| author | wenzelm | 
| Thu, 11 Dec 2008 10:41:37 +0100 | |
| changeset 29057 | d219318fd89a | 
| parent 26187 | 3e099fc47afd | 
| child 30510 | 4120fc59dd85 | 
| permissions | -rw-r--r-- | 
| 22141 | 1 | (* Title: HOL/ex/Binary.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Makarius | |
| 4 | *) | |
| 5 | ||
| 6 | header {* Simple and efficient binary numerals *}
 | |
| 7 | ||
| 8 | theory Binary | |
| 9 | imports Main | |
| 10 | begin | |
| 11 | ||
| 12 | subsection {* Binary representation of natural numbers *}
 | |
| 13 | ||
| 14 | definition | |
| 15 | bit :: "nat \<Rightarrow> bool \<Rightarrow> nat" where | |
| 16 | "bit n b = (if b then 2 * n + 1 else 2 * n)" | |
| 17 | ||
| 18 | lemma bit_simps: | |
| 19 | "bit n False = 2 * n" | |
| 20 | "bit n True = 2 * n + 1" | |
| 21 | unfolding bit_def by simp_all | |
| 22 | ||
| 22205 | 23 | ML {*
 | 
| 24227 | 24 | structure Binary = | 
| 25 | struct | |
| 26187 | 26 |   fun dest_bit (Const (@{const_name False}, _)) = 0
 | 
| 27 |     | dest_bit (Const (@{const_name True}, _)) = 1
 | |
| 22205 | 28 |     | dest_bit t = raise TERM ("dest_bit", [t]);
 | 
| 29 | ||
| 26187 | 30 |   fun dest_binary (Const (@{const_name HOL.zero}, Type (@{type_name nat}, _))) = 0
 | 
| 31 |     | dest_binary (Const (@{const_name HOL.one}, Type (@{type_name nat}, _))) = 1
 | |
| 32 |     | dest_binary (Const (@{const_name bit}, _) $ bs $ b) = 2 * dest_binary bs + dest_bit b
 | |
| 22205 | 33 |     | dest_binary t = raise TERM ("dest_binary", [t]);
 | 
| 34 | ||
| 35 |   fun mk_bit 0 = @{term False}
 | |
| 36 |     | mk_bit 1 = @{term True}
 | |
| 37 |     | mk_bit _ = raise TERM ("mk_bit", []);
 | |
| 38 | ||
| 39 |   fun mk_binary 0 = @{term "0::nat"}
 | |
| 40 |     | mk_binary 1 = @{term "1::nat"}
 | |
| 41 | | mk_binary n = | |
| 42 |         if n < 0 then raise TERM ("mk_binary", [])
 | |
| 43 | else | |
| 24630 
351a308ab58d
simplified type int (eliminated IntInf.int, integer);
 wenzelm parents: 
24227diff
changeset | 44 | let val (q, r) = Integer.div_mod n 2 | 
| 
351a308ab58d
simplified type int (eliminated IntInf.int, integer);
 wenzelm parents: 
24227diff
changeset | 45 |           in @{term bit} $ mk_binary q $ mk_bit r end;
 | 
| 24227 | 46 | end | 
| 22205 | 47 | *} | 
| 48 | ||
| 22141 | 49 | |
| 50 | subsection {* Direct operations -- plain normalization *}
 | |
| 51 | ||
| 52 | lemma binary_norm: | |
| 53 | "bit 0 False = 0" | |
| 54 | "bit 0 True = 1" | |
| 55 | unfolding bit_def by simp_all | |
| 56 | ||
| 57 | lemma binary_add: | |
| 58 | "n + 0 = n" | |
| 59 | "0 + n = n" | |
| 60 | "1 + 1 = bit 1 False" | |
| 61 | "bit n False + 1 = bit n True" | |
| 62 | "bit n True + 1 = bit (n + 1) False" | |
| 63 | "1 + bit n False = bit n True" | |
| 64 | "1 + bit n True = bit (n + 1) False" | |
| 65 | "bit m False + bit n False = bit (m + n) False" | |
| 66 | "bit m False + bit n True = bit (m + n) True" | |
| 67 | "bit m True + bit n False = bit (m + n) True" | |
| 68 | "bit m True + bit n True = bit ((m + n) + 1) False" | |
| 69 | by (simp_all add: bit_simps) | |
| 70 | ||
| 71 | lemma binary_mult: | |
| 72 | "n * 0 = 0" | |
| 73 | "0 * n = 0" | |
| 74 | "n * 1 = n" | |
| 75 | "1 * n = n" | |
| 76 | "bit m True * n = bit (m * n) False + n" | |
| 77 | "bit m False * n = bit (m * n) False" | |
| 78 | "n * bit m True = bit (m * n) False + n" | |
| 79 | "n * bit m False = bit (m * n) False" | |
| 80 | by (simp_all add: bit_simps) | |
| 81 | ||
| 82 | lemmas binary_simps = binary_norm binary_add binary_mult | |
| 83 | ||
| 84 | ||
| 85 | subsection {* Indirect operations -- ML will produce witnesses *}
 | |
| 86 | ||
| 87 | lemma binary_less_eq: | |
| 88 | fixes n :: nat | |
| 89 | shows "n \<equiv> m + k \<Longrightarrow> (m \<le> n) \<equiv> True" | |
| 90 | and "m \<equiv> n + k + 1 \<Longrightarrow> (m \<le> n) \<equiv> False" | |
| 91 | by simp_all | |
| 92 | ||
| 93 | lemma binary_less: | |
| 94 | fixes n :: nat | |
| 95 | shows "m \<equiv> n + k \<Longrightarrow> (m < n) \<equiv> False" | |
| 96 | and "n \<equiv> m + k + 1 \<Longrightarrow> (m < n) \<equiv> True" | |
| 97 | by simp_all | |
| 98 | ||
| 99 | lemma binary_diff: | |
| 100 | fixes n :: nat | |
| 101 | shows "m \<equiv> n + k \<Longrightarrow> m - n \<equiv> k" | |
| 102 | and "n \<equiv> m + k \<Longrightarrow> m - n \<equiv> 0" | |
| 103 | by simp_all | |
| 104 | ||
| 105 | lemma binary_divmod: | |
| 106 | fixes n :: nat | |
| 107 | assumes "m \<equiv> n * k + l" and "0 < n" and "l < n" | |
| 108 | shows "m div n \<equiv> k" | |
| 109 | and "m mod n \<equiv> l" | |
| 110 | proof - | |
| 111 | from `m \<equiv> n * k + l` have "m = l + k * n" by simp | |
| 112 | with `0 < n` and `l < n` show "m div n \<equiv> k" and "m mod n \<equiv> l" by simp_all | |
| 113 | qed | |
| 114 | ||
| 115 | ML {*
 | |
| 22205 | 116 | local | 
| 117 | infix ==; | |
| 118 | val op == = Logic.mk_equals; | |
| 119 |   fun plus m n = @{term "plus :: nat \<Rightarrow> nat \<Rightarrow> nat"} $ m $ n;
 | |
| 120 |   fun mult m n = @{term "times :: nat \<Rightarrow> nat \<Rightarrow> nat"} $ m $ n;
 | |
| 22141 | 121 | |
| 122 |   val binary_ss = HOL_basic_ss addsimps @{thms binary_simps};
 | |
| 22156 | 123 | fun prove ctxt prop = | 
| 124 | Goal.prove ctxt [] [] prop (fn _ => ALLGOALS (full_simp_tac binary_ss)); | |
| 22141 | 125 | |
| 22205 | 126 | fun binary_proc proc ss ct = | 
| 127 | (case Thm.term_of ct of | |
| 128 | _ $ t $ u => | |
| 24227 | 129 | (case try (pairself (`Binary.dest_binary)) (t, u) of | 
| 22205 | 130 | SOME args => proc (Simplifier.the_context ss) args | 
| 131 | | NONE => NONE) | |
| 132 | | _ => NONE); | |
| 133 | in | |
| 22141 | 134 | |
| 22205 | 135 | val less_eq_proc = binary_proc (fn ctxt => fn ((m, t), (n, u)) => | 
| 136 | let val k = n - m in | |
| 137 | if k >= 0 then | |
| 24227 | 138 |       SOME (@{thm binary_less_eq(1)} OF [prove ctxt (u == plus t (Binary.mk_binary k))])
 | 
| 22205 | 139 | else | 
| 140 |       SOME (@{thm binary_less_eq(2)} OF
 | |
| 24227 | 141 | [prove ctxt (t == plus (plus u (Binary.mk_binary (~ k - 1))) (Binary.mk_binary 1))]) | 
| 22205 | 142 | end); | 
| 22141 | 143 | |
| 22205 | 144 | val less_proc = binary_proc (fn ctxt => fn ((m, t), (n, u)) => | 
| 145 | let val k = m - n in | |
| 146 | if k >= 0 then | |
| 24227 | 147 |       SOME (@{thm binary_less(1)} OF [prove ctxt (t == plus u (Binary.mk_binary k))])
 | 
| 22205 | 148 | else | 
| 149 |       SOME (@{thm binary_less(2)} OF
 | |
| 24227 | 150 | [prove ctxt (u == plus (plus t (Binary.mk_binary (~ k - 1))) (Binary.mk_binary 1))]) | 
| 22205 | 151 | end); | 
| 22141 | 152 | |
| 22205 | 153 | val diff_proc = binary_proc (fn ctxt => fn ((m, t), (n, u)) => | 
| 154 | let val k = m - n in | |
| 155 | if k >= 0 then | |
| 24227 | 156 |       SOME (@{thm binary_diff(1)} OF [prove ctxt (t == plus u (Binary.mk_binary k))])
 | 
| 22205 | 157 | else | 
| 24227 | 158 |       SOME (@{thm binary_diff(2)} OF [prove ctxt (u == plus t (Binary.mk_binary (~ k)))])
 | 
| 22205 | 159 | end); | 
| 22141 | 160 | |
| 22205 | 161 | fun divmod_proc rule = binary_proc (fn ctxt => fn ((m, t), (n, u)) => | 
| 162 | if n = 0 then NONE | |
| 163 | else | |
| 24630 
351a308ab58d
simplified type int (eliminated IntInf.int, integer);
 wenzelm parents: 
24227diff
changeset | 164 | let val (k, l) = Integer.div_mod m n | 
| 24227 | 165 | in SOME (rule OF [prove ctxt (t == plus (mult u (Binary.mk_binary k)) (Binary.mk_binary l))]) end); | 
| 22205 | 166 | |
| 167 | end; | |
| 168 | *} | |
| 22141 | 169 | |
| 22205 | 170 | simproc_setup binary_nat_less_eq ("m <= (n::nat)") = {* K less_eq_proc *}
 | 
| 171 | simproc_setup binary_nat_less ("m < (n::nat)") = {* K less_proc *}
 | |
| 172 | simproc_setup binary_nat_diff ("m - (n::nat)") = {* K diff_proc *}
 | |
| 173 | simproc_setup binary_nat_div ("m div (n::nat)") = {* K (divmod_proc @{thm binary_divmod(1)}) *}
 | |
| 174 | simproc_setup binary_nat_mod ("m mod (n::nat)") = {* K (divmod_proc @{thm binary_divmod(2)}) *}
 | |
| 22141 | 175 | |
| 22205 | 176 | method_setup binary_simp = {*
 | 
| 177 | Method.no_args (Method.SIMPLE_METHOD' | |
| 178 | (full_simp_tac | |
| 179 | (HOL_basic_ss | |
| 180 |         addsimps @{thms binary_simps}
 | |
| 181 | addsimprocs | |
| 182 |          [@{simproc binary_nat_less_eq},
 | |
| 183 |           @{simproc binary_nat_less},
 | |
| 184 |           @{simproc binary_nat_diff},
 | |
| 185 |           @{simproc binary_nat_div},
 | |
| 186 |           @{simproc binary_nat_mod}])))
 | |
| 187 | *} "binary simplification" | |
| 22141 | 188 | |
| 189 | ||
| 190 | subsection {* Concrete syntax *}
 | |
| 191 | ||
| 192 | syntax | |
| 193 |   "_Binary" :: "num_const \<Rightarrow> 'a"    ("$_")
 | |
| 194 | ||
| 195 | parse_translation {*
 | |
| 196 | let | |
| 197 | ||
| 198 | val syntax_consts = map_aterms (fn Const (c, T) => Const (Syntax.constN ^ c, T) | a => a); | |
| 199 | ||
| 22229 | 200 | fun binary_tr [Const (num, _)] = | 
| 22141 | 201 | let | 
| 202 |         val {leading_zeros = z, value = n, ...} = Syntax.read_xnum num;
 | |
| 203 |         val _ = z = 0 andalso n >= 0 orelse error ("Bad binary number: " ^ num);
 | |
| 24227 | 204 | in syntax_consts (Binary.mk_binary n) end | 
| 22141 | 205 |   | binary_tr ts = raise TERM ("binary_tr", ts);
 | 
| 206 | ||
| 207 | in [("_Binary", binary_tr)] end
 | |
| 208 | *} | |
| 209 | ||
| 210 | ||
| 211 | subsection {* Examples *}
 | |
| 212 | ||
| 213 | lemma "$6 = 6" | |
| 214 | by (simp add: bit_simps) | |
| 215 | ||
| 216 | lemma "bit (bit (bit 0 False) False) True = 1" | |
| 217 | by (simp add: bit_simps) | |
| 218 | ||
| 219 | lemma "bit (bit (bit 0 False) False) True = bit 0 True" | |
| 220 | by (simp add: bit_simps) | |
| 221 | ||
| 222 | lemma "$5 + $3 = $8" | |
| 223 | by binary_simp | |
| 224 | ||
| 225 | lemma "$5 * $3 = $15" | |
| 226 | by binary_simp | |
| 227 | ||
| 228 | lemma "$5 - $3 = $2" | |
| 229 | by binary_simp | |
| 230 | ||
| 231 | lemma "$3 - $5 = 0" | |
| 232 | by binary_simp | |
| 233 | ||
| 234 | lemma "$123456789 - $123 = $123456666" | |
| 235 | by binary_simp | |
| 236 | ||
| 237 | lemma "$1111111111222222222233333333334444444444 - $998877665544332211 = | |
| 238 | $1111111111222222222232334455668900112233" | |
| 239 | by binary_simp | |
| 240 | ||
| 241 | lemma "(1111111111222222222233333333334444444444::nat) - 998877665544332211 = | |
| 242 | 1111111111222222222232334455668900112233" | |
| 243 | by simp | |
| 244 | ||
| 245 | lemma "(1111111111222222222233333333334444444444::int) - 998877665544332211 = | |
| 246 | 1111111111222222222232334455668900112233" | |
| 247 | by simp | |
| 248 | ||
| 249 | lemma "$1111111111222222222233333333334444444444 * $998877665544332211 = | |
| 250 | $1109864072938022197293802219729380221972383090160869185684" | |
| 251 | by binary_simp | |
| 252 | ||
| 253 | lemma "$1111111111222222222233333333334444444444 * $998877665544332211 - | |
| 254 | $5555555555666666666677777777778888888888 = | |
| 255 | $1109864072938022191738246664062713555294605312381980296796" | |
| 256 | by binary_simp | |
| 257 | ||
| 258 | lemma "$42 < $4 = False" | |
| 259 | by binary_simp | |
| 260 | ||
| 261 | lemma "$4 < $42 = True" | |
| 262 | by binary_simp | |
| 263 | ||
| 264 | lemma "$42 <= $4 = False" | |
| 265 | by binary_simp | |
| 266 | ||
| 267 | lemma "$4 <= $42 = True" | |
| 268 | by binary_simp | |
| 269 | ||
| 270 | lemma "$1111111111222222222233333333334444444444 < $998877665544332211 = False" | |
| 271 | by binary_simp | |
| 272 | ||
| 273 | lemma "$998877665544332211 < $1111111111222222222233333333334444444444 = True" | |
| 274 | by binary_simp | |
| 275 | ||
| 276 | lemma "$1111111111222222222233333333334444444444 <= $998877665544332211 = False" | |
| 277 | by binary_simp | |
| 278 | ||
| 279 | lemma "$998877665544332211 <= $1111111111222222222233333333334444444444 = True" | |
| 280 | by binary_simp | |
| 281 | ||
| 282 | lemma "$1234 div $23 = $53" | |
| 283 | by binary_simp | |
| 284 | ||
| 285 | lemma "$1234 mod $23 = $15" | |
| 286 | by binary_simp | |
| 287 | ||
| 288 | lemma "$1111111111222222222233333333334444444444 div $998877665544332211 = | |
| 289 | $1112359550673033707875" | |
| 290 | by binary_simp | |
| 291 | ||
| 292 | lemma "$1111111111222222222233333333334444444444 mod $998877665544332211 = | |
| 293 | $42245174317582819" | |
| 294 | by binary_simp | |
| 295 | ||
| 22153 | 296 | lemma "(1111111111222222222233333333334444444444::int) div 998877665544332211 = | 
| 297 | 1112359550673033707875" | |
| 298 |   by simp  -- {* legacy numerals: 30 times slower *}
 | |
| 299 | ||
| 22141 | 300 | lemma "(1111111111222222222233333333334444444444::int) mod 998877665544332211 = | 
| 301 | 42245174317582819" | |
| 22153 | 302 |   by simp  -- {* legacy numerals: 30 times slower *}
 | 
| 22141 | 303 | |
| 304 | end |