author | wenzelm |
Tue, 12 Dec 2006 11:57:30 +0100 | |
changeset 21788 | d460465a9f97 |
parent 21737 | f2be09171c9c |
child 21818 | 4d2ad5445c81 |
permissions | -rw-r--r-- |
15524 | 1 |
(* Title: HOL/Orderings.thy |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson |
|
4 |
*) |
|
5 |
||
21329 | 6 |
header {* Syntactic and abstract orders *} |
15524 | 7 |
|
8 |
theory Orderings |
|
21329 | 9 |
imports HOL |
15524 | 10 |
begin |
11 |
||
21329 | 12 |
section {* Abstract orders *} |
21083 | 13 |
|
21329 | 14 |
subsection {* Order syntax *} |
15524 | 15 |
|
21194 | 16 |
class ord = |
21656
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
17 |
fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<sqsubseteq>" 50) |
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
18 |
and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<sqsubset>" 50) |
21204 | 19 |
begin |
20 |
||
21 |
notation |
|
21656
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
22 |
less_eq ("op \<^loc><=") and |
21620 | 23 |
less_eq ("(_/ \<^loc><= _)" [51, 51] 50) and |
21656
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
24 |
less ("op \<^loc><") and |
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
25 |
less ("(_/ \<^loc>< _)" [51, 51] 50) |
21620 | 26 |
|
21204 | 27 |
notation (xsymbols) |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21383
diff
changeset
|
28 |
less_eq ("op \<^loc>\<le>") and |
21259
63ab016c99ca
modified less/less_eq syntax to avoid "x < y < z" etc.;
wenzelm
parents:
21248
diff
changeset
|
29 |
less_eq ("(_/ \<^loc>\<le> _)" [51, 51] 50) |
15524 | 30 |
|
21204 | 31 |
notation (HTML output) |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21383
diff
changeset
|
32 |
less_eq ("op \<^loc>\<le>") and |
21259
63ab016c99ca
modified less/less_eq syntax to avoid "x < y < z" etc.;
wenzelm
parents:
21248
diff
changeset
|
33 |
less_eq ("(_/ \<^loc>\<le> _)" [51, 51] 50) |
21204 | 34 |
|
35 |
abbreviation (input) |
|
21656
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
36 |
greater (infix "\<^loc>>" 50) where |
21620 | 37 |
"x \<^loc>> y \<equiv> y \<^loc>< x" |
38 |
||
21656
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
39 |
abbreviation (input) |
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
40 |
greater_eq (infix "\<^loc>>=" 50) where |
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
41 |
"x \<^loc>>= y \<equiv> y \<^loc><= x" |
21204 | 42 |
|
21656
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
43 |
notation (input) |
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
44 |
greater_eq (infix "\<^loc>\<ge>" 50) |
21204 | 45 |
|
46 |
end |
|
47 |
||
48 |
notation |
|
21656
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
49 |
less_eq ("op <=") and |
21620 | 50 |
less_eq ("(_/ <= _)" [51, 51] 50) and |
21656
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
51 |
less ("op <") and |
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
52 |
less ("(_/ < _)" [51, 51] 50) |
21204 | 53 |
|
54 |
notation (xsymbols) |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21383
diff
changeset
|
55 |
less_eq ("op \<le>") and |
21259
63ab016c99ca
modified less/less_eq syntax to avoid "x < y < z" etc.;
wenzelm
parents:
21248
diff
changeset
|
56 |
less_eq ("(_/ \<le> _)" [51, 51] 50) |
15524 | 57 |
|
21204 | 58 |
notation (HTML output) |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21383
diff
changeset
|
59 |
less_eq ("op \<le>") and |
21259
63ab016c99ca
modified less/less_eq syntax to avoid "x < y < z" etc.;
wenzelm
parents:
21248
diff
changeset
|
60 |
less_eq ("(_/ \<le> _)" [51, 51] 50) |
20714 | 61 |
|
19536 | 62 |
abbreviation (input) |
21656
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
63 |
greater (infix ">" 50) where |
21620 | 64 |
"x > y \<equiv> y < x" |
65 |
||
21656
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
66 |
abbreviation (input) |
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
67 |
greater_eq (infix ">=" 50) where |
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
68 |
"x >= y \<equiv> y <= x" |
21620 | 69 |
|
21656
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
70 |
notation (input) |
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
71 |
greater_eq (infix "\<ge>" 50) |
15524 | 72 |
|
73 |
||
21329 | 74 |
subsection {* Quasiorders (preorders) *} |
15524 | 75 |
|
21620 | 76 |
locale preorder = ord + |
21216
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
haftmann
parents:
21204
diff
changeset
|
77 |
assumes refl [iff]: "x \<sqsubseteq> x" |
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
haftmann
parents:
21204
diff
changeset
|
78 |
and trans: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> z" |
21248 | 79 |
and less_le: "x \<sqsubset> y \<longleftrightarrow> x \<sqsubseteq> y \<and> x \<noteq> y" |
80 |
begin |
|
81 |
||
15524 | 82 |
text {* Reflexivity. *} |
83 |
||
21248 | 84 |
lemma eq_refl: "x = y \<Longrightarrow> x \<sqsubseteq> y" |
15524 | 85 |
-- {* This form is useful with the classical reasoner. *} |
21248 | 86 |
by (erule ssubst) (rule refl) |
15524 | 87 |
|
21248 | 88 |
lemma less_irrefl [iff]: "\<not> x \<sqsubset> x" |
89 |
by (simp add: less_le) |
|
15524 | 90 |
|
21248 | 91 |
lemma le_less: "x \<sqsubseteq> y \<longleftrightarrow> x \<sqsubset> y \<or> x = y" |
15524 | 92 |
-- {* NOT suitable for iff, since it can cause PROOF FAILED. *} |
21248 | 93 |
by (simp add: less_le) blast |
15524 | 94 |
|
21248 | 95 |
lemma le_imp_less_or_eq: "x \<sqsubseteq> y \<Longrightarrow> x \<sqsubset> y \<or> x = y" |
96 |
unfolding less_le by blast |
|
15524 | 97 |
|
21248 | 98 |
lemma less_imp_le: "x \<sqsubset> y \<Longrightarrow> x \<sqsubseteq> y" |
99 |
unfolding less_le by blast |
|
100 |
||
21329 | 101 |
lemma less_imp_neq: "x \<sqsubset> y \<Longrightarrow> x \<noteq> y" |
102 |
by (erule contrapos_pn, erule subst, rule less_irrefl) |
|
103 |
||
104 |
||
105 |
text {* Useful for simplification, but too risky to include by default. *} |
|
106 |
||
107 |
lemma less_imp_not_eq: "x \<sqsubset> y \<Longrightarrow> (x = y) \<longleftrightarrow> False" |
|
108 |
by auto |
|
109 |
||
110 |
lemma less_imp_not_eq2: "x \<sqsubset> y \<Longrightarrow> (y = x) \<longleftrightarrow> False" |
|
111 |
by auto |
|
112 |
||
113 |
||
114 |
text {* Transitivity rules for calculational reasoning *} |
|
115 |
||
116 |
lemma neq_le_trans: "\<lbrakk> a \<noteq> b; a \<sqsubseteq> b \<rbrakk> \<Longrightarrow> a \<sqsubset> b" |
|
117 |
by (simp add: less_le) |
|
118 |
||
119 |
lemma le_neq_trans: "\<lbrakk> a \<sqsubseteq> b; a \<noteq> b \<rbrakk> \<Longrightarrow> a \<sqsubset> b" |
|
120 |
by (simp add: less_le) |
|
121 |
||
122 |
end |
|
123 |
||
124 |
||
125 |
subsection {* Partial orderings *} |
|
126 |
||
127 |
locale partial_order = preorder + |
|
128 |
assumes antisym: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> x \<Longrightarrow> x = y" |
|
129 |
||
130 |
context partial_order |
|
131 |
begin |
|
15524 | 132 |
|
133 |
text {* Asymmetry. *} |
|
134 |
||
21248 | 135 |
lemma less_not_sym: "x \<sqsubset> y \<Longrightarrow> \<not> (y \<sqsubset> x)" |
136 |
by (simp add: less_le antisym) |
|
15524 | 137 |
|
21248 | 138 |
lemma less_asym: "x \<sqsubset> y \<Longrightarrow> (\<not> P \<Longrightarrow> y \<sqsubset> x) \<Longrightarrow> P" |
139 |
by (drule less_not_sym, erule contrapos_np) simp |
|
15524 | 140 |
|
21248 | 141 |
lemma eq_iff: "x = y \<longleftrightarrow> x \<sqsubseteq> y \<and> y \<sqsubseteq> x" |
142 |
by (blast intro: antisym) |
|
15524 | 143 |
|
21248 | 144 |
lemma antisym_conv: "y \<sqsubseteq> x \<Longrightarrow> x \<sqsubseteq> y \<longleftrightarrow> x = y" |
145 |
by (blast intro: antisym) |
|
15524 | 146 |
|
21248 | 147 |
lemma less_imp_neq: "x \<sqsubset> y \<Longrightarrow> x \<noteq> y" |
148 |
by (erule contrapos_pn, erule subst, rule less_irrefl) |
|
149 |
||
21083 | 150 |
|
15524 | 151 |
text {* Transitivity. *} |
152 |
||
21248 | 153 |
lemma less_trans: "\<lbrakk> x \<sqsubset> y; y \<sqsubset> z \<rbrakk> \<Longrightarrow> x \<sqsubset> z" |
154 |
by (simp add: less_le) (blast intro: trans antisym) |
|
15524 | 155 |
|
21248 | 156 |
lemma le_less_trans: "\<lbrakk> x \<sqsubseteq> y; y \<sqsubset> z \<rbrakk> \<Longrightarrow> x \<sqsubset> z" |
157 |
by (simp add: less_le) (blast intro: trans antisym) |
|
15524 | 158 |
|
21248 | 159 |
lemma less_le_trans: "\<lbrakk> x \<sqsubset> y; y \<sqsubseteq> z \<rbrakk> \<Longrightarrow> x \<sqsubset> z" |
160 |
by (simp add: less_le) (blast intro: trans antisym) |
|
15524 | 161 |
|
162 |
||
163 |
text {* Useful for simplification, but too risky to include by default. *} |
|
164 |
||
21248 | 165 |
lemma less_imp_not_less: "x \<sqsubset> y \<Longrightarrow> (\<not> y \<sqsubset> x) \<longleftrightarrow> True" |
166 |
by (blast elim: less_asym) |
|
15524 | 167 |
|
21248 | 168 |
lemma less_imp_triv: "x \<sqsubset> y \<Longrightarrow> (y \<sqsubset> x \<longrightarrow> P) \<longleftrightarrow> True" |
169 |
by (blast elim: less_asym) |
|
15524 | 170 |
|
21248 | 171 |
|
21083 | 172 |
text {* Transitivity rules for calculational reasoning *} |
15524 | 173 |
|
21248 | 174 |
lemma less_asym': "\<lbrakk> a \<sqsubset> b; b \<sqsubset> a \<rbrakk> \<Longrightarrow> P" |
175 |
by (rule less_asym) |
|
176 |
||
177 |
end |
|
15524 | 178 |
|
21329 | 179 |
axclass order < ord |
180 |
order_refl [iff]: "x <= x" |
|
181 |
order_trans: "x <= y ==> y <= z ==> x <= z" |
|
182 |
order_antisym: "x <= y ==> y <= x ==> x = y" |
|
183 |
order_less_le: "(x < y) = (x <= y & x ~= y)" |
|
15524 | 184 |
|
21329 | 185 |
interpretation order: |
186 |
partial_order ["op \<le> \<Colon> 'a\<Colon>order \<Rightarrow> 'a \<Rightarrow> bool" "op < \<Colon> 'a\<Colon>order \<Rightarrow> 'a \<Rightarrow> bool"] |
|
187 |
apply unfold_locales |
|
188 |
apply (rule order_refl) |
|
189 |
apply (erule (1) order_trans) |
|
190 |
apply (rule order_less_le) |
|
191 |
apply (erule (1) order_antisym) |
|
192 |
done |
|
21216
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
haftmann
parents:
21204
diff
changeset
|
193 |
|
21329 | 194 |
|
195 |
subsection {* Linear (total) orders *} |
|
196 |
||
197 |
locale linorder = partial_order + |
|
21216
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
haftmann
parents:
21204
diff
changeset
|
198 |
assumes linear: "x \<sqsubseteq> y \<or> y \<sqsubseteq> x" |
21248 | 199 |
begin |
200 |
||
21412 | 201 |
lemma less_linear: "x \<sqsubset> y \<or> x = y \<or> y \<sqsubset> x" |
21248 | 202 |
unfolding less_le using less_le linear by blast |
203 |
||
204 |
lemma le_less_linear: "x \<sqsubseteq> y \<or> y \<sqsubset> x" |
|
21412 | 205 |
by (simp add: le_less less_linear) |
21248 | 206 |
|
207 |
lemma le_cases [case_names le ge]: |
|
208 |
"\<lbrakk> x \<sqsubseteq> y \<Longrightarrow> P; y \<sqsubseteq> x \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P" |
|
209 |
using linear by blast |
|
210 |
||
211 |
lemma cases [case_names less equal greater]: |
|
212 |
"\<lbrakk> x \<sqsubset> y \<Longrightarrow> P; x = y \<Longrightarrow> P; y \<sqsubset> x \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P" |
|
21412 | 213 |
using less_linear by blast |
21248 | 214 |
|
215 |
lemma not_less: "\<not> x \<sqsubset> y \<longleftrightarrow> y \<sqsubseteq> x" |
|
216 |
apply (simp add: less_le) |
|
217 |
using linear apply (blast intro: antisym) |
|
15524 | 218 |
done |
219 |
||
21248 | 220 |
lemma not_le: "\<not> x \<sqsubseteq> y \<longleftrightarrow> y \<sqsubset> x" |
221 |
apply (simp add: less_le) |
|
222 |
using linear apply (blast intro: antisym) |
|
15524 | 223 |
done |
224 |
||
21248 | 225 |
lemma neq_iff: "x \<noteq> y \<longleftrightarrow> x \<sqsubset> y \<or> y \<sqsubset> x" |
21412 | 226 |
by (cut_tac x = x and y = y in less_linear, auto) |
15524 | 227 |
|
21248 | 228 |
lemma neqE: "\<lbrakk> x \<noteq> y; x \<sqsubset> y \<Longrightarrow> R; y \<sqsubset> x \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R" |
229 |
by (simp add: neq_iff) blast |
|
15524 | 230 |
|
21248 | 231 |
lemma antisym_conv1: "\<not> x \<sqsubset> y \<Longrightarrow> x \<sqsubseteq> y \<longleftrightarrow> x = y" |
232 |
by (blast intro: antisym dest: not_less [THEN iffD1]) |
|
15524 | 233 |
|
21248 | 234 |
lemma antisym_conv2: "x \<sqsubseteq> y \<Longrightarrow> \<not> x \<sqsubset> y \<longleftrightarrow> x = y" |
235 |
by (blast intro: antisym dest: not_less [THEN iffD1]) |
|
15524 | 236 |
|
21248 | 237 |
lemma antisym_conv3: "\<not> y \<sqsubset> x \<Longrightarrow> \<not> x \<sqsubset> y \<longleftrightarrow> x = y" |
238 |
by (blast intro: antisym dest: not_less [THEN iffD1]) |
|
15524 | 239 |
|
16796 | 240 |
text{*Replacing the old Nat.leI*} |
21248 | 241 |
lemma leI: "\<not> x \<sqsubset> y \<Longrightarrow> y \<sqsubseteq> x" |
242 |
unfolding not_less . |
|
16796 | 243 |
|
21248 | 244 |
lemma leD: "y \<sqsubseteq> x \<Longrightarrow> \<not> x \<sqsubset> y" |
245 |
unfolding not_less . |
|
16796 | 246 |
|
247 |
(*FIXME inappropriate name (or delete altogether)*) |
|
21248 | 248 |
lemma not_leE: "\<not> y \<sqsubseteq> x \<Longrightarrow> x \<sqsubset> y" |
249 |
unfolding not_le . |
|
250 |
||
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
251 |
(* min/max *) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
252 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
253 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21383
diff
changeset
|
254 |
min :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
255 |
"min a b = (if a \<sqsubseteq> b then a else b)" |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21383
diff
changeset
|
256 |
|
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21383
diff
changeset
|
257 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21383
diff
changeset
|
258 |
max :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
259 |
"max a b = (if a \<sqsubseteq> b then b else a)" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
260 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
261 |
lemma min_le_iff_disj: |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
262 |
"min x y \<sqsubseteq> z \<longleftrightarrow> x \<sqsubseteq> z \<or> y \<sqsubseteq> z" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
263 |
unfolding min_def using linear by (auto intro: trans) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
264 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
265 |
lemma le_max_iff_disj: |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
266 |
"z \<sqsubseteq> max x y \<longleftrightarrow> z \<sqsubseteq> x \<or> z \<sqsubseteq> y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
267 |
unfolding max_def using linear by (auto intro: trans) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
268 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
269 |
lemma min_less_iff_disj: |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
270 |
"min x y \<sqsubset> z \<longleftrightarrow> x \<sqsubset> z \<or> y \<sqsubset> z" |
21412 | 271 |
unfolding min_def le_less using less_linear by (auto intro: less_trans) |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
272 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
273 |
lemma less_max_iff_disj: |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
274 |
"z \<sqsubset> max x y \<longleftrightarrow> z \<sqsubset> x \<or> z \<sqsubset> y" |
21412 | 275 |
unfolding max_def le_less using less_linear by (auto intro: less_trans) |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
276 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
277 |
lemma min_less_iff_conj [simp]: |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
278 |
"z \<sqsubset> min x y \<longleftrightarrow> z \<sqsubset> x \<and> z \<sqsubset> y" |
21412 | 279 |
unfolding min_def le_less using less_linear by (auto intro: less_trans) |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
280 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
281 |
lemma max_less_iff_conj [simp]: |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
282 |
"max x y \<sqsubset> z \<longleftrightarrow> x \<sqsubset> z \<and> y \<sqsubset> z" |
21412 | 283 |
unfolding max_def le_less using less_linear by (auto intro: less_trans) |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
284 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
285 |
lemma split_min: |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
286 |
"P (min i j) \<longleftrightarrow> (i \<sqsubseteq> j \<longrightarrow> P i) \<and> (\<not> i \<sqsubseteq> j \<longrightarrow> P j)" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
287 |
by (simp add: min_def) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
288 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
289 |
lemma split_max: |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
290 |
"P (max i j) \<longleftrightarrow> (i \<sqsubseteq> j \<longrightarrow> P j) \<and> (\<not> i \<sqsubseteq> j \<longrightarrow> P i)" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
291 |
by (simp add: max_def) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
292 |
|
21248 | 293 |
end |
294 |
||
21329 | 295 |
axclass linorder < order |
296 |
linorder_linear: "x <= y | y <= x" |
|
297 |
||
298 |
interpretation linorder: |
|
299 |
linorder ["op \<le> \<Colon> 'a\<Colon>linorder \<Rightarrow> 'a \<Rightarrow> bool" "op < \<Colon> 'a\<Colon>linorder \<Rightarrow> 'a \<Rightarrow> bool"] |
|
300 |
by unfold_locales (rule linorder_linear) |
|
301 |
||
21248 | 302 |
|
303 |
subsection {* Name duplicates *} |
|
304 |
||
305 |
lemmas order_eq_refl [where 'b = "?'a::order"] = order.eq_refl |
|
306 |
lemmas order_less_irrefl [where 'b = "?'a::order"] = order.less_irrefl |
|
307 |
lemmas order_le_less [where 'b = "?'a::order"] = order.le_less |
|
308 |
lemmas order_le_imp_less_or_eq [where 'b = "?'a::order"] = order.le_imp_less_or_eq |
|
309 |
lemmas order_less_imp_le [where 'b = "?'a::order"] = order.less_imp_le |
|
310 |
lemmas order_less_not_sym [where 'b = "?'a::order"] = order.less_not_sym |
|
311 |
lemmas order_less_asym [where 'b = "?'a::order"] = order.less_asym |
|
312 |
lemmas order_eq_iff [where 'b = "?'a::order"] = order.eq_iff |
|
313 |
lemmas order_antisym_conv [where 'b = "?'a::order"] = order.antisym_conv |
|
314 |
lemmas less_imp_neq [where 'b = "?'a::order"] = order.less_imp_neq |
|
315 |
lemmas order_less_trans [where 'b = "?'a::order"] = order.less_trans |
|
316 |
lemmas order_le_less_trans [where 'b = "?'a::order"] = order.le_less_trans |
|
317 |
lemmas order_less_le_trans [where 'b = "?'a::order"] = order.less_le_trans |
|
318 |
lemmas order_less_imp_not_less [where 'b = "?'a::order"] = order.less_imp_not_less |
|
319 |
lemmas order_less_imp_triv [where 'b = "?'a::order"] = order.less_imp_triv |
|
320 |
lemmas order_less_imp_not_eq [where 'b = "?'a::order"] = order.less_imp_not_eq |
|
321 |
lemmas order_less_imp_not_eq2 [where 'b = "?'a::order"] = order.less_imp_not_eq2 |
|
322 |
lemmas order_neq_le_trans [where 'b = "?'a::order"] = order.neq_le_trans |
|
323 |
lemmas order_le_neq_trans [where 'b = "?'a::order"] = order.le_neq_trans |
|
324 |
lemmas order_less_asym' [where 'b = "?'a::order"] = order.less_asym' |
|
21412 | 325 |
lemmas linorder_less_linear [where 'b = "?'a::linorder"] = linorder.less_linear |
21248 | 326 |
lemmas linorder_le_less_linear [where 'b = "?'a::linorder"] = linorder.le_less_linear |
327 |
lemmas linorder_le_cases [where 'b = "?'a::linorder"] = linorder.le_cases |
|
328 |
lemmas linorder_cases [where 'b = "?'a::linorder"] = linorder.cases |
|
329 |
lemmas linorder_not_less [where 'b = "?'a::linorder"] = linorder.not_less |
|
330 |
lemmas linorder_not_le [where 'b = "?'a::linorder"] = linorder.not_le |
|
331 |
lemmas linorder_neq_iff [where 'b = "?'a::linorder"] = linorder.neq_iff |
|
332 |
lemmas linorder_neqE [where 'b = "?'a::linorder"] = linorder.neqE |
|
333 |
lemmas linorder_antisym_conv1 [where 'b = "?'a::linorder"] = linorder.antisym_conv1 |
|
334 |
lemmas linorder_antisym_conv2 [where 'b = "?'a::linorder"] = linorder.antisym_conv2 |
|
335 |
lemmas linorder_antisym_conv3 [where 'b = "?'a::linorder"] = linorder.antisym_conv3 |
|
336 |
lemmas leI [where 'b = "?'a::linorder"] = linorder.leI |
|
337 |
lemmas leD [where 'b = "?'a::linorder"] = linorder.leD |
|
338 |
lemmas not_leE [where 'b = "?'a::linorder"] = linorder.not_leE |
|
16796 | 339 |
|
21083 | 340 |
|
341 |
subsection {* Reasoning tools setup *} |
|
342 |
||
21091 | 343 |
ML {* |
344 |
local |
|
345 |
||
346 |
fun decomp_gen sort thy (Trueprop $ t) = |
|
21248 | 347 |
let |
348 |
fun of_sort t = |
|
349 |
let |
|
350 |
val T = type_of t |
|
351 |
in |
|
21091 | 352 |
(* exclude numeric types: linear arithmetic subsumes transitivity *) |
21248 | 353 |
T <> HOLogic.natT andalso T <> HOLogic.intT |
354 |
andalso T <> HOLogic.realT andalso Sign.of_sort thy (T, sort) |
|
355 |
end; |
|
356 |
fun dec (Const ("Not", _) $ t) = (case dec t |
|
357 |
of NONE => NONE |
|
358 |
| SOME (t1, rel, t2) => SOME (t1, "~" ^ rel, t2)) |
|
359 |
| dec (Const ("op =", _) $ t1 $ t2) = |
|
360 |
if of_sort t1 |
|
361 |
then SOME (t1, "=", t2) |
|
362 |
else NONE |
|
363 |
| dec (Const ("Orderings.less_eq", _) $ t1 $ t2) = |
|
364 |
if of_sort t1 |
|
365 |
then SOME (t1, "<=", t2) |
|
366 |
else NONE |
|
367 |
| dec (Const ("Orderings.less", _) $ t1 $ t2) = |
|
368 |
if of_sort t1 |
|
369 |
then SOME (t1, "<", t2) |
|
370 |
else NONE |
|
371 |
| dec _ = NONE; |
|
21091 | 372 |
in dec t end; |
373 |
||
374 |
in |
|
375 |
||
376 |
(* The setting up of Quasi_Tac serves as a demo. Since there is no |
|
377 |
class for quasi orders, the tactics Quasi_Tac.trans_tac and |
|
378 |
Quasi_Tac.quasi_tac are not of much use. *) |
|
379 |
||
21248 | 380 |
structure Quasi_Tac = Quasi_Tac_Fun ( |
381 |
struct |
|
382 |
val le_trans = thm "order_trans"; |
|
383 |
val le_refl = thm "order_refl"; |
|
384 |
val eqD1 = thm "order_eq_refl"; |
|
385 |
val eqD2 = thm "sym" RS thm "order_eq_refl"; |
|
386 |
val less_reflE = thm "order_less_irrefl" RS thm "notE"; |
|
387 |
val less_imp_le = thm "order_less_imp_le"; |
|
388 |
val le_neq_trans = thm "order_le_neq_trans"; |
|
389 |
val neq_le_trans = thm "order_neq_le_trans"; |
|
390 |
val less_imp_neq = thm "less_imp_neq"; |
|
391 |
val decomp_trans = decomp_gen ["Orderings.order"]; |
|
392 |
val decomp_quasi = decomp_gen ["Orderings.order"]; |
|
393 |
end); |
|
21091 | 394 |
|
395 |
structure Order_Tac = Order_Tac_Fun ( |
|
21248 | 396 |
struct |
397 |
val less_reflE = thm "order_less_irrefl" RS thm "notE"; |
|
398 |
val le_refl = thm "order_refl"; |
|
399 |
val less_imp_le = thm "order_less_imp_le"; |
|
400 |
val not_lessI = thm "linorder_not_less" RS thm "iffD2"; |
|
401 |
val not_leI = thm "linorder_not_le" RS thm "iffD2"; |
|
402 |
val not_lessD = thm "linorder_not_less" RS thm "iffD1"; |
|
403 |
val not_leD = thm "linorder_not_le" RS thm "iffD1"; |
|
404 |
val eqI = thm "order_antisym"; |
|
405 |
val eqD1 = thm "order_eq_refl"; |
|
406 |
val eqD2 = thm "sym" RS thm "order_eq_refl"; |
|
407 |
val less_trans = thm "order_less_trans"; |
|
408 |
val less_le_trans = thm "order_less_le_trans"; |
|
409 |
val le_less_trans = thm "order_le_less_trans"; |
|
410 |
val le_trans = thm "order_trans"; |
|
411 |
val le_neq_trans = thm "order_le_neq_trans"; |
|
412 |
val neq_le_trans = thm "order_neq_le_trans"; |
|
413 |
val less_imp_neq = thm "less_imp_neq"; |
|
414 |
val eq_neq_eq_imp_neq = thm "eq_neq_eq_imp_neq"; |
|
415 |
val not_sym = thm "not_sym"; |
|
416 |
val decomp_part = decomp_gen ["Orderings.order"]; |
|
417 |
val decomp_lin = decomp_gen ["Orderings.linorder"]; |
|
418 |
end); |
|
21091 | 419 |
|
420 |
end; |
|
421 |
*} |
|
422 |
||
21083 | 423 |
setup {* |
424 |
let |
|
425 |
||
426 |
val order_antisym_conv = thm "order_antisym_conv" |
|
427 |
val linorder_antisym_conv1 = thm "linorder_antisym_conv1" |
|
428 |
val linorder_antisym_conv2 = thm "linorder_antisym_conv2" |
|
429 |
val linorder_antisym_conv3 = thm "linorder_antisym_conv3" |
|
430 |
||
431 |
fun prp t thm = (#prop (rep_thm thm) = t); |
|
15524 | 432 |
|
21083 | 433 |
fun prove_antisym_le sg ss ((le as Const(_,T)) $ r $ s) = |
434 |
let val prems = prems_of_ss ss; |
|
435 |
val less = Const("Orderings.less",T); |
|
436 |
val t = HOLogic.mk_Trueprop(le $ s $ r); |
|
437 |
in case find_first (prp t) prems of |
|
438 |
NONE => |
|
439 |
let val t = HOLogic.mk_Trueprop(HOLogic.Not $ (less $ r $ s)) |
|
440 |
in case find_first (prp t) prems of |
|
441 |
NONE => NONE |
|
442 |
| SOME thm => SOME(mk_meta_eq(thm RS linorder_antisym_conv1)) |
|
443 |
end |
|
444 |
| SOME thm => SOME(mk_meta_eq(thm RS order_antisym_conv)) |
|
445 |
end |
|
446 |
handle THM _ => NONE; |
|
15524 | 447 |
|
21083 | 448 |
fun prove_antisym_less sg ss (NotC $ ((less as Const(_,T)) $ r $ s)) = |
449 |
let val prems = prems_of_ss ss; |
|
450 |
val le = Const("Orderings.less_eq",T); |
|
451 |
val t = HOLogic.mk_Trueprop(le $ r $ s); |
|
452 |
in case find_first (prp t) prems of |
|
453 |
NONE => |
|
454 |
let val t = HOLogic.mk_Trueprop(NotC $ (less $ s $ r)) |
|
455 |
in case find_first (prp t) prems of |
|
456 |
NONE => NONE |
|
457 |
| SOME thm => SOME(mk_meta_eq(thm RS linorder_antisym_conv3)) |
|
458 |
end |
|
459 |
| SOME thm => SOME(mk_meta_eq(thm RS linorder_antisym_conv2)) |
|
460 |
end |
|
461 |
handle THM _ => NONE; |
|
15524 | 462 |
|
21248 | 463 |
fun add_simprocs procs thy = |
464 |
(Simplifier.change_simpset_of thy (fn ss => ss |
|
465 |
addsimprocs (map (fn (name, raw_ts, proc) => |
|
466 |
Simplifier.simproc thy name raw_ts proc)) procs); thy); |
|
467 |
fun add_solver name tac thy = |
|
468 |
(Simplifier.change_simpset_of thy (fn ss => ss addSolver |
|
469 |
(mk_solver name (K tac))); thy); |
|
21083 | 470 |
|
471 |
in |
|
21248 | 472 |
add_simprocs [ |
473 |
("antisym le", ["(x::'a::order) <= y"], prove_antisym_le), |
|
474 |
("antisym less", ["~ (x::'a::linorder) < y"], prove_antisym_less) |
|
475 |
] |
|
476 |
#> add_solver "Trans_linear" Order_Tac.linear_tac |
|
477 |
#> add_solver "Trans_partial" Order_Tac.partial_tac |
|
478 |
(* Adding the transitivity reasoners also as safe solvers showed a slight |
|
479 |
speed up, but the reasoning strength appears to be not higher (at least |
|
480 |
no breaking of additional proofs in the entire HOL distribution, as |
|
481 |
of 5 March 2004, was observed). *) |
|
21083 | 482 |
end |
483 |
*} |
|
15524 | 484 |
|
485 |
||
21083 | 486 |
subsection {* Bounded quantifiers *} |
487 |
||
488 |
syntax |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
489 |
"_All_less" :: "[idt, 'a, bool] => bool" ("(3ALL _<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
490 |
"_Ex_less" :: "[idt, 'a, bool] => bool" ("(3EX _<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
491 |
"_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3ALL _<=_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
492 |
"_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3EX _<=_./ _)" [0, 0, 10] 10) |
21083 | 493 |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
494 |
"_All_greater" :: "[idt, 'a, bool] => bool" ("(3ALL _>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
495 |
"_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3EX _>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
496 |
"_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3ALL _>=_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
497 |
"_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3EX _>=_./ _)" [0, 0, 10] 10) |
21083 | 498 |
|
499 |
syntax (xsymbols) |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
500 |
"_All_less" :: "[idt, 'a, bool] => bool" ("(3\<forall>_<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
501 |
"_Ex_less" :: "[idt, 'a, bool] => bool" ("(3\<exists>_<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
502 |
"_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
503 |
"_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10) |
21083 | 504 |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
505 |
"_All_greater" :: "[idt, 'a, bool] => bool" ("(3\<forall>_>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
506 |
"_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3\<exists>_>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
507 |
"_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
508 |
"_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10) |
21083 | 509 |
|
510 |
syntax (HOL) |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
511 |
"_All_less" :: "[idt, 'a, bool] => bool" ("(3! _<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
512 |
"_Ex_less" :: "[idt, 'a, bool] => bool" ("(3? _<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
513 |
"_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3! _<=_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
514 |
"_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3? _<=_./ _)" [0, 0, 10] 10) |
21083 | 515 |
|
516 |
syntax (HTML output) |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
517 |
"_All_less" :: "[idt, 'a, bool] => bool" ("(3\<forall>_<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
518 |
"_Ex_less" :: "[idt, 'a, bool] => bool" ("(3\<exists>_<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
519 |
"_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
520 |
"_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10) |
21083 | 521 |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
522 |
"_All_greater" :: "[idt, 'a, bool] => bool" ("(3\<forall>_>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
523 |
"_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3\<exists>_>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
524 |
"_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
525 |
"_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10) |
21083 | 526 |
|
527 |
translations |
|
528 |
"ALL x<y. P" => "ALL x. x < y \<longrightarrow> P" |
|
529 |
"EX x<y. P" => "EX x. x < y \<and> P" |
|
530 |
"ALL x<=y. P" => "ALL x. x <= y \<longrightarrow> P" |
|
531 |
"EX x<=y. P" => "EX x. x <= y \<and> P" |
|
532 |
"ALL x>y. P" => "ALL x. x > y \<longrightarrow> P" |
|
533 |
"EX x>y. P" => "EX x. x > y \<and> P" |
|
534 |
"ALL x>=y. P" => "ALL x. x >= y \<longrightarrow> P" |
|
535 |
"EX x>=y. P" => "EX x. x >= y \<and> P" |
|
536 |
||
537 |
print_translation {* |
|
538 |
let |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
539 |
val syntax_name = Sign.const_syntax_name (the_context ()); |
21524 | 540 |
val binder_name = Syntax.binder_name o syntax_name; |
541 |
val All_binder = binder_name "All"; |
|
542 |
val Ex_binder = binder_name "Ex"; |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
543 |
val impl = syntax_name "op -->"; |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
544 |
val conj = syntax_name "op &"; |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
545 |
val less = syntax_name "Orderings.less"; |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
546 |
val less_eq = syntax_name "Orderings.less_eq"; |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
547 |
|
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
548 |
val trans = |
21524 | 549 |
[((All_binder, impl, less), ("_All_less", "_All_greater")), |
550 |
((All_binder, impl, less_eq), ("_All_less_eq", "_All_greater_eq")), |
|
551 |
((Ex_binder, conj, less), ("_Ex_less", "_Ex_greater")), |
|
552 |
((Ex_binder, conj, less_eq), ("_Ex_less_eq", "_Ex_greater_eq"))]; |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
553 |
|
21083 | 554 |
fun mk v v' c n P = |
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
555 |
if v = v' andalso not (Term.exists_subterm (fn Free (x, _) => x = v | _ => false) n) |
21083 | 556 |
then Syntax.const c $ Syntax.mark_bound v' $ n $ P else raise Match; |
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
557 |
|
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
558 |
fun tr' q = (q, |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
559 |
fn [Const ("_bound", _) $ Free (v, _), Const (c, _) $ (Const (d, _) $ t $ u) $ P] => |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
560 |
(case AList.lookup (op =) trans (q, c, d) of |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
561 |
NONE => raise Match |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
562 |
| SOME (l, g) => |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
563 |
(case (t, u) of |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
564 |
(Const ("_bound", _) $ Free (v', _), n) => mk v v' l n P |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
565 |
| (n, Const ("_bound", _) $ Free (v', _)) => mk v v' g n P |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
566 |
| _ => raise Match)) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
567 |
| _ => raise Match); |
21524 | 568 |
in [tr' All_binder, tr' Ex_binder] end |
21083 | 569 |
*} |
570 |
||
571 |
||
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
572 |
subsection {* Transitivity reasoning *} |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
573 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
574 |
lemma ord_le_eq_trans: "a <= b ==> b = c ==> a <= c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
575 |
by (rule subst) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
576 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
577 |
lemma ord_eq_le_trans: "a = b ==> b <= c ==> a <= c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
578 |
by (rule ssubst) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
579 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
580 |
lemma ord_less_eq_trans: "a < b ==> b = c ==> a < c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
581 |
by (rule subst) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
582 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
583 |
lemma ord_eq_less_trans: "a = b ==> b < c ==> a < c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
584 |
by (rule ssubst) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
585 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
586 |
lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
587 |
(!!x y. x < y ==> f x < f y) ==> f a < c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
588 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
589 |
assume r: "!!x y. x < y ==> f x < f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
590 |
assume "a < b" hence "f a < f b" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
591 |
also assume "f b < c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
592 |
finally (order_less_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
593 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
594 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
595 |
lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
596 |
(!!x y. x < y ==> f x < f y) ==> a < f c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
597 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
598 |
assume r: "!!x y. x < y ==> f x < f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
599 |
assume "a < f b" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
600 |
also assume "b < c" hence "f b < f c" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
601 |
finally (order_less_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
602 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
603 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
604 |
lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
605 |
(!!x y. x <= y ==> f x <= f y) ==> f a < c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
606 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
607 |
assume r: "!!x y. x <= y ==> f x <= f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
608 |
assume "a <= b" hence "f a <= f b" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
609 |
also assume "f b < c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
610 |
finally (order_le_less_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
611 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
612 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
613 |
lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
614 |
(!!x y. x < y ==> f x < f y) ==> a < f c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
615 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
616 |
assume r: "!!x y. x < y ==> f x < f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
617 |
assume "a <= f b" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
618 |
also assume "b < c" hence "f b < f c" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
619 |
finally (order_le_less_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
620 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
621 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
622 |
lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
623 |
(!!x y. x < y ==> f x < f y) ==> f a < c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
624 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
625 |
assume r: "!!x y. x < y ==> f x < f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
626 |
assume "a < b" hence "f a < f b" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
627 |
also assume "f b <= c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
628 |
finally (order_less_le_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
629 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
630 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
631 |
lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
632 |
(!!x y. x <= y ==> f x <= f y) ==> a < f c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
633 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
634 |
assume r: "!!x y. x <= y ==> f x <= f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
635 |
assume "a < f b" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
636 |
also assume "b <= c" hence "f b <= f c" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
637 |
finally (order_less_le_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
638 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
639 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
640 |
lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
641 |
(!!x y. x <= y ==> f x <= f y) ==> a <= f c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
642 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
643 |
assume r: "!!x y. x <= y ==> f x <= f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
644 |
assume "a <= f b" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
645 |
also assume "b <= c" hence "f b <= f c" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
646 |
finally (order_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
647 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
648 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
649 |
lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
650 |
(!!x y. x <= y ==> f x <= f y) ==> f a <= c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
651 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
652 |
assume r: "!!x y. x <= y ==> f x <= f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
653 |
assume "a <= b" hence "f a <= f b" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
654 |
also assume "f b <= c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
655 |
finally (order_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
656 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
657 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
658 |
lemma ord_le_eq_subst: "a <= b ==> f b = c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
659 |
(!!x y. x <= y ==> f x <= f y) ==> f a <= c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
660 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
661 |
assume r: "!!x y. x <= y ==> f x <= f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
662 |
assume "a <= b" hence "f a <= f b" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
663 |
also assume "f b = c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
664 |
finally (ord_le_eq_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
665 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
666 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
667 |
lemma ord_eq_le_subst: "a = f b ==> b <= c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
668 |
(!!x y. x <= y ==> f x <= f y) ==> a <= f c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
669 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
670 |
assume r: "!!x y. x <= y ==> f x <= f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
671 |
assume "a = f b" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
672 |
also assume "b <= c" hence "f b <= f c" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
673 |
finally (ord_eq_le_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
674 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
675 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
676 |
lemma ord_less_eq_subst: "a < b ==> f b = c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
677 |
(!!x y. x < y ==> f x < f y) ==> f a < c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
678 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
679 |
assume r: "!!x y. x < y ==> f x < f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
680 |
assume "a < b" hence "f a < f b" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
681 |
also assume "f b = c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
682 |
finally (ord_less_eq_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
683 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
684 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
685 |
lemma ord_eq_less_subst: "a = f b ==> b < c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
686 |
(!!x y. x < y ==> f x < f y) ==> a < f c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
687 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
688 |
assume r: "!!x y. x < y ==> f x < f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
689 |
assume "a = f b" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
690 |
also assume "b < c" hence "f b < f c" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
691 |
finally (ord_eq_less_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
692 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
693 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
694 |
text {* |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
695 |
Note that this list of rules is in reverse order of priorities. |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
696 |
*} |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
697 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
698 |
lemmas order_trans_rules [trans] = |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
699 |
order_less_subst2 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
700 |
order_less_subst1 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
701 |
order_le_less_subst2 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
702 |
order_le_less_subst1 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
703 |
order_less_le_subst2 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
704 |
order_less_le_subst1 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
705 |
order_subst2 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
706 |
order_subst1 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
707 |
ord_le_eq_subst |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
708 |
ord_eq_le_subst |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
709 |
ord_less_eq_subst |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
710 |
ord_eq_less_subst |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
711 |
forw_subst |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
712 |
back_subst |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
713 |
rev_mp |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
714 |
mp |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
715 |
order_neq_le_trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
716 |
order_le_neq_trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
717 |
order_less_trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
718 |
order_less_asym' |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
719 |
order_le_less_trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
720 |
order_less_le_trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
721 |
order_trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
722 |
order_antisym |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
723 |
ord_le_eq_trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
724 |
ord_eq_le_trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
725 |
ord_less_eq_trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
726 |
ord_eq_less_trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
727 |
trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
728 |
|
21083 | 729 |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
730 |
(* FIXME cleanup *) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
731 |
|
21083 | 732 |
text {* These support proving chains of decreasing inequalities |
733 |
a >= b >= c ... in Isar proofs. *} |
|
734 |
||
735 |
lemma xt1: |
|
736 |
"a = b ==> b > c ==> a > c" |
|
737 |
"a > b ==> b = c ==> a > c" |
|
738 |
"a = b ==> b >= c ==> a >= c" |
|
739 |
"a >= b ==> b = c ==> a >= c" |
|
740 |
"(x::'a::order) >= y ==> y >= x ==> x = y" |
|
741 |
"(x::'a::order) >= y ==> y >= z ==> x >= z" |
|
742 |
"(x::'a::order) > y ==> y >= z ==> x > z" |
|
743 |
"(x::'a::order) >= y ==> y > z ==> x > z" |
|
744 |
"(a::'a::order) > b ==> b > a ==> ?P" |
|
745 |
"(x::'a::order) > y ==> y > z ==> x > z" |
|
746 |
"(a::'a::order) >= b ==> a ~= b ==> a > b" |
|
747 |
"(a::'a::order) ~= b ==> a >= b ==> a > b" |
|
748 |
"a = f b ==> b > c ==> (!!x y. x > y ==> f x > f y) ==> a > f c" |
|
749 |
"a > b ==> f b = c ==> (!!x y. x > y ==> f x > f y) ==> f a > c" |
|
750 |
"a = f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" |
|
751 |
"a >= b ==> f b = c ==> (!! x y. x >= y ==> f x >= f y) ==> f a >= c" |
|
752 |
by auto |
|
753 |
||
754 |
lemma xt2: |
|
755 |
"(a::'a::order) >= f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" |
|
756 |
by (subgoal_tac "f b >= f c", force, force) |
|
757 |
||
758 |
lemma xt3: "(a::'a::order) >= b ==> (f b::'b::order) >= c ==> |
|
759 |
(!!x y. x >= y ==> f x >= f y) ==> f a >= c" |
|
760 |
by (subgoal_tac "f a >= f b", force, force) |
|
761 |
||
762 |
lemma xt4: "(a::'a::order) > f b ==> (b::'b::order) >= c ==> |
|
763 |
(!!x y. x >= y ==> f x >= f y) ==> a > f c" |
|
764 |
by (subgoal_tac "f b >= f c", force, force) |
|
765 |
||
766 |
lemma xt5: "(a::'a::order) > b ==> (f b::'b::order) >= c==> |
|
767 |
(!!x y. x > y ==> f x > f y) ==> f a > c" |
|
768 |
by (subgoal_tac "f a > f b", force, force) |
|
769 |
||
770 |
lemma xt6: "(a::'a::order) >= f b ==> b > c ==> |
|
771 |
(!!x y. x > y ==> f x > f y) ==> a > f c" |
|
772 |
by (subgoal_tac "f b > f c", force, force) |
|
773 |
||
774 |
lemma xt7: "(a::'a::order) >= b ==> (f b::'b::order) > c ==> |
|
775 |
(!!x y. x >= y ==> f x >= f y) ==> f a > c" |
|
776 |
by (subgoal_tac "f a >= f b", force, force) |
|
777 |
||
778 |
lemma xt8: "(a::'a::order) > f b ==> (b::'b::order) > c ==> |
|
779 |
(!!x y. x > y ==> f x > f y) ==> a > f c" |
|
780 |
by (subgoal_tac "f b > f c", force, force) |
|
781 |
||
782 |
lemma xt9: "(a::'a::order) > b ==> (f b::'b::order) > c ==> |
|
783 |
(!!x y. x > y ==> f x > f y) ==> f a > c" |
|
784 |
by (subgoal_tac "f a > f b", force, force) |
|
785 |
||
786 |
lemmas xtrans = xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 |
|
787 |
||
788 |
(* |
|
789 |
Since "a >= b" abbreviates "b <= a", the abbreviation "..." stands |
|
790 |
for the wrong thing in an Isar proof. |
|
791 |
||
792 |
The extra transitivity rules can be used as follows: |
|
793 |
||
794 |
lemma "(a::'a::order) > z" |
|
795 |
proof - |
|
796 |
have "a >= b" (is "_ >= ?rhs") |
|
797 |
sorry |
|
798 |
also have "?rhs >= c" (is "_ >= ?rhs") |
|
799 |
sorry |
|
800 |
also (xtrans) have "?rhs = d" (is "_ = ?rhs") |
|
801 |
sorry |
|
802 |
also (xtrans) have "?rhs >= e" (is "_ >= ?rhs") |
|
803 |
sorry |
|
804 |
also (xtrans) have "?rhs > f" (is "_ > ?rhs") |
|
805 |
sorry |
|
806 |
also (xtrans) have "?rhs > z" |
|
807 |
sorry |
|
808 |
finally (xtrans) show ?thesis . |
|
809 |
qed |
|
810 |
||
811 |
Alternatively, one can use "declare xtrans [trans]" and then |
|
812 |
leave out the "(xtrans)" above. |
|
813 |
*) |
|
814 |
||
21546 | 815 |
subsection {* Order on bool *} |
816 |
||
817 |
instance bool :: linorder |
|
818 |
le_bool_def: "P \<le> Q \<equiv> P \<longrightarrow> Q" |
|
819 |
less_bool_def: "P < Q \<equiv> P \<le> Q \<and> P \<noteq> Q" |
|
820 |
by default (auto simp add: le_bool_def less_bool_def) |
|
821 |
||
822 |
lemma le_boolI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<le> Q" |
|
823 |
by (simp add: le_bool_def) |
|
824 |
||
825 |
lemma le_boolI': "P \<longrightarrow> Q \<Longrightarrow> P \<le> Q" |
|
826 |
by (simp add: le_bool_def) |
|
827 |
||
828 |
lemma le_boolE: "P \<le> Q \<Longrightarrow> P \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R" |
|
829 |
by (simp add: le_bool_def) |
|
830 |
||
831 |
lemma le_boolD: "P \<le> Q \<Longrightarrow> P \<longrightarrow> Q" |
|
832 |
by (simp add: le_bool_def) |
|
833 |
||
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
834 |
subsection {* Monotonicity, syntactic least value operator and min/max *} |
21083 | 835 |
|
21216
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
haftmann
parents:
21204
diff
changeset
|
836 |
locale mono = |
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
haftmann
parents:
21204
diff
changeset
|
837 |
fixes f |
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
haftmann
parents:
21204
diff
changeset
|
838 |
assumes mono: "A \<le> B \<Longrightarrow> f A \<le> f B" |
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
haftmann
parents:
21204
diff
changeset
|
839 |
|
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
haftmann
parents:
21204
diff
changeset
|
840 |
lemmas monoI [intro?] = mono.intro |
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
haftmann
parents:
21204
diff
changeset
|
841 |
and monoD [dest?] = mono.mono |
21083 | 842 |
|
843 |
constdefs |
|
844 |
Least :: "('a::ord => bool) => 'a" (binder "LEAST " 10) |
|
845 |
"Least P == THE x. P x & (ALL y. P y --> x <= y)" |
|
846 |
-- {* We can no longer use LeastM because the latter requires Hilbert-AC. *} |
|
847 |
||
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
848 |
lemma LeastI2_order: |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
849 |
"[| P (x::'a::order); |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
850 |
!!y. P y ==> x <= y; |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
851 |
!!x. [| P x; ALL y. P y --> x \<le> y |] ==> Q x |] |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
852 |
==> Q (Least P)" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
853 |
apply (unfold Least_def) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
854 |
apply (rule theI2) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
855 |
apply (blast intro: order_antisym)+ |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
856 |
done |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
857 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
858 |
lemma Least_equality: |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
859 |
"[| P (k::'a::order); !!x. P x ==> k <= x |] ==> (LEAST x. P x) = k" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
860 |
apply (simp add: Least_def) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
861 |
apply (rule the_equality) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
862 |
apply (auto intro!: order_antisym) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
863 |
done |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
864 |
|
21083 | 865 |
constdefs |
866 |
min :: "['a::ord, 'a] => 'a" |
|
867 |
"min a b == (if a <= b then a else b)" |
|
868 |
max :: "['a::ord, 'a] => 'a" |
|
869 |
"max a b == (if a <= b then b else a)" |
|
870 |
||
21737
f2be09171c9c
hide const linorder.less_eq_less.max linorder.less_eq_less.min;
wenzelm
parents:
21673
diff
changeset
|
871 |
hide const linorder.less_eq_less.max linorder.less_eq_less.min (* FIXME !? *) |
f2be09171c9c
hide const linorder.less_eq_less.max linorder.less_eq_less.min;
wenzelm
parents:
21673
diff
changeset
|
872 |
|
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
873 |
lemma min_linorder: |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
874 |
"linorder.min (op \<le> \<Colon> 'a\<Colon>linorder \<Rightarrow> 'a \<Rightarrow> bool) = min" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
875 |
by (rule+) (simp add: min_def linorder.min_def) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
876 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
877 |
lemma max_linorder: |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
878 |
"linorder.max (op \<le> \<Colon> 'a\<Colon>linorder \<Rightarrow> 'a \<Rightarrow> bool) = max" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
879 |
by (rule+) (simp add: max_def linorder.max_def) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
880 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
881 |
lemmas min_le_iff_disj = linorder.min_le_iff_disj [where 'b = "?'a::linorder", simplified min_linorder] |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
882 |
lemmas le_max_iff_disj = linorder.le_max_iff_disj [where 'b = "?'a::linorder", simplified max_linorder] |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
883 |
lemmas min_less_iff_disj = linorder.min_less_iff_disj [where 'b = "?'a::linorder", simplified min_linorder] |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
884 |
lemmas less_max_iff_disj = linorder.less_max_iff_disj [where 'b = "?'a::linorder", simplified max_linorder] |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
885 |
lemmas min_less_iff_conj [simp] = linorder.min_less_iff_conj [where 'b = "?'a::linorder", simplified min_linorder] |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
886 |
lemmas max_less_iff_conj [simp] = linorder.max_less_iff_conj [where 'b = "?'a::linorder", simplified max_linorder] |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
887 |
lemmas split_min = linorder.split_min [where 'b = "?'a::linorder", simplified min_linorder] |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
888 |
lemmas split_max = linorder.split_max [where 'b = "?'a::linorder", simplified max_linorder] |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
889 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
890 |
lemma min_leastL: "(!!x. least <= x) ==> min least x = least" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
891 |
by (simp add: min_def) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
892 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
893 |
lemma max_leastL: "(!!x. least <= x) ==> max least x = x" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
894 |
by (simp add: max_def) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
895 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
896 |
lemma min_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> min x least = least" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
897 |
apply (simp add: min_def) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
898 |
apply (blast intro: order_antisym) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
899 |
done |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
900 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
901 |
lemma max_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> max x least = x" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
902 |
apply (simp add: max_def) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
903 |
apply (blast intro: order_antisym) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
904 |
done |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
905 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
906 |
lemma min_of_mono: |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
907 |
"(!!x y. (f x <= f y) = (x <= y)) ==> min (f m) (f n) = f (min m n)" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
908 |
by (simp add: min_def) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
909 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
910 |
lemma max_of_mono: |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
911 |
"(!!x y. (f x <= f y) = (x <= y)) ==> max (f m) (f n) = f (max m n)" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
912 |
by (simp add: max_def) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
913 |
|
21673 | 914 |
|
915 |
subsection {* Basic ML bindings *} |
|
916 |
||
917 |
ML {* |
|
918 |
val leD = thm "leD"; |
|
919 |
val leI = thm "leI"; |
|
920 |
val linorder_neqE = thm "linorder_neqE"; |
|
921 |
val linorder_neq_iff = thm "linorder_neq_iff"; |
|
922 |
val linorder_not_le = thm "linorder_not_le"; |
|
923 |
val linorder_not_less = thm "linorder_not_less"; |
|
924 |
val monoD = thm "monoD"; |
|
925 |
val monoI = thm "monoI"; |
|
926 |
val order_antisym = thm "order_antisym"; |
|
927 |
val order_less_irrefl = thm "order_less_irrefl"; |
|
928 |
val order_refl = thm "order_refl"; |
|
929 |
val order_trans = thm "order_trans"; |
|
930 |
val split_max = thm "split_max"; |
|
931 |
val split_min = thm "split_min"; |
|
932 |
*} |
|
933 |
||
934 |
ML {* |
|
935 |
structure HOL = |
|
936 |
struct |
|
937 |
val thy = theory "HOL"; |
|
938 |
end; |
|
939 |
*} -- "belongs to theory HOL" |
|
940 |
||
15524 | 941 |
end |