| 41976 | 1219  | 
(\<bar>y\<bar> \<noteq> \<infinity>\<longrightarrow> x + y < z)"  | 
| 43920 | 1220  | 
by (cases rule: ereal3_cases[of x y z]) auto  | 
| 41973 | 1221  | 
|
| 43920 | 1222  | 
lemma ereal_less_minus:  | 
1223  | 
fixes x y z :: ereal  | 
|
| 41976 | 1224  | 
shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x < z - y \<longleftrightarrow> x + y < z"  | 
| 43920 | 1225  | 
by (auto simp: ereal_less_minus_iff)  | 
| 41973 | 1226  | 
|
| 43920 | 1227  | 
lemma ereal_le_minus_iff:  | 
1228  | 
fixes x y z :: ereal  | 
|
| 53873 | 1229  | 
shows "x \<le> z - y \<longleftrightarrow> (y = \<infinity> \<longrightarrow> z \<noteq> \<infinity> \<longrightarrow> x = -\<infinity>) \<and> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x + y \<le> z)"  | 
| 43920 | 1230  | 
by (cases rule: ereal3_cases[of x y z]) auto  | 
| 41973 | 1231  | 
|
| 43920 | 1232  | 
lemma ereal_le_minus:  | 
1233  | 
fixes x y z :: ereal  | 
|
| 41976 | 1234  | 
shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x \<le> z - y \<longleftrightarrow> x + y \<le> z"  | 
| 43920 | 1235  | 
by (auto simp: ereal_le_minus_iff)  | 
| 41973 | 1236  | 
|
| 43920 | 1237  | 
lemma ereal_minus_less_iff:  | 
1238  | 
fixes x y z :: ereal  | 
|
| 53873 | 1239  | 
shows "x - y < z \<longleftrightarrow> y \<noteq> -\<infinity> \<and> (y = \<infinity> \<longrightarrow> x \<noteq> \<infinity> \<and> z \<noteq> -\<infinity>) \<and> (y \<noteq> \<infinity> \<longrightarrow> x < z + y)"  | 
| 43920 | 1240  | 
by (cases rule: ereal3_cases[of x y z]) auto  | 
| 41973 | 1241  | 
|
| 43920 | 1242  | 
lemma ereal_minus_less:  | 
1243  | 
fixes x y z :: ereal  | 
|
| 41976 | 1244  | 
shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x - y < z \<longleftrightarrow> x < z + y"  | 
| 43920 | 1245  | 
by (auto simp: ereal_minus_less_iff)  | 
| 41973 | 1246  | 
|
| 43920 | 1247  | 
lemma ereal_minus_le_iff:  | 
1248  | 
fixes x y z :: ereal  | 
|
| 41973 | 1249  | 
shows "x - y \<le> z \<longleftrightarrow>  | 
1250  | 
(y = -\<infinity> \<longrightarrow> z = \<infinity>) \<and>  | 
|
1251  | 
(y = \<infinity> \<longrightarrow> x = \<infinity> \<longrightarrow> z = \<infinity>) \<and>  | 
|
| 41976 | 1252  | 
(\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x \<le> z + y)"  | 
| 43920 | 1253  | 
by (cases rule: ereal3_cases[of x y z]) auto  | 
| 41973 | 1254  | 
|
| 43920 | 1255  | 
lemma ereal_minus_le:  | 
1256  | 
fixes x y z :: ereal  | 
|
| 41976 | 1257  | 
shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x - y \<le> z \<longleftrightarrow> x \<le> z + y"  | 
| 43920 | 1258  | 
by (auto simp: ereal_minus_le_iff)  | 
| 41973 | 1259  | 
|
| 43920 | 1260  | 
lemma ereal_minus_eq_minus_iff:  | 
1261  | 
fixes a b c :: ereal  | 
|
| 41973 | 1262  | 
shows "a - b = a - c \<longleftrightarrow>  | 
1263  | 
b = c \<or> a = \<infinity> \<or> (a = -\<infinity> \<and> b \<noteq> -\<infinity> \<and> c \<noteq> -\<infinity>)"  | 
|
| 43920 | 1264  | 
by (cases rule: ereal3_cases[of a b c]) auto  | 
| 41973 | 1265  | 
|
| 43920 | 1266  | 
lemma ereal_add_le_add_iff:  | 
| 43923 | 1267  | 
fixes a b c :: ereal  | 
1268  | 
shows "c + a \<le> c + b \<longleftrightarrow>  | 
|
| 41973 | 1269  | 
a \<le> b \<or> c = \<infinity> \<or> (c = -\<infinity> \<and> a \<noteq> \<infinity> \<and> b \<noteq> \<infinity>)"  | 
| 43920 | 1270  | 
by (cases rule: ereal3_cases[of a b c]) (simp_all add: field_simps)  | 
| 41973 | 1271  | 
|
| 59023 | 1272  | 
lemma ereal_add_le_add_iff2:  | 
1273  | 
fixes a b c :: ereal  | 
|
1274  | 
shows "a + c \<le> b + c \<longleftrightarrow> a \<le> b \<or> c = \<infinity> \<or> (c = -\<infinity> \<and> a \<noteq> \<infinity> \<and> b \<noteq> \<infinity>)"  | 
|
1275  | 
by(cases rule: ereal3_cases[of a b c])(simp_all add: field_simps)  | 
|
1276  | 
||
| 43920 | 1277  | 
lemma ereal_mult_le_mult_iff:  | 
| 43923 | 1278  | 
fixes a b c :: ereal  | 
1279  | 
shows "\<bar>c\<bar> \<noteq> \<infinity> \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)"  | 
|
| 43920 | 1280  | 
by (cases rule: ereal3_cases[of a b c]) (simp_all add: mult_le_cancel_left)  | 
| 41973 | 1281  | 
|
| 43920 | 1282  | 
lemma ereal_minus_mono:  | 
1283  | 
fixes A B C D :: ereal assumes "A \<le> B" "D \<le> C"  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1284  | 
shows "A - C \<le> B - D"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1285  | 
using assms  | 
| 43920 | 1286  | 
by (cases rule: ereal3_cases[case_product ereal_cases, of A B C D]) simp_all  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1287  | 
|
| 43920 | 1288  | 
lemma real_of_ereal_minus:  | 
| 43923 | 1289  | 
fixes a b :: ereal  | 
1290  | 
shows "real (a - b) = (if \<bar>a\<bar> = \<infinity> \<or> \<bar>b\<bar> = \<infinity> then 0 else real a - real b)"  | 
|
| 43920 | 1291  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1292  | 
|
| 60060 | 1293  | 
lemma real_of_ereal_minus': "\<bar>x\<bar> = \<infinity> \<longleftrightarrow> \<bar>y\<bar> = \<infinity> \<Longrightarrow> real x - real y = real (x - y :: ereal)"  | 
1294  | 
by(subst real_of_ereal_minus) auto  | 
|
1295  | 
||
| 43920 | 1296  | 
lemma ereal_diff_positive:  | 
1297  | 
fixes a b :: ereal shows "a \<le> b \<Longrightarrow> 0 \<le> b - a"  | 
|
1298  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1299  | 
|
| 43920 | 1300  | 
lemma ereal_between:  | 
1301  | 
fixes x e :: ereal  | 
|
| 53873 | 1302  | 
assumes "\<bar>x\<bar> \<noteq> \<infinity>"  | 
1303  | 
and "0 < e"  | 
|
1304  | 
shows "x - e < x"  | 
|
1305  | 
and "x < x + e"  | 
|
1306  | 
using assms  | 
|
1307  | 
apply (cases x, cases e)  | 
|
1308  | 
apply auto  | 
|
1309  | 
using assms  | 
|
1310  | 
apply (cases x, cases e)  | 
|
1311  | 
apply auto  | 
|
1312  | 
done  | 
|
| 41973 | 1313  | 
|
| 50104 | 1314  | 
lemma ereal_minus_eq_PInfty_iff:  | 
| 53873 | 1315  | 
fixes x y :: ereal  | 
1316  | 
shows "x - y = \<infinity> \<longleftrightarrow> y = -\<infinity> \<or> x = \<infinity>"  | 
|
| 50104 | 1317  | 
by (cases x y rule: ereal2_cases) simp_all  | 
1318  | 
||
| 53873 | 1319  | 
|
| 41973 | 1320  | 
subsubsection {* Division *}
 | 
1321  | 
||
| 43920 | 1322  | 
instantiation ereal :: inverse  | 
| 41973 | 1323  | 
begin  | 
1324  | 
||
| 43920 | 1325  | 
function inverse_ereal where  | 
| 53873 | 1326  | 
"inverse (ereal r) = (if r = 0 then \<infinity> else ereal (inverse r))"  | 
1327  | 
| "inverse (\<infinity>::ereal) = 0"  | 
|
1328  | 
| "inverse (-\<infinity>::ereal) = 0"  | 
|
| 43920 | 1329  | 
by (auto intro: ereal_cases)  | 
| 41973 | 1330  | 
termination by (relation "{}") simp
 | 
1331  | 
||
| 43920 | 1332  | 
definition "x / y = x * inverse (y :: ereal)"  | 
| 41973 | 1333  | 
|
| 47082 | 1334  | 
instance ..  | 
| 53873 | 1335  | 
|
| 41973 | 1336  | 
end  | 
1337  | 
||
| 43920 | 1338  | 
lemma real_of_ereal_inverse[simp]:  | 
1339  | 
fixes a :: ereal  | 
|
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
1340  | 
shows "real (inverse a) = 1 / real a"  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
1341  | 
by (cases a) (auto simp: inverse_eq_divide)  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
1342  | 
|
| 43920 | 1343  | 
lemma ereal_inverse[simp]:  | 
| 43923 | 1344  | 
"inverse (0::ereal) = \<infinity>"  | 
| 43920 | 1345  | 
"inverse (1::ereal) = 1"  | 
1346  | 
by (simp_all add: one_ereal_def zero_ereal_def)  | 
|
| 41973 | 1347  | 
|
| 43920 | 1348  | 
lemma ereal_divide[simp]:  | 
1349  | 
"ereal r / ereal p = (if p = 0 then ereal r * \<infinity> else ereal (r / p))"  | 
|
1350  | 
unfolding divide_ereal_def by (auto simp: divide_real_def)  | 
|
| 41973 | 1351  | 
|
| 43920 | 1352  | 
lemma ereal_divide_same[simp]:  | 
| 53873 | 1353  | 
fixes x :: ereal  | 
1354  | 
shows "x / x = (if \<bar>x\<bar> = \<infinity> \<or> x = 0 then 0 else 1)"  | 
|
1355  | 
by (cases x) (simp_all add: divide_real_def divide_ereal_def one_ereal_def)  | 
|
| 41973 | 1356  | 
|
| 43920 | 1357  | 
lemma ereal_inv_inv[simp]:  | 
| 53873 | 1358  | 
fixes x :: ereal  | 
1359  | 
shows "inverse (inverse x) = (if x \<noteq> -\<infinity> then x else \<infinity>)"  | 
|
| 41973 | 1360  | 
by (cases x) auto  | 
1361  | 
||
| 43920 | 1362  | 
lemma ereal_inverse_minus[simp]:  | 
| 53873 | 1363  | 
fixes x :: ereal  | 
1364  | 
shows "inverse (- x) = (if x = 0 then \<infinity> else -inverse x)"  | 
|
| 41973 | 1365  | 
by (cases x) simp_all  | 
1366  | 
||
| 43920 | 1367  | 
lemma ereal_uminus_divide[simp]:  | 
| 53873 | 1368  | 
fixes x y :: ereal  | 
1369  | 
shows "- x / y = - (x / y)"  | 
|
| 43920 | 1370  | 
unfolding divide_ereal_def by simp  | 
| 41973 | 1371  | 
|
| 43920 | 1372  | 
lemma ereal_divide_Infty[simp]:  | 
| 53873 | 1373  | 
fixes x :: ereal  | 
1374  | 
shows "x / \<infinity> = 0" "x / -\<infinity> = 0"  | 
|
| 43920 | 1375  | 
unfolding divide_ereal_def by simp_all  | 
| 41973 | 1376  | 
|
| 53873 | 1377  | 
lemma ereal_divide_one[simp]: "x / 1 = (x::ereal)"  | 
| 43920 | 1378  | 
unfolding divide_ereal_def by simp  | 
| 41973 | 1379  | 
|
| 53873 | 1380  | 
lemma ereal_divide_ereal[simp]: "\<infinity> / ereal r = (if 0 \<le> r then \<infinity> else -\<infinity>)"  | 
| 43920 | 1381  | 
unfolding divide_ereal_def by simp  | 
| 41973 | 1382  | 
|
| 59000 | 1383  | 
lemma ereal_inverse_nonneg_iff: "0 \<le> inverse (x :: ereal) \<longleftrightarrow> 0 \<le> x \<or> x = -\<infinity>"  | 
1384  | 
by (cases x) auto  | 
|
1385  | 
||
| 43920 | 1386  | 
lemma zero_le_divide_ereal[simp]:  | 
| 53873 | 1387  | 
fixes a :: ereal  | 
1388  | 
assumes "0 \<le> a"  | 
|
1389  | 
and "0 \<le> b"  | 
|
| 41978 | 1390  | 
shows "0 \<le> a / b"  | 
| 43920 | 1391  | 
using assms by (cases rule: ereal2_cases[of a b]) (auto simp: zero_le_divide_iff)  | 
| 41978 | 1392  | 
|
| 43920 | 1393  | 
lemma ereal_le_divide_pos:  | 
| 53873 | 1394  | 
fixes x y z :: ereal  | 
1395  | 
shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y \<le> z / x \<longleftrightarrow> x * y \<le> z"  | 
|
| 43920 | 1396  | 
by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)  | 
| 41973 | 1397  | 
|
| 43920 | 1398  | 
lemma ereal_divide_le_pos:  | 
| 53873 | 1399  | 
fixes x y z :: ereal  | 
1400  | 
shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> z / x \<le> y \<longleftrightarrow> z \<le> x * y"  | 
|
| 43920 | 1401  | 
by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)  | 
| 41973 | 1402  | 
|
| 43920 | 1403  | 
lemma ereal_le_divide_neg:  | 
| 53873 | 1404  | 
fixes x y z :: ereal  | 
1405  | 
shows "x < 0 \<Longrightarrow> x \<noteq> -\<infinity> \<Longrightarrow> y \<le> z / x \<longleftrightarrow> z \<le> x * y"  | 
|
| 43920 | 1406  | 
by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)  | 
| 41973 | 1407  | 
|
| 43920 | 1408  | 
lemma ereal_divide_le_neg:  | 
| 53873 | 1409  | 
fixes x y z :: ereal  | 
1410  | 
shows "x < 0 \<Longrightarrow> x \<noteq> -\<infinity> \<Longrightarrow> z / x \<le> y \<longleftrightarrow> x * y \<le> z"  | 
|
| 43920 | 1411  | 
by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)  | 
| 41973 | 1412  | 
|
| 43920 | 1413  | 
lemma ereal_inverse_antimono_strict:  | 
1414  | 
fixes x y :: ereal  | 
|
| 41973 | 1415  | 
shows "0 \<le> x \<Longrightarrow> x < y \<Longrightarrow> inverse y < inverse x"  | 
| 43920 | 1416  | 
by (cases rule: ereal2_cases[of x y]) auto  | 
| 41973 | 1417  | 
|
| 43920 | 1418  | 
lemma ereal_inverse_antimono:  | 
1419  | 
fixes x y :: ereal  | 
|
| 53873 | 1420  | 
shows "0 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> inverse y \<le> inverse x"  | 
| 43920 | 1421  | 
by (cases rule: ereal2_cases[of x y]) auto  | 
| 41973 | 1422  | 
|
1423  | 
lemma inverse_inverse_Pinfty_iff[simp]:  | 
|
| 53873 | 1424  | 
fixes x :: ereal  | 
1425  | 
shows "inverse x = \<infinity> \<longleftrightarrow> x = 0"  | 
|
| 41973 | 1426  | 
by (cases x) auto  | 
1427  | 
||
| 43920 | 1428  | 
lemma ereal_inverse_eq_0:  | 
| 53873 | 1429  | 
fixes x :: ereal  | 
1430  | 
shows "inverse x = 0 \<longleftrightarrow> x = \<infinity> \<or> x = -\<infinity>"  | 
|
| 41973 | 1431  | 
by (cases x) auto  | 
1432  | 
||
| 43920 | 1433  | 
lemma ereal_0_gt_inverse:  | 
| 53873 | 1434  | 
fixes x :: ereal  | 
1435  | 
shows "0 < inverse x \<longleftrightarrow> x \<noteq> \<infinity> \<and> 0 \<le> x"  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1436  | 
by (cases x) auto  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1437  | 
|
| 60060 | 1438  | 
lemma ereal_inverse_le_0_iff:  | 
1439  | 
fixes x :: ereal  | 
|
1440  | 
shows "inverse x \<le> 0 \<longleftrightarrow> x < 0 \<or> x = \<infinity>"  | 
|
1441  | 
by(cases x) auto  | 
|
1442  | 
||
1443  | 
lemma ereal_divide_eq_0_iff: "x / y = 0 \<longleftrightarrow> x = 0 \<or> \<bar>y :: ereal\<bar> = \<infinity>"  | 
|
1444  | 
by(cases x y rule: ereal2_cases) simp_all  | 
|
1445  | 
||
| 43920 | 1446  | 
lemma ereal_mult_less_right:  | 
| 43923 | 1447  | 
fixes a b c :: ereal  | 
| 53873 | 1448  | 
assumes "b * a < c * a"  | 
1449  | 
and "0 < a"  | 
|
1450  | 
and "a < \<infinity>"  | 
|
| 41973 | 1451  | 
shows "b < c"  | 
1452  | 
using assms  | 
|
| 43920 | 1453  | 
by (cases rule: ereal3_cases[of a b c])  | 
| 41973 | 1454  | 
(auto split: split_if_asm simp: zero_less_mult_iff zero_le_mult_iff)  | 
1455  | 
||
| 59000 | 1456  | 
lemma ereal_mult_divide: fixes a b :: ereal shows "0 < b \<Longrightarrow> b < \<infinity> \<Longrightarrow> b * (a / b) = a"  | 
1457  | 
by (cases a b rule: ereal2_cases) auto  | 
|
1458  | 
||
| 43920 | 1459  | 
lemma ereal_power_divide:  | 
| 53873 | 1460  | 
fixes x y :: ereal  | 
1461  | 
shows "y \<noteq> 0 \<Longrightarrow> (x / y) ^ n = x^n / y^n"  | 
|
| 58787 | 1462  | 
by (cases rule: ereal2_cases [of x y])  | 
1463  | 
(auto simp: one_ereal_def zero_ereal_def power_divide zero_le_power_eq)  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1464  | 
|
| 43920 | 1465  | 
lemma ereal_le_mult_one_interval:  | 
1466  | 
fixes x y :: ereal  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1467  | 
assumes y: "y \<noteq> -\<infinity>"  | 
| 53873 | 1468  | 
assumes z: "\<And>z. 0 < z \<Longrightarrow> z < 1 \<Longrightarrow> z * x \<le> y"  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1469  | 
shows "x \<le> y"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1470  | 
proof (cases x)  | 
| 53873 | 1471  | 
case PInf  | 
1472  | 
with z[of "1 / 2"] show "x \<le> y"  | 
|
1473  | 
by (simp add: one_ereal_def)  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1474  | 
next  | 
| 53873 | 1475  | 
case (real r)  | 
1476  | 
note r = this  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1477  | 
show "x \<le> y"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1478  | 
proof (cases y)  | 
| 53873 | 1479  | 
case (real p)  | 
1480  | 
note p = this  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1481  | 
have "r \<le> p"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1482  | 
proof (rule field_le_mult_one_interval)  | 
| 53873 | 1483  | 
fix z :: real  | 
1484  | 
assume "0 < z" and "z < 1"  | 
|
1485  | 
with z[of "ereal z"] show "z * r \<le> p"  | 
|
1486  | 
using p r by (auto simp: zero_le_mult_iff one_ereal_def)  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1487  | 
qed  | 
| 53873 | 1488  | 
then show "x \<le> y"  | 
1489  | 
using p r by simp  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1490  | 
qed (insert y, simp_all)  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1491  | 
qed simp  | 
| 41978 | 1492  | 
|
| 45934 | 1493  | 
lemma ereal_divide_right_mono[simp]:  | 
1494  | 
fixes x y z :: ereal  | 
|
| 53873 | 1495  | 
assumes "x \<le> y"  | 
1496  | 
and "0 < z"  | 
|
1497  | 
shows "x / z \<le> y / z"  | 
|
1498  | 
using assms by (cases x y z rule: ereal3_cases) (auto intro: divide_right_mono)  | 
|
| 45934 | 1499  | 
|
1500  | 
lemma ereal_divide_left_mono[simp]:  | 
|
1501  | 
fixes x y z :: ereal  | 
|
| 53873 | 1502  | 
assumes "y \<le> x"  | 
1503  | 
and "0 < z"  | 
|
1504  | 
and "0 < x * y"  | 
|
| 45934 | 1505  | 
shows "z / x \<le> z / y"  | 
| 53873 | 1506  | 
using assms  | 
1507  | 
by (cases x y z rule: ereal3_cases)  | 
|
| 54416 | 1508  | 
(auto intro: divide_left_mono simp: field_simps zero_less_mult_iff mult_less_0_iff split: split_if_asm)  | 
| 45934 | 1509  | 
|
1510  | 
lemma ereal_divide_zero_left[simp]:  | 
|
1511  | 
fixes a :: ereal  | 
|
1512  | 
shows "0 / a = 0"  | 
|
1513  | 
by (cases a) (auto simp: zero_ereal_def)  | 
|
1514  | 
||
1515  | 
lemma ereal_times_divide_eq_left[simp]:  | 
|
1516  | 
fixes a b c :: ereal  | 
|
1517  | 
shows "b / c * a = b * a / c"  | 
|
| 54416 | 1518  | 
by (cases a b c rule: ereal3_cases) (auto simp: field_simps zero_less_mult_iff mult_less_0_iff)  | 
| 45934 | 1519  | 
|
| 59000 | 1520  | 
lemma ereal_times_divide_eq: "a * (b / c :: ereal) = a * b / c"  | 
1521  | 
by (cases a b c rule: ereal3_cases)  | 
|
1522  | 
(auto simp: field_simps zero_less_mult_iff)  | 
|
| 53873 | 1523  | 
|
| 41973 | 1524  | 
subsection "Complete lattice"  | 
1525  | 
||
| 43920 | 1526  | 
instantiation ereal :: lattice  | 
| 41973 | 1527  | 
begin  | 
| 53873 | 1528  | 
|
| 43920 | 1529  | 
definition [simp]: "sup x y = (max x y :: ereal)"  | 
1530  | 
definition [simp]: "inf x y = (min x y :: ereal)"  | 
|
| 47082 | 1531  | 
instance by default simp_all  | 
| 53873 | 1532  | 
|
| 41973 | 1533  | 
end  | 
1534  | 
||
| 43920 | 1535  | 
instantiation ereal :: complete_lattice  | 
| 41973 | 1536  | 
begin  | 
1537  | 
||
| 43923 | 1538  | 
definition "bot = (-\<infinity>::ereal)"  | 
1539  | 
definition "top = (\<infinity>::ereal)"  | 
|
| 41973 | 1540  | 
|
| 
51329
 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 
hoelzl 
parents: 
51328 
diff
changeset
 | 
1541  | 
definition "Sup S = (SOME x :: ereal. (\<forall>y\<in>S. y \<le> x) \<and> (\<forall>z. (\<forall>y\<in>S. y \<le> z) \<longrightarrow> x \<le> z))"  | 
| 
 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 
hoelzl 
parents: 
51328 
diff
changeset
 | 
1542  | 
definition "Inf S = (SOME x :: ereal. (\<forall>y\<in>S. x \<le> y) \<and> (\<forall>z. (\<forall>y\<in>S. z \<le> y) \<longrightarrow> z \<le> x))"  | 
| 41973 | 1543  | 
|
| 43920 | 1544  | 
lemma ereal_complete_Sup:  | 
| 
51329
 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 
hoelzl 
parents: 
51328 
diff
changeset
 | 
1545  | 
fixes S :: "ereal set"  | 
| 41973 | 1546  | 
shows "\<exists>x. (\<forall>y\<in>S. y \<le> x) \<and> (\<forall>z. (\<forall>y\<in>S. y \<le> z) \<longrightarrow> x \<le> z)"  | 
| 53873 | 1547  | 
proof (cases "\<exists>x. \<forall>a\<in>S. a \<le> ereal x")  | 
1548  | 
case True  | 
|
1549  | 
then obtain y where y: "\<And>a. a\<in>S \<Longrightarrow> a \<le> ereal y"  | 
|
1550  | 
by auto  | 
|
1551  | 
then have "\<infinity> \<notin> S"  | 
|
1552  | 
by force  | 
|
| 41973 | 1553  | 
show ?thesis  | 
| 53873 | 1554  | 
  proof (cases "S \<noteq> {-\<infinity>} \<and> S \<noteq> {}")
 | 
1555  | 
case True  | 
|
1556  | 
with `\<infinity> \<notin> S` obtain x where x: "x \<in> S" "\<bar>x\<bar> \<noteq> \<infinity>"  | 
|
1557  | 
by auto  | 
|
| 
51329
 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 
hoelzl 
parents: 
51328 
diff
changeset
 | 
1558  | 
obtain s where s: "\<forall>x\<in>ereal -` S. x \<le> s" "\<And>z. (\<forall>x\<in>ereal -` S. x \<le> z) \<Longrightarrow> s \<le> z"  | 
| 
 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 
hoelzl 
parents: 
51328 
diff
changeset
 | 
1559  | 
proof (atomize_elim, rule complete_real)  | 
| 53873 | 1560  | 
show "\<exists>x. x \<in> ereal -` S"  | 
1561  | 
using x by auto  | 
|
1562  | 
show "\<exists>z. \<forall>x\<in>ereal -` S. x \<le> z"  | 
|
1563  | 
by (auto dest: y intro!: exI[of _ y])  | 
|
| 
51329
 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 
hoelzl 
parents: 
51328 
diff
changeset
 | 
1564  | 
qed  | 
| 41973 | 1565  | 
show ?thesis  | 
| 43920 | 1566  | 
proof (safe intro!: exI[of _ "ereal s"])  | 
| 53873 | 1567  | 
fix y  | 
1568  | 
assume "y \<in> S"  | 
|
1569  | 
with s `\<infinity> \<notin> S` show "y \<le> ereal s"  | 
|
| 
51329
 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 
hoelzl 
parents: 
51328 
diff
changeset
 | 
1570  | 
by (cases y) auto  | 
| 41973 | 1571  | 
next  | 
| 53873 | 1572  | 
fix z  | 
1573  | 
assume "\<forall>y\<in>S. y \<le> z"  | 
|
1574  | 
      with `S \<noteq> {-\<infinity>} \<and> S \<noteq> {}` show "ereal s \<le> z"
 | 
|
| 
51329
 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 
hoelzl 
parents: 
51328 
diff
changeset
 | 
1575  | 
by (cases z) (auto intro!: s)  | 
| 41973 | 1576  | 
qed  | 
| 53873 | 1577  | 
next  | 
1578  | 
case False  | 
|
1579  | 
then show ?thesis  | 
|
1580  | 
by (auto intro!: exI[of _ "-\<infinity>"])  | 
|
1581  | 
qed  | 
|
1582  | 
next  | 
|
1583  | 
case False  | 
|
1584  | 
then show ?thesis  | 
|
1585  | 
by (fastforce intro!: exI[of _ \<infinity>] ereal_top intro: order_trans dest: less_imp_le simp: not_le)  | 
|
1586  | 
qed  | 
|
| 41973 | 1587  | 
|
| 43920 | 1588  | 
lemma ereal_complete_uminus_eq:  | 
1589  | 
fixes S :: "ereal set"  | 
|
| 41973 | 1590  | 
shows "(\<forall>y\<in>uminus`S. y \<le> x) \<and> (\<forall>z. (\<forall>y\<in>uminus`S. y \<le> z) \<longrightarrow> x \<le> z)  | 
1591  | 
\<longleftrightarrow> (\<forall>y\<in>S. -x \<le> y) \<and> (\<forall>z. (\<forall>y\<in>S. z \<le> y) \<longrightarrow> z \<le> -x)"  | 
|
| 43920 | 1592  | 
by simp (metis ereal_minus_le_minus ereal_uminus_uminus)  | 
| 41973 | 1593  | 
|
| 
51329
 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 
hoelzl 
parents: 
51328 
diff
changeset
 | 
1594  | 
lemma ereal_complete_Inf:  | 
| 
 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 
hoelzl 
parents: 
51328 
diff
changeset
 | 
1595  | 
"\<exists>x. (\<forall>y\<in>S::ereal set. x \<le> y) \<and> (\<forall>z. (\<forall>y\<in>S. z \<le> y) \<longrightarrow> z \<le> x)"  | 
| 53873 | 1596  | 
using ereal_complete_Sup[of "uminus ` S"]  | 
1597  | 
unfolding ereal_complete_uminus_eq  | 
|
1598  | 
by auto  | 
|
| 41973 | 1599  | 
|
1600  | 
instance  | 
|
| 
52729
 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 
haftmann 
parents: 
51775 
diff
changeset
 | 
1601  | 
proof  | 
| 
 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 
haftmann 
parents: 
51775 
diff
changeset
 | 
1602  | 
  show "Sup {} = (bot::ereal)"
 | 
| 53873 | 1603  | 
apply (auto simp: bot_ereal_def Sup_ereal_def)  | 
1604  | 
apply (rule some1_equality)  | 
|
1605  | 
apply (metis ereal_bot ereal_less_eq(2))  | 
|
1606  | 
apply (metis ereal_less_eq(2))  | 
|
1607  | 
done  | 
|
| 
52729
 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 
haftmann 
parents: 
51775 
diff
changeset
 | 
1608  | 
  show "Inf {} = (top::ereal)"
 | 
| 53873 | 1609  | 
apply (auto simp: top_ereal_def Inf_ereal_def)  | 
1610  | 
apply (rule some1_equality)  | 
|
1611  | 
apply (metis ereal_top ereal_less_eq(1))  | 
|
1612  | 
apply (metis ereal_less_eq(1))  | 
|
1613  | 
done  | 
|
| 
52729
 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 
haftmann 
parents: 
51775 
diff
changeset
 | 
1614  | 
qed (auto intro: someI2_ex ereal_complete_Sup ereal_complete_Inf  | 
| 
 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 
haftmann 
parents: 
51775 
diff
changeset
 | 
1615  | 
simp: Sup_ereal_def Inf_ereal_def bot_ereal_def top_ereal_def)  | 
| 43941 | 1616  | 
|
| 41973 | 1617  | 
end  | 
1618  | 
||
| 43941 | 1619  | 
instance ereal :: complete_linorder ..  | 
1620  | 
||
| 
51775
 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 
hoelzl 
parents: 
51774 
diff
changeset
 | 
1621  | 
instance ereal :: linear_continuum  | 
| 
 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 
hoelzl 
parents: 
51774 
diff
changeset
 | 
1622  | 
proof  | 
| 
 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 
hoelzl 
parents: 
51774 
diff
changeset
 | 
1623  | 
show "\<exists>a b::ereal. a \<noteq> b"  | 
| 54416 | 1624  | 
using zero_neq_one by blast  | 
| 
51775
 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 
hoelzl 
parents: 
51774 
diff
changeset
 | 
1625  | 
qed  | 
| 
59452
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1626  | 
subsubsection "Topological space"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1627  | 
|
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1628  | 
instantiation ereal :: linear_continuum_topology  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1629  | 
begin  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1630  | 
|
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1631  | 
definition "open_ereal" :: "ereal set \<Rightarrow> bool" where  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1632  | 
open_ereal_generated: "open_ereal = generate_topology (range lessThan \<union> range greaterThan)"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1633  | 
|
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1634  | 
instance  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1635  | 
by default (simp add: open_ereal_generated)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1636  | 
|
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1637  | 
end  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1638  | 
|
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1639  | 
lemma tendsto_ereal[tendsto_intros, simp, intro]: "(f ---> x) F \<Longrightarrow> ((\<lambda>x. ereal (f x)) ---> ereal x) F"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1640  | 
apply (rule tendsto_compose[where g=ereal])  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1641  | 
apply (auto intro!: order_tendstoI simp: eventually_at_topological)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1642  | 
  apply (rule_tac x="case a of MInfty \<Rightarrow> UNIV | ereal x \<Rightarrow> {x <..} | PInfty \<Rightarrow> {}" in exI)
 | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1643  | 
apply (auto split: ereal.split) []  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1644  | 
  apply (rule_tac x="case a of MInfty \<Rightarrow> {} | ereal x \<Rightarrow> {..< x} | PInfty \<Rightarrow> UNIV" in exI)
 | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1645  | 
apply (auto split: ereal.split) []  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1646  | 
done  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1647  | 
|
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1648  | 
lemma tendsto_uminus_ereal[tendsto_intros, simp, intro]: "(f ---> x) F \<Longrightarrow> ((\<lambda>x. - f x::ereal) ---> - x) F"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1649  | 
apply (rule tendsto_compose[where g=uminus])  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1650  | 
apply (auto intro!: order_tendstoI simp: eventually_at_topological)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1651  | 
  apply (rule_tac x="{..< -a}" in exI)
 | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1652  | 
apply (auto split: ereal.split simp: ereal_less_uminus_reorder) []  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1653  | 
  apply (rule_tac x="{- a <..}" in exI)
 | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1654  | 
apply (auto split: ereal.split simp: ereal_uminus_reorder) []  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1655  | 
done  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1656  | 
|
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1657  | 
lemma ereal_Lim_uminus: "(f ---> f0) net \<longleftrightarrow> ((\<lambda>x. - f x::ereal) ---> - f0) net"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1658  | 
using tendsto_uminus_ereal[of f f0 net] tendsto_uminus_ereal[of "\<lambda>x. - f x" "- f0" net]  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1659  | 
by auto  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1660  | 
|
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1661  | 
lemma ereal_divide_less_iff: "0 < (c::ereal) \<Longrightarrow> c < \<infinity> \<Longrightarrow> a / c < b \<longleftrightarrow> a < b * c"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1662  | 
by (cases a b c rule: ereal3_cases) (auto simp: field_simps)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1663  | 
|
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1664  | 
lemma ereal_less_divide_iff: "0 < (c::ereal) \<Longrightarrow> c < \<infinity> \<Longrightarrow> a < b / c \<longleftrightarrow> a * c < b"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1665  | 
by (cases a b c rule: ereal3_cases) (auto simp: field_simps)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1666  | 
|
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1667  | 
lemma tendsto_cmult_ereal[tendsto_intros, simp, intro]:  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1668  | 
assumes c: "\<bar>c\<bar> \<noteq> \<infinity>" and f: "(f ---> x) F" shows "((\<lambda>x. c * f x::ereal) ---> c * x) F"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1669  | 
proof -  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1670  | 
  { fix c :: ereal assume "0 < c" "c < \<infinity>"
 | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1671  | 
then have "((\<lambda>x. c * f x::ereal) ---> c * x) F"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1672  | 
apply (intro tendsto_compose[OF _ f])  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1673  | 
apply (auto intro!: order_tendstoI simp: eventually_at_topological)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1674  | 
      apply (rule_tac x="{a/c <..}" in exI)
 | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1675  | 
apply (auto split: ereal.split simp: ereal_divide_less_iff mult.commute) []  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1676  | 
      apply (rule_tac x="{..< a/c}" in exI)
 | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1677  | 
apply (auto split: ereal.split simp: ereal_less_divide_iff mult.commute) []  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1678  | 
done }  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1679  | 
note * = this  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1680  | 
|
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1681  | 
have "((0 < c \<and> c < \<infinity>) \<or> (-\<infinity> < c \<and> c < 0) \<or> c = 0)"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1682  | 
using c by (cases c) auto  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1683  | 
then show ?thesis  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1684  | 
proof (elim disjE conjE)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1685  | 
assume "- \<infinity> < c" "c < 0"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1686  | 
then have "0 < - c" "- c < \<infinity>"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1687  | 
by (auto simp: ereal_uminus_reorder ereal_less_uminus_reorder[of 0])  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1688  | 
then have "((\<lambda>x. (- c) * f x) ---> (- c) * x) F"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1689  | 
by (rule *)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1690  | 
from tendsto_uminus_ereal[OF this] show ?thesis  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1691  | 
by simp  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1692  | 
qed (auto intro!: *)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1693  | 
qed  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1694  | 
|
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1695  | 
lemma tendsto_cmult_ereal_not_0[tendsto_intros, simp, intro]:  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1696  | 
assumes "x \<noteq> 0" and f: "(f ---> x) F" shows "((\<lambda>x. c * f x::ereal) ---> c * x) F"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1697  | 
proof cases  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1698  | 
assume "\<bar>c\<bar> = \<infinity>"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1699  | 
show ?thesis  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1700  | 
proof (rule filterlim_cong[THEN iffD1, OF refl refl _ tendsto_const])  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1701  | 
have "0 < x \<or> x < 0"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1702  | 
using `x \<noteq> 0` by (auto simp add: neq_iff)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1703  | 
then show "eventually (\<lambda>x'. c * x = c * f x') F"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1704  | 
proof  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1705  | 
assume "0 < x" from order_tendstoD(1)[OF f this] show ?thesis  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1706  | 
by eventually_elim (insert `0<x` `\<bar>c\<bar> = \<infinity>`, auto)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1707  | 
next  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1708  | 
assume "x < 0" from order_tendstoD(2)[OF f this] show ?thesis  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1709  | 
by eventually_elim (insert `x<0` `\<bar>c\<bar> = \<infinity>`, auto)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1710  | 
qed  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1711  | 
qed  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1712  | 
qed (rule tendsto_cmult_ereal[OF _ f])  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1713  | 
|
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1714  | 
lemma tendsto_cadd_ereal[tendsto_intros, simp, intro]:  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1715  | 
assumes c: "y \<noteq> - \<infinity>" "x \<noteq> - \<infinity>" and f: "(f ---> x) F" shows "((\<lambda>x. f x + y::ereal) ---> x + y) F"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1716  | 
apply (intro tendsto_compose[OF _ f])  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1717  | 
apply (auto intro!: order_tendstoI simp: eventually_at_topological)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1718  | 
  apply (rule_tac x="{a - y <..}" in exI)
 | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1719  | 
apply (auto split: ereal.split simp: ereal_minus_less_iff c) []  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1720  | 
  apply (rule_tac x="{..< a - y}" in exI)
 | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1721  | 
apply (auto split: ereal.split simp: ereal_less_minus_iff c) []  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1722  | 
done  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1723  | 
|
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1724  | 
lemma tendsto_add_left_ereal[tendsto_intros, simp, intro]:  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1725  | 
assumes c: "\<bar>y\<bar> \<noteq> \<infinity>" and f: "(f ---> x) F" shows "((\<lambda>x. f x + y::ereal) ---> x + y) F"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1726  | 
apply (intro tendsto_compose[OF _ f])  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1727  | 
apply (auto intro!: order_tendstoI simp: eventually_at_topological)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1728  | 
  apply (rule_tac x="{a - y <..}" in exI)
 | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1729  | 
apply (insert c, auto split: ereal.split simp: ereal_minus_less_iff) []  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1730  | 
  apply (rule_tac x="{..< a - y}" in exI)
 | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1731  | 
apply (auto split: ereal.split simp: ereal_less_minus_iff c) []  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1732  | 
done  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1733  | 
|
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1734  | 
lemma continuous_at_ereal[continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. ereal (f x))"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1735  | 
unfolding continuous_def by auto  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1736  | 
|
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1737  | 
lemma continuous_on_ereal[continuous_intros]: "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. ereal (f x))"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1738  | 
unfolding continuous_on_def by auto  | 
| 
51775
 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 
hoelzl 
parents: 
51774 
diff
changeset
 | 
1739  | 
|
| 59425 | 1740  | 
lemma ereal_Sup:  | 
1741  | 
assumes *: "\<bar>SUP a:A. ereal a\<bar> \<noteq> \<infinity>"  | 
|
1742  | 
shows "ereal (Sup A) = (SUP a:A. ereal a)"  | 
|
| 
59452
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1743  | 
proof (rule continuous_at_Sup_mono)  | 
| 59425 | 1744  | 
  obtain r where r: "ereal r = (SUP a:A. ereal a)" "A \<noteq> {}"
 | 
1745  | 
using * by (force simp: bot_ereal_def)  | 
|
| 
59452
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1746  | 
  then show "bdd_above A" "A \<noteq> {}"
 | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1747  | 
by (auto intro!: SUP_upper bdd_aboveI[of _ r] simp add: ereal_less_eq(3)[symmetric] simp del: ereal_less_eq)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1748  | 
qed (auto simp: mono_def continuous_at_within continuous_at_ereal)  | 
| 59425 | 1749  | 
|
1750  | 
lemma ereal_SUP: "\<bar>SUP a:A. ereal (f a)\<bar> \<noteq> \<infinity> \<Longrightarrow> ereal (SUP a:A. f a) = (SUP a:A. ereal (f a))"  | 
|
1751  | 
using ereal_Sup[of "f`A"] by auto  | 
|
| 
59452
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1752  | 
|
| 59425 | 1753  | 
lemma ereal_Inf:  | 
1754  | 
assumes *: "\<bar>INF a:A. ereal a\<bar> \<noteq> \<infinity>"  | 
|
1755  | 
shows "ereal (Inf A) = (INF a:A. ereal a)"  | 
|
| 
59452
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1756  | 
proof (rule continuous_at_Inf_mono)  | 
| 59425 | 1757  | 
  obtain r where r: "ereal r = (INF a:A. ereal a)" "A \<noteq> {}"
 | 
1758  | 
using * by (force simp: top_ereal_def)  | 
|
| 
59452
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1759  | 
  then show "bdd_below A" "A \<noteq> {}"
 | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1760  | 
by (auto intro!: INF_lower bdd_belowI[of _ r] simp add: ereal_less_eq(3)[symmetric] simp del: ereal_less_eq)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1761  | 
qed (auto simp: mono_def continuous_at_within continuous_at_ereal)  | 
| 59425 | 1762  | 
|
1763  | 
lemma ereal_INF: "\<bar>INF a:A. ereal (f a)\<bar> \<noteq> \<infinity> \<Longrightarrow> ereal (INF a:A. f a) = (INF a:A. ereal (f a))"  | 
|
1764  | 
using ereal_Inf[of "f`A"] by auto  | 
|
1765  | 
||
| 
51329
 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 
hoelzl 
parents: 
51328 
diff
changeset
 | 
1766  | 
lemma ereal_Sup_uminus_image_eq: "Sup (uminus ` S::ereal set) = - Inf S"  | 
| 56166 | 1767  | 
by (auto intro!: SUP_eqI  | 
| 
51329
 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 
hoelzl 
parents: 
51328 
diff
changeset
 | 
1768  | 
simp: Ball_def[symmetric] ereal_uminus_le_reorder le_Inf_iff  | 
| 
 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 
hoelzl 
parents: 
51328 
diff
changeset
 | 
1769  | 
intro!: complete_lattice_class.Inf_lower2)  | 
| 
 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 
hoelzl 
parents: 
51328 
diff
changeset
 | 
1770  | 
|
| 56166 | 1771  | 
lemma ereal_SUP_uminus_eq:  | 
1772  | 
fixes f :: "'a \<Rightarrow> ereal"  | 
|
1773  | 
shows "(SUP x:S. uminus (f x)) = - (INF x:S. f x)"  | 
|
1774  | 
using ereal_Sup_uminus_image_eq [of "f ` S"] by (simp add: comp_def)  | 
|
1775  | 
||
| 
51329
 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 
hoelzl 
parents: 
51328 
diff
changeset
 | 
1776  | 
lemma ereal_inj_on_uminus[intro, simp]: "inj_on uminus (A :: ereal set)"  | 
| 
 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 
hoelzl 
parents: 
51328 
diff
changeset
 | 
1777  | 
by (auto intro!: inj_onI)  | 
| 
 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 
hoelzl 
parents: 
51328 
diff
changeset
 | 
1778  | 
|
| 
 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 
hoelzl 
parents: 
51328 
diff
changeset
 | 
1779  | 
lemma ereal_Inf_uminus_image_eq: "Inf (uminus ` S::ereal set) = - Sup S"  | 
| 
 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 
hoelzl 
parents: 
51328 
diff
changeset
 | 
1780  | 
using ereal_Sup_uminus_image_eq[of "uminus ` S"] by simp  | 
| 
 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 
hoelzl 
parents: 
51328 
diff
changeset
 | 
1781  | 
|
| 56166 | 1782  | 
lemma ereal_INF_uminus_eq:  | 
1783  | 
fixes f :: "'a \<Rightarrow> ereal"  | 
|
| 
59452
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1784  | 
shows "(INF x:S. - f x) = - (SUP x:S. f x)"  | 
| 56166 | 1785  | 
using ereal_Inf_uminus_image_eq [of "f ` S"] by (simp add: comp_def)  | 
1786  | 
||
| 
59452
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1787  | 
lemma ereal_SUP_uminus:  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1788  | 
fixes f :: "'a \<Rightarrow> ereal"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1789  | 
shows "(SUP i : R. - f i) = - (INF i : R. f i)"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1790  | 
using ereal_Sup_uminus_image_eq[of "f`R"]  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1791  | 
by (simp add: image_image)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1792  | 
|
| 54416 | 1793  | 
lemma ereal_SUP_not_infty:  | 
1794  | 
fixes f :: "_ \<Rightarrow> ereal"  | 
|
| 
56218
 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 
haftmann 
parents: 
56212 
diff
changeset
 | 
1795  | 
  shows "A \<noteq> {} \<Longrightarrow> l \<noteq> -\<infinity> \<Longrightarrow> u \<noteq> \<infinity> \<Longrightarrow> \<forall>a\<in>A. l \<le> f a \<and> f a \<le> u \<Longrightarrow> \<bar>SUPREMUM A f\<bar> \<noteq> \<infinity>"
 | 
| 54416 | 1796  | 
using SUP_upper2[of _ A l f] SUP_least[of A f u]  | 
| 
56218
 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 
haftmann 
parents: 
56212 
diff
changeset
 | 
1797  | 
by (cases "SUPREMUM A f") auto  | 
| 54416 | 1798  | 
|
1799  | 
lemma ereal_INF_not_infty:  | 
|
1800  | 
fixes f :: "_ \<Rightarrow> ereal"  | 
|
| 
56218
 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 
haftmann 
parents: 
56212 
diff
changeset
 | 
1801  | 
  shows "A \<noteq> {} \<Longrightarrow> l \<noteq> -\<infinity> \<Longrightarrow> u \<noteq> \<infinity> \<Longrightarrow> \<forall>a\<in>A. l \<le> f a \<and> f a \<le> u \<Longrightarrow> \<bar>INFIMUM A f\<bar> \<noteq> \<infinity>"
 | 
| 54416 | 1802  | 
using INF_lower2[of _ A f u] INF_greatest[of A l f]  | 
| 
56218
 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 
haftmann 
parents: 
56212 
diff
changeset
 | 
1803  | 
by (cases "INFIMUM A f") auto  | 
| 54416 | 1804  | 
|
| 43920 | 1805  | 
lemma ereal_image_uminus_shift:  | 
| 53873 | 1806  | 
fixes X Y :: "ereal set"  | 
1807  | 
shows "uminus ` X = Y \<longleftrightarrow> X = uminus ` Y"  | 
|
| 41973 | 1808  | 
proof  | 
1809  | 
assume "uminus ` X = Y"  | 
|
1810  | 
then have "uminus ` uminus ` X = uminus ` Y"  | 
|
1811  | 
by (simp add: inj_image_eq_iff)  | 
|
| 53873 | 1812  | 
then show "X = uminus ` Y"  | 
1813  | 
by (simp add: image_image)  | 
|
| 41973 | 1814  | 
qed (simp add: image_image)  | 
1815  | 
||
1816  | 
lemma Sup_eq_MInfty:  | 
|
| 53873 | 1817  | 
fixes S :: "ereal set"  | 
1818  | 
  shows "Sup S = -\<infinity> \<longleftrightarrow> S = {} \<or> S = {-\<infinity>}"
 | 
|
| 
51329
 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 
hoelzl 
parents: 
51328 
diff
changeset
 | 
1819  | 
unfolding bot_ereal_def[symmetric] by auto  | 
| 41973 | 1820  | 
|
1821  | 
lemma Inf_eq_PInfty:  | 
|
| 53873 | 1822  | 
fixes S :: "ereal set"  | 
1823  | 
  shows "Inf S = \<infinity> \<longleftrightarrow> S = {} \<or> S = {\<infinity>}"
 | 
|
| 41973 | 1824  | 
using Sup_eq_MInfty[of "uminus`S"]  | 
| 43920 | 1825  | 
unfolding ereal_Sup_uminus_image_eq ereal_image_uminus_shift by simp  | 
| 41973 | 1826  | 
|
| 53873 | 1827  | 
lemma Inf_eq_MInfty:  | 
1828  | 
fixes S :: "ereal set"  | 
|
1829  | 
shows "-\<infinity> \<in> S \<Longrightarrow> Inf S = -\<infinity>"  | 
|
| 
51329
 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 
hoelzl 
parents: 
51328 
diff
changeset
 | 
1830  | 
unfolding bot_ereal_def[symmetric] by auto  | 
| 41973 | 1831  | 
|
| 43923 | 1832  | 
lemma Sup_eq_PInfty:  | 
| 53873 | 1833  | 
fixes S :: "ereal set"  | 
1834  | 
shows "\<infinity> \<in> S \<Longrightarrow> Sup S = \<infinity>"  | 
|
| 
51329
 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 
hoelzl 
parents: 
51328 
diff
changeset
 | 
1835  | 
unfolding top_ereal_def[symmetric] by auto  | 
| 41973 | 1836  | 
|
| 43920 | 1837  | 
lemma Sup_ereal_close:  | 
1838  | 
fixes e :: ereal  | 
|
| 53873 | 1839  | 
assumes "0 < e"  | 
1840  | 
    and S: "\<bar>Sup S\<bar> \<noteq> \<infinity>" "S \<noteq> {}"
 | 
|
| 41973 | 1841  | 
shows "\<exists>x\<in>S. Sup S - e < x"  | 
| 41976 | 1842  | 
using assms by (cases e) (auto intro!: less_Sup_iff[THEN iffD1])  | 
| 41973 | 1843  | 
|
| 43920 | 1844  | 
lemma Inf_ereal_close:  | 
| 53873 | 1845  | 
fixes e :: ereal  | 
1846  | 
assumes "\<bar>Inf X\<bar> \<noteq> \<infinity>"  | 
|
1847  | 
and "0 < e"  | 
|
| 41973 | 1848  | 
shows "\<exists>x\<in>X. x < Inf X + e"  | 
1849  | 
proof (rule Inf_less_iff[THEN iffD1])  | 
|
| 53873 | 1850  | 
show "Inf X < Inf X + e"  | 
1851  | 
using assms by (cases e) auto  | 
|
| 41973 | 1852  | 
qed  | 
1853  | 
||
| 59425 | 1854  | 
lemma SUP_PInfty:  | 
| 
59452
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1855  | 
"(\<And>n::nat. \<exists>i\<in>A. ereal (real n) \<le> f i) \<Longrightarrow> (SUP i:A. f i :: ereal) = \<infinity>"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1856  | 
unfolding top_ereal_def[symmetric] SUP_eq_top_iff  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1857  | 
by (metis MInfty_neq_PInfty(2) PInfty_neq_ereal(2) less_PInf_Ex_of_nat less_ereal.elims(2) less_le_trans)  | 
| 59425 | 1858  | 
|
| 43920 | 1859  | 
lemma SUP_nat_Infty: "(SUP i::nat. ereal (real i)) = \<infinity>"  | 
| 59425 | 1860  | 
by (rule SUP_PInfty) auto  | 
| 41973 | 1861  | 
|
| 
59452
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1862  | 
lemma SUP_ereal_add_left:  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1863  | 
  assumes "I \<noteq> {}" "c \<noteq> -\<infinity>"
 | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1864  | 
shows "(SUP i:I. f i + c :: ereal) = (SUP i:I. f i) + c"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1865  | 
proof cases  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1866  | 
assume "(SUP i:I. f i) = - \<infinity>"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1867  | 
moreover then have "\<And>i. i \<in> I \<Longrightarrow> f i = -\<infinity>"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1868  | 
unfolding Sup_eq_MInfty Sup_image_eq[symmetric] by auto  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1869  | 
ultimately show ?thesis  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1870  | 
    by (cases c) (auto simp: `I \<noteq> {}`)
 | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1871  | 
next  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1872  | 
assume "(SUP i:I. f i) \<noteq> - \<infinity>" then show ?thesis  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1873  | 
unfolding Sup_image_eq[symmetric]  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1874  | 
by (subst continuous_at_Sup_mono[where f="\<lambda>x. x + c"])  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1875  | 
       (auto simp: continuous_at_within continuous_at mono_def ereal_add_mono `I \<noteq> {}` `c \<noteq> -\<infinity>`)
 | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1876  | 
qed  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1877  | 
|
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1878  | 
lemma SUP_ereal_add_right:  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1879  | 
fixes c :: ereal  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1880  | 
  shows "I \<noteq> {} \<Longrightarrow> c \<noteq> -\<infinity> \<Longrightarrow> (SUP i:I. c + f i) = c + (SUP i:I. f i)"
 | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1881  | 
using SUP_ereal_add_left[of I c f] by (simp add: add.commute)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1882  | 
|
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1883  | 
lemma SUP_ereal_minus_right:  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1884  | 
  assumes "I \<noteq> {}" "c \<noteq> -\<infinity>"
 | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1885  | 
shows "(SUP i:I. c - f i :: ereal) = c - (INF i:I. f i)"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1886  | 
using SUP_ereal_add_right[OF assms, of "\<lambda>i. - f i"]  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1887  | 
by (simp add: ereal_SUP_uminus minus_ereal_def)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1888  | 
|
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1889  | 
lemma SUP_ereal_minus_left:  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1890  | 
  assumes "I \<noteq> {}" "c \<noteq> \<infinity>"
 | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1891  | 
shows "(SUP i:I. f i - c:: ereal) = (SUP i:I. f i) - c"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1892  | 
  using SUP_ereal_add_left[OF `I \<noteq> {}`, of "-c" f] by (simp add: `c \<noteq> \<infinity>` minus_ereal_def)
 | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1893  | 
|
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1894  | 
lemma INF_ereal_minus_right:  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1895  | 
  assumes "I \<noteq> {}" and "\<bar>c\<bar> \<noteq> \<infinity>"
 | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1896  | 
shows "(INF i:I. c - f i) = c - (SUP i:I. f i::ereal)"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1897  | 
proof -  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1898  | 
  { fix b have "(-c) + b = - (c - b)"
 | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1899  | 
using `\<bar>c\<bar> \<noteq> \<infinity>` by (cases c b rule: ereal2_cases) auto }  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1900  | 
note * = this  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1901  | 
show ?thesis  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1902  | 
    using SUP_ereal_add_right[OF `I \<noteq> {}`, of "-c" f] `\<bar>c\<bar> \<noteq> \<infinity>`
 | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1903  | 
by (auto simp add: * ereal_SUP_uminus_eq)  | 
| 41973 | 1904  | 
qed  | 
1905  | 
||
| 43920 | 1906  | 
lemma SUP_ereal_le_addI:  | 
| 43923 | 1907  | 
fixes f :: "'i \<Rightarrow> ereal"  | 
| 
59452
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1908  | 
assumes "\<And>i. f i + y \<le> z" and "y \<noteq> -\<infinity>"  | 
| 
56218
 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 
haftmann 
parents: 
56212 
diff
changeset
 | 
1909  | 
shows "SUPREMUM UNIV f + y \<le> z"  | 
| 
59452
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1910  | 
unfolding SUP_ereal_add_left[OF UNIV_not_empty `y \<noteq> -\<infinity>`, symmetric]  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1911  | 
by (rule SUP_least assms)+  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1912  | 
|
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1913  | 
lemma SUP_combine:  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1914  | 
fixes f :: "'a::semilattice_sup \<Rightarrow> 'a::semilattice_sup \<Rightarrow> 'b::complete_lattice"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1915  | 
assumes mono: "\<And>a b c d. a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> f a c \<le> f b d"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1916  | 
shows "(SUP i:UNIV. SUP j:UNIV. f i j) = (SUP i. f i i)"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1917  | 
proof (rule antisym)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1918  | 
show "(SUP i j. f i j) \<le> (SUP i. f i i)"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1919  | 
by (rule SUP_least SUP_upper2[where i="sup i j" for i j] UNIV_I mono sup_ge1 sup_ge2)+  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1920  | 
show "(SUP i. f i i) \<le> (SUP i j. f i j)"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1921  | 
by (rule SUP_least SUP_upper2 UNIV_I mono order_refl)+  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1922  | 
qed  | 
| 41978 | 1923  | 
|
| 
56212
 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 
haftmann 
parents: 
56166 
diff
changeset
 | 
1924  | 
lemma SUP_ereal_add:  | 
| 43920 | 1925  | 
fixes f g :: "nat \<Rightarrow> ereal"  | 
| 
59452
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1926  | 
assumes inc: "incseq f" "incseq g"  | 
| 53873 | 1927  | 
and pos: "\<And>i. f i \<noteq> -\<infinity>" "\<And>i. g i \<noteq> -\<infinity>"  | 
| 
56218
 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 
haftmann 
parents: 
56212 
diff
changeset
 | 
1928  | 
shows "(SUP i. f i + g i) = SUPREMUM UNIV f + SUPREMUM UNIV g"  | 
| 
59452
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1929  | 
apply (subst SUP_ereal_add_left[symmetric, OF UNIV_not_empty])  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1930  | 
apply (metis SUP_upper UNIV_I assms(4) ereal_infty_less_eq(2))  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1931  | 
apply (subst (2) add.commute)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1932  | 
apply (subst SUP_ereal_add_left[symmetric, OF UNIV_not_empty assms(3)])  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1933  | 
apply (subst (2) add.commute)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1934  | 
apply (rule SUP_combine[symmetric] ereal_add_mono inc[THEN monoD] | assumption)+  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1935  | 
done  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1936  | 
|
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1937  | 
lemma INF_ereal_add:  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1938  | 
fixes f :: "nat \<Rightarrow> ereal"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1939  | 
assumes "decseq f" "decseq g"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1940  | 
and fin: "\<And>i. f i \<noteq> \<infinity>" "\<And>i. g i \<noteq> \<infinity>"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1941  | 
shows "(INF i. f i + g i) = INFIMUM UNIV f + INFIMUM UNIV g"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1942  | 
proof -  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1943  | 
have INF_less: "(INF i. f i) < \<infinity>" "(INF i. g i) < \<infinity>"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1944  | 
using assms unfolding INF_less_iff by auto  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1945  | 
  { fix a b :: ereal assume "a \<noteq> \<infinity>" "b \<noteq> \<infinity>"
 | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1946  | 
then have "- ((- a) + (- b)) = a + b"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1947  | 
by (cases a b rule: ereal2_cases) auto }  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1948  | 
note * = this  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1949  | 
have "(INF i. f i + g i) = (INF i. - ((- f i) + (- g i)))"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1950  | 
by (simp add: fin *)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1951  | 
also have "\<dots> = INFIMUM UNIV f + INFIMUM UNIV g"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1952  | 
unfolding ereal_INF_uminus_eq  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1953  | 
using assms INF_less  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1954  | 
by (subst SUP_ereal_add) (auto simp: ereal_SUP_uminus fin *)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1955  | 
finally show ?thesis .  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1956  | 
qed  | 
| 41978 | 1957  | 
|
| 
56212
 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 
haftmann 
parents: 
56166 
diff
changeset
 | 
1958  | 
lemma SUP_ereal_add_pos:  | 
| 43920 | 1959  | 
fixes f g :: "nat \<Rightarrow> ereal"  | 
| 53873 | 1960  | 
assumes inc: "incseq f" "incseq g"  | 
1961  | 
and pos: "\<And>i. 0 \<le> f i" "\<And>i. 0 \<le> g i"  | 
|
| 
56218
 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 
haftmann 
parents: 
56212 
diff
changeset
 | 
1962  | 
shows "(SUP i. f i + g i) = SUPREMUM UNIV f + SUPREMUM UNIV g"  | 
| 
56212
 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 
haftmann 
parents: 
56166 
diff
changeset
 | 
1963  | 
proof (intro SUP_ereal_add inc)  | 
| 53873 | 1964  | 
fix i  | 
1965  | 
show "f i \<noteq> -\<infinity>" "g i \<noteq> -\<infinity>"  | 
|
1966  | 
using pos[of i] by auto  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1967  | 
qed  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1968  | 
|
| 
56212
 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 
haftmann 
parents: 
56166 
diff
changeset
 | 
1969  | 
lemma SUP_ereal_setsum:  | 
| 43920 | 1970  | 
fixes f g :: "'a \<Rightarrow> nat \<Rightarrow> ereal"  | 
| 53873 | 1971  | 
assumes "\<And>n. n \<in> A \<Longrightarrow> incseq (f n)"  | 
1972  | 
and pos: "\<And>n i. n \<in> A \<Longrightarrow> 0 \<le> f n i"  | 
|
| 
56218
 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 
haftmann 
parents: 
56212 
diff
changeset
 | 
1973  | 
shows "(SUP i. \<Sum>n\<in>A. f n i) = (\<Sum>n\<in>A. SUPREMUM UNIV (f n))"  | 
| 53873 | 1974  | 
proof (cases "finite A")  | 
1975  | 
case True  | 
|
1976  | 
then show ?thesis using assms  | 
|
| 
56212
 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 
haftmann 
parents: 
56166 
diff
changeset
 | 
1977  | 
by induct (auto simp: incseq_setsumI2 setsum_nonneg SUP_ereal_add_pos)  | 
| 53873 | 1978  | 
next  | 
1979  | 
case False  | 
|
1980  | 
then show ?thesis by simp  | 
|
1981  | 
qed  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1982  | 
|
| 
59452
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1983  | 
lemma SUP_ereal_mult_left:  | 
| 59000 | 1984  | 
fixes f :: "'a \<Rightarrow> ereal"  | 
1985  | 
  assumes "I \<noteq> {}"
 | 
|
| 
59452
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1986  | 
assumes f: "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i" and c: "0 \<le> c"  | 
| 59000 | 1987  | 
shows "(SUP i:I. c * f i) = c * (SUP i:I. f i)"  | 
| 
59452
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1988  | 
proof cases  | 
| 60060 | 1989  | 
assume "(SUP i: I. f i) = 0"  | 
| 
59452
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1990  | 
moreover then have "\<And>i. i \<in> I \<Longrightarrow> f i = 0"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1991  | 
by (metis SUP_upper f antisym)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1992  | 
ultimately show ?thesis  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1993  | 
by simp  | 
| 59000 | 1994  | 
next  | 
| 
59452
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1995  | 
assume "(SUP i:I. f i) \<noteq> 0" then show ?thesis  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1996  | 
unfolding SUP_def  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1997  | 
by (subst continuous_at_Sup_mono[where f="\<lambda>x. c * x"])  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1998  | 
       (auto simp: mono_def continuous_at continuous_at_within `I \<noteq> {}`
 | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
1999  | 
intro!: ereal_mult_left_mono c)  | 
| 59000 | 2000  | 
qed  | 
2001  | 
||
| 
59452
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2002  | 
lemma countable_approach:  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2003  | 
fixes x :: ereal  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2004  | 
assumes "x \<noteq> -\<infinity>"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2005  | 
shows "\<exists>f. incseq f \<and> (\<forall>i::nat. f i < x) \<and> (f ----> x)"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2006  | 
proof (cases x)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2007  | 
case (real r)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2008  | 
moreover have "(\<lambda>n. r - inverse (real (Suc n))) ----> r - 0"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2009  | 
by (intro tendsto_intros LIMSEQ_inverse_real_of_nat)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2010  | 
ultimately show ?thesis  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2011  | 
by (intro exI[of _ "\<lambda>n. x - inverse (Suc n)"]) (auto simp: incseq_def)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2012  | 
next  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2013  | 
case PInf with LIMSEQ_SUP[of "\<lambda>n::nat. ereal (real n)"] show ?thesis  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2014  | 
by (intro exI[of _ "\<lambda>n. ereal (real n)"]) (auto simp: incseq_def SUP_nat_Infty)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2015  | 
qed (simp add: assms)  | 
| 59000 | 2016  | 
|
| 
56212
 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 
haftmann 
parents: 
56166 
diff
changeset
 | 
2017  | 
lemma Sup_countable_SUP:  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
2018  | 
  assumes "A \<noteq> {}"
 | 
| 
59452
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2019  | 
shows "\<exists>f::nat \<Rightarrow> ereal. incseq f \<and> range f \<subseteq> A \<and> Sup A = (SUP i. f i)"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2020  | 
proof cases  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2021  | 
assume "Sup A = -\<infinity>"  | 
| 53873 | 2022  | 
  with `A \<noteq> {}` have "A = {-\<infinity>}"
 | 
2023  | 
by (auto simp: Sup_eq_MInfty)  | 
|
2024  | 
then show ?thesis  | 
|
| 
59452
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2025  | 
by (auto intro!: exI[of _ "\<lambda>_. -\<infinity>"] simp: bot_ereal_def)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2026  | 
next  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2027  | 
assume "Sup A \<noteq> -\<infinity>"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2028  | 
then obtain l where "incseq l" and l: "\<And>i::nat. l i < Sup A" and l_Sup: "l ----> Sup A"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2029  | 
by (auto dest: countable_approach)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2030  | 
|
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2031  | 
have "\<exists>f. \<forall>n. (f n \<in> A \<and> l n \<le> f n) \<and> (f n \<le> f (Suc n))"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2032  | 
proof (rule dependent_nat_choice)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2033  | 
show "\<exists>x. x \<in> A \<and> l 0 \<le> x"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2034  | 
using l[of 0] by (auto simp: less_Sup_iff)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2035  | 
next  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2036  | 
fix x n assume "x \<in> A \<and> l n \<le> x"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2037  | 
moreover from l[of "Suc n"] obtain y where "y \<in> A" "l (Suc n) < y"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2038  | 
by (auto simp: less_Sup_iff)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2039  | 
ultimately show "\<exists>y. (y \<in> A \<and> l (Suc n) \<le> y) \<and> x \<le> y"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2040  | 
by (auto intro!: exI[of _ "max x y"] split: split_max)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2041  | 
qed  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2042  | 
then guess f .. note f = this  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2043  | 
then have "range f \<subseteq> A" "incseq f"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2044  | 
by (auto simp: incseq_Suc_iff)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2045  | 
moreover  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2046  | 
have "(SUP i. f i) = Sup A"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2047  | 
proof (rule tendsto_unique)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2048  | 
show "f ----> (SUP i. f i)"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2049  | 
by (rule LIMSEQ_SUP `incseq f`)+  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2050  | 
show "f ----> Sup A"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2051  | 
using l f  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2052  | 
by (intro tendsto_sandwich[OF _ _ l_Sup tendsto_const])  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2053  | 
(auto simp: Sup_upper)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2054  | 
qed simp  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2055  | 
ultimately show ?thesis  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2056  | 
by auto  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
2057  | 
qed  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
2058  | 
|
| 
56212
 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 
haftmann 
parents: 
56166 
diff
changeset
 | 
2059  | 
lemma SUP_countable_SUP:  | 
| 
56218
 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 
haftmann 
parents: 
56212 
diff
changeset
 | 
2060  | 
  "A \<noteq> {} \<Longrightarrow> \<exists>f::nat \<Rightarrow> ereal. range f \<subseteq> g`A \<and> SUPREMUM A g = SUPREMUM UNIV f"
 | 
| 
59452
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2061  | 
using Sup_countable_SUP [of "g`A"] by auto  | 
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
2062  | 
|
| 45934 | 2063  | 
subsection "Relation to @{typ enat}"
 | 
2064  | 
||
2065  | 
definition "ereal_of_enat n = (case n of enat n \<Rightarrow> ereal (real n) | \<infinity> \<Rightarrow> \<infinity>)"  | 
|
2066  | 
||
2067  | 
declare [[coercion "ereal_of_enat :: enat \<Rightarrow> ereal"]]  | 
|
2068  | 
declare [[coercion "(\<lambda>n. ereal (real n)) :: nat \<Rightarrow> ereal"]]  | 
|
2069  | 
||
2070  | 
lemma ereal_of_enat_simps[simp]:  | 
|
2071  | 
"ereal_of_enat (enat n) = ereal n"  | 
|
2072  | 
"ereal_of_enat \<infinity> = \<infinity>"  | 
|
2073  | 
by (simp_all add: ereal_of_enat_def)  | 
|
2074  | 
||
| 53873 | 2075  | 
lemma ereal_of_enat_le_iff[simp]: "ereal_of_enat m \<le> ereal_of_enat n \<longleftrightarrow> m \<le> n"  | 
2076  | 
by (cases m n rule: enat2_cases) auto  | 
|
| 45934 | 2077  | 
|
| 53873 | 2078  | 
lemma ereal_of_enat_less_iff[simp]: "ereal_of_enat m < ereal_of_enat n \<longleftrightarrow> m < n"  | 
2079  | 
by (cases m n rule: enat2_cases) auto  | 
|
| 
50819
 
5601ae592679
added some ereal_of_enat_* lemmas (from $AFP/thys/Girth_Chromatic)
 
noschinl 
parents: 
50104 
diff
changeset
 | 
2080  | 
|
| 53873 | 2081  | 
lemma numeral_le_ereal_of_enat_iff[simp]: "numeral m \<le> ereal_of_enat n \<longleftrightarrow> numeral m \<le> n"  | 
| 
59587
 
8ea7b22525cb
Removed the obsolete functions "natfloor" and "natceiling"
 
nipkow 
parents: 
59452 
diff
changeset
 | 
2082  | 
by (cases n) (auto)  | 
| 45934 | 2083  | 
|
| 53873 | 2084  | 
lemma numeral_less_ereal_of_enat_iff[simp]: "numeral m < ereal_of_enat n \<longleftrightarrow> numeral m < n"  | 
| 
56889
 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 
hoelzl 
parents: 
56537 
diff
changeset
 | 
2085  | 
by (cases n) auto  | 
| 
50819
 
5601ae592679
added some ereal_of_enat_* lemmas (from $AFP/thys/Girth_Chromatic)
 
noschinl 
parents: 
50104 
diff
changeset
 | 
2086  | 
|
| 53873 | 2087  | 
lemma ereal_of_enat_ge_zero_cancel_iff[simp]: "0 \<le> ereal_of_enat n \<longleftrightarrow> 0 \<le> n"  | 
2088  | 
by (cases n) (auto simp: enat_0[symmetric])  | 
|
| 45934 | 2089  | 
|
| 53873 | 2090  | 
lemma ereal_of_enat_gt_zero_cancel_iff[simp]: "0 < ereal_of_enat n \<longleftrightarrow> 0 < n"  | 
2091  | 
by (cases n) (auto simp: enat_0[symmetric])  | 
|
| 45934 | 2092  | 
|
| 53873 | 2093  | 
lemma ereal_of_enat_zero[simp]: "ereal_of_enat 0 = 0"  | 
2094  | 
by (auto simp: enat_0[symmetric])  | 
|
| 45934 | 2095  | 
|
| 53873 | 2096  | 
lemma ereal_of_enat_inf[simp]: "ereal_of_enat n = \<infinity> \<longleftrightarrow> n = \<infinity>"  | 
| 
50819
 
5601ae592679
added some ereal_of_enat_* lemmas (from $AFP/thys/Girth_Chromatic)
 
noschinl 
parents: 
50104 
diff
changeset
 | 
2097  | 
by (cases n) auto  | 
| 
 
5601ae592679
added some ereal_of_enat_* lemmas (from $AFP/thys/Girth_Chromatic)
 
noschinl 
parents: 
50104 
diff
changeset
 | 
2098  | 
|
| 53873 | 2099  | 
lemma ereal_of_enat_add: "ereal_of_enat (m + n) = ereal_of_enat m + ereal_of_enat n"  | 
2100  | 
by (cases m n rule: enat2_cases) auto  | 
|
| 45934 | 2101  | 
|
2102  | 
lemma ereal_of_enat_sub:  | 
|
| 53873 | 2103  | 
assumes "n \<le> m"  | 
2104  | 
shows "ereal_of_enat (m - n) = ereal_of_enat m - ereal_of_enat n "  | 
|
2105  | 
using assms by (cases m n rule: enat2_cases) auto  | 
|
| 45934 | 2106  | 
|
2107  | 
lemma ereal_of_enat_mult:  | 
|
2108  | 
"ereal_of_enat (m * n) = ereal_of_enat m * ereal_of_enat n"  | 
|
| 53873 | 2109  | 
by (cases m n rule: enat2_cases) auto  | 
| 45934 | 2110  | 
|
2111  | 
lemmas ereal_of_enat_pushin = ereal_of_enat_add ereal_of_enat_sub ereal_of_enat_mult  | 
|
2112  | 
lemmas ereal_of_enat_pushout = ereal_of_enat_pushin[symmetric]  | 
|
2113  | 
||
2114  | 
||
| 43920 | 2115  | 
subsection "Limits on @{typ ereal}"
 | 
| 41973 | 2116  | 
|
| 43920 | 2117  | 
lemma open_PInfty: "open A \<Longrightarrow> \<infinity> \<in> A \<Longrightarrow> (\<exists>x. {ereal x<..} \<subseteq> A)"
 | 
| 51000 | 2118  | 
unfolding open_ereal_generated  | 
2119  | 
proof (induct rule: generate_topology.induct)  | 
|
2120  | 
case (Int A B)  | 
|
| 
53374
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
53216 
diff
changeset
 | 
2121  | 
  then obtain x z where "\<infinity> \<in> A \<Longrightarrow> {ereal x <..} \<subseteq> A" "\<infinity> \<in> B \<Longrightarrow> {ereal z <..} \<subseteq> B"
 | 
| 
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
53216 
diff
changeset
 | 
2122  | 
by auto  | 
| 
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
53216 
diff
changeset
 | 
2123  | 
with Int show ?case  | 
| 51000 | 2124  | 
by (intro exI[of _ "max x z"]) fastforce  | 
2125  | 
next  | 
|
| 53873 | 2126  | 
case (Basis S)  | 
2127  | 
  {
 | 
|
2128  | 
fix x  | 
|
2129  | 
have "x \<noteq> \<infinity> \<Longrightarrow> \<exists>t. x \<le> ereal t"  | 
|
2130  | 
by (cases x) auto  | 
|
2131  | 
}  | 
|
2132  | 
moreover note Basis  | 
|
| 51000 | 2133  | 
ultimately show ?case  | 
2134  | 
by (auto split: ereal.split)  | 
|
2135  | 
qed (fastforce simp add: vimage_Union)+  | 
|
| 41973 | 2136  | 
|
| 43920 | 2137  | 
lemma open_MInfty: "open A \<Longrightarrow> -\<infinity> \<in> A \<Longrightarrow> (\<exists>x. {..<ereal x} \<subseteq> A)"
 | 
| 51000 | 2138  | 
unfolding open_ereal_generated  | 
2139  | 
proof (induct rule: generate_topology.induct)  | 
|
2140  | 
case (Int A B)  | 
|
| 
53374
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
53216 
diff
changeset
 | 
2141  | 
  then obtain x z where "-\<infinity> \<in> A \<Longrightarrow> {..< ereal x} \<subseteq> A" "-\<infinity> \<in> B \<Longrightarrow> {..< ereal z} \<subseteq> B"
 | 
| 
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
53216 
diff
changeset
 | 
2142  | 
by auto  | 
| 
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
53216 
diff
changeset
 | 
2143  | 
with Int show ?case  | 
| 51000 | 2144  | 
by (intro exI[of _ "min x z"]) fastforce  | 
2145  | 
next  | 
|
| 53873 | 2146  | 
case (Basis S)  | 
2147  | 
  {
 | 
|
2148  | 
fix x  | 
|
2149  | 
have "x \<noteq> - \<infinity> \<Longrightarrow> \<exists>t. ereal t \<le> x"  | 
|
2150  | 
by (cases x) auto  | 
|
2151  | 
}  | 
|
2152  | 
moreover note Basis  | 
|
| 51000 | 2153  | 
ultimately show ?case  | 
2154  | 
by (auto split: ereal.split)  | 
|
2155  | 
qed (fastforce simp add: vimage_Union)+  | 
|
2156  | 
||
2157  | 
lemma open_ereal_vimage: "open S \<Longrightarrow> open (ereal -` S)"  | 
|
| 
59452
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2158  | 
by (intro open_vimage continuous_intros)  | 
| 51000 | 2159  | 
|
2160  | 
lemma open_ereal: "open S \<Longrightarrow> open (ereal ` S)"  | 
|
2161  | 
unfolding open_generated_order[where 'a=real]  | 
|
2162  | 
proof (induct rule: generate_topology.induct)  | 
|
2163  | 
case (Basis S)  | 
|
| 53873 | 2164  | 
  moreover {
 | 
2165  | 
fix x  | 
|
2166  | 
    have "ereal ` {..< x} = { -\<infinity> <..< ereal x }"
 | 
|
2167  | 
apply auto  | 
|
2168  | 
apply (case_tac xa)  | 
|
2169  | 
apply auto  | 
|
2170  | 
done  | 
|
2171  | 
}  | 
|
2172  | 
  moreover {
 | 
|
2173  | 
fix x  | 
|
2174  | 
    have "ereal ` {x <..} = { ereal x <..< \<infinity> }"
 | 
|
2175  | 
apply auto  | 
|
2176  | 
apply (case_tac xa)  | 
|
2177  | 
apply auto  | 
|
2178  | 
done  | 
|
2179  | 
}  | 
|
| 51000 | 2180  | 
ultimately show ?case  | 
2181  | 
by auto  | 
|
2182  | 
qed (auto simp add: image_Union image_Int)  | 
|
2183  | 
||
| 
56993
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2184  | 
|
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2185  | 
lemma eventually_finite:  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2186  | 
fixes x :: ereal  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2187  | 
assumes "\<bar>x\<bar> \<noteq> \<infinity>" "(f ---> x) F"  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2188  | 
shows "eventually (\<lambda>x. \<bar>f x\<bar> \<noteq> \<infinity>) F"  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2189  | 
proof -  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2190  | 
have "(f ---> ereal (real x)) F"  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2191  | 
using assms by (cases x) auto  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2192  | 
then have "eventually (\<lambda>x. f x \<in> ereal ` UNIV) F"  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2193  | 
by (rule topological_tendstoD) (auto intro: open_ereal)  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2194  | 
also have "(\<lambda>x. f x \<in> ereal ` UNIV) = (\<lambda>x. \<bar>f x\<bar> \<noteq> \<infinity>)"  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2195  | 
by auto  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2196  | 
finally show ?thesis .  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2197  | 
qed  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2198  | 
|
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2199  | 
|
| 53873 | 2200  | 
lemma open_ereal_def:  | 
2201  | 
  "open A \<longleftrightarrow> open (ereal -` A) \<and> (\<infinity> \<in> A \<longrightarrow> (\<exists>x. {ereal x <..} \<subseteq> A)) \<and> (-\<infinity> \<in> A \<longrightarrow> (\<exists>x. {..<ereal x} \<subseteq> A))"
 | 
|
| 51000 | 2202  | 
(is "open A \<longleftrightarrow> ?rhs")  | 
2203  | 
proof  | 
|
| 53873 | 2204  | 
assume "open A"  | 
2205  | 
then show ?rhs  | 
|
| 51000 | 2206  | 
using open_PInfty open_MInfty open_ereal_vimage by auto  | 
2207  | 
next  | 
|
2208  | 
assume "?rhs"  | 
|
2209  | 
  then obtain x y where A: "open (ereal -` A)" "\<infinity> \<in> A \<Longrightarrow> {ereal x<..} \<subseteq> A" "-\<infinity> \<in> A \<Longrightarrow> {..< ereal y} \<subseteq> A"
 | 
|
2210  | 
by auto  | 
|
2211  | 
  have *: "A = ereal ` (ereal -` A) \<union> (if \<infinity> \<in> A then {ereal x<..} else {}) \<union> (if -\<infinity> \<in> A then {..< ereal y} else {})"
 | 
|
2212  | 
using A(2,3) by auto  | 
|
2213  | 
from open_ereal[OF A(1)] show "open A"  | 
|
2214  | 
by (subst *) (auto simp: open_Un)  | 
|
2215  | 
qed  | 
|
| 41973 | 2216  | 
|
| 53873 | 2217  | 
lemma open_PInfty2:  | 
2218  | 
assumes "open A"  | 
|
2219  | 
and "\<infinity> \<in> A"  | 
|
2220  | 
  obtains x where "{ereal x<..} \<subseteq> A"
 | 
|
| 41973 | 2221  | 
using open_PInfty[OF assms] by auto  | 
2222  | 
||
| 53873 | 2223  | 
lemma open_MInfty2:  | 
2224  | 
assumes "open A"  | 
|
2225  | 
and "-\<infinity> \<in> A"  | 
|
2226  | 
  obtains x where "{..<ereal x} \<subseteq> A"
 | 
|
| 41973 | 2227  | 
using open_MInfty[OF assms] by auto  | 
2228  | 
||
| 53873 | 2229  | 
lemma ereal_openE:  | 
2230  | 
assumes "open A"  | 
|
2231  | 
obtains x y where "open (ereal -` A)"  | 
|
2232  | 
    and "\<infinity> \<in> A \<Longrightarrow> {ereal x<..} \<subseteq> A"
 | 
|
2233  | 
    and "-\<infinity> \<in> A \<Longrightarrow> {..<ereal y} \<subseteq> A"
 | 
|
| 43920 | 2234  | 
using assms open_ereal_def by auto  | 
| 41973 | 2235  | 
|
| 51000 | 2236  | 
lemmas open_ereal_lessThan = open_lessThan[where 'a=ereal]  | 
2237  | 
lemmas open_ereal_greaterThan = open_greaterThan[where 'a=ereal]  | 
|
2238  | 
lemmas ereal_open_greaterThanLessThan = open_greaterThanLessThan[where 'a=ereal]  | 
|
2239  | 
lemmas closed_ereal_atLeast = closed_atLeast[where 'a=ereal]  | 
|
2240  | 
lemmas closed_ereal_atMost = closed_atMost[where 'a=ereal]  | 
|
2241  | 
lemmas closed_ereal_atLeastAtMost = closed_atLeastAtMost[where 'a=ereal]  | 
|
2242  | 
lemmas closed_ereal_singleton = closed_singleton[where 'a=ereal]  | 
|
| 53873 | 2243  | 
|
| 43920 | 2244  | 
lemma ereal_open_cont_interval:  | 
| 43923 | 2245  | 
fixes S :: "ereal set"  | 
| 53873 | 2246  | 
assumes "open S"  | 
2247  | 
and "x \<in> S"  | 
|
2248  | 
and "\<bar>x\<bar> \<noteq> \<infinity>"  | 
|
2249  | 
  obtains e where "e > 0" and "{x-e <..< x+e} \<subseteq> S"
 | 
|
2250  | 
proof -  | 
|
2251  | 
from `open S`  | 
|
2252  | 
have "open (ereal -` S)"  | 
|
2253  | 
by (rule ereal_openE)  | 
|
2254  | 
then obtain e where "e > 0" and e: "\<And>y. dist y (real x) < e \<Longrightarrow> ereal y \<in> S"  | 
|
| 
41980
 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 
hoelzl 
parents: 
41979 
diff
changeset
 | 
2255  | 
using assms unfolding open_dist by force  | 
| 41975 | 2256  | 
show thesis  | 
2257  | 
proof (intro that subsetI)  | 
|
| 53873 | 2258  | 
show "0 < ereal e"  | 
2259  | 
using `0 < e` by auto  | 
|
2260  | 
fix y  | 
|
2261  | 
    assume "y \<in> {x - ereal e<..<x + ereal e}"
 | 
|
| 43920 | 2262  | 
with assms obtain t where "y = ereal t" "dist t (real x) < e"  | 
| 53873 | 2263  | 
by (cases y) (auto simp: dist_real_def)  | 
2264  | 
then show "y \<in> S"  | 
|
2265  | 
using e[of t] by auto  | 
|
| 41975 | 2266  | 
qed  | 
| 41973 | 2267  | 
qed  | 
2268  | 
||
| 43920 | 2269  | 
lemma ereal_open_cont_interval2:  | 
| 43923 | 2270  | 
fixes S :: "ereal set"  | 
| 53873 | 2271  | 
assumes "open S"  | 
2272  | 
and "x \<in> S"  | 
|
2273  | 
and x: "\<bar>x\<bar> \<noteq> \<infinity>"  | 
|
2274  | 
  obtains a b where "a < x" and "x < b" and "{a <..< b} \<subseteq> S"
 | 
|
| 53381 | 2275  | 
proof -  | 
2276  | 
  obtain e where "0 < e" "{x - e<..<x + e} \<subseteq> S"
 | 
|
2277  | 
using assms by (rule ereal_open_cont_interval)  | 
|
| 53873 | 2278  | 
with that[of "x - e" "x + e"] ereal_between[OF x, of e]  | 
2279  | 
show thesis  | 
|
2280  | 
by auto  | 
|
| 41973 | 2281  | 
qed  | 
2282  | 
||
2283  | 
subsubsection {* Convergent sequences *}
 | 
|
2284  | 
||
| 43920 | 2285  | 
lemma lim_real_of_ereal[simp]:  | 
2286  | 
assumes lim: "(f ---> ereal x) net"  | 
|
| 41973 | 2287  | 
shows "((\<lambda>x. real (f x)) ---> x) net"  | 
2288  | 
proof (intro topological_tendstoI)  | 
|
| 53873 | 2289  | 
fix S  | 
2290  | 
assume "open S" and "x \<in> S"  | 
|
| 43920 | 2291  | 
then have S: "open S" "ereal x \<in> ereal ` S"  | 
| 41973 | 2292  | 
by (simp_all add: inj_image_mem_iff)  | 
| 53873 | 2293  | 
have "\<forall>x. f x \<in> ereal ` S \<longrightarrow> real (f x) \<in> S"  | 
2294  | 
by auto  | 
|
| 43920 | 2295  | 
from this lim[THEN topological_tendstoD, OF open_ereal, OF S]  | 
| 41973 | 2296  | 
show "eventually (\<lambda>x. real (f x) \<in> S) net"  | 
2297  | 
by (rule eventually_mono)  | 
|
2298  | 
qed  | 
|
2299  | 
||
| 
59452
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2300  | 
lemma lim_ereal[simp]: "((\<lambda>n. ereal (f n)) ---> ereal x) net \<longleftrightarrow> (f ---> x) net"  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2301  | 
by (auto dest!: lim_real_of_ereal)  | 
| 
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2302  | 
|
| 51000 | 2303  | 
lemma tendsto_PInfty: "(f ---> \<infinity>) F \<longleftrightarrow> (\<forall>r. eventually (\<lambda>x. ereal r < f x) F)"  | 
| 
51022
 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 
hoelzl 
parents: 
51000 
diff
changeset
 | 
2304  | 
proof -  | 
| 53873 | 2305  | 
  {
 | 
2306  | 
fix l :: ereal  | 
|
2307  | 
assume "\<forall>r. eventually (\<lambda>x. ereal r < f x) F"  | 
|
2308  | 
from this[THEN spec, of "real l"] have "l \<noteq> \<infinity> \<Longrightarrow> eventually (\<lambda>x. l < f x) F"  | 
|
2309  | 
by (cases l) (auto elim: eventually_elim1)  | 
|
2310  | 
}  | 
|
| 
51022
 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 
hoelzl 
parents: 
51000 
diff
changeset
 | 
2311  | 
then show ?thesis  | 
| 
 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 
hoelzl 
parents: 
51000 
diff
changeset
 | 
2312  | 
by (auto simp: order_tendsto_iff)  | 
| 41973 | 2313  | 
qed  | 
2314  | 
||
| 57025 | 2315  | 
lemma tendsto_PInfty_eq_at_top:  | 
2316  | 
"((\<lambda>z. ereal (f z)) ---> \<infinity>) F \<longleftrightarrow> (LIM z F. f z :> at_top)"  | 
|
2317  | 
unfolding tendsto_PInfty filterlim_at_top_dense by simp  | 
|
2318  | 
||
| 51000 | 2319  | 
lemma tendsto_MInfty: "(f ---> -\<infinity>) F \<longleftrightarrow> (\<forall>r. eventually (\<lambda>x. f x < ereal r) F)"  | 
2320  | 
unfolding tendsto_def  | 
|
2321  | 
proof safe  | 
|
| 53381 | 2322  | 
fix S :: "ereal set"  | 
2323  | 
assume "open S" "-\<infinity> \<in> S"  | 
|
2324  | 
  from open_MInfty[OF this] obtain B where "{..<ereal B} \<subseteq> S" ..
 | 
|
| 51000 | 2325  | 
moreover  | 
2326  | 
assume "\<forall>r::real. eventually (\<lambda>z. f z < r) F"  | 
|
| 53873 | 2327  | 
  then have "eventually (\<lambda>z. f z \<in> {..< B}) F"
 | 
2328  | 
by auto  | 
|
2329  | 
ultimately show "eventually (\<lambda>z. f z \<in> S) F"  | 
|
2330  | 
by (auto elim!: eventually_elim1)  | 
|
| 51000 | 2331  | 
next  | 
| 53873 | 2332  | 
fix x  | 
2333  | 
assume "\<forall>S. open S \<longrightarrow> -\<infinity> \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) F"  | 
|
2334  | 
  from this[rule_format, of "{..< ereal x}"] show "eventually (\<lambda>y. f y < ereal x) F"
 | 
|
2335  | 
by auto  | 
|
| 41973 | 2336  | 
qed  | 
2337  | 
||
| 51000 | 2338  | 
lemma Lim_PInfty: "f ----> \<infinity> \<longleftrightarrow> (\<forall>B. \<exists>N. \<forall>n\<ge>N. f n \<ge> ereal B)"  | 
2339  | 
unfolding tendsto_PInfty eventually_sequentially  | 
|
2340  | 
proof safe  | 
|
| 53873 | 2341  | 
fix r  | 
2342  | 
assume "\<forall>r. \<exists>N. \<forall>n\<ge>N. ereal r \<le> f n"  | 
|
2343  | 
then obtain N where "\<forall>n\<ge>N. ereal (r + 1) \<le> f n"  | 
|
2344  | 
by blast  | 
|
2345  | 
moreover have "ereal r < ereal (r + 1)"  | 
|
2346  | 
by auto  | 
|
| 51000 | 2347  | 
ultimately show "\<exists>N. \<forall>n\<ge>N. ereal r < f n"  | 
2348  | 
by (blast intro: less_le_trans)  | 
|
2349  | 
qed (blast intro: less_imp_le)  | 
|
| 41973 | 2350  | 
|
| 51000 | 2351  | 
lemma Lim_MInfty: "f ----> -\<infinity> \<longleftrightarrow> (\<forall>B. \<exists>N. \<forall>n\<ge>N. ereal B \<ge> f n)"  | 
2352  | 
unfolding tendsto_MInfty eventually_sequentially  | 
|
2353  | 
proof safe  | 
|
| 53873 | 2354  | 
fix r  | 
2355  | 
assume "\<forall>r. \<exists>N. \<forall>n\<ge>N. f n \<le> ereal r"  | 
|
2356  | 
then obtain N where "\<forall>n\<ge>N. f n \<le> ereal (r - 1)"  | 
|
2357  | 
by blast  | 
|
2358  | 
moreover have "ereal (r - 1) < ereal r"  | 
|
2359  | 
by auto  | 
|
| 51000 | 2360  | 
ultimately show "\<exists>N. \<forall>n\<ge>N. f n < ereal r"  | 
2361  | 
by (blast intro: le_less_trans)  | 
|
2362  | 
qed (blast intro: less_imp_le)  | 
|
| 41973 | 2363  | 
|
| 51000 | 2364  | 
lemma Lim_bounded_PInfty: "f ----> l \<Longrightarrow> (\<And>n. f n \<le> ereal B) \<Longrightarrow> l \<noteq> \<infinity>"  | 
2365  | 
using LIMSEQ_le_const2[of f l "ereal B"] by auto  | 
|
| 41973 | 2366  | 
|
| 51000 | 2367  | 
lemma Lim_bounded_MInfty: "f ----> l \<Longrightarrow> (\<And>n. ereal B \<le> f n) \<Longrightarrow> l \<noteq> -\<infinity>"  | 
2368  | 
using LIMSEQ_le_const[of f l "ereal B"] by auto  | 
|
| 41973 | 2369  | 
|
2370  | 
lemma tendsto_explicit:  | 
|
| 53873 | 2371  | 
"f ----> f0 \<longleftrightarrow> (\<forall>S. open S \<longrightarrow> f0 \<in> S \<longrightarrow> (\<exists>N. \<forall>n\<ge>N. f n \<in> S))"  | 
| 41973 | 2372  | 
unfolding tendsto_def eventually_sequentially by auto  | 
2373  | 
||
| 53873 | 2374  | 
lemma Lim_bounded_PInfty2: "f ----> l \<Longrightarrow> \<forall>n\<ge>N. f n \<le> ereal B \<Longrightarrow> l \<noteq> \<infinity>"  | 
| 51000 | 2375  | 
using LIMSEQ_le_const2[of f l "ereal B"] by fastforce  | 
| 41973 | 2376  | 
|
| 53873 | 2377  | 
lemma Lim_bounded_ereal: "f ----> (l :: 'a::linorder_topology) \<Longrightarrow> \<forall>n\<ge>M. f n \<le> C \<Longrightarrow> l \<le> C"  | 
| 51000 | 2378  | 
by (intro LIMSEQ_le_const2) auto  | 
| 41973 | 2379  | 
|
| 51351 | 2380  | 
lemma Lim_bounded2_ereal:  | 
| 53873 | 2381  | 
assumes lim:"f ----> (l :: 'a::linorder_topology)"  | 
2382  | 
and ge: "\<forall>n\<ge>N. f n \<ge> C"  | 
|
2383  | 
shows "l \<ge> C"  | 
|
| 51351 | 2384  | 
using ge  | 
2385  | 
by (intro tendsto_le[OF trivial_limit_sequentially lim tendsto_const])  | 
|
2386  | 
(auto simp: eventually_sequentially)  | 
|
2387  | 
||
| 43920 | 2388  | 
lemma real_of_ereal_mult[simp]:  | 
| 53873 | 2389  | 
fixes a b :: ereal  | 
2390  | 
shows "real (a * b) = real a * real b"  | 
|
| 43920 | 2391  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
| 41973 | 2392  | 
|
| 43920 | 2393  | 
lemma real_of_ereal_eq_0:  | 
| 53873 | 2394  | 
fixes x :: ereal  | 
2395  | 
shows "real x = 0 \<longleftrightarrow> x = \<infinity> \<or> x = -\<infinity> \<or> x = 0"  | 
|
| 41973 | 2396  | 
by (cases x) auto  | 
2397  | 
||
| 43920 | 2398  | 
lemma tendsto_ereal_realD:  | 
2399  | 
fixes f :: "'a \<Rightarrow> ereal"  | 
|
| 53873 | 2400  | 
assumes "x \<noteq> 0"  | 
2401  | 
and tendsto: "((\<lambda>x. ereal (real (f x))) ---> x) net"  | 
|
| 41973 | 2402  | 
shows "(f ---> x) net"  | 
2403  | 
proof (intro topological_tendstoI)  | 
|
| 53873 | 2404  | 
fix S  | 
2405  | 
assume S: "open S" "x \<in> S"  | 
|
2406  | 
  with `x \<noteq> 0` have "open (S - {0})" "x \<in> S - {0}"
 | 
|
2407  | 
by auto  | 
|
| 41973 | 2408  | 
from tendsto[THEN topological_tendstoD, OF this]  | 
2409  | 
show "eventually (\<lambda>x. f x \<in> S) net"  | 
|
| 44142 | 2410  | 
by (rule eventually_rev_mp) (auto simp: ereal_real)  | 
| 41973 | 2411  | 
qed  | 
2412  | 
||
| 43920 | 2413  | 
lemma tendsto_ereal_realI:  | 
2414  | 
fixes f :: "'a \<Rightarrow> ereal"  | 
|
| 41976 | 2415  | 
assumes x: "\<bar>x\<bar> \<noteq> \<infinity>" and tendsto: "(f ---> x) net"  | 
| 43920 | 2416  | 
shows "((\<lambda>x. ereal (real (f x))) ---> x) net"  | 
| 41973 | 2417  | 
proof (intro topological_tendstoI)  | 
| 53873 | 2418  | 
fix S  | 
2419  | 
assume "open S" and "x \<in> S"  | 
|
2420  | 
  with x have "open (S - {\<infinity>, -\<infinity>})" "x \<in> S - {\<infinity>, -\<infinity>}"
 | 
|
2421  | 
by auto  | 
|
| 41973 | 2422  | 
from tendsto[THEN topological_tendstoD, OF this]  | 
| 43920 | 2423  | 
show "eventually (\<lambda>x. ereal (real (f x)) \<in> S) net"  | 
2424  | 
by (elim eventually_elim1) (auto simp: ereal_real)  | 
|
| 41973 | 2425  | 
qed  | 
2426  | 
||
| 43920 | 2427  | 
lemma ereal_mult_cancel_left:  | 
| 53873 | 2428  | 
fixes a b c :: ereal  | 
2429  | 
shows "a * b = a * c \<longleftrightarrow> (\<bar>a\<bar> = \<infinity> \<and> 0 < b * c) \<or> a = 0 \<or> b = c"  | 
|
2430  | 
by (cases rule: ereal3_cases[of a b c]) (simp_all add: zero_less_mult_iff)  | 
|
| 41973 | 2431  | 
|
| 
56993
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2432  | 
lemma tendsto_add_ereal:  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2433  | 
fixes x y :: ereal  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2434  | 
assumes x: "\<bar>x\<bar> \<noteq> \<infinity>" and y: "\<bar>y\<bar> \<noteq> \<infinity>"  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2435  | 
assumes f: "(f ---> x) F" and g: "(g ---> y) F"  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2436  | 
shows "((\<lambda>x. f x + g x) ---> x + y) F"  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2437  | 
proof -  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2438  | 
from x obtain r where x': "x = ereal r" by (cases x) auto  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2439  | 
with f have "((\<lambda>i. real (f i)) ---> r) F" by simp  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2440  | 
moreover  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2441  | 
from y obtain p where y': "y = ereal p" by (cases y) auto  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2442  | 
with g have "((\<lambda>i. real (g i)) ---> p) F" by simp  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2443  | 
ultimately have "((\<lambda>i. real (f i) + real (g i)) ---> r + p) F"  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2444  | 
by (rule tendsto_add)  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2445  | 
moreover  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2446  | 
from eventually_finite[OF x f] eventually_finite[OF y g]  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2447  | 
have "eventually (\<lambda>x. f x + g x = ereal (real (f x) + real (g x))) F"  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2448  | 
by eventually_elim auto  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2449  | 
ultimately show ?thesis  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2450  | 
by (simp add: x' y' cong: filterlim_cong)  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2451  | 
qed  | 
| 
 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 
hoelzl 
parents: 
56927 
diff
changeset
 | 
2452  | 
|
| 43920 | 2453  | 
lemma ereal_inj_affinity:  | 
| 43923 | 2454  | 
fixes m t :: ereal  | 
| 53873 | 2455  | 
assumes "\<bar>m\<bar> \<noteq> \<infinity>"  | 
2456  | 
and "m \<noteq> 0"  | 
|
2457  | 
and "\<bar>t\<bar> \<noteq> \<infinity>"  | 
|
| 41973 | 2458  | 
shows "inj_on (\<lambda>x. m * x + t) A"  | 
2459  | 
using assms  | 
|
| 43920 | 2460  | 
by (cases rule: ereal2_cases[of m t])  | 
2461  | 
(auto intro!: inj_onI simp: ereal_add_cancel_right ereal_mult_cancel_left)  | 
|
| 41973 | 2462  | 
|
| 43920 | 2463  | 
lemma ereal_PInfty_eq_plus[simp]:  | 
| 43923 | 2464  | 
fixes a b :: ereal  | 
| 41973 | 2465  | 
shows "\<infinity> = a + b \<longleftrightarrow> a = \<infinity> \<or> b = \<infinity>"  | 
| 43920 | 2466  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
| 41973 | 2467  | 
|
| 43920 | 2468  | 
lemma ereal_MInfty_eq_plus[simp]:  | 
| 43923 | 2469  | 
fixes a b :: ereal  | 
| 41973 | 2470  | 
shows "-\<infinity> = a + b \<longleftrightarrow> (a = -\<infinity> \<and> b \<noteq> \<infinity>) \<or> (b = -\<infinity> \<and> a \<noteq> \<infinity>)"  | 
| 43920 | 2471  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
| 41973 | 2472  | 
|
| 43920 | 2473  | 
lemma ereal_less_divide_pos:  | 
| 43923 | 2474  | 
fixes x y :: ereal  | 
2475  | 
shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y < z / x \<longleftrightarrow> x * y < z"  | 
|
| 43920 | 2476  | 
by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)  | 
| 41973 | 2477  | 
|
| 43920 | 2478  | 
lemma ereal_divide_less_pos:  | 
| 43923 | 2479  | 
fixes x y z :: ereal  | 
2480  | 
shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y / x < z \<longleftrightarrow> y < x * z"  | 
|
| 43920 | 2481  | 
by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)  | 
| 41973 | 2482  | 
|
| 43920 | 2483  | 
lemma ereal_divide_eq:  | 
| 43923 | 2484  | 
fixes a b c :: ereal  | 
2485  | 
shows "b \<noteq> 0 \<Longrightarrow> \<bar>b\<bar> \<noteq> \<infinity> \<Longrightarrow> a / b = c \<longleftrightarrow> a = b * c"  | 
|
| 43920 | 2486  | 
by (cases rule: ereal3_cases[of a b c])  | 
| 41973 | 2487  | 
(simp_all add: field_simps)  | 
2488  | 
||
| 43923 | 2489  | 
lemma ereal_inverse_not_MInfty[simp]: "inverse (a::ereal) \<noteq> -\<infinity>"  | 
| 41973 | 2490  | 
by (cases a) auto  | 
2491  | 
||
| 43920 | 2492  | 
lemma ereal_mult_m1[simp]: "x * ereal (-1) = -x"  | 
| 41973 | 2493  | 
by (cases x) auto  | 
2494  | 
||
| 53873 | 2495  | 
lemma ereal_real':  | 
2496  | 
assumes "\<bar>x\<bar> \<noteq> \<infinity>"  | 
|
2497  | 
shows "ereal (real x) = x"  | 
|
| 41976 | 2498  | 
using assms by auto  | 
| 41973 | 2499  | 
|
| 53873 | 2500  | 
lemma real_ereal_id: "real \<circ> ereal = id"  | 
2501  | 
proof -  | 
|
2502  | 
  {
 | 
|
2503  | 
fix x  | 
|
2504  | 
have "(real o ereal) x = id x"  | 
|
2505  | 
by auto  | 
|
2506  | 
}  | 
|
2507  | 
then show ?thesis  | 
|
2508  | 
using ext by blast  | 
|
| 41973 | 2509  | 
qed  | 
2510  | 
||
| 43923 | 2511  | 
lemma open_image_ereal: "open(UNIV-{ \<infinity> , (-\<infinity> :: ereal)})"
 | 
| 53873 | 2512  | 
by (metis range_ereal open_ereal open_UNIV)  | 
| 41973 | 2513  | 
|
| 43920 | 2514  | 
lemma ereal_le_distrib:  | 
| 53873 | 2515  | 
fixes a b c :: ereal  | 
2516  | 
shows "c * (a + b) \<le> c * a + c * b"  | 
|
| 43920 | 2517  | 
by (cases rule: ereal3_cases[of a b c])  | 
| 41973 | 2518  | 
(auto simp add: field_simps not_le mult_le_0_iff mult_less_0_iff)  | 
2519  | 
||
| 43920 | 2520  | 
lemma ereal_pos_distrib:  | 
| 53873 | 2521  | 
fixes a b c :: ereal  | 
2522  | 
assumes "0 \<le> c"  | 
|
2523  | 
and "c \<noteq> \<infinity>"  | 
|
2524  | 
shows "c * (a + b) = c * a + c * b"  | 
|
2525  | 
using assms  | 
|
2526  | 
by (cases rule: ereal3_cases[of a b c])  | 
|
2527  | 
(auto simp add: field_simps not_le mult_le_0_iff mult_less_0_iff)  | 
|
| 41973 | 2528  | 
|
| 53873 | 2529  | 
lemma ereal_max_mono: "(a::ereal) \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> max a c \<le> max b d"  | 
| 43920 | 2530  | 
by (metis sup_ereal_def sup_mono)  | 
| 41973 | 2531  | 
|
| 53873 | 2532  | 
lemma ereal_max_least: "(a::ereal) \<le> x \<Longrightarrow> c \<le> x \<Longrightarrow> max a c \<le> x"  | 
| 43920 | 2533  | 
by (metis sup_ereal_def sup_least)  | 
| 41973 | 2534  | 
|
| 51000 | 2535  | 
lemma ereal_LimI_finite:  | 
2536  | 
fixes x :: ereal  | 
|
2537  | 
assumes "\<bar>x\<bar> \<noteq> \<infinity>"  | 
|
| 53873 | 2538  | 
and "\<And>r. 0 < r \<Longrightarrow> \<exists>N. \<forall>n\<ge>N. u n < x + r \<and> x < u n + r"  | 
| 51000 | 2539  | 
shows "u ----> x"  | 
2540  | 
proof (rule topological_tendstoI, unfold eventually_sequentially)  | 
|
| 53873 | 2541  | 
obtain rx where rx: "x = ereal rx"  | 
2542  | 
using assms by (cases x) auto  | 
|
2543  | 
fix S  | 
|
2544  | 
assume "open S" and "x \<in> S"  | 
|
2545  | 
then have "open (ereal -` S)"  | 
|
2546  | 
unfolding open_ereal_def by auto  | 
|
2547  | 
with `x \<in> S` obtain r where "0 < r" and dist: "\<And>y. dist y rx < r \<Longrightarrow> ereal y \<in> S"  | 
|
2548  | 
unfolding open_real_def rx by auto  | 
|
| 51000 | 2549  | 
then obtain n where  | 
| 53873 | 2550  | 
upper: "\<And>N. n \<le> N \<Longrightarrow> u N < x + ereal r" and  | 
2551  | 
lower: "\<And>N. n \<le> N \<Longrightarrow> x < u N + ereal r"  | 
|
2552  | 
using assms(2)[of "ereal r"] by auto  | 
|
2553  | 
show "\<exists>N. \<forall>n\<ge>N. u n \<in> S"  | 
|
| 51000 | 2554  | 
proof (safe intro!: exI[of _ n])  | 
| 53873 | 2555  | 
fix N  | 
2556  | 
assume "n \<le> N"  | 
|
| 51000 | 2557  | 
from upper[OF this] lower[OF this] assms `0 < r`  | 
| 53873 | 2558  | 
    have "u N \<notin> {\<infinity>,(-\<infinity>)}"
 | 
2559  | 
by auto  | 
|
2560  | 
then obtain ra where ra_def: "(u N) = ereal ra"  | 
|
2561  | 
by (cases "u N") auto  | 
|
2562  | 
then have "rx < ra + r" and "ra < rx + r"  | 
|
2563  | 
using rx assms `0 < r` lower[OF `n \<le> N`] upper[OF `n \<le> N`]  | 
|
2564  | 
by auto  | 
|
2565  | 
then have "dist (real (u N)) rx < r"  | 
|
2566  | 
using rx ra_def  | 
|
| 51000 | 2567  | 
by (auto simp: dist_real_def abs_diff_less_iff field_simps)  | 
| 53873 | 2568  | 
from dist[OF this] show "u N \<in> S"  | 
2569  | 
      using `u N  \<notin> {\<infinity>, -\<infinity>}`
 | 
|
| 51000 | 2570  | 
by (auto simp: ereal_real split: split_if_asm)  | 
2571  | 
qed  | 
|
2572  | 
qed  | 
|
2573  | 
||
2574  | 
lemma tendsto_obtains_N:  | 
|
2575  | 
assumes "f ----> f0"  | 
|
| 53873 | 2576  | 
assumes "open S"  | 
2577  | 
and "f0 \<in> S"  | 
|
2578  | 
obtains N where "\<forall>n\<ge>N. f n \<in> S"  | 
|
| 
51329
 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 
hoelzl 
parents: 
51328 
diff
changeset
 | 
2579  | 
using assms using tendsto_def  | 
| 51000 | 2580  | 
using tendsto_explicit[of f f0] assms by auto  | 
2581  | 
||
2582  | 
lemma ereal_LimI_finite_iff:  | 
|
2583  | 
fixes x :: ereal  | 
|
2584  | 
assumes "\<bar>x\<bar> \<noteq> \<infinity>"  | 
|
| 53873 | 2585  | 
shows "u ----> x \<longleftrightarrow> (\<forall>r. 0 < r \<longrightarrow> (\<exists>N. \<forall>n\<ge>N. u n < x + r \<and> x < u n + r))"  | 
2586  | 
(is "?lhs \<longleftrightarrow> ?rhs")  | 
|
| 51000 | 2587  | 
proof  | 
2588  | 
assume lim: "u ----> x"  | 
|
| 53873 | 2589  | 
  {
 | 
2590  | 
fix r :: ereal  | 
|
2591  | 
assume "r > 0"  | 
|
2592  | 
    then obtain N where "\<forall>n\<ge>N. u n \<in> {x - r <..< x + r}"
 | 
|
| 51000 | 2593  | 
       apply (subst tendsto_obtains_N[of u x "{x - r <..< x + r}"])
 | 
| 53873 | 2594  | 
using lim ereal_between[of x r] assms `r > 0`  | 
2595  | 
apply auto  | 
|
2596  | 
done  | 
|
2597  | 
then have "\<exists>N. \<forall>n\<ge>N. u n < x + r \<and> x < u n + r"  | 
|
2598  | 
using ereal_minus_less[of r x]  | 
|
2599  | 
by (cases r) auto  | 
|
2600  | 
}  | 
|
2601  | 
then show ?rhs  | 
|
2602  | 
by auto  | 
|
| 51000 | 2603  | 
next  | 
| 53873 | 2604  | 
assume ?rhs  | 
2605  | 
then show "u ----> x"  | 
|
| 51000 | 2606  | 
using ereal_LimI_finite[of x] assms by auto  | 
2607  | 
qed  | 
|
2608  | 
||
| 
51340
 
5e6296afe08d
move Liminf / Limsup lemmas on complete_lattices to its own file
 
hoelzl 
parents: 
51329 
diff
changeset
 | 
2609  | 
lemma ereal_Limsup_uminus:  | 
| 53873 | 2610  | 
fixes f :: "'a \<Rightarrow> ereal"  | 
2611  | 
shows "Limsup net (\<lambda>x. - (f x)) = - Liminf net f"  | 
|
| 
59452
 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 
hoelzl 
parents: 
59425 
diff
changeset
 | 
2612  | 
unfolding Limsup_def Liminf_def ereal_SUP_uminus ereal_INF_uminus_eq ..  | 
| 51000 | 2613  | 
|
| 
51340
 
5e6296afe08d
move Liminf / Limsup lemmas on complete_lattices to its own file
 
hoelzl 
parents: 
51329 
diff
changeset
 | 
2614  | 
lemma liminf_bounded_iff:  | 
| 
 
5e6296afe08d
move Liminf / Limsup lemmas on complete_lattices to its own file
 
hoelzl 
parents: 
51329 
diff
changeset
 | 
2615  | 
fixes x :: "nat \<Rightarrow> ereal"  | 
| 53873 | 2616  | 
shows "C \<le> liminf x \<longleftrightarrow> (\<forall>B<C. \<exists>N. \<forall>n\<ge>N. B < x n)"  | 
2617  | 
(is "?lhs \<longleftrightarrow> ?rhs")  | 
|
| 
51340
 
5e6296afe08d
move Liminf / Limsup lemmas on complete_lattices to its own file
 
hoelzl 
parents: 
51329 
diff
changeset
 | 
2618  | 
unfolding le_Liminf_iff eventually_sequentially ..  | 
| 51000 | 2619  | 
|
| 59679 | 2620  | 
lemma Liminf_add_le:  | 
2621  | 
fixes f g :: "_ \<Rightarrow> ereal"  | 
|
2622  | 
assumes F: "F \<noteq> bot"  | 
|
2623  | 
assumes ev: "eventually (\<lambda>x. 0 \<le> f x) F" "eventually (\<lambda>x. 0 \<le> g x) F"  | 
|
2624  | 
shows "Liminf F f + Liminf F g \<le> Liminf F (\<lambda>x. f x + g x)"  | 
|
2625  | 
unfolding Liminf_def  | 
|
2626  | 
proof (subst SUP_ereal_add_left[symmetric])  | 
|
2627  | 
  let ?F = "{P. eventually P F}"
 | 
|
2628  | 
let ?INF = "\<lambda>P g. INFIMUM (Collect P) g"  | 
|
2629  | 
  show "?F \<noteq> {}"
 | 
|
2630  | 
by (auto intro: eventually_True)  | 
|
2631  | 
show "(SUP P:?F. ?INF P g) \<noteq> - \<infinity>"  | 
|
2632  | 
unfolding bot_ereal_def[symmetric] SUP_bot_conv INF_eq_bot_iff  | 
|
2633  | 
by (auto intro!: exI[of _ 0] ev simp: bot_ereal_def)  | 
|
2634  | 
have "(SUP P:?F. ?INF P f + (SUP P:?F. ?INF P g)) \<le> (SUP P:?F. (SUP P':?F. ?INF P f + ?INF P' g))"  | 
|
2635  | 
proof (safe intro!: SUP_mono bexI[of _ "\<lambda>x. P x \<and> 0 \<le> f x" for P])  | 
|
2636  | 
fix P let ?P' = "\<lambda>x. P x \<and> 0 \<le> f x"  | 
|
2637  | 
assume "eventually P F"  | 
|
2638  | 
with ev show "eventually ?P' F"  | 
|
2639  | 
by eventually_elim auto  | 
|
2640  | 
have "?INF P f + (SUP P:?F. ?INF P g) \<le> ?INF ?P' f + (SUP P:?F. ?INF P g)"  | 
|
2641  | 
by (intro ereal_add_mono INF_mono) auto  | 
|
2642  | 
also have "\<dots> = (SUP P':?F. ?INF ?P' f + ?INF P' g)"  | 
|
2643  | 
proof (rule SUP_ereal_add_right[symmetric])  | 
|
2644  | 
      show "INFIMUM {x. P x \<and> 0 \<le> f x} f \<noteq> - \<infinity>"
 | 
|
2645  | 
unfolding bot_ereal_def[symmetric] INF_eq_bot_iff  | 
|
2646  | 
by (auto intro!: exI[of _ 0] ev simp: bot_ereal_def)  | 
|
2647  | 
qed fact  | 
|
2648  | 
finally show "?INF P f + (SUP P:?F. ?INF P g) \<le> (SUP P':?F. ?INF ?P' f + ?INF P' g)" .  | 
|
2649  | 
qed  | 
|
2650  | 
also have "\<dots> \<le> (SUP P:?F. INF x:Collect P. f x + g x)"  | 
|
2651  | 
proof (safe intro!: SUP_least)  | 
|
2652  | 
fix P Q assume *: "eventually P F" "eventually Q F"  | 
|
2653  | 
show "?INF P f + ?INF Q g \<le> (SUP P:?F. INF x:Collect P. f x + g x)"  | 
|
2654  | 
proof (rule SUP_upper2)  | 
|
2655  | 
show "(\<lambda>x. P x \<and> Q x) \<in> ?F"  | 
|
2656  | 
using * by (auto simp: eventually_conj)  | 
|
2657  | 
      show "?INF P f + ?INF Q g \<le> (INF x:{x. P x \<and> Q x}. f x + g x)"
 | 
|
2658  | 
by (intro INF_greatest ereal_add_mono) (auto intro: INF_lower)  | 
|
2659  | 
qed  | 
|
2660  | 
qed  | 
|
2661  | 
finally show "(SUP P:?F. ?INF P f + (SUP P:?F. ?INF P g)) \<le> (SUP P:?F. INF x:Collect P. f x + g x)" .  | 
|
2662  | 
qed  | 
|
2663  | 
||
| 60060 | 2664  | 
lemma Sup_ereal_mult_right':  | 
2665  | 
  assumes nonempty: "Y \<noteq> {}"
 | 
|
2666  | 
and x: "x \<ge> 0"  | 
|
2667  | 
shows "(SUP i:Y. f i) * ereal x = (SUP i:Y. f i * ereal x)" (is "?lhs = ?rhs")  | 
|
2668  | 
proof(cases "x = 0")  | 
|
2669  | 
case True thus ?thesis by(auto simp add: nonempty zero_ereal_def[symmetric])  | 
|
2670  | 
next  | 
|
2671  | 
case False  | 
|
2672  | 
show ?thesis  | 
|
2673  | 
proof(rule antisym)  | 
|
2674  | 
show "?rhs \<le> ?lhs"  | 
|
2675  | 
by(rule SUP_least)(simp add: ereal_mult_right_mono SUP_upper x)  | 
|
2676  | 
next  | 
|
2677  | 
have "?lhs / ereal x = (SUP i:Y. f i) * (ereal x / ereal x)" by(simp only: ereal_times_divide_eq)  | 
|
2678  | 
also have "\<dots> = (SUP i:Y. f i)" using False by simp  | 
|
2679  | 
also have "\<dots> \<le> ?rhs / x"  | 
|
2680  | 
proof(rule SUP_least)  | 
|
2681  | 
fix i  | 
|
2682  | 
assume "i \<in> Y"  | 
|
2683  | 
have "f i = f i * (ereal x / ereal x)" using False by simp  | 
|
2684  | 
also have "\<dots> = f i * x / x" by(simp only: ereal_times_divide_eq)  | 
|
2685  | 
also from \<open>i \<in> Y\<close> have "f i * x \<le> ?rhs" by(rule SUP_upper)  | 
|
2686  | 
hence "f i * x / x \<le> ?rhs / x" using x False by simp  | 
|
2687  | 
finally show "f i \<le> ?rhs / x" .  | 
|
2688  | 
qed  | 
|
2689  | 
finally have "(?lhs / x) * x \<le> (?rhs / x) * x"  | 
|
2690  | 
by(rule ereal_mult_right_mono)(simp add: x)  | 
|
2691  | 
also have "\<dots> = ?rhs" using False ereal_divide_eq mult.commute by force  | 
|
2692  | 
also have "(?lhs / x) * x = ?lhs" using False ereal_divide_eq mult.commute by force  | 
|
2693  | 
finally show "?lhs \<le> ?rhs" .  | 
|
2694  | 
qed  | 
|
2695  | 
qed  | 
|
| 53873 | 2696  | 
|
| 43933 | 2697  | 
subsubsection {* Tests for code generator *}
 | 
2698  | 
||
2699  | 
(* A small list of simple arithmetic expressions *)  | 
|
2700  | 
||
| 56927 | 2701  | 
value "- \<infinity> :: ereal"  | 
2702  | 
value "\<bar>-\<infinity>\<bar> :: ereal"  | 
|
2703  | 
value "4 + 5 / 4 - ereal 2 :: ereal"  | 
|
2704  | 
value "ereal 3 < \<infinity>"  | 
|
2705  | 
value "real (\<infinity>::ereal) = 0"  | 
|
| 43933 | 2706  | 
|
| 41973 | 2707  | 
end  |