| author | haftmann | 
| Fri, 26 Oct 2007 21:22:18 +0200 | |
| changeset 25207 | d58c14280367 | 
| parent 25193 | e2e1a4b00de3 | 
| child 25377 | dcde128c84a2 | 
| permissions | -rw-r--r-- | 
| 15524 | 1  | 
(* Title: HOL/Orderings.thy  | 
2  | 
ID: $Id$  | 
|
3  | 
Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson  | 
|
4  | 
*)  | 
|
5  | 
||
| 21329 | 6  | 
header {* Syntactic and abstract orders *}
 | 
| 15524 | 7  | 
|
8  | 
theory Orderings  | 
|
| 23881 | 9  | 
imports Set Fun  | 
| 23263 | 10  | 
uses  | 
11  | 
"~~/src/Provers/order.ML"  | 
|
| 15524 | 12  | 
begin  | 
13  | 
||
| 22841 | 14  | 
subsection {* Partial orders *}
 | 
| 15524 | 15  | 
|
| 22841 | 16  | 
class order = ord +  | 
| 25062 | 17  | 
assumes less_le: "x < y \<longleftrightarrow> x \<le> y \<and> x \<noteq> y"  | 
18  | 
and order_refl [iff]: "x \<le> x"  | 
|
19  | 
and order_trans: "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z"  | 
|
20  | 
assumes antisym: "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y"  | 
|
| 21248 | 21  | 
begin  | 
22  | 
||
| 15524 | 23  | 
text {* Reflexivity. *}
 | 
24  | 
||
| 25062 | 25  | 
lemma eq_refl: "x = y \<Longrightarrow> x \<le> y"  | 
| 15524 | 26  | 
    -- {* This form is useful with the classical reasoner. *}
 | 
| 23212 | 27  | 
by (erule ssubst) (rule order_refl)  | 
| 15524 | 28  | 
|
| 25062 | 29  | 
lemma less_irrefl [iff]: "\<not> x < x"  | 
| 23212 | 30  | 
by (simp add: less_le)  | 
| 15524 | 31  | 
|
| 25062 | 32  | 
lemma le_less: "x \<le> y \<longleftrightarrow> x < y \<or> x = y"  | 
| 15524 | 33  | 
    -- {* NOT suitable for iff, since it can cause PROOF FAILED. *}
 | 
| 23212 | 34  | 
by (simp add: less_le) blast  | 
| 15524 | 35  | 
|
| 25062 | 36  | 
lemma le_imp_less_or_eq: "x \<le> y \<Longrightarrow> x < y \<or> x = y"  | 
| 23212 | 37  | 
unfolding less_le by blast  | 
| 15524 | 38  | 
|
| 25062 | 39  | 
lemma less_imp_le: "x < y \<Longrightarrow> x \<le> y"  | 
| 23212 | 40  | 
unfolding less_le by blast  | 
| 21248 | 41  | 
|
| 25062 | 42  | 
lemma less_imp_neq: "x < y \<Longrightarrow> x \<noteq> y"  | 
| 23212 | 43  | 
by (erule contrapos_pn, erule subst, rule less_irrefl)  | 
| 21329 | 44  | 
|
45  | 
||
46  | 
text {* Useful for simplification, but too risky to include by default. *}
 | 
|
47  | 
||
| 25062 | 48  | 
lemma less_imp_not_eq: "x < y \<Longrightarrow> (x = y) \<longleftrightarrow> False"  | 
| 23212 | 49  | 
by auto  | 
| 21329 | 50  | 
|
| 25062 | 51  | 
lemma less_imp_not_eq2: "x < y \<Longrightarrow> (y = x) \<longleftrightarrow> False"  | 
| 23212 | 52  | 
by auto  | 
| 21329 | 53  | 
|
54  | 
||
55  | 
text {* Transitivity rules for calculational reasoning *}
 | 
|
56  | 
||
| 25062 | 57  | 
lemma neq_le_trans: "a \<noteq> b \<Longrightarrow> a \<le> b \<Longrightarrow> a < b"  | 
| 23212 | 58  | 
by (simp add: less_le)  | 
| 21329 | 59  | 
|
| 25062 | 60  | 
lemma le_neq_trans: "a \<le> b \<Longrightarrow> a \<noteq> b \<Longrightarrow> a < b"  | 
| 23212 | 61  | 
by (simp add: less_le)  | 
| 21329 | 62  | 
|
| 15524 | 63  | 
|
64  | 
text {* Asymmetry. *}
 | 
|
65  | 
||
| 25062 | 66  | 
lemma less_not_sym: "x < y \<Longrightarrow> \<not> (y < x)"  | 
| 23212 | 67  | 
by (simp add: less_le antisym)  | 
| 15524 | 68  | 
|
| 25062 | 69  | 
lemma less_asym: "x < y \<Longrightarrow> (\<not> P \<Longrightarrow> y < x) \<Longrightarrow> P"  | 
| 23212 | 70  | 
by (drule less_not_sym, erule contrapos_np) simp  | 
| 15524 | 71  | 
|
| 25062 | 72  | 
lemma eq_iff: "x = y \<longleftrightarrow> x \<le> y \<and> y \<le> x"  | 
| 23212 | 73  | 
by (blast intro: antisym)  | 
| 15524 | 74  | 
|
| 25062 | 75  | 
lemma antisym_conv: "y \<le> x \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y"  | 
| 23212 | 76  | 
by (blast intro: antisym)  | 
| 15524 | 77  | 
|
| 25062 | 78  | 
lemma less_imp_neq: "x < y \<Longrightarrow> x \<noteq> y"  | 
| 23212 | 79  | 
by (erule contrapos_pn, erule subst, rule less_irrefl)  | 
| 21248 | 80  | 
|
| 21083 | 81  | 
|
| 15524 | 82  | 
text {* Transitivity. *}
 | 
83  | 
||
| 25062 | 84  | 
lemma less_trans: "x < y \<Longrightarrow> y < z \<Longrightarrow> x < z"  | 
| 23212 | 85  | 
by (simp add: less_le) (blast intro: order_trans antisym)  | 
| 15524 | 86  | 
|
| 25062 | 87  | 
lemma le_less_trans: "x \<le> y \<Longrightarrow> y < z \<Longrightarrow> x < z"  | 
| 23212 | 88  | 
by (simp add: less_le) (blast intro: order_trans antisym)  | 
| 15524 | 89  | 
|
| 25062 | 90  | 
lemma less_le_trans: "x < y \<Longrightarrow> y \<le> z \<Longrightarrow> x < z"  | 
| 23212 | 91  | 
by (simp add: less_le) (blast intro: order_trans antisym)  | 
| 15524 | 92  | 
|
93  | 
||
94  | 
text {* Useful for simplification, but too risky to include by default. *}
 | 
|
95  | 
||
| 25062 | 96  | 
lemma less_imp_not_less: "x < y \<Longrightarrow> (\<not> y < x) \<longleftrightarrow> True"  | 
| 23212 | 97  | 
by (blast elim: less_asym)  | 
| 15524 | 98  | 
|
| 25062 | 99  | 
lemma less_imp_triv: "x < y \<Longrightarrow> (y < x \<longrightarrow> P) \<longleftrightarrow> True"  | 
| 23212 | 100  | 
by (blast elim: less_asym)  | 
| 15524 | 101  | 
|
| 21248 | 102  | 
|
| 21083 | 103  | 
text {* Transitivity rules for calculational reasoning *}
 | 
| 15524 | 104  | 
|
| 25062 | 105  | 
lemma less_asym': "a < b \<Longrightarrow> b < a \<Longrightarrow> P"  | 
| 23212 | 106  | 
by (rule less_asym)  | 
| 21248 | 107  | 
|
| 22916 | 108  | 
|
109  | 
text {* Reverse order *}
 | 
|
110  | 
||
111  | 
lemma order_reverse:  | 
|
| 25103 | 112  | 
"order (op \<ge>) (op >)"  | 
| 23212 | 113  | 
by unfold_locales  | 
114  | 
(simp add: less_le, auto intro: antisym order_trans)  | 
|
| 22916 | 115  | 
|
| 21248 | 116  | 
end  | 
| 15524 | 117  | 
|
| 21329 | 118  | 
|
119  | 
subsection {* Linear (total) orders *}
 | 
|
120  | 
||
| 22316 | 121  | 
class linorder = order +  | 
| 25207 | 122  | 
assumes linear: "x \<le> y \<or> y \<le> x"  | 
| 21248 | 123  | 
begin  | 
124  | 
||
| 25062 | 125  | 
lemma less_linear: "x < y \<or> x = y \<or> y < x"  | 
| 23212 | 126  | 
unfolding less_le using less_le linear by blast  | 
| 21248 | 127  | 
|
| 25062 | 128  | 
lemma le_less_linear: "x \<le> y \<or> y < x"  | 
| 23212 | 129  | 
by (simp add: le_less less_linear)  | 
| 21248 | 130  | 
|
131  | 
lemma le_cases [case_names le ge]:  | 
|
| 25062 | 132  | 
"(x \<le> y \<Longrightarrow> P) \<Longrightarrow> (y \<le> x \<Longrightarrow> P) \<Longrightarrow> P"  | 
| 23212 | 133  | 
using linear by blast  | 
| 21248 | 134  | 
|
| 
22384
 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 
haftmann 
parents: 
22377 
diff
changeset
 | 
135  | 
lemma linorder_cases [case_names less equal greater]:  | 
| 25062 | 136  | 
"(x < y \<Longrightarrow> P) \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> (y < x \<Longrightarrow> P) \<Longrightarrow> P"  | 
| 23212 | 137  | 
using less_linear by blast  | 
| 21248 | 138  | 
|
| 25062 | 139  | 
lemma not_less: "\<not> x < y \<longleftrightarrow> y \<le> x"  | 
| 23212 | 140  | 
apply (simp add: less_le)  | 
141  | 
using linear apply (blast intro: antisym)  | 
|
142  | 
done  | 
|
143  | 
||
144  | 
lemma not_less_iff_gr_or_eq:  | 
|
| 25062 | 145  | 
"\<not>(x < y) \<longleftrightarrow> (x > y | x = y)"  | 
| 23212 | 146  | 
apply(simp add:not_less le_less)  | 
147  | 
apply blast  | 
|
148  | 
done  | 
|
| 15524 | 149  | 
|
| 25062 | 150  | 
lemma not_le: "\<not> x \<le> y \<longleftrightarrow> y < x"  | 
| 23212 | 151  | 
apply (simp add: less_le)  | 
152  | 
using linear apply (blast intro: antisym)  | 
|
153  | 
done  | 
|
| 15524 | 154  | 
|
| 25062 | 155  | 
lemma neq_iff: "x \<noteq> y \<longleftrightarrow> x < y \<or> y < x"  | 
| 23212 | 156  | 
by (cut_tac x = x and y = y in less_linear, auto)  | 
| 15524 | 157  | 
|
| 25062 | 158  | 
lemma neqE: "x \<noteq> y \<Longrightarrow> (x < y \<Longrightarrow> R) \<Longrightarrow> (y < x \<Longrightarrow> R) \<Longrightarrow> R"  | 
| 23212 | 159  | 
by (simp add: neq_iff) blast  | 
| 15524 | 160  | 
|
| 25062 | 161  | 
lemma antisym_conv1: "\<not> x < y \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y"  | 
| 23212 | 162  | 
by (blast intro: antisym dest: not_less [THEN iffD1])  | 
| 15524 | 163  | 
|
| 25062 | 164  | 
lemma antisym_conv2: "x \<le> y \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y"  | 
| 23212 | 165  | 
by (blast intro: antisym dest: not_less [THEN iffD1])  | 
| 15524 | 166  | 
|
| 25062 | 167  | 
lemma antisym_conv3: "\<not> y < x \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y"  | 
| 23212 | 168  | 
by (blast intro: antisym dest: not_less [THEN iffD1])  | 
| 15524 | 169  | 
|
| 16796 | 170  | 
text{*Replacing the old Nat.leI*}
 | 
| 25062 | 171  | 
lemma leI: "\<not> x < y \<Longrightarrow> y \<le> x"  | 
| 23212 | 172  | 
unfolding not_less .  | 
| 16796 | 173  | 
|
| 25062 | 174  | 
lemma leD: "y \<le> x \<Longrightarrow> \<not> x < y"  | 
| 23212 | 175  | 
unfolding not_less .  | 
| 16796 | 176  | 
|
177  | 
(*FIXME inappropriate name (or delete altogether)*)  | 
|
| 25062 | 178  | 
lemma not_leE: "\<not> y \<le> x \<Longrightarrow> x < y"  | 
| 23212 | 179  | 
unfolding not_le .  | 
| 21248 | 180  | 
|
| 22916 | 181  | 
|
182  | 
text {* Reverse order *}
 | 
|
183  | 
||
184  | 
lemma linorder_reverse:  | 
|
| 25103 | 185  | 
"linorder (op \<ge>) (op >)"  | 
| 23212 | 186  | 
by unfold_locales  | 
187  | 
(simp add: less_le, auto intro: antisym order_trans simp add: linear)  | 
|
| 22916 | 188  | 
|
189  | 
||
| 23881 | 190  | 
text {* min/max *}
 | 
191  | 
||
192  | 
text {* for historic reasons, definitions are done in context ord *}
 | 
|
193  | 
||
194  | 
definition (in ord)  | 
|
195  | 
min :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where  | 
|
| 25062 | 196  | 
[code unfold, code inline del]: "min a b = (if a \<le> b then a else b)"  | 
| 23881 | 197  | 
|
198  | 
definition (in ord)  | 
|
199  | 
max :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where  | 
|
| 25062 | 200  | 
[code unfold, code inline del]: "max a b = (if a \<le> b then b else a)"  | 
| 
22384
 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 
haftmann 
parents: 
22377 
diff
changeset
 | 
201  | 
|
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
202  | 
lemma min_le_iff_disj:  | 
| 25062 | 203  | 
"min x y \<le> z \<longleftrightarrow> x \<le> z \<or> y \<le> z"  | 
| 23212 | 204  | 
unfolding min_def using linear by (auto intro: order_trans)  | 
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
205  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
206  | 
lemma le_max_iff_disj:  | 
| 25062 | 207  | 
"z \<le> max x y \<longleftrightarrow> z \<le> x \<or> z \<le> y"  | 
| 23212 | 208  | 
unfolding max_def using linear by (auto intro: order_trans)  | 
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
209  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
210  | 
lemma min_less_iff_disj:  | 
| 25062 | 211  | 
"min x y < z \<longleftrightarrow> x < z \<or> y < z"  | 
| 23212 | 212  | 
unfolding min_def le_less using less_linear by (auto intro: less_trans)  | 
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
213  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
214  | 
lemma less_max_iff_disj:  | 
| 25062 | 215  | 
"z < max x y \<longleftrightarrow> z < x \<or> z < y"  | 
| 23212 | 216  | 
unfolding max_def le_less using less_linear by (auto intro: less_trans)  | 
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
217  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
218  | 
lemma min_less_iff_conj [simp]:  | 
| 25062 | 219  | 
"z < min x y \<longleftrightarrow> z < x \<and> z < y"  | 
| 23212 | 220  | 
unfolding min_def le_less using less_linear by (auto intro: less_trans)  | 
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
221  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
222  | 
lemma max_less_iff_conj [simp]:  | 
| 25062 | 223  | 
"max x y < z \<longleftrightarrow> x < z \<and> y < z"  | 
| 23212 | 224  | 
unfolding max_def le_less using less_linear by (auto intro: less_trans)  | 
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
225  | 
|
| 
24286
 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 
paulson 
parents: 
23948 
diff
changeset
 | 
226  | 
lemma split_min [noatp]:  | 
| 25062 | 227  | 
"P (min i j) \<longleftrightarrow> (i \<le> j \<longrightarrow> P i) \<and> (\<not> i \<le> j \<longrightarrow> P j)"  | 
| 23212 | 228  | 
by (simp add: min_def)  | 
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
229  | 
|
| 
24286
 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 
paulson 
parents: 
23948 
diff
changeset
 | 
230  | 
lemma split_max [noatp]:  | 
| 25062 | 231  | 
"P (max i j) \<longleftrightarrow> (i \<le> j \<longrightarrow> P j) \<and> (\<not> i \<le> j \<longrightarrow> P i)"  | 
| 23212 | 232  | 
by (simp add: max_def)  | 
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
233  | 
|
| 21248 | 234  | 
end  | 
235  | 
||
| 23948 | 236  | 
|
| 21083 | 237  | 
subsection {* Reasoning tools setup *}
 | 
238  | 
||
| 21091 | 239  | 
ML {*
 | 
240  | 
||
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
241  | 
signature ORDERS =  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
242  | 
sig  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
243  | 
val print_structures: Proof.context -> unit  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
244  | 
val setup: theory -> theory  | 
| 
24704
 
9a95634ab135
Transitivity reasoner gets additional argument of premises to improve integration with simplifier.
 
ballarin 
parents: 
24641 
diff
changeset
 | 
245  | 
val order_tac: thm list -> Proof.context -> int -> tactic  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
246  | 
end;  | 
| 21091 | 247  | 
|
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
248  | 
structure Orders: ORDERS =  | 
| 21248 | 249  | 
struct  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
250  | 
|
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
251  | 
(** Theory and context data **)  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
252  | 
|
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
253  | 
fun struct_eq ((s1: string, ts1), (s2, ts2)) =  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
254  | 
(s1 = s2) andalso eq_list (op aconv) (ts1, ts2);  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
255  | 
|
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
256  | 
structure Data = GenericDataFun  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
257  | 
(  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
258  | 
type T = ((string * term list) * Order_Tac.less_arith) list;  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
259  | 
(* Order structures:  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
260  | 
identifier of the structure, list of operations and record of theorems  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
261  | 
needed to set up the transitivity reasoner,  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
262  | 
identifier and operations identify the structure uniquely. *)  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
263  | 
val empty = [];  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
264  | 
val extend = I;  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
265  | 
fun merge _ = AList.join struct_eq (K fst);  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
266  | 
);  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
267  | 
|
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
268  | 
fun print_structures ctxt =  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
269  | 
let  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
270  | 
val structs = Data.get (Context.Proof ctxt);  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
271  | 
fun pretty_term t = Pretty.block  | 
| 24920 | 272  | 
[Pretty.quote (Syntax.pretty_term ctxt t), Pretty.brk 1,  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
273  | 
Pretty.str "::", Pretty.brk 1,  | 
| 24920 | 274  | 
Pretty.quote (Syntax.pretty_typ ctxt (type_of t))];  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
275  | 
fun pretty_struct ((s, ts), _) = Pretty.block  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
276  | 
[Pretty.str s, Pretty.str ":", Pretty.brk 1,  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
277  | 
       Pretty.enclose "(" ")" (Pretty.breaks (map pretty_term ts))];
 | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
278  | 
in  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
279  | 
Pretty.writeln (Pretty.big_list "Order structures:" (map pretty_struct structs))  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
280  | 
end;  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
281  | 
|
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
282  | 
|
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
283  | 
(** Method **)  | 
| 21091 | 284  | 
|
| 
24704
 
9a95634ab135
Transitivity reasoner gets additional argument of premises to improve integration with simplifier.
 
ballarin 
parents: 
24641 
diff
changeset
 | 
285  | 
fun struct_tac ((s, [eq, le, less]), thms) prems =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
286  | 
let  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
287  | 
fun decomp thy (Trueprop $ t) =  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
288  | 
let  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
289  | 
fun excluded t =  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
290  | 
(* exclude numeric types: linear arithmetic subsumes transitivity *)  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
291  | 
let val T = type_of t  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
292  | 
in  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
293  | 
T = HOLogic.natT orelse T = HOLogic.intT orelse T = HOLogic.realT  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
294  | 
end;  | 
| 
24741
 
a53f5db5acbb
Fixed setup of transitivity reasoner (function decomp).
 
ballarin 
parents: 
24704 
diff
changeset
 | 
295  | 
fun rel (bin_op $ t1 $ t2) =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
296  | 
if excluded t1 then NONE  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
297  | 
else if Pattern.matches thy (eq, bin_op) then SOME (t1, "=", t2)  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
298  | 
else if Pattern.matches thy (le, bin_op) then SOME (t1, "<=", t2)  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
299  | 
else if Pattern.matches thy (less, bin_op) then SOME (t1, "<", t2)  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
300  | 
else NONE  | 
| 
24741
 
a53f5db5acbb
Fixed setup of transitivity reasoner (function decomp).
 
ballarin 
parents: 
24704 
diff
changeset
 | 
301  | 
| rel _ = NONE;  | 
| 
 
a53f5db5acbb
Fixed setup of transitivity reasoner (function decomp).
 
ballarin 
parents: 
24704 
diff
changeset
 | 
302  | 
	fun dec (Const (@{const_name Not}, _) $ t) = (case rel t
 | 
| 
 
a53f5db5acbb
Fixed setup of transitivity reasoner (function decomp).
 
ballarin 
parents: 
24704 
diff
changeset
 | 
303  | 
of NONE => NONE  | 
| 
 
a53f5db5acbb
Fixed setup of transitivity reasoner (function decomp).
 
ballarin 
parents: 
24704 
diff
changeset
 | 
304  | 
| SOME (t1, rel, t2) => SOME (t1, "~" ^ rel, t2))  | 
| 
 
a53f5db5acbb
Fixed setup of transitivity reasoner (function decomp).
 
ballarin 
parents: 
24704 
diff
changeset
 | 
305  | 
| dec x = rel x;  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
306  | 
in dec t end;  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
307  | 
in  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
308  | 
case s of  | 
| 
24704
 
9a95634ab135
Transitivity reasoner gets additional argument of premises to improve integration with simplifier.
 
ballarin 
parents: 
24641 
diff
changeset
 | 
309  | 
"order" => Order_Tac.partial_tac decomp thms prems  | 
| 
 
9a95634ab135
Transitivity reasoner gets additional argument of premises to improve integration with simplifier.
 
ballarin 
parents: 
24641 
diff
changeset
 | 
310  | 
| "linorder" => Order_Tac.linear_tac decomp thms prems  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
311  | 
    | _ => error ("Unknown kind of order `" ^ s ^ "' encountered in transitivity reasoner.")
 | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
312  | 
end  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
313  | 
|
| 
24704
 
9a95634ab135
Transitivity reasoner gets additional argument of premises to improve integration with simplifier.
 
ballarin 
parents: 
24641 
diff
changeset
 | 
314  | 
fun order_tac prems ctxt =  | 
| 
 
9a95634ab135
Transitivity reasoner gets additional argument of premises to improve integration with simplifier.
 
ballarin 
parents: 
24641 
diff
changeset
 | 
315  | 
FIRST' (map (fn s => CHANGED o struct_tac s prems) (Data.get (Context.Proof ctxt)));  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
316  | 
|
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
317  | 
|
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
318  | 
(** Attribute **)  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
319  | 
|
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
320  | 
fun add_struct_thm s tag =  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
321  | 
Thm.declaration_attribute  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
322  | 
(fn thm => Data.map (AList.map_default struct_eq (s, Order_Tac.empty TrueI) (Order_Tac.update tag thm)));  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
323  | 
fun del_struct s =  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
324  | 
Thm.declaration_attribute  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
325  | 
(fn _ => Data.map (AList.delete struct_eq s));  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
326  | 
|
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
327  | 
val attribute = Attrib.syntax  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
328  | 
(Scan.lift ((Args.add -- Args.name >> (fn (_, s) => SOME s) ||  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
329  | 
Args.del >> K NONE) --| Args.colon (* FIXME ||  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
330  | 
Scan.succeed true *) ) -- Scan.lift Args.name --  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
331  | 
Scan.repeat Args.term  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
332  | 
>> (fn ((SOME tag, n), ts) => add_struct_thm (n, ts) tag  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
333  | 
| ((NONE, n), ts) => del_struct (n, ts)));  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
334  | 
|
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
335  | 
|
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
336  | 
(** Diagnostic command **)  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
337  | 
|
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
338  | 
val print = Toplevel.unknown_context o  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
339  | 
Toplevel.keep (Toplevel.node_case  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
340  | 
(Context.cases (print_structures o ProofContext.init) print_structures)  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
341  | 
(print_structures o Proof.context_of));  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
342  | 
|
| 24867 | 343  | 
val _ =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
344  | 
OuterSyntax.improper_command "print_orders"  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
345  | 
"print order structures available to transitivity reasoner" OuterKeyword.diag  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
346  | 
(Scan.succeed (Toplevel.no_timing o print));  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
347  | 
|
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
348  | 
|
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
349  | 
(** Setup **)  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
350  | 
|
| 24867 | 351  | 
val setup =  | 
352  | 
Method.add_methods  | 
|
353  | 
    [("order", Method.ctxt_args (Method.SIMPLE_METHOD' o order_tac []), "transitivity reasoner")] #>
 | 
|
354  | 
  Attrib.add_attributes [("order", attribute, "theorems controlling transitivity reasoner")];
 | 
|
| 21091 | 355  | 
|
356  | 
end;  | 
|
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
357  | 
|
| 21091 | 358  | 
*}  | 
359  | 
||
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
360  | 
setup Orders.setup  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
361  | 
|
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
362  | 
|
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
363  | 
text {* Declarations to set up transitivity reasoner of partial and linear orders. *}
 | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
364  | 
|
| 25076 | 365  | 
context order  | 
366  | 
begin  | 
|
367  | 
||
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
368  | 
(* The type constraint on @{term op =} below is necessary since the operation
 | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
369  | 
is not a parameter of the locale. *)  | 
| 25076 | 370  | 
|
371  | 
lemmas  | 
|
372  | 
[order add less_reflE: order "op = :: 'a \<Rightarrow> 'a \<Rightarrow> bool" "op <=" "op <"] =  | 
|
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
373  | 
less_irrefl [THEN notE]  | 
| 25076 | 374  | 
lemmas  | 
| 25062 | 375  | 
[order add le_refl: order "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
376  | 
order_refl  | 
| 25076 | 377  | 
lemmas  | 
| 25062 | 378  | 
[order add less_imp_le: order "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
379  | 
less_imp_le  | 
| 25076 | 380  | 
lemmas  | 
| 25062 | 381  | 
[order add eqI: order "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
382  | 
antisym  | 
| 25076 | 383  | 
lemmas  | 
| 25062 | 384  | 
[order add eqD1: order "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
385  | 
eq_refl  | 
| 25076 | 386  | 
lemmas  | 
| 25062 | 387  | 
[order add eqD2: order "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
388  | 
sym [THEN eq_refl]  | 
| 25076 | 389  | 
lemmas  | 
| 25062 | 390  | 
[order add less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
391  | 
less_trans  | 
| 25076 | 392  | 
lemmas  | 
| 25062 | 393  | 
[order add less_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
394  | 
less_le_trans  | 
| 25076 | 395  | 
lemmas  | 
| 25062 | 396  | 
[order add le_less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
397  | 
le_less_trans  | 
| 25076 | 398  | 
lemmas  | 
| 25062 | 399  | 
[order add le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
400  | 
order_trans  | 
| 25076 | 401  | 
lemmas  | 
| 25062 | 402  | 
[order add le_neq_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
403  | 
le_neq_trans  | 
| 25076 | 404  | 
lemmas  | 
| 25062 | 405  | 
[order add neq_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
406  | 
neq_le_trans  | 
| 25076 | 407  | 
lemmas  | 
| 25062 | 408  | 
[order add less_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
409  | 
less_imp_neq  | 
| 25076 | 410  | 
lemmas  | 
| 25062 | 411  | 
[order add eq_neq_eq_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
412  | 
eq_neq_eq_imp_neq  | 
| 25076 | 413  | 
lemmas  | 
| 25062 | 414  | 
[order add not_sym: order "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
415  | 
not_sym  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
416  | 
|
| 25076 | 417  | 
end  | 
418  | 
||
419  | 
context linorder  | 
|
420  | 
begin  | 
|
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
421  | 
|
| 25076 | 422  | 
lemmas  | 
423  | 
[order del: order "op = :: 'a => 'a => bool" "op <=" "op <"] = _  | 
|
424  | 
||
425  | 
lemmas  | 
|
| 25062 | 426  | 
[order add less_reflE: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
427  | 
less_irrefl [THEN notE]  | 
| 25076 | 428  | 
lemmas  | 
| 25062 | 429  | 
[order add le_refl: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
430  | 
order_refl  | 
| 25076 | 431  | 
lemmas  | 
| 25062 | 432  | 
[order add less_imp_le: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
433  | 
less_imp_le  | 
| 25076 | 434  | 
lemmas  | 
| 25062 | 435  | 
[order add not_lessI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
436  | 
not_less [THEN iffD2]  | 
| 25076 | 437  | 
lemmas  | 
| 25062 | 438  | 
[order add not_leI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
439  | 
not_le [THEN iffD2]  | 
| 25076 | 440  | 
lemmas  | 
| 25062 | 441  | 
[order add not_lessD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
442  | 
not_less [THEN iffD1]  | 
| 25076 | 443  | 
lemmas  | 
| 25062 | 444  | 
[order add not_leD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
445  | 
not_le [THEN iffD1]  | 
| 25076 | 446  | 
lemmas  | 
| 25062 | 447  | 
[order add eqI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
448  | 
antisym  | 
| 25076 | 449  | 
lemmas  | 
| 25062 | 450  | 
[order add eqD1: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
451  | 
eq_refl  | 
| 25076 | 452  | 
lemmas  | 
| 25062 | 453  | 
[order add eqD2: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
454  | 
sym [THEN eq_refl]  | 
| 25076 | 455  | 
lemmas  | 
| 25062 | 456  | 
[order add less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
457  | 
less_trans  | 
| 25076 | 458  | 
lemmas  | 
| 25062 | 459  | 
[order add less_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
460  | 
less_le_trans  | 
| 25076 | 461  | 
lemmas  | 
| 25062 | 462  | 
[order add le_less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
463  | 
le_less_trans  | 
| 25076 | 464  | 
lemmas  | 
| 25062 | 465  | 
[order add le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
466  | 
order_trans  | 
| 25076 | 467  | 
lemmas  | 
| 25062 | 468  | 
[order add le_neq_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
469  | 
le_neq_trans  | 
| 25076 | 470  | 
lemmas  | 
| 25062 | 471  | 
[order add neq_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
472  | 
neq_le_trans  | 
| 25076 | 473  | 
lemmas  | 
| 25062 | 474  | 
[order add less_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
475  | 
less_imp_neq  | 
| 25076 | 476  | 
lemmas  | 
| 25062 | 477  | 
[order add eq_neq_eq_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
478  | 
eq_neq_eq_imp_neq  | 
| 25076 | 479  | 
lemmas  | 
| 25062 | 480  | 
[order add not_sym: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] =  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
481  | 
not_sym  | 
| 
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
482  | 
|
| 25076 | 483  | 
end  | 
484  | 
||
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
485  | 
|
| 21083 | 486  | 
setup {*
 | 
487  | 
let  | 
|
488  | 
||
489  | 
fun prp t thm = (#prop (rep_thm thm) = t);  | 
|
| 15524 | 490  | 
|
| 21083 | 491  | 
fun prove_antisym_le sg ss ((le as Const(_,T)) $ r $ s) =  | 
492  | 
let val prems = prems_of_ss ss;  | 
|
| 22916 | 493  | 
      val less = Const (@{const_name less}, T);
 | 
| 21083 | 494  | 
val t = HOLogic.mk_Trueprop(le $ s $ r);  | 
495  | 
in case find_first (prp t) prems of  | 
|
496  | 
NONE =>  | 
|
497  | 
let val t = HOLogic.mk_Trueprop(HOLogic.Not $ (less $ r $ s))  | 
|
498  | 
in case find_first (prp t) prems of  | 
|
499  | 
NONE => NONE  | 
|
| 24422 | 500  | 
            | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv1}))
 | 
| 21083 | 501  | 
end  | 
| 24422 | 502  | 
     | SOME thm => SOME(mk_meta_eq(thm RS @{thm order_class.antisym_conv}))
 | 
| 21083 | 503  | 
end  | 
504  | 
handle THM _ => NONE;  | 
|
| 15524 | 505  | 
|
| 21083 | 506  | 
fun prove_antisym_less sg ss (NotC $ ((less as Const(_,T)) $ r $ s)) =  | 
507  | 
let val prems = prems_of_ss ss;  | 
|
| 22916 | 508  | 
      val le = Const (@{const_name less_eq}, T);
 | 
| 21083 | 509  | 
val t = HOLogic.mk_Trueprop(le $ r $ s);  | 
510  | 
in case find_first (prp t) prems of  | 
|
511  | 
NONE =>  | 
|
512  | 
let val t = HOLogic.mk_Trueprop(NotC $ (less $ s $ r))  | 
|
513  | 
in case find_first (prp t) prems of  | 
|
514  | 
NONE => NONE  | 
|
| 24422 | 515  | 
            | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv3}))
 | 
| 21083 | 516  | 
end  | 
| 24422 | 517  | 
     | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv2}))
 | 
| 21083 | 518  | 
end  | 
519  | 
handle THM _ => NONE;  | 
|
| 15524 | 520  | 
|
| 21248 | 521  | 
fun add_simprocs procs thy =  | 
522  | 
(Simplifier.change_simpset_of thy (fn ss => ss  | 
|
523  | 
addsimprocs (map (fn (name, raw_ts, proc) =>  | 
|
524  | 
Simplifier.simproc thy name raw_ts proc)) procs); thy);  | 
|
525  | 
fun add_solver name tac thy =  | 
|
526  | 
(Simplifier.change_simpset_of thy (fn ss => ss addSolver  | 
|
| 
24704
 
9a95634ab135
Transitivity reasoner gets additional argument of premises to improve integration with simplifier.
 
ballarin 
parents: 
24641 
diff
changeset
 | 
527  | 
(mk_solver' name (fn ss => tac (MetaSimplifier.prems_of_ss ss) (MetaSimplifier.the_context ss)))); thy);  | 
| 21083 | 528  | 
|
529  | 
in  | 
|
| 21248 | 530  | 
add_simprocs [  | 
531  | 
       ("antisym le", ["(x::'a::order) <= y"], prove_antisym_le),
 | 
|
532  | 
       ("antisym less", ["~ (x::'a::linorder) < y"], prove_antisym_less)
 | 
|
533  | 
]  | 
|
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
534  | 
#> add_solver "Transitivity" Orders.order_tac  | 
| 21248 | 535  | 
(* Adding the transitivity reasoners also as safe solvers showed a slight  | 
536  | 
speed up, but the reasoning strength appears to be not higher (at least  | 
|
537  | 
no breaking of additional proofs in the entire HOL distribution, as  | 
|
538  | 
of 5 March 2004, was observed). *)  | 
|
| 21083 | 539  | 
end  | 
540  | 
*}  | 
|
| 15524 | 541  | 
|
542  | 
||
| 24422 | 543  | 
subsection {* Dense orders *}
 | 
544  | 
||
545  | 
class dense_linear_order = linorder +  | 
|
| 25076 | 546  | 
assumes gt_ex: "\<exists>y. x < y"  | 
547  | 
and lt_ex: "\<exists>y. y < x"  | 
|
548  | 
and dense: "x < y \<Longrightarrow> (\<exists>z. x < z \<and> z < y)"  | 
|
| 24422 | 549  | 
(*see further theory Dense_Linear_Order*)  | 
| 25076 | 550  | 
begin  | 
| 
24641
 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 
ballarin 
parents: 
24422 
diff
changeset
 | 
551  | 
|
| 24422 | 552  | 
lemma interval_empty_iff:  | 
| 25076 | 553  | 
  "{y. x < y \<and> y < z} = {} \<longleftrightarrow> \<not> x < z"
 | 
| 24422 | 554  | 
by (auto dest: dense)  | 
555  | 
||
| 25076 | 556  | 
end  | 
557  | 
||
| 24422 | 558  | 
subsection {* Name duplicates *}
 | 
559  | 
||
560  | 
lemmas order_less_le = less_le  | 
|
561  | 
lemmas order_eq_refl = order_class.eq_refl  | 
|
562  | 
lemmas order_less_irrefl = order_class.less_irrefl  | 
|
563  | 
lemmas order_le_less = order_class.le_less  | 
|
564  | 
lemmas order_le_imp_less_or_eq = order_class.le_imp_less_or_eq  | 
|
565  | 
lemmas order_less_imp_le = order_class.less_imp_le  | 
|
566  | 
lemmas order_less_imp_not_eq = order_class.less_imp_not_eq  | 
|
567  | 
lemmas order_less_imp_not_eq2 = order_class.less_imp_not_eq2  | 
|
568  | 
lemmas order_neq_le_trans = order_class.neq_le_trans  | 
|
569  | 
lemmas order_le_neq_trans = order_class.le_neq_trans  | 
|
570  | 
||
571  | 
lemmas order_antisym = antisym  | 
|
572  | 
lemmas order_less_not_sym = order_class.less_not_sym  | 
|
573  | 
lemmas order_less_asym = order_class.less_asym  | 
|
574  | 
lemmas order_eq_iff = order_class.eq_iff  | 
|
575  | 
lemmas order_antisym_conv = order_class.antisym_conv  | 
|
576  | 
lemmas order_less_trans = order_class.less_trans  | 
|
577  | 
lemmas order_le_less_trans = order_class.le_less_trans  | 
|
578  | 
lemmas order_less_le_trans = order_class.less_le_trans  | 
|
579  | 
lemmas order_less_imp_not_less = order_class.less_imp_not_less  | 
|
580  | 
lemmas order_less_imp_triv = order_class.less_imp_triv  | 
|
581  | 
lemmas order_less_asym' = order_class.less_asym'  | 
|
582  | 
||
583  | 
lemmas linorder_linear = linear  | 
|
584  | 
lemmas linorder_less_linear = linorder_class.less_linear  | 
|
585  | 
lemmas linorder_le_less_linear = linorder_class.le_less_linear  | 
|
586  | 
lemmas linorder_le_cases = linorder_class.le_cases  | 
|
587  | 
lemmas linorder_not_less = linorder_class.not_less  | 
|
588  | 
lemmas linorder_not_le = linorder_class.not_le  | 
|
589  | 
lemmas linorder_neq_iff = linorder_class.neq_iff  | 
|
590  | 
lemmas linorder_neqE = linorder_class.neqE  | 
|
591  | 
lemmas linorder_antisym_conv1 = linorder_class.antisym_conv1  | 
|
592  | 
lemmas linorder_antisym_conv2 = linorder_class.antisym_conv2  | 
|
593  | 
lemmas linorder_antisym_conv3 = linorder_class.antisym_conv3  | 
|
594  | 
||
595  | 
||
| 21083 | 596  | 
subsection {* Bounded quantifiers *}
 | 
597  | 
||
598  | 
syntax  | 
|
| 
21180
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
599  | 
  "_All_less" :: "[idt, 'a, bool] => bool"    ("(3ALL _<_./ _)"  [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
600  | 
  "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3EX _<_./ _)"  [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
601  | 
  "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _<=_./ _)" [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
602  | 
  "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _<=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 603  | 
|
| 
21180
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
604  | 
  "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3ALL _>_./ _)"  [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
605  | 
  "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3EX _>_./ _)"  [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
606  | 
  "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _>=_./ _)" [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
607  | 
  "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _>=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 608  | 
|
609  | 
syntax (xsymbols)  | 
|
| 
21180
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
610  | 
  "_All_less" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
611  | 
  "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
612  | 
  "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
613  | 
  "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 614  | 
|
| 
21180
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
615  | 
  "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
616  | 
  "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
617  | 
  "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
618  | 
  "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 619  | 
|
620  | 
syntax (HOL)  | 
|
| 
21180
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
621  | 
  "_All_less" :: "[idt, 'a, bool] => bool"    ("(3! _<_./ _)"  [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
622  | 
  "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3? _<_./ _)"  [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
623  | 
  "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3! _<=_./ _)" [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
624  | 
  "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3? _<=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 625  | 
|
626  | 
syntax (HTML output)  | 
|
| 
21180
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
627  | 
  "_All_less" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
628  | 
  "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
629  | 
  "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
630  | 
  "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 631  | 
|
| 
21180
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
632  | 
  "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
633  | 
  "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
634  | 
  "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
635  | 
  "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 636  | 
|
637  | 
translations  | 
|
638  | 
"ALL x<y. P" => "ALL x. x < y \<longrightarrow> P"  | 
|
639  | 
"EX x<y. P" => "EX x. x < y \<and> P"  | 
|
640  | 
"ALL x<=y. P" => "ALL x. x <= y \<longrightarrow> P"  | 
|
641  | 
"EX x<=y. P" => "EX x. x <= y \<and> P"  | 
|
642  | 
"ALL x>y. P" => "ALL x. x > y \<longrightarrow> P"  | 
|
643  | 
"EX x>y. P" => "EX x. x > y \<and> P"  | 
|
644  | 
"ALL x>=y. P" => "ALL x. x >= y \<longrightarrow> P"  | 
|
645  | 
"EX x>=y. P" => "EX x. x >= y \<and> P"  | 
|
646  | 
||
647  | 
print_translation {*
 | 
|
648  | 
let  | 
|
| 22916 | 649  | 
  val All_binder = Syntax.binder_name @{const_syntax All};
 | 
650  | 
  val Ex_binder = Syntax.binder_name @{const_syntax Ex};
 | 
|
| 22377 | 651  | 
  val impl = @{const_syntax "op -->"};
 | 
652  | 
  val conj = @{const_syntax "op &"};
 | 
|
| 22916 | 653  | 
  val less = @{const_syntax less};
 | 
654  | 
  val less_eq = @{const_syntax less_eq};
 | 
|
| 
21180
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
655  | 
|
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
656  | 
val trans =  | 
| 21524 | 657  | 
   [((All_binder, impl, less), ("_All_less", "_All_greater")),
 | 
658  | 
    ((All_binder, impl, less_eq), ("_All_less_eq", "_All_greater_eq")),
 | 
|
659  | 
    ((Ex_binder, conj, less), ("_Ex_less", "_Ex_greater")),
 | 
|
660  | 
    ((Ex_binder, conj, less_eq), ("_Ex_less_eq", "_Ex_greater_eq"))];
 | 
|
| 
21180
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
661  | 
|
| 
22344
 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 
krauss 
parents: 
22316 
diff
changeset
 | 
662  | 
fun matches_bound v t =  | 
| 
 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 
krauss 
parents: 
22316 
diff
changeset
 | 
663  | 
     case t of (Const ("_bound", _) $ Free (v', _)) => (v = v')
 | 
| 
 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 
krauss 
parents: 
22316 
diff
changeset
 | 
664  | 
| _ => false  | 
| 
 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 
krauss 
parents: 
22316 
diff
changeset
 | 
665  | 
fun contains_var v = Term.exists_subterm (fn Free (x, _) => x = v | _ => false)  | 
| 
 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 
krauss 
parents: 
22316 
diff
changeset
 | 
666  | 
fun mk v c n P = Syntax.const c $ Syntax.mark_bound v $ n $ P  | 
| 
21180
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
667  | 
|
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
668  | 
fun tr' q = (q,  | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
669  | 
    fn [Const ("_bound", _) $ Free (v, _), Const (c, _) $ (Const (d, _) $ t $ u) $ P] =>
 | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
670  | 
(case AList.lookup (op =) trans (q, c, d) of  | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
671  | 
NONE => raise Match  | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
672  | 
| SOME (l, g) =>  | 
| 
22344
 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 
krauss 
parents: 
22316 
diff
changeset
 | 
673  | 
if matches_bound v t andalso not (contains_var v u) then mk v l u P  | 
| 
 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 
krauss 
parents: 
22316 
diff
changeset
 | 
674  | 
else if matches_bound v u andalso not (contains_var v t) then mk v g t P  | 
| 
 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 
krauss 
parents: 
22316 
diff
changeset
 | 
675  | 
else raise Match)  | 
| 
21180
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
676  | 
| _ => raise Match);  | 
| 21524 | 677  | 
in [tr' All_binder, tr' Ex_binder] end  | 
| 21083 | 678  | 
*}  | 
679  | 
||
680  | 
||
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
681  | 
subsection {* Transitivity reasoning *}
 | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
682  | 
|
| 25193 | 683  | 
context ord  | 
684  | 
begin  | 
|
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
685  | 
|
| 25193 | 686  | 
lemma ord_le_eq_trans: "a \<le> b \<Longrightarrow> b = c \<Longrightarrow> a \<le> c"  | 
687  | 
by (rule subst)  | 
|
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
688  | 
|
| 25193 | 689  | 
lemma ord_eq_le_trans: "a = b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c"  | 
690  | 
by (rule ssubst)  | 
|
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
691  | 
|
| 25193 | 692  | 
lemma ord_less_eq_trans: "a < b \<Longrightarrow> b = c \<Longrightarrow> a < c"  | 
693  | 
by (rule subst)  | 
|
694  | 
||
695  | 
lemma ord_eq_less_trans: "a = b \<Longrightarrow> b < c \<Longrightarrow> a < c"  | 
|
696  | 
by (rule ssubst)  | 
|
697  | 
||
698  | 
end  | 
|
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
699  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
700  | 
lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==>  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
701  | 
(!!x y. x < y ==> f x < f y) ==> f a < c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
702  | 
proof -  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
703  | 
assume r: "!!x y. x < y ==> f x < f y"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
704  | 
assume "a < b" hence "f a < f b" by (rule r)  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
705  | 
also assume "f b < c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
706  | 
finally (order_less_trans) show ?thesis .  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
707  | 
qed  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
708  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
709  | 
lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==>  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
710  | 
(!!x y. x < y ==> f x < f y) ==> a < f c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
711  | 
proof -  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
712  | 
assume r: "!!x y. x < y ==> f x < f y"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
713  | 
assume "a < f b"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
714  | 
also assume "b < c" hence "f b < f c" by (rule r)  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
715  | 
finally (order_less_trans) show ?thesis .  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
716  | 
qed  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
717  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
718  | 
lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==>  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
719  | 
(!!x y. x <= y ==> f x <= f y) ==> f a < c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
720  | 
proof -  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
721  | 
assume r: "!!x y. x <= y ==> f x <= f y"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
722  | 
assume "a <= b" hence "f a <= f b" by (rule r)  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
723  | 
also assume "f b < c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
724  | 
finally (order_le_less_trans) show ?thesis .  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
725  | 
qed  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
726  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
727  | 
lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==>  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
728  | 
(!!x y. x < y ==> f x < f y) ==> a < f c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
729  | 
proof -  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
730  | 
assume r: "!!x y. x < y ==> f x < f y"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
731  | 
assume "a <= f b"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
732  | 
also assume "b < c" hence "f b < f c" by (rule r)  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
733  | 
finally (order_le_less_trans) show ?thesis .  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
734  | 
qed  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
735  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
736  | 
lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==>  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
737  | 
(!!x y. x < y ==> f x < f y) ==> f a < c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
738  | 
proof -  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
739  | 
assume r: "!!x y. x < y ==> f x < f y"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
740  | 
assume "a < b" hence "f a < f b" by (rule r)  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
741  | 
also assume "f b <= c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
742  | 
finally (order_less_le_trans) show ?thesis .  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
743  | 
qed  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
744  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
745  | 
lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==>  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
746  | 
(!!x y. x <= y ==> f x <= f y) ==> a < f c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
747  | 
proof -  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
748  | 
assume r: "!!x y. x <= y ==> f x <= f y"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
749  | 
assume "a < f b"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
750  | 
also assume "b <= c" hence "f b <= f c" by (rule r)  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
751  | 
finally (order_less_le_trans) show ?thesis .  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
752  | 
qed  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
753  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
754  | 
lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==>  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
755  | 
(!!x y. x <= y ==> f x <= f y) ==> a <= f c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
756  | 
proof -  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
757  | 
assume r: "!!x y. x <= y ==> f x <= f y"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
758  | 
assume "a <= f b"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
759  | 
also assume "b <= c" hence "f b <= f c" by (rule r)  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
760  | 
finally (order_trans) show ?thesis .  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
761  | 
qed  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
762  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
763  | 
lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==>  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
764  | 
(!!x y. x <= y ==> f x <= f y) ==> f a <= c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
765  | 
proof -  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
766  | 
assume r: "!!x y. x <= y ==> f x <= f y"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
767  | 
assume "a <= b" hence "f a <= f b" by (rule r)  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
768  | 
also assume "f b <= c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
769  | 
finally (order_trans) show ?thesis .  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
770  | 
qed  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
771  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
772  | 
lemma ord_le_eq_subst: "a <= b ==> f b = c ==>  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
773  | 
(!!x y. x <= y ==> f x <= f y) ==> f a <= c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
774  | 
proof -  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
775  | 
assume r: "!!x y. x <= y ==> f x <= f y"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
776  | 
assume "a <= b" hence "f a <= f b" by (rule r)  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
777  | 
also assume "f b = c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
778  | 
finally (ord_le_eq_trans) show ?thesis .  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
779  | 
qed  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
780  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
781  | 
lemma ord_eq_le_subst: "a = f b ==> b <= c ==>  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
782  | 
(!!x y. x <= y ==> f x <= f y) ==> a <= f c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
783  | 
proof -  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
784  | 
assume r: "!!x y. x <= y ==> f x <= f y"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
785  | 
assume "a = f b"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
786  | 
also assume "b <= c" hence "f b <= f c" by (rule r)  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
787  | 
finally (ord_eq_le_trans) show ?thesis .  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
788  | 
qed  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
789  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
790  | 
lemma ord_less_eq_subst: "a < b ==> f b = c ==>  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
791  | 
(!!x y. x < y ==> f x < f y) ==> f a < c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
792  | 
proof -  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
793  | 
assume r: "!!x y. x < y ==> f x < f y"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
794  | 
assume "a < b" hence "f a < f b" by (rule r)  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
795  | 
also assume "f b = c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
796  | 
finally (ord_less_eq_trans) show ?thesis .  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
797  | 
qed  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
798  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
799  | 
lemma ord_eq_less_subst: "a = f b ==> b < c ==>  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
800  | 
(!!x y. x < y ==> f x < f y) ==> a < f c"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
801  | 
proof -  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
802  | 
assume r: "!!x y. x < y ==> f x < f y"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
803  | 
assume "a = f b"  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
804  | 
also assume "b < c" hence "f b < f c" by (rule r)  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
805  | 
finally (ord_eq_less_trans) show ?thesis .  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
806  | 
qed  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
807  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
808  | 
text {*
 | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
809  | 
Note that this list of rules is in reverse order of priorities.  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
810  | 
*}  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
811  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
812  | 
lemmas order_trans_rules [trans] =  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
813  | 
order_less_subst2  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
814  | 
order_less_subst1  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
815  | 
order_le_less_subst2  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
816  | 
order_le_less_subst1  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
817  | 
order_less_le_subst2  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
818  | 
order_less_le_subst1  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
819  | 
order_subst2  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
820  | 
order_subst1  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
821  | 
ord_le_eq_subst  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
822  | 
ord_eq_le_subst  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
823  | 
ord_less_eq_subst  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
824  | 
ord_eq_less_subst  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
825  | 
forw_subst  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
826  | 
back_subst  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
827  | 
rev_mp  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
828  | 
mp  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
829  | 
order_neq_le_trans  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
830  | 
order_le_neq_trans  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
831  | 
order_less_trans  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
832  | 
order_less_asym'  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
833  | 
order_le_less_trans  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
834  | 
order_less_le_trans  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
835  | 
order_trans  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
836  | 
order_antisym  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
837  | 
ord_le_eq_trans  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
838  | 
ord_eq_le_trans  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
839  | 
ord_less_eq_trans  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
840  | 
ord_eq_less_trans  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
841  | 
trans  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
842  | 
|
| 21083 | 843  | 
|
| 
21180
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
844  | 
(* FIXME cleanup *)  | 
| 
 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 
wenzelm 
parents: 
21091 
diff
changeset
 | 
845  | 
|
| 21083 | 846  | 
text {* These support proving chains of decreasing inequalities
 | 
847  | 
a >= b >= c ... in Isar proofs. *}  | 
|
848  | 
||
849  | 
lemma xt1:  | 
|
850  | 
"a = b ==> b > c ==> a > c"  | 
|
851  | 
"a > b ==> b = c ==> a > c"  | 
|
852  | 
"a = b ==> b >= c ==> a >= c"  | 
|
853  | 
"a >= b ==> b = c ==> a >= c"  | 
|
854  | 
"(x::'a::order) >= y ==> y >= x ==> x = y"  | 
|
855  | 
"(x::'a::order) >= y ==> y >= z ==> x >= z"  | 
|
856  | 
"(x::'a::order) > y ==> y >= z ==> x > z"  | 
|
857  | 
"(x::'a::order) >= y ==> y > z ==> x > z"  | 
|
| 23417 | 858  | 
"(a::'a::order) > b ==> b > a ==> P"  | 
| 21083 | 859  | 
"(x::'a::order) > y ==> y > z ==> x > z"  | 
860  | 
"(a::'a::order) >= b ==> a ~= b ==> a > b"  | 
|
861  | 
"(a::'a::order) ~= b ==> a >= b ==> a > b"  | 
|
862  | 
"a = f b ==> b > c ==> (!!x y. x > y ==> f x > f y) ==> a > f c"  | 
|
863  | 
"a > b ==> f b = c ==> (!!x y. x > y ==> f x > f y) ==> f a > c"  | 
|
864  | 
"a = f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c"  | 
|
865  | 
"a >= b ==> f b = c ==> (!! x y. x >= y ==> f x >= f y) ==> f a >= c"  | 
|
| 25076 | 866  | 
by auto  | 
| 21083 | 867  | 
|
868  | 
lemma xt2:  | 
|
869  | 
"(a::'a::order) >= f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c"  | 
|
870  | 
by (subgoal_tac "f b >= f c", force, force)  | 
|
871  | 
||
872  | 
lemma xt3: "(a::'a::order) >= b ==> (f b::'b::order) >= c ==>  | 
|
873  | 
(!!x y. x >= y ==> f x >= f y) ==> f a >= c"  | 
|
874  | 
by (subgoal_tac "f a >= f b", force, force)  | 
|
875  | 
||
876  | 
lemma xt4: "(a::'a::order) > f b ==> (b::'b::order) >= c ==>  | 
|
877  | 
(!!x y. x >= y ==> f x >= f y) ==> a > f c"  | 
|
878  | 
by (subgoal_tac "f b >= f c", force, force)  | 
|
879  | 
||
880  | 
lemma xt5: "(a::'a::order) > b ==> (f b::'b::order) >= c==>  | 
|
881  | 
(!!x y. x > y ==> f x > f y) ==> f a > c"  | 
|
882  | 
by (subgoal_tac "f a > f b", force, force)  | 
|
883  | 
||
884  | 
lemma xt6: "(a::'a::order) >= f b ==> b > c ==>  | 
|
885  | 
(!!x y. x > y ==> f x > f y) ==> a > f c"  | 
|
886  | 
by (subgoal_tac "f b > f c", force, force)  | 
|
887  | 
||
888  | 
lemma xt7: "(a::'a::order) >= b ==> (f b::'b::order) > c ==>  | 
|
889  | 
(!!x y. x >= y ==> f x >= f y) ==> f a > c"  | 
|
890  | 
by (subgoal_tac "f a >= f b", force, force)  | 
|
891  | 
||
892  | 
lemma xt8: "(a::'a::order) > f b ==> (b::'b::order) > c ==>  | 
|
893  | 
(!!x y. x > y ==> f x > f y) ==> a > f c"  | 
|
894  | 
by (subgoal_tac "f b > f c", force, force)  | 
|
895  | 
||
896  | 
lemma xt9: "(a::'a::order) > b ==> (f b::'b::order) > c ==>  | 
|
897  | 
(!!x y. x > y ==> f x > f y) ==> f a > c"  | 
|
898  | 
by (subgoal_tac "f a > f b", force, force)  | 
|
899  | 
||
900  | 
lemmas xtrans = xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9  | 
|
901  | 
||
902  | 
(*  | 
|
903  | 
Since "a >= b" abbreviates "b <= a", the abbreviation "..." stands  | 
|
904  | 
for the wrong thing in an Isar proof.  | 
|
905  | 
||
906  | 
The extra transitivity rules can be used as follows:  | 
|
907  | 
||
908  | 
lemma "(a::'a::order) > z"  | 
|
909  | 
proof -  | 
|
910  | 
have "a >= b" (is "_ >= ?rhs")  | 
|
911  | 
sorry  | 
|
912  | 
also have "?rhs >= c" (is "_ >= ?rhs")  | 
|
913  | 
sorry  | 
|
914  | 
also (xtrans) have "?rhs = d" (is "_ = ?rhs")  | 
|
915  | 
sorry  | 
|
916  | 
also (xtrans) have "?rhs >= e" (is "_ >= ?rhs")  | 
|
917  | 
sorry  | 
|
918  | 
also (xtrans) have "?rhs > f" (is "_ > ?rhs")  | 
|
919  | 
sorry  | 
|
920  | 
also (xtrans) have "?rhs > z"  | 
|
921  | 
sorry  | 
|
922  | 
finally (xtrans) show ?thesis .  | 
|
923  | 
qed  | 
|
924  | 
||
925  | 
Alternatively, one can use "declare xtrans [trans]" and then  | 
|
926  | 
leave out the "(xtrans)" above.  | 
|
927  | 
*)  | 
|
928  | 
||
| 21546 | 929  | 
subsection {* Order on bool *}
 | 
930  | 
||
| 22886 | 931  | 
instance bool :: order  | 
| 21546 | 932  | 
le_bool_def: "P \<le> Q \<equiv> P \<longrightarrow> Q"  | 
933  | 
less_bool_def: "P < Q \<equiv> P \<le> Q \<and> P \<noteq> Q"  | 
|
| 22916 | 934  | 
by intro_classes (auto simp add: le_bool_def less_bool_def)  | 
| 24422 | 935  | 
lemmas [code func del] = le_bool_def less_bool_def  | 
| 21546 | 936  | 
|
937  | 
lemma le_boolI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<le> Q"  | 
|
| 23212 | 938  | 
by (simp add: le_bool_def)  | 
| 21546 | 939  | 
|
940  | 
lemma le_boolI': "P \<longrightarrow> Q \<Longrightarrow> P \<le> Q"  | 
|
| 23212 | 941  | 
by (simp add: le_bool_def)  | 
| 21546 | 942  | 
|
943  | 
lemma le_boolE: "P \<le> Q \<Longrightarrow> P \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R"  | 
|
| 23212 | 944  | 
by (simp add: le_bool_def)  | 
| 21546 | 945  | 
|
946  | 
lemma le_boolD: "P \<le> Q \<Longrightarrow> P \<longrightarrow> Q"  | 
|
| 23212 | 947  | 
by (simp add: le_bool_def)  | 
| 21546 | 948  | 
|
| 22348 | 949  | 
lemma [code func]:  | 
950  | 
"False \<le> b \<longleftrightarrow> True"  | 
|
951  | 
"True \<le> b \<longleftrightarrow> b"  | 
|
952  | 
"False < b \<longleftrightarrow> b"  | 
|
953  | 
"True < b \<longleftrightarrow> False"  | 
|
954  | 
unfolding le_bool_def less_bool_def by simp_all  | 
|
955  | 
||
| 22424 | 956  | 
|
| 23881 | 957  | 
subsection {* Order on sets *}
 | 
958  | 
||
959  | 
instance set :: (type) order  | 
|
960  | 
by (intro_classes,  | 
|
961  | 
(assumption | rule subset_refl subset_trans subset_antisym psubset_eq)+)  | 
|
962  | 
||
963  | 
lemmas basic_trans_rules [trans] =  | 
|
964  | 
order_trans_rules set_rev_mp set_mp  | 
|
965  | 
||
966  | 
||
967  | 
subsection {* Order on functions *}
 | 
|
968  | 
||
969  | 
instance "fun" :: (type, ord) ord  | 
|
970  | 
le_fun_def: "f \<le> g \<equiv> \<forall>x. f x \<le> g x"  | 
|
971  | 
less_fun_def: "f < g \<equiv> f \<le> g \<and> f \<noteq> g" ..  | 
|
972  | 
||
973  | 
lemmas [code func del] = le_fun_def less_fun_def  | 
|
974  | 
||
975  | 
instance "fun" :: (type, order) order  | 
|
976  | 
by default  | 
|
977  | 
(auto simp add: le_fun_def less_fun_def expand_fun_eq  | 
|
978  | 
intro: order_trans order_antisym)  | 
|
979  | 
||
980  | 
lemma le_funI: "(\<And>x. f x \<le> g x) \<Longrightarrow> f \<le> g"  | 
|
981  | 
unfolding le_fun_def by simp  | 
|
982  | 
||
983  | 
lemma le_funE: "f \<le> g \<Longrightarrow> (f x \<le> g x \<Longrightarrow> P) \<Longrightarrow> P"  | 
|
984  | 
unfolding le_fun_def by simp  | 
|
985  | 
||
986  | 
lemma le_funD: "f \<le> g \<Longrightarrow> f x \<le> g x"  | 
|
987  | 
unfolding le_fun_def by simp  | 
|
988  | 
||
989  | 
text {*
 | 
|
990  | 
  Handy introduction and elimination rules for @{text "\<le>"}
 | 
|
991  | 
on unary and binary predicates  | 
|
992  | 
*}  | 
|
993  | 
||
994  | 
lemma predicate1I [Pure.intro!, intro!]:  | 
|
995  | 
assumes PQ: "\<And>x. P x \<Longrightarrow> Q x"  | 
|
996  | 
shows "P \<le> Q"  | 
|
997  | 
apply (rule le_funI)  | 
|
998  | 
apply (rule le_boolI)  | 
|
999  | 
apply (rule PQ)  | 
|
1000  | 
apply assumption  | 
|
1001  | 
done  | 
|
1002  | 
||
1003  | 
lemma predicate1D [Pure.dest, dest]: "P \<le> Q \<Longrightarrow> P x \<Longrightarrow> Q x"  | 
|
1004  | 
apply (erule le_funE)  | 
|
1005  | 
apply (erule le_boolE)  | 
|
1006  | 
apply assumption+  | 
|
1007  | 
done  | 
|
1008  | 
||
1009  | 
lemma predicate2I [Pure.intro!, intro!]:  | 
|
1010  | 
assumes PQ: "\<And>x y. P x y \<Longrightarrow> Q x y"  | 
|
1011  | 
shows "P \<le> Q"  | 
|
1012  | 
apply (rule le_funI)+  | 
|
1013  | 
apply (rule le_boolI)  | 
|
1014  | 
apply (rule PQ)  | 
|
1015  | 
apply assumption  | 
|
1016  | 
done  | 
|
1017  | 
||
1018  | 
lemma predicate2D [Pure.dest, dest]: "P \<le> Q \<Longrightarrow> P x y \<Longrightarrow> Q x y"  | 
|
1019  | 
apply (erule le_funE)+  | 
|
1020  | 
apply (erule le_boolE)  | 
|
1021  | 
apply assumption+  | 
|
1022  | 
done  | 
|
1023  | 
||
1024  | 
lemma rev_predicate1D: "P x ==> P <= Q ==> Q x"  | 
|
1025  | 
by (rule predicate1D)  | 
|
1026  | 
||
1027  | 
lemma rev_predicate2D: "P x y ==> P <= Q ==> Q x y"  | 
|
1028  | 
by (rule predicate2D)  | 
|
1029  | 
||
1030  | 
||
1031  | 
subsection {* Monotonicity, least value operator and min/max *}
 | 
|
| 21083 | 1032  | 
|
| 25076 | 1033  | 
context order  | 
1034  | 
begin  | 
|
1035  | 
||
1036  | 
definition  | 
|
1037  | 
  mono :: "('a \<Rightarrow> 'b\<Colon>order) \<Rightarrow> bool"
 | 
|
1038  | 
where  | 
|
1039  | 
"mono f \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> f x \<le> f y)"  | 
|
1040  | 
||
1041  | 
lemma monoI [intro?]:  | 
|
1042  | 
fixes f :: "'a \<Rightarrow> 'b\<Colon>order"  | 
|
1043  | 
shows "(\<And>x y. x \<le> y \<Longrightarrow> f x \<le> f y) \<Longrightarrow> mono f"  | 
|
1044  | 
unfolding mono_def by iprover  | 
|
| 
21216
 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 
haftmann 
parents: 
21204 
diff
changeset
 | 
1045  | 
|
| 25076 | 1046  | 
lemma monoD [dest?]:  | 
1047  | 
fixes f :: "'a \<Rightarrow> 'b\<Colon>order"  | 
|
1048  | 
shows "mono f \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y"  | 
|
1049  | 
unfolding mono_def by iprover  | 
|
1050  | 
||
1051  | 
end  | 
|
1052  | 
||
1053  | 
context linorder  | 
|
1054  | 
begin  | 
|
1055  | 
||
1056  | 
lemma min_of_mono:  | 
|
1057  | 
fixes f :: "'a \<Rightarrow> 'b\<Colon>linorder"  | 
|
1058  | 
shows "mono f \<Longrightarrow> Orderings.min (f m) (f n) = f (min m n)"  | 
|
1059  | 
by (auto simp: mono_def Orderings.min_def min_def intro: Orderings.antisym)  | 
|
1060  | 
||
1061  | 
lemma max_of_mono:  | 
|
1062  | 
fixes f :: "'a \<Rightarrow> 'b\<Colon>linorder"  | 
|
1063  | 
shows "mono f \<Longrightarrow> Orderings.max (f m) (f n) = f (max m n)"  | 
|
1064  | 
by (auto simp: mono_def Orderings.max_def max_def intro: Orderings.antisym)  | 
|
1065  | 
||
1066  | 
end  | 
|
| 21083 | 1067  | 
|
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
1068  | 
lemma LeastI2_order:  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
1069  | 
"[| P (x::'a::order);  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
1070  | 
!!y. P y ==> x <= y;  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
1071  | 
!!x. [| P x; ALL y. P y --> x \<le> y |] ==> Q x |]  | 
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
1072  | 
==> Q (Least P)"  | 
| 23212 | 1073  | 
apply (unfold Least_def)  | 
1074  | 
apply (rule theI2)  | 
|
1075  | 
apply (blast intro: order_antisym)+  | 
|
1076  | 
done  | 
|
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
1077  | 
|
| 23881 | 1078  | 
lemma Least_mono:  | 
1079  | 
"mono (f::'a::order => 'b::order) ==> EX x:S. ALL y:S. x <= y  | 
|
1080  | 
==> (LEAST y. y : f ` S) = f (LEAST x. x : S)"  | 
|
1081  | 
    -- {* Courtesy of Stephan Merz *}
 | 
|
1082  | 
apply clarify  | 
|
1083  | 
apply (erule_tac P = "%x. x : S" in LeastI2_order, fast)  | 
|
1084  | 
apply (rule LeastI2_order)  | 
|
1085  | 
apply (auto elim: monoD intro!: order_antisym)  | 
|
1086  | 
done  | 
|
1087  | 
||
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
1088  | 
lemma Least_equality:  | 
| 23212 | 1089  | 
"[| P (k::'a::order); !!x. P x ==> k <= x |] ==> (LEAST x. P x) = k"  | 
1090  | 
apply (simp add: Least_def)  | 
|
1091  | 
apply (rule the_equality)  | 
|
1092  | 
apply (auto intro!: order_antisym)  | 
|
1093  | 
done  | 
|
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
1094  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
1095  | 
lemma min_leastL: "(!!x. least <= x) ==> min least x = least"  | 
| 23212 | 1096  | 
by (simp add: min_def)  | 
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
1097  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
1098  | 
lemma max_leastL: "(!!x. least <= x) ==> max least x = x"  | 
| 23212 | 1099  | 
by (simp add: max_def)  | 
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
1100  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
1101  | 
lemma min_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> min x least = least"  | 
| 23212 | 1102  | 
apply (simp add: min_def)  | 
1103  | 
apply (blast intro: order_antisym)  | 
|
1104  | 
done  | 
|
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
1105  | 
|
| 
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
1106  | 
lemma max_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> max x least = x"  | 
| 23212 | 1107  | 
apply (simp add: max_def)  | 
1108  | 
apply (blast intro: order_antisym)  | 
|
1109  | 
done  | 
|
| 
21383
 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 
haftmann 
parents: 
21329 
diff
changeset
 | 
1110  | 
|
| 22548 | 1111  | 
subsection {* legacy ML bindings *}
 | 
| 21673 | 1112  | 
|
1113  | 
ML {*
 | 
|
| 22548 | 1114  | 
val monoI = @{thm monoI};
 | 
| 22886 | 1115  | 
*}  | 
| 21673 | 1116  | 
|
| 15524 | 1117  | 
end  |