| author | wenzelm | 
| Sat, 08 May 2021 13:06:30 +0200 | |
| changeset 73652 | d5c3eee7da74 | 
| parent 73545 | fc72e5ebf9de | 
| child 74007 | df976eefcba0 | 
| permissions | -rw-r--r-- | 
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 1 | (* Title: HOL/Rings.thy | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 2 | Author: Gertrud Bauer | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 3 | Author: Steven Obua | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 4 | Author: Tobias Nipkow | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 5 | Author: Lawrence C Paulson | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 6 | Author: Markus Wenzel | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 7 | Author: Jeremy Avigad | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 8 | *) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 9 | |
| 60758 | 10 | section \<open>Rings\<close> | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 11 | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 12 | theory Rings | 
| 69661 | 13 | imports Groups Set Fun | 
| 15131 | 14 | begin | 
| 14504 | 15 | |
| 70145 | 16 | subsection \<open>Semirings and rings\<close> | 
| 17 | ||
| 22390 | 18 | class semiring = ab_semigroup_add + semigroup_mult + | 
| 70817 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70347diff
changeset | 19 | assumes distrib_right [algebra_simps, algebra_split_simps]: "(a + b) * c = a * c + b * c" | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70347diff
changeset | 20 | assumes distrib_left [algebra_simps, algebra_split_simps]: "a * (b + c) = a * b + a * c" | 
| 25152 | 21 | begin | 
| 22 | ||
| 63325 | 23 | text \<open>For the \<open>combine_numerals\<close> simproc\<close> | 
| 24 | lemma combine_common_factor: "a * e + (b * e + c) = (a + b) * e + c" | |
| 25 | by (simp add: distrib_right ac_simps) | |
| 25152 | 26 | |
| 27 | end | |
| 14504 | 28 | |
| 22390 | 29 | class mult_zero = times + zero + | 
| 25062 | 30 | assumes mult_zero_left [simp]: "0 * a = 0" | 
| 31 | assumes mult_zero_right [simp]: "a * 0 = 0" | |
| 58195 | 32 | begin | 
| 33 | ||
| 63325 | 34 | lemma mult_not_zero: "a * b \<noteq> 0 \<Longrightarrow> a \<noteq> 0 \<and> b \<noteq> 0" | 
| 58195 | 35 | by auto | 
| 36 | ||
| 37 | end | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 38 | |
| 58198 | 39 | class semiring_0 = semiring + comm_monoid_add + mult_zero | 
| 40 | ||
| 29904 | 41 | class semiring_0_cancel = semiring + cancel_comm_monoid_add | 
| 25186 | 42 | begin | 
| 14504 | 43 | |
| 25186 | 44 | subclass semiring_0 | 
| 28823 | 45 | proof | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 46 | fix a :: 'a | 
| 63588 | 47 | have "0 * a + 0 * a = 0 * a + 0" | 
| 48 | by (simp add: distrib_right [symmetric]) | |
| 49 | then show "0 * a = 0" | |
| 50 | by (simp only: add_left_cancel) | |
| 51 | have "a * 0 + a * 0 = a * 0 + 0" | |
| 52 | by (simp add: distrib_left [symmetric]) | |
| 53 | then show "a * 0 = 0" | |
| 54 | by (simp only: add_left_cancel) | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 55 | qed | 
| 14940 | 56 | |
| 25186 | 57 | end | 
| 25152 | 58 | |
| 22390 | 59 | class comm_semiring = ab_semigroup_add + ab_semigroup_mult + | 
| 25062 | 60 | assumes distrib: "(a + b) * c = a * c + b * c" | 
| 25152 | 61 | begin | 
| 14504 | 62 | |
| 25152 | 63 | subclass semiring | 
| 28823 | 64 | proof | 
| 14738 | 65 | fix a b c :: 'a | 
| 63588 | 66 | show "(a + b) * c = a * c + b * c" | 
| 67 | by (simp add: distrib) | |
| 68 | have "a * (b + c) = (b + c) * a" | |
| 69 | by (simp add: ac_simps) | |
| 70 | also have "\<dots> = b * a + c * a" | |
| 71 | by (simp only: distrib) | |
| 72 | also have "\<dots> = a * b + a * c" | |
| 73 | by (simp add: ac_simps) | |
| 74 | finally show "a * (b + c) = a * b + a * c" | |
| 75 | by blast | |
| 14504 | 76 | qed | 
| 77 | ||
| 25152 | 78 | end | 
| 14504 | 79 | |
| 25152 | 80 | class comm_semiring_0 = comm_semiring + comm_monoid_add + mult_zero | 
| 81 | begin | |
| 82 | ||
| 27516 | 83 | subclass semiring_0 .. | 
| 25152 | 84 | |
| 85 | end | |
| 14504 | 86 | |
| 29904 | 87 | class comm_semiring_0_cancel = comm_semiring + cancel_comm_monoid_add | 
| 25186 | 88 | begin | 
| 14940 | 89 | |
| 27516 | 90 | subclass semiring_0_cancel .. | 
| 14940 | 91 | |
| 28141 
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
 huffman parents: 
27651diff
changeset | 92 | subclass comm_semiring_0 .. | 
| 
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
 huffman parents: 
27651diff
changeset | 93 | |
| 25186 | 94 | end | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 95 | |
| 22390 | 96 | class zero_neq_one = zero + one + | 
| 25062 | 97 | assumes zero_neq_one [simp]: "0 \<noteq> 1" | 
| 26193 | 98 | begin | 
| 99 | ||
| 100 | lemma one_neq_zero [simp]: "1 \<noteq> 0" | |
| 63325 | 101 | by (rule not_sym) (rule zero_neq_one) | 
| 26193 | 102 | |
| 54225 | 103 | definition of_bool :: "bool \<Rightarrow> 'a" | 
| 63325 | 104 | where "of_bool p = (if p then 1 else 0)" | 
| 54225 | 105 | |
| 106 | lemma of_bool_eq [simp, code]: | |
| 107 | "of_bool False = 0" | |
| 108 | "of_bool True = 1" | |
| 109 | by (simp_all add: of_bool_def) | |
| 110 | ||
| 63325 | 111 | lemma of_bool_eq_iff: "of_bool p = of_bool q \<longleftrightarrow> p = q" | 
| 54225 | 112 | by (simp add: of_bool_def) | 
| 113 | ||
| 63325 | 114 | lemma split_of_bool [split]: "P (of_bool p) \<longleftrightarrow> (p \<longrightarrow> P 1) \<and> (\<not> p \<longrightarrow> P 0)" | 
| 55187 | 115 | by (cases p) simp_all | 
| 116 | ||
| 73535 | 117 | lemma split_of_bool_asm [split]: "P (of_bool p) \<longleftrightarrow> \<not> (p \<and> \<not> P 1 \<or> \<not> p \<and> \<not> P 0)" | 
| 55187 | 118 | by (cases p) simp_all | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 119 | |
| 73535 | 120 | lemma of_bool_eq_0_iff [simp]: | 
| 121 | \<open>of_bool P = 0 \<longleftrightarrow> \<not> P\<close> | |
| 122 | by simp | |
| 123 | ||
| 124 | lemma of_bool_eq_1_iff [simp]: | |
| 125 | \<open>of_bool P = 1 \<longleftrightarrow> P\<close> | |
| 126 | by simp | |
| 127 | ||
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 128 | end | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 129 | |
| 22390 | 130 | class semiring_1 = zero_neq_one + semiring_0 + monoid_mult | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66810diff
changeset | 131 | begin | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66810diff
changeset | 132 | |
| 70144 | 133 | lemma of_bool_conj: | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66810diff
changeset | 134 | "of_bool (P \<and> Q) = of_bool P * of_bool Q" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66810diff
changeset | 135 | by auto | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66810diff
changeset | 136 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66810diff
changeset | 137 | end | 
| 14504 | 138 | |
| 71167 
b4d409c65a76
Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
 paulson <lp15@cam.ac.uk> parents: 
70902diff
changeset | 139 | lemma lambda_zero: "(\<lambda>h::'a::mult_zero. 0) = (*) 0" | 
| 
b4d409c65a76
Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
 paulson <lp15@cam.ac.uk> parents: 
70902diff
changeset | 140 | by auto | 
| 
b4d409c65a76
Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
 paulson <lp15@cam.ac.uk> parents: 
70902diff
changeset | 141 | |
| 
b4d409c65a76
Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
 paulson <lp15@cam.ac.uk> parents: 
70902diff
changeset | 142 | lemma lambda_one: "(\<lambda>x::'a::monoid_mult. x) = (*) 1" | 
| 
b4d409c65a76
Rearrangement of material in Complex_Analysis_Basics, which contained much that had nothing to do with complex analysis.
 paulson <lp15@cam.ac.uk> parents: 
70902diff
changeset | 143 | by auto | 
| 70145 | 144 | |
| 145 | subsection \<open>Abstract divisibility\<close> | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 146 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 147 | class dvd = times | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 148 | begin | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 149 | |
| 63325 | 150 | definition dvd :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "dvd" 50) | 
| 151 | where "b dvd a \<longleftrightarrow> (\<exists>k. a = b * k)" | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 152 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 153 | lemma dvdI [intro?]: "a = b * k \<Longrightarrow> b dvd a" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 154 | unfolding dvd_def .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 155 | |
| 68251 | 156 | lemma dvdE [elim]: "b dvd a \<Longrightarrow> (\<And>k. a = b * k \<Longrightarrow> P) \<Longrightarrow> P" | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 157 | unfolding dvd_def by blast | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 158 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 159 | end | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 160 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 161 | context comm_monoid_mult | 
| 25152 | 162 | begin | 
| 14738 | 163 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 164 | subclass dvd . | 
| 25152 | 165 | |
| 63325 | 166 | lemma dvd_refl [simp]: "a dvd a" | 
| 28559 | 167 | proof | 
| 168 | show "a = a * 1" by simp | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 169 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 170 | |
| 62349 
7c23469b5118
cleansed junk-producing interpretations for gcd/lcm on nat altogether
 haftmann parents: 
62347diff
changeset | 171 | lemma dvd_trans [trans]: | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 172 | assumes "a dvd b" and "b dvd c" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 173 | shows "a dvd c" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 174 | proof - | 
| 63588 | 175 | from assms obtain v where "b = a * v" | 
| 70146 | 176 | by auto | 
| 63588 | 177 | moreover from assms obtain w where "c = b * w" | 
| 70146 | 178 | by auto | 
| 63588 | 179 | ultimately have "c = a * (v * w)" | 
| 180 | by (simp add: mult.assoc) | |
| 28559 | 181 | then show ?thesis .. | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 182 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 183 | |
| 63325 | 184 | lemma subset_divisors_dvd: "{c. c dvd a} \<subseteq> {c. c dvd b} \<longleftrightarrow> a dvd b"
 | 
| 62366 | 185 | by (auto simp add: subset_iff intro: dvd_trans) | 
| 186 | ||
| 63325 | 187 | lemma strict_subset_divisors_dvd: "{c. c dvd a} \<subset> {c. c dvd b} \<longleftrightarrow> a dvd b \<and> \<not> b dvd a"
 | 
| 62366 | 188 | by (auto simp add: subset_iff intro: dvd_trans) | 
| 189 | ||
| 63325 | 190 | lemma one_dvd [simp]: "1 dvd a" | 
| 70146 | 191 | by (auto intro: dvdI) | 
| 192 | ||
| 193 | lemma dvd_mult [simp]: "a dvd (b * c)" if "a dvd c" | |
| 194 | using that by rule (auto intro: mult.left_commute dvdI) | |
| 195 | ||
| 196 | lemma dvd_mult2 [simp]: "a dvd (b * c)" if "a dvd b" | |
| 197 | using that dvd_mult [of a b c] by (simp add: ac_simps) | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 198 | |
| 63325 | 199 | lemma dvd_triv_right [simp]: "a dvd b * a" | 
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 200 | by (rule dvd_mult) (rule dvd_refl) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 201 | |
| 63325 | 202 | lemma dvd_triv_left [simp]: "a dvd a * b" | 
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 203 | by (rule dvd_mult2) (rule dvd_refl) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 204 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 205 | lemma mult_dvd_mono: | 
| 30042 | 206 | assumes "a dvd b" | 
| 207 | and "c dvd d" | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 208 | shows "a * c dvd b * d" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 209 | proof - | 
| 60758 | 210 | from \<open>a dvd b\<close> obtain b' where "b = a * b'" .. | 
| 211 | moreover from \<open>c dvd d\<close> obtain d' where "d = c * d'" .. | |
| 63588 | 212 | ultimately have "b * d = (a * c) * (b' * d')" | 
| 213 | by (simp add: ac_simps) | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 214 | then show ?thesis .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 215 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 216 | |
| 63325 | 217 | lemma dvd_mult_left: "a * b dvd c \<Longrightarrow> a dvd c" | 
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 218 | by (simp add: dvd_def mult.assoc) blast | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 219 | |
| 63325 | 220 | lemma dvd_mult_right: "a * b dvd c \<Longrightarrow> b dvd c" | 
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 221 | using dvd_mult_left [of b a c] by (simp add: ac_simps) | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 222 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 223 | end | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 224 | |
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 225 | class comm_semiring_1 = zero_neq_one + comm_semiring_0 + comm_monoid_mult | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 226 | begin | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 227 | |
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 228 | subclass semiring_1 .. | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 229 | |
| 63325 | 230 | lemma dvd_0_left_iff [simp]: "0 dvd a \<longleftrightarrow> a = 0" | 
| 70146 | 231 | by auto | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 232 | |
| 63325 | 233 | lemma dvd_0_right [iff]: "a dvd 0" | 
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 234 | proof | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 235 | show "0 = a * 0" by simp | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 236 | qed | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 237 | |
| 63325 | 238 | lemma dvd_0_left: "0 dvd a \<Longrightarrow> a = 0" | 
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 239 | by simp | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 240 | |
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 241 | lemma dvd_add [simp]: | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 242 | assumes "a dvd b" and "a dvd c" | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 243 | shows "a dvd (b + c)" | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 244 | proof - | 
| 60758 | 245 | from \<open>a dvd b\<close> obtain b' where "b = a * b'" .. | 
| 246 | moreover from \<open>a dvd c\<close> obtain c' where "c = a * c'" .. | |
| 63588 | 247 | ultimately have "b + c = a * (b' + c')" | 
| 248 | by (simp add: distrib_left) | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 249 | then show ?thesis .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 250 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 251 | |
| 25152 | 252 | end | 
| 14421 
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
 paulson parents: 
14398diff
changeset | 253 | |
| 29904 | 254 | class semiring_1_cancel = semiring + cancel_comm_monoid_add | 
| 255 | + zero_neq_one + monoid_mult | |
| 25267 | 256 | begin | 
| 14940 | 257 | |
| 27516 | 258 | subclass semiring_0_cancel .. | 
| 25512 
4134f7c782e2
using intro_locales instead of unfold_locales if appropriate
 haftmann parents: 
25450diff
changeset | 259 | |
| 27516 | 260 | subclass semiring_1 .. | 
| 25267 | 261 | |
| 262 | end | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 263 | |
| 63325 | 264 | class comm_semiring_1_cancel = | 
| 265 | comm_semiring + cancel_comm_monoid_add + zero_neq_one + comm_monoid_mult + | |
| 70817 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70347diff
changeset | 266 | assumes right_diff_distrib' [algebra_simps, algebra_split_simps]: | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70347diff
changeset | 267 | "a * (b - c) = a * b - a * c" | 
| 25267 | 268 | begin | 
| 14738 | 269 | |
| 27516 | 270 | subclass semiring_1_cancel .. | 
| 271 | subclass comm_semiring_0_cancel .. | |
| 272 | subclass comm_semiring_1 .. | |
| 25267 | 273 | |
| 70817 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70347diff
changeset | 274 | lemma left_diff_distrib' [algebra_simps, algebra_split_simps]: | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70347diff
changeset | 275 | "(b - c) * a = b * a - c * a" | 
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 276 | by (simp add: algebra_simps) | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 277 | |
| 63325 | 278 | lemma dvd_add_times_triv_left_iff [simp]: "a dvd c * a + b \<longleftrightarrow> a dvd b" | 
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 279 | proof - | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 280 | have "a dvd a * c + b \<longleftrightarrow> a dvd b" (is "?P \<longleftrightarrow> ?Q") | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 281 | proof | 
| 63325 | 282 | assume ?Q | 
| 283 | then show ?P by simp | |
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 284 | next | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 285 | assume ?P | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 286 | then obtain d where "a * c + b = a * d" .. | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 287 | then have "a * c + b - a * c = a * d - a * c" by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 288 | then have "b = a * d - a * c" by simp | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 289 | then have "b = a * (d - c)" by (simp add: algebra_simps) | 
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 290 | then show ?Q .. | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 291 | qed | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 292 | then show "a dvd c * a + b \<longleftrightarrow> a dvd b" by (simp add: ac_simps) | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 293 | qed | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 294 | |
| 63325 | 295 | lemma dvd_add_times_triv_right_iff [simp]: "a dvd b + c * a \<longleftrightarrow> a dvd b" | 
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 296 | using dvd_add_times_triv_left_iff [of a c b] by (simp add: ac_simps) | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 297 | |
| 63325 | 298 | lemma dvd_add_triv_left_iff [simp]: "a dvd a + b \<longleftrightarrow> a dvd b" | 
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 299 | using dvd_add_times_triv_left_iff [of a 1 b] by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 300 | |
| 63325 | 301 | lemma dvd_add_triv_right_iff [simp]: "a dvd b + a \<longleftrightarrow> a dvd b" | 
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 302 | using dvd_add_times_triv_right_iff [of a b 1] by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 303 | |
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 304 | lemma dvd_add_right_iff: | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 305 | assumes "a dvd b" | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 306 | shows "a dvd b + c \<longleftrightarrow> a dvd c" (is "?P \<longleftrightarrow> ?Q") | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 307 | proof | 
| 63325 | 308 | assume ?P | 
| 309 | then obtain d where "b + c = a * d" .. | |
| 60758 | 310 | moreover from \<open>a dvd b\<close> obtain e where "b = a * e" .. | 
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 311 | ultimately have "a * e + c = a * d" by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 312 | then have "a * e + c - a * e = a * d - a * e" by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 313 | then have "c = a * d - a * e" by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 314 | then have "c = a * (d - e)" by (simp add: algebra_simps) | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 315 | then show ?Q .. | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 316 | next | 
| 63325 | 317 | assume ?Q | 
| 318 | with assms show ?P by simp | |
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 319 | qed | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 320 | |
| 63325 | 321 | lemma dvd_add_left_iff: "a dvd c \<Longrightarrow> a dvd b + c \<longleftrightarrow> a dvd b" | 
| 322 | using dvd_add_right_iff [of a c b] by (simp add: ac_simps) | |
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 323 | |
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 324 | end | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 325 | |
| 22390 | 326 | class ring = semiring + ab_group_add | 
| 25267 | 327 | begin | 
| 25152 | 328 | |
| 27516 | 329 | subclass semiring_0_cancel .. | 
| 25152 | 330 | |
| 60758 | 331 | text \<open>Distribution rules\<close> | 
| 25152 | 332 | |
| 333 | lemma minus_mult_left: "- (a * b) = - a * b" | |
| 63325 | 334 | by (rule minus_unique) (simp add: distrib_right [symmetric]) | 
| 25152 | 335 | |
| 336 | lemma minus_mult_right: "- (a * b) = a * - b" | |
| 63325 | 337 | by (rule minus_unique) (simp add: distrib_left [symmetric]) | 
| 25152 | 338 | |
| 63325 | 339 | text \<open>Extract signs from products\<close> | 
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
52435diff
changeset | 340 | lemmas mult_minus_left [simp] = minus_mult_left [symmetric] | 
| 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
52435diff
changeset | 341 | lemmas mult_minus_right [simp] = minus_mult_right [symmetric] | 
| 29407 
5ef7e97fd9e4
move lemmas mult_minus{left,right} inside class ring
 huffman parents: 
29406diff
changeset | 342 | |
| 25152 | 343 | lemma minus_mult_minus [simp]: "- a * - b = a * b" | 
| 63325 | 344 | by simp | 
| 25152 | 345 | |
| 346 | lemma minus_mult_commute: "- a * b = a * - b" | |
| 63325 | 347 | by simp | 
| 29667 | 348 | |
| 70817 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70347diff
changeset | 349 | lemma right_diff_distrib [algebra_simps, algebra_split_simps]: | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70347diff
changeset | 350 | "a * (b - c) = a * b - a * c" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 351 | using distrib_left [of a b "-c "] by simp | 
| 29667 | 352 | |
| 70817 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70347diff
changeset | 353 | lemma left_diff_distrib [algebra_simps, algebra_split_simps]: | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70347diff
changeset | 354 | "(a - b) * c = a * c - b * c" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 355 | using distrib_right [of a "- b" c] by simp | 
| 25152 | 356 | |
| 63325 | 357 | lemmas ring_distribs = distrib_left distrib_right left_diff_distrib right_diff_distrib | 
| 25152 | 358 | |
| 63325 | 359 | lemma eq_add_iff1: "a * e + c = b * e + d \<longleftrightarrow> (a - b) * e + c = d" | 
| 360 | by (simp add: algebra_simps) | |
| 25230 | 361 | |
| 63325 | 362 | lemma eq_add_iff2: "a * e + c = b * e + d \<longleftrightarrow> c = (b - a) * e + d" | 
| 363 | by (simp add: algebra_simps) | |
| 25230 | 364 | |
| 25152 | 365 | end | 
| 366 | ||
| 63325 | 367 | lemmas ring_distribs = distrib_left distrib_right left_diff_distrib right_diff_distrib | 
| 25152 | 368 | |
| 22390 | 369 | class comm_ring = comm_semiring + ab_group_add | 
| 25267 | 370 | begin | 
| 14738 | 371 | |
| 27516 | 372 | subclass ring .. | 
| 28141 
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
 huffman parents: 
27651diff
changeset | 373 | subclass comm_semiring_0_cancel .. | 
| 25267 | 374 | |
| 63325 | 375 | lemma square_diff_square_factored: "x * x - y * y = (x + y) * (x - y)" | 
| 44350 
63cddfbc5a09
replace lemma realpow_two_diff with new lemma square_diff_square_factored
 huffman parents: 
44346diff
changeset | 376 | by (simp add: algebra_simps) | 
| 
63cddfbc5a09
replace lemma realpow_two_diff with new lemma square_diff_square_factored
 huffman parents: 
44346diff
changeset | 377 | |
| 25267 | 378 | end | 
| 14738 | 379 | |
| 22390 | 380 | class ring_1 = ring + zero_neq_one + monoid_mult | 
| 25267 | 381 | begin | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 382 | |
| 27516 | 383 | subclass semiring_1_cancel .. | 
| 25267 | 384 | |
| 73535 | 385 | lemma of_bool_not_iff [simp]: | 
| 386 | \<open>of_bool (\<not> P) = 1 - of_bool P\<close> | |
| 387 | by simp | |
| 388 | ||
| 63325 | 389 | lemma square_diff_one_factored: "x * x - 1 = (x + 1) * (x - 1)" | 
| 44346 
00dd3c4dabe0
rename real_squared_diff_one_factored to square_diff_one_factored and move to Rings.thy
 huffman parents: 
44064diff
changeset | 390 | by (simp add: algebra_simps) | 
| 
00dd3c4dabe0
rename real_squared_diff_one_factored to square_diff_one_factored and move to Rings.thy
 huffman parents: 
44064diff
changeset | 391 | |
| 25267 | 392 | end | 
| 25152 | 393 | |
| 22390 | 394 | class comm_ring_1 = comm_ring + zero_neq_one + comm_monoid_mult | 
| 25267 | 395 | begin | 
| 14738 | 396 | |
| 27516 | 397 | subclass ring_1 .. | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 398 | subclass comm_semiring_1_cancel | 
| 70146 | 399 | by standard (simp add: algebra_simps) | 
| 58647 | 400 | |
| 29465 
b2cfb5d0a59e
change dvd_minus_iff, minus_dvd_iff from [iff] to [simp] (due to problems with Library/Primes.thy)
 huffman parents: 
29461diff
changeset | 401 | lemma dvd_minus_iff [simp]: "x dvd - y \<longleftrightarrow> x dvd y" | 
| 29408 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 402 | proof | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 403 | assume "x dvd - y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 404 | then have "x dvd - 1 * - y" by (rule dvd_mult) | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 405 | then show "x dvd y" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 406 | next | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 407 | assume "x dvd y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 408 | then have "x dvd - 1 * y" by (rule dvd_mult) | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 409 | then show "x dvd - y" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 410 | qed | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 411 | |
| 29465 
b2cfb5d0a59e
change dvd_minus_iff, minus_dvd_iff from [iff] to [simp] (due to problems with Library/Primes.thy)
 huffman parents: 
29461diff
changeset | 412 | lemma minus_dvd_iff [simp]: "- x dvd y \<longleftrightarrow> x dvd y" | 
| 29408 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 413 | proof | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 414 | assume "- x dvd y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 415 | then obtain k where "y = - x * k" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 416 | then have "y = x * - k" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 417 | then show "x dvd y" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 418 | next | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 419 | assume "x dvd y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 420 | then obtain k where "y = x * k" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 421 | then have "y = - x * - k" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 422 | then show "- x dvd y" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 423 | qed | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 424 | |
| 63325 | 425 | lemma dvd_diff [simp]: "x dvd y \<Longrightarrow> x dvd z \<Longrightarrow> x dvd (y - z)" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 426 | using dvd_add [of x y "- z"] by simp | 
| 29409 | 427 | |
| 25267 | 428 | end | 
| 25152 | 429 | |
| 70145 | 430 | |
| 431 | subsection \<open>Towards integral domains\<close> | |
| 432 | ||
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 433 | class semiring_no_zero_divisors = semiring_0 + | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 434 | assumes no_zero_divisors: "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> a * b \<noteq> 0" | 
| 25230 | 435 | begin | 
| 436 | ||
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 437 | lemma divisors_zero: | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 438 | assumes "a * b = 0" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 439 | shows "a = 0 \<or> b = 0" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 440 | proof (rule classical) | 
| 63325 | 441 | assume "\<not> ?thesis" | 
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 442 | then have "a \<noteq> 0" and "b \<noteq> 0" by auto | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 443 | with no_zero_divisors have "a * b \<noteq> 0" by blast | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 444 | with assms show ?thesis by simp | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 445 | qed | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 446 | |
| 63325 | 447 | lemma mult_eq_0_iff [simp]: "a * b = 0 \<longleftrightarrow> a = 0 \<or> b = 0" | 
| 25230 | 448 | proof (cases "a = 0 \<or> b = 0") | 
| 63325 | 449 | case False | 
| 450 | then have "a \<noteq> 0" and "b \<noteq> 0" by auto | |
| 25230 | 451 | then show ?thesis using no_zero_divisors by simp | 
| 452 | next | |
| 63325 | 453 | case True | 
| 454 | then show ?thesis by auto | |
| 25230 | 455 | qed | 
| 456 | ||
| 58952 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 457 | end | 
| 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 458 | |
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 459 | class semiring_1_no_zero_divisors = semiring_1 + semiring_no_zero_divisors | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 460 | |
| 60516 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 461 | class semiring_no_zero_divisors_cancel = semiring_no_zero_divisors + | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 462 | assumes mult_cancel_right [simp]: "a * c = b * c \<longleftrightarrow> c = 0 \<or> a = b" | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 463 | and mult_cancel_left [simp]: "c * a = c * b \<longleftrightarrow> c = 0 \<or> a = b" | 
| 58952 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 464 | begin | 
| 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 465 | |
| 63325 | 466 | lemma mult_left_cancel: "c \<noteq> 0 \<Longrightarrow> c * a = c * b \<longleftrightarrow> a = b" | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 467 | by simp | 
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
55912diff
changeset | 468 | |
| 63325 | 469 | lemma mult_right_cancel: "c \<noteq> 0 \<Longrightarrow> a * c = b * c \<longleftrightarrow> a = b" | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 470 | by simp | 
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
55912diff
changeset | 471 | |
| 25230 | 472 | end | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 473 | |
| 60516 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 474 | class ring_no_zero_divisors = ring + semiring_no_zero_divisors | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 475 | begin | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 476 | |
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 477 | subclass semiring_no_zero_divisors_cancel | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 478 | proof | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 479 | fix a b c | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 480 | have "a * c = b * c \<longleftrightarrow> (a - b) * c = 0" | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 481 | by (simp add: algebra_simps) | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 482 | also have "\<dots> \<longleftrightarrow> c = 0 \<or> a = b" | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 483 | by auto | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 484 | finally show "a * c = b * c \<longleftrightarrow> c = 0 \<or> a = b" . | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 485 | have "c * a = c * b \<longleftrightarrow> c * (a - b) = 0" | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 486 | by (simp add: algebra_simps) | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 487 | also have "\<dots> \<longleftrightarrow> c = 0 \<or> a = b" | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 488 | by auto | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 489 | finally show "c * a = c * b \<longleftrightarrow> c = 0 \<or> a = b" . | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 490 | qed | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 491 | |
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 492 | end | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 493 | |
| 23544 | 494 | class ring_1_no_zero_divisors = ring_1 + ring_no_zero_divisors | 
| 26274 | 495 | begin | 
| 496 | ||
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 497 | subclass semiring_1_no_zero_divisors .. | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 498 | |
| 63325 | 499 | lemma square_eq_1_iff: "x * x = 1 \<longleftrightarrow> x = 1 \<or> x = - 1" | 
| 36821 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 500 | proof - | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 501 | have "(x - 1) * (x + 1) = x * x - 1" | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 502 | by (simp add: algebra_simps) | 
| 63325 | 503 | then have "x * x = 1 \<longleftrightarrow> (x - 1) * (x + 1) = 0" | 
| 36821 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 504 | by simp | 
| 63325 | 505 | then show ?thesis | 
| 36821 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 506 | by (simp add: eq_neg_iff_add_eq_0) | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 507 | qed | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 508 | |
| 63325 | 509 | lemma mult_cancel_right1 [simp]: "c = b * c \<longleftrightarrow> c = 0 \<or> b = 1" | 
| 510 | using mult_cancel_right [of 1 c b] by auto | |
| 26274 | 511 | |
| 63325 | 512 | lemma mult_cancel_right2 [simp]: "a * c = c \<longleftrightarrow> c = 0 \<or> a = 1" | 
| 513 | using mult_cancel_right [of a c 1] by simp | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 514 | |
| 63325 | 515 | lemma mult_cancel_left1 [simp]: "c = c * b \<longleftrightarrow> c = 0 \<or> b = 1" | 
| 516 | using mult_cancel_left [of c 1 b] by force | |
| 26274 | 517 | |
| 63325 | 518 | lemma mult_cancel_left2 [simp]: "c * a = c \<longleftrightarrow> c = 0 \<or> a = 1" | 
| 519 | using mult_cancel_left [of c a 1] by simp | |
| 26274 | 520 | |
| 521 | end | |
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 522 | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 523 | class semidom = comm_semiring_1_cancel + semiring_no_zero_divisors | 
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 524 | begin | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 525 | |
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 526 | subclass semiring_1_no_zero_divisors .. | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 527 | |
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 528 | end | 
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 529 | |
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 530 | class idom = comm_ring_1 + semiring_no_zero_divisors | 
| 25186 | 531 | begin | 
| 14421 
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
 paulson parents: 
14398diff
changeset | 532 | |
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 533 | subclass semidom .. | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 534 | |
| 27516 | 535 | subclass ring_1_no_zero_divisors .. | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 536 | |
| 70146 | 537 | lemma dvd_mult_cancel_right [simp]: | 
| 538 | "a * c dvd b * c \<longleftrightarrow> c = 0 \<or> a dvd b" | |
| 29981 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 539 | proof - | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 540 | have "a * c dvd b * c \<longleftrightarrow> (\<exists>k. b * c = (a * k) * c)" | 
| 70146 | 541 | by (auto simp add: ac_simps) | 
| 29981 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 542 | also have "(\<exists>k. b * c = (a * k) * c) \<longleftrightarrow> c = 0 \<or> a dvd b" | 
| 70146 | 543 | by auto | 
| 29981 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 544 | finally show ?thesis . | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 545 | qed | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 546 | |
| 70146 | 547 | lemma dvd_mult_cancel_left [simp]: | 
| 548 | "c * a dvd c * b \<longleftrightarrow> c = 0 \<or> a dvd b" | |
| 549 | using dvd_mult_cancel_right [of a c b] by (simp add: ac_simps) | |
| 29981 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 550 | |
| 60516 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 551 | lemma square_eq_iff: "a * a = b * b \<longleftrightarrow> a = b \<or> a = - b" | 
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 552 | proof | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 553 | assume "a * a = b * b" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 554 | then have "(a - b) * (a + b) = 0" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 555 | by (simp add: algebra_simps) | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 556 | then show "a = b \<or> a = - b" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 557 | by (simp add: eq_neg_iff_add_eq_0) | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 558 | next | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 559 | assume "a = b \<or> a = - b" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 560 | then show "a * a = b * b" by auto | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 561 | qed | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 562 | |
| 25186 | 563 | end | 
| 25152 | 564 | |
| 64290 | 565 | class idom_abs_sgn = idom + abs + sgn + | 
| 566 | assumes sgn_mult_abs: "sgn a * \<bar>a\<bar> = a" | |
| 567 | and sgn_sgn [simp]: "sgn (sgn a) = sgn a" | |
| 568 | and abs_abs [simp]: "\<bar>\<bar>a\<bar>\<bar> = \<bar>a\<bar>" | |
| 569 | and abs_0 [simp]: "\<bar>0\<bar> = 0" | |
| 570 | and sgn_0 [simp]: "sgn 0 = 0" | |
| 571 | and sgn_1 [simp]: "sgn 1 = 1" | |
| 572 | and sgn_minus_1: "sgn (- 1) = - 1" | |
| 573 | and sgn_mult: "sgn (a * b) = sgn a * sgn b" | |
| 574 | begin | |
| 575 | ||
| 576 | lemma sgn_eq_0_iff: | |
| 577 | "sgn a = 0 \<longleftrightarrow> a = 0" | |
| 578 | proof - | |
| 579 |   { assume "sgn a = 0"
 | |
| 580 | then have "sgn a * \<bar>a\<bar> = 0" | |
| 581 | by simp | |
| 582 | then have "a = 0" | |
| 583 | by (simp add: sgn_mult_abs) | |
| 584 | } then show ?thesis | |
| 585 | by auto | |
| 586 | qed | |
| 587 | ||
| 588 | lemma abs_eq_0_iff: | |
| 589 | "\<bar>a\<bar> = 0 \<longleftrightarrow> a = 0" | |
| 590 | proof - | |
| 591 |   { assume "\<bar>a\<bar> = 0"
 | |
| 592 | then have "sgn a * \<bar>a\<bar> = 0" | |
| 593 | by simp | |
| 594 | then have "a = 0" | |
| 595 | by (simp add: sgn_mult_abs) | |
| 596 | } then show ?thesis | |
| 597 | by auto | |
| 598 | qed | |
| 599 | ||
| 600 | lemma abs_mult_sgn: | |
| 601 | "\<bar>a\<bar> * sgn a = a" | |
| 602 | using sgn_mult_abs [of a] by (simp add: ac_simps) | |
| 603 | ||
| 604 | lemma abs_1 [simp]: | |
| 605 | "\<bar>1\<bar> = 1" | |
| 606 | using sgn_mult_abs [of 1] by simp | |
| 607 | ||
| 608 | lemma sgn_abs [simp]: | |
| 609 | "\<bar>sgn a\<bar> = of_bool (a \<noteq> 0)" | |
| 610 | using sgn_mult_abs [of "sgn a"] mult_cancel_left [of "sgn a" "\<bar>sgn a\<bar>" 1] | |
| 611 | by (auto simp add: sgn_eq_0_iff) | |
| 612 | ||
| 613 | lemma abs_sgn [simp]: | |
| 614 | "sgn \<bar>a\<bar> = of_bool (a \<noteq> 0)" | |
| 615 | using sgn_mult_abs [of "\<bar>a\<bar>"] mult_cancel_right [of "sgn \<bar>a\<bar>" "\<bar>a\<bar>" 1] | |
| 616 | by (auto simp add: abs_eq_0_iff) | |
| 617 | ||
| 618 | lemma abs_mult: | |
| 619 | "\<bar>a * b\<bar> = \<bar>a\<bar> * \<bar>b\<bar>" | |
| 620 | proof (cases "a = 0 \<or> b = 0") | |
| 621 | case True | |
| 622 | then show ?thesis | |
| 623 | by auto | |
| 624 | next | |
| 625 | case False | |
| 626 | then have *: "sgn (a * b) \<noteq> 0" | |
| 627 | by (simp add: sgn_eq_0_iff) | |
| 628 | from abs_mult_sgn [of "a * b"] abs_mult_sgn [of a] abs_mult_sgn [of b] | |
| 629 | have "\<bar>a * b\<bar> * sgn (a * b) = \<bar>a\<bar> * sgn a * \<bar>b\<bar> * sgn b" | |
| 630 | by (simp add: ac_simps) | |
| 631 | then have "\<bar>a * b\<bar> * sgn (a * b) = \<bar>a\<bar> * \<bar>b\<bar> * sgn (a * b)" | |
| 632 | by (simp add: sgn_mult ac_simps) | |
| 633 | with * show ?thesis | |
| 634 | by simp | |
| 635 | qed | |
| 636 | ||
| 637 | lemma sgn_minus [simp]: | |
| 638 | "sgn (- a) = - sgn a" | |
| 639 | proof - | |
| 640 | from sgn_minus_1 have "sgn (- 1 * a) = - 1 * sgn a" | |
| 641 | by (simp only: sgn_mult) | |
| 642 | then show ?thesis | |
| 643 | by simp | |
| 644 | qed | |
| 645 | ||
| 646 | lemma abs_minus [simp]: | |
| 647 | "\<bar>- a\<bar> = \<bar>a\<bar>" | |
| 648 | proof - | |
| 649 | have [simp]: "\<bar>- 1\<bar> = 1" | |
| 650 | using sgn_mult_abs [of "- 1"] by simp | |
| 651 | then have "\<bar>- 1 * a\<bar> = 1 * \<bar>a\<bar>" | |
| 652 | by (simp only: abs_mult) | |
| 653 | then show ?thesis | |
| 654 | by simp | |
| 655 | qed | |
| 656 | ||
| 657 | end | |
| 658 | ||
| 70145 | 659 | |
| 660 | subsection \<open>(Partial) Division\<close> | |
| 63950 
cdc1e59aa513
syntactic type class for operation mod named after mod;
 haftmann parents: 
63947diff
changeset | 661 | |
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 662 | class divide = | 
| 60429 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 haftmann parents: 
60353diff
changeset | 663 | fixes divide :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "div" 70) | 
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 664 | |
| 69593 | 665 | setup \<open>Sign.add_const_constraint (\<^const_name>\<open>divide\<close>, SOME \<^typ>\<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close>)\<close> | 
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 666 | |
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 667 | context semiring | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 668 | begin | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 669 | |
| 70817 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70347diff
changeset | 670 | lemma [field_simps, field_split_simps]: | 
| 60429 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 haftmann parents: 
60353diff
changeset | 671 | shows distrib_left_NO_MATCH: "NO_MATCH (x div y) a \<Longrightarrow> a * (b + c) = a * b + a * c" | 
| 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 haftmann parents: 
60353diff
changeset | 672 | and distrib_right_NO_MATCH: "NO_MATCH (x div y) c \<Longrightarrow> (a + b) * c = a * c + b * c" | 
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 673 | by (rule distrib_left distrib_right)+ | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 674 | |
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 675 | end | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 676 | |
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 677 | context ring | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 678 | begin | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 679 | |
| 70817 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70347diff
changeset | 680 | lemma [field_simps, field_split_simps]: | 
| 60429 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 haftmann parents: 
60353diff
changeset | 681 | shows left_diff_distrib_NO_MATCH: "NO_MATCH (x div y) c \<Longrightarrow> (a - b) * c = a * c - b * c" | 
| 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 haftmann parents: 
60353diff
changeset | 682 | and right_diff_distrib_NO_MATCH: "NO_MATCH (x div y) a \<Longrightarrow> a * (b - c) = a * b - a * c" | 
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 683 | by (rule left_diff_distrib right_diff_distrib)+ | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 684 | |
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 685 | end | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 686 | |
| 69593 | 687 | setup \<open>Sign.add_const_constraint (\<^const_name>\<open>divide\<close>, SOME \<^typ>\<open>'a::divide \<Rightarrow> 'a \<Rightarrow> 'a\<close>)\<close> | 
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 688 | |
| 63950 
cdc1e59aa513
syntactic type class for operation mod named after mod;
 haftmann parents: 
63947diff
changeset | 689 | text \<open>Algebraic classes with division\<close> | 
| 
cdc1e59aa513
syntactic type class for operation mod named after mod;
 haftmann parents: 
63947diff
changeset | 690 | |
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 691 | class semidom_divide = semidom + divide + | 
| 64240 | 692 | assumes nonzero_mult_div_cancel_right [simp]: "b \<noteq> 0 \<Longrightarrow> (a * b) div b = a" | 
| 693 | assumes div_by_0 [simp]: "a div 0 = 0" | |
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 694 | begin | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 695 | |
| 64240 | 696 | lemma nonzero_mult_div_cancel_left [simp]: "a \<noteq> 0 \<Longrightarrow> (a * b) div a = b" | 
| 697 | using nonzero_mult_div_cancel_right [of a b] by (simp add: ac_simps) | |
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 698 | |
| 60516 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 699 | subclass semiring_no_zero_divisors_cancel | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 700 | proof | 
| 63325 | 701 | show *: "a * c = b * c \<longleftrightarrow> c = 0 \<or> a = b" for a b c | 
| 702 | proof (cases "c = 0") | |
| 703 | case True | |
| 704 | then show ?thesis by simp | |
| 705 | next | |
| 706 | case False | |
| 63588 | 707 | have "a = b" if "a * c = b * c" | 
| 708 | proof - | |
| 709 | from that have "a * c div c = b * c div c" | |
| 63325 | 710 | by simp | 
| 63588 | 711 | with False show ?thesis | 
| 63325 | 712 | by simp | 
| 63588 | 713 | qed | 
| 63325 | 714 | then show ?thesis by auto | 
| 715 | qed | |
| 716 | show "c * a = c * b \<longleftrightarrow> c = 0 \<or> a = b" for a b c | |
| 717 | using * [of a c b] by (simp add: ac_simps) | |
| 60516 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 718 | qed | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 719 | |
| 63325 | 720 | lemma div_self [simp]: "a \<noteq> 0 \<Longrightarrow> a div a = 1" | 
| 64240 | 721 | using nonzero_mult_div_cancel_left [of a 1] by simp | 
| 60516 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 722 | |
| 64240 | 723 | lemma div_0 [simp]: "0 div a = 0" | 
| 60570 | 724 | proof (cases "a = 0") | 
| 63325 | 725 | case True | 
| 726 | then show ?thesis by simp | |
| 60570 | 727 | next | 
| 63325 | 728 | case False | 
| 729 | then have "a * 0 div a = 0" | |
| 64240 | 730 | by (rule nonzero_mult_div_cancel_left) | 
| 60570 | 731 | then show ?thesis by simp | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 732 | qed | 
| 60570 | 733 | |
| 64240 | 734 | lemma div_by_1 [simp]: "a div 1 = a" | 
| 735 | using nonzero_mult_div_cancel_left [of 1 a] by simp | |
| 60690 | 736 | |
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 737 | lemma dvd_div_eq_0_iff: | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 738 | assumes "b dvd a" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 739 | shows "a div b = 0 \<longleftrightarrow> a = 0" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 740 | using assms by (elim dvdE, cases "b = 0") simp_all | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 741 | |
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 742 | lemma dvd_div_eq_cancel: | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 743 | "a div c = b div c \<Longrightarrow> c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> a = b" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 744 | by (elim dvdE, cases "c = 0") simp_all | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 745 | |
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 746 | lemma dvd_div_eq_iff: | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 747 | "c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> a div c = b div c \<longleftrightarrow> a = b" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 748 | by (elim dvdE, cases "c = 0") simp_all | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 749 | |
| 69661 | 750 | lemma inj_on_mult: | 
| 751 | "inj_on ((*) a) A" if "a \<noteq> 0" | |
| 752 | proof (rule inj_onI) | |
| 753 | fix b c | |
| 754 | assume "a * b = a * c" | |
| 755 | then have "a * b div a = a * c div a" | |
| 756 | by (simp only:) | |
| 757 | with that show "b = c" | |
| 758 | by simp | |
| 759 | qed | |
| 760 | ||
| 60867 | 761 | end | 
| 762 | ||
| 763 | class idom_divide = idom + semidom_divide | |
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 764 | begin | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 765 | |
| 64592 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 766 | lemma dvd_neg_div: | 
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 767 | assumes "b dvd a" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 768 | shows "- a div b = - (a div b)" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 769 | proof (cases "b = 0") | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 770 | case True | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 771 | then show ?thesis by simp | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 772 | next | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 773 | case False | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 774 | from assms obtain c where "a = b * c" .. | 
| 64592 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 775 | then have "- a div b = (b * - c) div b" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 776 | by simp | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 777 | from False also have "\<dots> = - c" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 778 | by (rule nonzero_mult_div_cancel_left) | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 779 | with False \<open>a = b * c\<close> show ?thesis | 
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 780 | by simp | 
| 64592 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 781 | qed | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 782 | |
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 783 | lemma dvd_div_neg: | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 784 | assumes "b dvd a" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 785 | shows "a div - b = - (a div b)" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 786 | proof (cases "b = 0") | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 787 | case True | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 788 | then show ?thesis by simp | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 789 | next | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 790 | case False | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 791 | then have "- b \<noteq> 0" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 792 | by simp | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 793 | from assms obtain c where "a = b * c" .. | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 794 | then have "a div - b = (- b * - c) div - b" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 795 | by simp | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 796 | from \<open>- b \<noteq> 0\<close> also have "\<dots> = - c" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 797 | by (rule nonzero_mult_div_cancel_left) | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 798 | with False \<open>a = b * c\<close> show ?thesis | 
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 799 | by simp | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 800 | qed | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 801 | |
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 802 | end | 
| 60867 | 803 | |
| 804 | class algebraic_semidom = semidom_divide | |
| 805 | begin | |
| 806 | ||
| 807 | text \<open> | |
| 69593 | 808 | Class \<^class>\<open>algebraic_semidom\<close> enriches a integral domain | 
| 60867 | 809 | by notions from algebra, like units in a ring. | 
| 810 | It is a separate class to avoid spoiling fields with notions | |
| 811 | which are degenerated there. | |
| 812 | \<close> | |
| 813 | ||
| 60690 | 814 | lemma dvd_times_left_cancel_iff [simp]: | 
| 815 | assumes "a \<noteq> 0" | |
| 63588 | 816 | shows "a * b dvd a * c \<longleftrightarrow> b dvd c" | 
| 817 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 60690 | 818 | proof | 
| 63588 | 819 | assume ?lhs | 
| 63325 | 820 | then obtain d where "a * c = a * b * d" .. | 
| 60690 | 821 | with assms have "c = b * d" by (simp add: ac_simps) | 
| 63588 | 822 | then show ?rhs .. | 
| 60690 | 823 | next | 
| 63588 | 824 | assume ?rhs | 
| 63325 | 825 | then obtain d where "c = b * d" .. | 
| 60690 | 826 | then have "a * c = a * b * d" by (simp add: ac_simps) | 
| 63588 | 827 | then show ?lhs .. | 
| 60690 | 828 | qed | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 829 | |
| 60690 | 830 | lemma dvd_times_right_cancel_iff [simp]: | 
| 831 | assumes "a \<noteq> 0" | |
| 63588 | 832 | shows "b * a dvd c * a \<longleftrightarrow> b dvd c" | 
| 63325 | 833 | using dvd_times_left_cancel_iff [of a b c] assms by (simp add: ac_simps) | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 834 | |
| 60690 | 835 | lemma div_dvd_iff_mult: | 
| 836 | assumes "b \<noteq> 0" and "b dvd a" | |
| 837 | shows "a div b dvd c \<longleftrightarrow> a dvd c * b" | |
| 838 | proof - | |
| 839 | from \<open>b dvd a\<close> obtain d where "a = b * d" .. | |
| 840 | with \<open>b \<noteq> 0\<close> show ?thesis by (simp add: ac_simps) | |
| 841 | qed | |
| 842 | ||
| 843 | lemma dvd_div_iff_mult: | |
| 844 | assumes "c \<noteq> 0" and "c dvd b" | |
| 845 | shows "a dvd b div c \<longleftrightarrow> a * c dvd b" | |
| 846 | proof - | |
| 847 | from \<open>c dvd b\<close> obtain d where "b = c * d" .. | |
| 848 | with \<open>c \<noteq> 0\<close> show ?thesis by (simp add: mult.commute [of a]) | |
| 849 | qed | |
| 850 | ||
| 60867 | 851 | lemma div_dvd_div [simp]: | 
| 852 | assumes "a dvd b" and "a dvd c" | |
| 853 | shows "b div a dvd c div a \<longleftrightarrow> b dvd c" | |
| 854 | proof (cases "a = 0") | |
| 63325 | 855 | case True | 
| 856 | with assms show ?thesis by simp | |
| 60867 | 857 | next | 
| 858 | case False | |
| 859 | moreover from assms obtain k l where "b = a * k" and "c = a * l" | |
| 70146 | 860 | by blast | 
| 60867 | 861 | ultimately show ?thesis by simp | 
| 862 | qed | |
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 863 | |
| 60867 | 864 | lemma div_add [simp]: | 
| 865 | assumes "c dvd a" and "c dvd b" | |
| 866 | shows "(a + b) div c = a div c + b div c" | |
| 867 | proof (cases "c = 0") | |
| 63325 | 868 | case True | 
| 869 | then show ?thesis by simp | |
| 60867 | 870 | next | 
| 871 | case False | |
| 872 | moreover from assms obtain k l where "a = c * k" and "b = c * l" | |
| 70146 | 873 | by blast | 
| 60867 | 874 | moreover have "c * k + c * l = c * (k + l)" | 
| 875 | by (simp add: algebra_simps) | |
| 876 | ultimately show ?thesis | |
| 877 | by simp | |
| 878 | qed | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 879 | |
| 60867 | 880 | lemma div_mult_div_if_dvd: | 
| 881 | assumes "b dvd a" and "d dvd c" | |
| 882 | shows "(a div b) * (c div d) = (a * c) div (b * d)" | |
| 883 | proof (cases "b = 0 \<or> c = 0") | |
| 63325 | 884 | case True | 
| 885 | with assms show ?thesis by auto | |
| 60867 | 886 | next | 
| 887 | case False | |
| 888 | moreover from assms obtain k l where "a = b * k" and "c = d * l" | |
| 70146 | 889 | by blast | 
| 60867 | 890 | moreover have "b * k * (d * l) div (b * d) = (b * d) * (k * l) div (b * d)" | 
| 891 | by (simp add: ac_simps) | |
| 892 | ultimately show ?thesis by simp | |
| 893 | qed | |
| 894 | ||
| 895 | lemma dvd_div_eq_mult: | |
| 896 | assumes "a \<noteq> 0" and "a dvd b" | |
| 897 | shows "b div a = c \<longleftrightarrow> b = c * a" | |
| 63588 | 898 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 60867 | 899 | proof | 
| 63588 | 900 | assume ?rhs | 
| 901 | then show ?lhs by (simp add: assms) | |
| 60867 | 902 | next | 
| 63588 | 903 | assume ?lhs | 
| 60867 | 904 | then have "b div a * a = c * a" by simp | 
| 63325 | 905 | moreover from assms have "b div a * a = b" | 
| 70146 | 906 | by (auto simp add: ac_simps) | 
| 63588 | 907 | ultimately show ?rhs by simp | 
| 60867 | 908 | qed | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 909 | |
| 63325 | 910 | lemma dvd_div_mult_self [simp]: "a dvd b \<Longrightarrow> b div a * a = b" | 
| 70146 | 911 | by (cases "a = 0") (auto simp add: ac_simps) | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 912 | |
| 63325 | 913 | lemma dvd_mult_div_cancel [simp]: "a dvd b \<Longrightarrow> a * (b div a) = b" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 914 | using dvd_div_mult_self [of a b] by (simp add: ac_simps) | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 915 | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 916 | lemma div_mult_swap: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 917 | assumes "c dvd b" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 918 | shows "a * (b div c) = (a * b) div c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 919 | proof (cases "c = 0") | 
| 63325 | 920 | case True | 
| 921 | then show ?thesis by simp | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 922 | next | 
| 63325 | 923 | case False | 
| 924 | from assms obtain d where "b = c * d" .. | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 925 | moreover from False have "a * divide (d * c) c = ((a * d) * c) div c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 926 | by simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 927 | ultimately show ?thesis by (simp add: ac_simps) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 928 | qed | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 929 | |
| 63325 | 930 | lemma dvd_div_mult: "c dvd b \<Longrightarrow> b div c * a = (b * a) div c" | 
| 931 | using div_mult_swap [of c b a] by (simp add: ac_simps) | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 932 | |
| 60570 | 933 | lemma dvd_div_mult2_eq: | 
| 934 | assumes "b * c dvd a" | |
| 935 | shows "a div (b * c) = a div b div c" | |
| 63325 | 936 | proof - | 
| 937 | from assms obtain k where "a = b * c * k" .. | |
| 60570 | 938 | then show ?thesis | 
| 939 | by (cases "b = 0 \<or> c = 0") (auto, simp add: ac_simps) | |
| 940 | qed | |
| 941 | ||
| 60867 | 942 | lemma dvd_div_div_eq_mult: | 
| 943 | assumes "a \<noteq> 0" "c \<noteq> 0" and "a dvd b" "c dvd d" | |
| 63588 | 944 | shows "b div a = d div c \<longleftrightarrow> b * c = a * d" | 
| 945 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 60867 | 946 | proof - | 
| 947 | from assms have "a * c \<noteq> 0" by simp | |
| 63588 | 948 | then have "?lhs \<longleftrightarrow> b div a * (a * c) = d div c * (a * c)" | 
| 60867 | 949 | by simp | 
| 950 | also have "\<dots> \<longleftrightarrow> (a * (b div a)) * c = (c * (d div c)) * a" | |
| 951 | by (simp add: ac_simps) | |
| 952 | also have "\<dots> \<longleftrightarrow> (a * b div a) * c = (c * d div c) * a" | |
| 953 | using assms by (simp add: div_mult_swap) | |
| 63588 | 954 | also have "\<dots> \<longleftrightarrow> ?rhs" | 
| 60867 | 955 | using assms by (simp add: ac_simps) | 
| 956 | finally show ?thesis . | |
| 957 | qed | |
| 958 | ||
| 63359 | 959 | lemma dvd_mult_imp_div: | 
| 960 | assumes "a * c dvd b" | |
| 961 | shows "a dvd b div c" | |
| 962 | proof (cases "c = 0") | |
| 963 | case True then show ?thesis by simp | |
| 964 | next | |
| 965 | case False | |
| 966 | from \<open>a * c dvd b\<close> obtain d where "b = a * c * d" .. | |
| 63588 | 967 | with False show ?thesis | 
| 968 | by (simp add: mult.commute [of a] mult.assoc) | |
| 63359 | 969 | qed | 
| 970 | ||
| 64592 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 971 | lemma div_div_eq_right: | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 972 | assumes "c dvd b" "b dvd a" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 973 | shows "a div (b div c) = a div b * c" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 974 | proof (cases "c = 0 \<or> b = 0") | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 975 | case True | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 976 | then show ?thesis | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 977 | by auto | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 978 | next | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 979 | case False | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 980 | from assms obtain r s where "b = c * r" and "a = c * r * s" | 
| 70146 | 981 | by blast | 
| 64592 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 982 | moreover with False have "r \<noteq> 0" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 983 | by auto | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 984 | ultimately show ?thesis using False | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 985 | by simp (simp add: mult.commute [of _ r] mult.assoc mult.commute [of c]) | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 986 | qed | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 987 | |
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 988 | lemma div_div_div_same: | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 989 | assumes "d dvd b" "b dvd a" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 990 | shows "(a div d) div (b div d) = a div b" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 991 | proof (cases "b = 0 \<or> d = 0") | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 992 | case True | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 993 | with assms show ?thesis | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 994 | by auto | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 995 | next | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 996 | case False | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 997 | from assms obtain r s | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 998 | where "a = d * r * s" and "b = d * r" | 
| 70146 | 999 | by blast | 
| 64592 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 1000 | with False show ?thesis | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 1001 | by simp (simp add: ac_simps) | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 1002 | qed | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 1003 | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1004 | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1005 | text \<open>Units: invertible elements in a ring\<close> | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1006 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1007 | abbreviation is_unit :: "'a \<Rightarrow> bool" | 
| 63325 | 1008 | where "is_unit a \<equiv> a dvd 1" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1009 | |
| 63325 | 1010 | lemma not_is_unit_0 [simp]: "\<not> is_unit 0" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1011 | by simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1012 | |
| 63325 | 1013 | lemma unit_imp_dvd [dest]: "is_unit b \<Longrightarrow> b dvd a" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1014 | by (rule dvd_trans [of _ 1]) simp_all | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1015 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1016 | lemma unit_dvdE: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1017 | assumes "is_unit a" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1018 | obtains c where "a \<noteq> 0" and "b = a * c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1019 | proof - | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1020 | from assms have "a dvd b" by auto | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1021 | then obtain c where "b = a * c" .. | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1022 | moreover from assms have "a \<noteq> 0" by auto | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1023 | ultimately show thesis using that by blast | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1024 | qed | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1025 | |
| 63325 | 1026 | lemma dvd_unit_imp_unit: "a dvd b \<Longrightarrow> is_unit b \<Longrightarrow> is_unit a" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1027 | by (rule dvd_trans) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1028 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1029 | lemma unit_div_1_unit [simp, intro]: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1030 | assumes "is_unit a" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1031 | shows "is_unit (1 div a)" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1032 | proof - | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1033 | from assms have "1 = 1 div a * a" by simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1034 | then show "is_unit (1 div a)" by (rule dvdI) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1035 | qed | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1036 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1037 | lemma is_unitE [elim?]: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1038 | assumes "is_unit a" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1039 | obtains b where "a \<noteq> 0" and "b \<noteq> 0" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1040 | and "is_unit b" and "1 div a = b" and "1 div b = a" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1041 | and "a * b = 1" and "c div a = c * b" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1042 | proof (rule that) | 
| 63040 | 1043 | define b where "b = 1 div a" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1044 | then show "1 div a = b" by simp | 
| 63325 | 1045 | from assms b_def show "is_unit b" by simp | 
| 1046 | with assms show "a \<noteq> 0" and "b \<noteq> 0" by auto | |
| 1047 | from assms b_def show "a * b = 1" by simp | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1048 | then have "1 = a * b" .. | 
| 60758 | 1049 | with b_def \<open>b \<noteq> 0\<close> show "1 div b = a" by simp | 
| 63325 | 1050 | from assms have "a dvd c" .. | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1051 | then obtain d where "c = a * d" .. | 
| 60758 | 1052 | with \<open>a \<noteq> 0\<close> \<open>a * b = 1\<close> show "c div a = c * b" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1053 | by (simp add: mult.assoc mult.left_commute [of a]) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1054 | qed | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1055 | |
| 63325 | 1056 | lemma unit_prod [intro]: "is_unit a \<Longrightarrow> is_unit b \<Longrightarrow> is_unit (a * b)" | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1057 | by (subst mult_1_left [of 1, symmetric]) (rule mult_dvd_mono) | 
| 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1058 | |
| 63325 | 1059 | lemma is_unit_mult_iff: "is_unit (a * b) \<longleftrightarrow> is_unit a \<and> is_unit b" | 
| 62366 | 1060 | by (auto dest: dvd_mult_left dvd_mult_right) | 
| 1061 | ||
| 63325 | 1062 | lemma unit_div [intro]: "is_unit a \<Longrightarrow> is_unit b \<Longrightarrow> is_unit (a div b)" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1063 | by (erule is_unitE [of b a]) (simp add: ac_simps unit_prod) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1064 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1065 | lemma mult_unit_dvd_iff: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1066 | assumes "is_unit b" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1067 | shows "a * b dvd c \<longleftrightarrow> a dvd c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1068 | proof | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1069 | assume "a * b dvd c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1070 | with assms show "a dvd c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1071 | by (simp add: dvd_mult_left) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1072 | next | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1073 | assume "a dvd c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1074 | then obtain k where "c = a * k" .. | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1075 | with assms have "c = (a * b) * (1 div b * k)" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1076 | by (simp add: mult_ac) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1077 | then show "a * b dvd c" by (rule dvdI) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1078 | qed | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1079 | |
| 63924 | 1080 | lemma mult_unit_dvd_iff': "is_unit a \<Longrightarrow> (a * b) dvd c \<longleftrightarrow> b dvd c" | 
| 1081 | using mult_unit_dvd_iff [of a b c] by (simp add: ac_simps) | |
| 1082 | ||
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1083 | lemma dvd_mult_unit_iff: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1084 | assumes "is_unit b" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1085 | shows "a dvd c * b \<longleftrightarrow> a dvd c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1086 | proof | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1087 | assume "a dvd c * b" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1088 | with assms have "c * b dvd c * (b * (1 div b))" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1089 | by (subst mult_assoc [symmetric]) simp | 
| 63325 | 1090 | also from assms have "b * (1 div b) = 1" | 
| 1091 | by (rule is_unitE) simp | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1092 | finally have "c * b dvd c" by simp | 
| 60758 | 1093 | with \<open>a dvd c * b\<close> show "a dvd c" by (rule dvd_trans) | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1094 | next | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1095 | assume "a dvd c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1096 | then show "a dvd c * b" by simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1097 | qed | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1098 | |
| 63924 | 1099 | lemma dvd_mult_unit_iff': "is_unit b \<Longrightarrow> a dvd b * c \<longleftrightarrow> a dvd c" | 
| 1100 | using dvd_mult_unit_iff [of b a c] by (simp add: ac_simps) | |
| 1101 | ||
| 63325 | 1102 | lemma div_unit_dvd_iff: "is_unit b \<Longrightarrow> a div b dvd c \<longleftrightarrow> a dvd c" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1103 | by (erule is_unitE [of _ a]) (auto simp add: mult_unit_dvd_iff) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1104 | |
| 63325 | 1105 | lemma dvd_div_unit_iff: "is_unit b \<Longrightarrow> a dvd c div b \<longleftrightarrow> a dvd c" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1106 | by (erule is_unitE [of _ c]) (simp add: dvd_mult_unit_iff) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1107 | |
| 63924 | 1108 | lemmas unit_dvd_iff = mult_unit_dvd_iff mult_unit_dvd_iff' | 
| 1109 | dvd_mult_unit_iff dvd_mult_unit_iff' | |
| 1110 | div_unit_dvd_iff dvd_div_unit_iff (* FIXME consider named_theorems *) | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1111 | |
| 63325 | 1112 | lemma unit_mult_div_div [simp]: "is_unit a \<Longrightarrow> b * (1 div a) = b div a" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1113 | by (erule is_unitE [of _ b]) simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1114 | |
| 63325 | 1115 | lemma unit_div_mult_self [simp]: "is_unit a \<Longrightarrow> b div a * a = b" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1116 | by (rule dvd_div_mult_self) auto | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1117 | |
| 63325 | 1118 | lemma unit_div_1_div_1 [simp]: "is_unit a \<Longrightarrow> 1 div (1 div a) = a" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1119 | by (erule is_unitE) simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1120 | |
| 63325 | 1121 | lemma unit_div_mult_swap: "is_unit c \<Longrightarrow> a * (b div c) = (a * b) div c" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1122 | by (erule unit_dvdE [of _ b]) (simp add: mult.left_commute [of _ c]) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1123 | |
| 63325 | 1124 | lemma unit_div_commute: "is_unit b \<Longrightarrow> (a div b) * c = (a * c) div b" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1125 | using unit_div_mult_swap [of b c a] by (simp add: ac_simps) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1126 | |
| 63325 | 1127 | lemma unit_eq_div1: "is_unit b \<Longrightarrow> a div b = c \<longleftrightarrow> a = c * b" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1128 | by (auto elim: is_unitE) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1129 | |
| 63325 | 1130 | lemma unit_eq_div2: "is_unit b \<Longrightarrow> a = c div b \<longleftrightarrow> a * b = c" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1131 | using unit_eq_div1 [of b c a] by auto | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1132 | |
| 63325 | 1133 | lemma unit_mult_left_cancel: "is_unit a \<Longrightarrow> a * b = a * c \<longleftrightarrow> b = c" | 
| 1134 | using mult_cancel_left [of a b c] by auto | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1135 | |
| 63325 | 1136 | lemma unit_mult_right_cancel: "is_unit a \<Longrightarrow> b * a = c * a \<longleftrightarrow> b = c" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1137 | using unit_mult_left_cancel [of a b c] by (auto simp add: ac_simps) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1138 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1139 | lemma unit_div_cancel: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1140 | assumes "is_unit a" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1141 | shows "b div a = c div a \<longleftrightarrow> b = c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1142 | proof - | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1143 | from assms have "is_unit (1 div a)" by simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1144 | then have "b * (1 div a) = c * (1 div a) \<longleftrightarrow> b = c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1145 | by (rule unit_mult_right_cancel) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1146 | with assms show ?thesis by simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1147 | qed | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1148 | |
| 60570 | 1149 | lemma is_unit_div_mult2_eq: | 
| 1150 | assumes "is_unit b" and "is_unit c" | |
| 1151 | shows "a div (b * c) = a div b div c" | |
| 1152 | proof - | |
| 63325 | 1153 | from assms have "is_unit (b * c)" | 
| 1154 | by (simp add: unit_prod) | |
| 60570 | 1155 | then have "b * c dvd a" | 
| 1156 | by (rule unit_imp_dvd) | |
| 1157 | then show ?thesis | |
| 1158 | by (rule dvd_div_mult2_eq) | |
| 1159 | qed | |
| 1160 | ||
| 64240 | 1161 | lemma is_unit_div_mult_cancel_left: | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1162 | assumes "a \<noteq> 0" and "is_unit b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1163 | shows "a div (a * b) = 1 div b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1164 | proof - | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1165 | from assms have "a div (a * b) = a div a div b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1166 | by (simp add: mult_unit_dvd_iff dvd_div_mult2_eq) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1167 | with assms show ?thesis by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1168 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1169 | |
| 64240 | 1170 | lemma is_unit_div_mult_cancel_right: | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1171 | assumes "a \<noteq> 0" and "is_unit b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1172 | shows "a div (b * a) = 1 div b" | 
| 64240 | 1173 | using assms is_unit_div_mult_cancel_left [of a b] by (simp add: ac_simps) | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1174 | |
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1175 | lemma unit_div_eq_0_iff: | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1176 | assumes "is_unit b" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1177 | shows "a div b = 0 \<longleftrightarrow> a = 0" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1178 | by (rule dvd_div_eq_0_iff) (insert assms, auto) | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1179 | |
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1180 | lemma div_mult_unit2: | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1181 | "is_unit c \<Longrightarrow> b dvd a \<Longrightarrow> a div (b * c) = a div b div c" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1182 | by (rule dvd_div_mult2_eq) (simp_all add: mult_unit_dvd_iff) | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1183 | |
| 67051 | 1184 | |
| 1185 | text \<open>Coprimality\<close> | |
| 1186 | ||
| 1187 | definition coprime :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | |
| 1188 | where "coprime a b \<longleftrightarrow> (\<forall>c. c dvd a \<longrightarrow> c dvd b \<longrightarrow> is_unit c)" | |
| 1189 | ||
| 1190 | lemma coprimeI: | |
| 1191 | assumes "\<And>c. c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> is_unit c" | |
| 1192 | shows "coprime a b" | |
| 1193 | using assms by (auto simp: coprime_def) | |
| 1194 | ||
| 1195 | lemma not_coprimeI: | |
| 1196 | assumes "c dvd a" and "c dvd b" and "\<not> is_unit c" | |
| 1197 | shows "\<not> coprime a b" | |
| 1198 | using assms by (auto simp: coprime_def) | |
| 1199 | ||
| 1200 | lemma coprime_common_divisor: | |
| 1201 | "is_unit c" if "coprime a b" and "c dvd a" and "c dvd b" | |
| 1202 | using that by (auto simp: coprime_def) | |
| 1203 | ||
| 1204 | lemma not_coprimeE: | |
| 1205 | assumes "\<not> coprime a b" | |
| 1206 | obtains c where "c dvd a" and "c dvd b" and "\<not> is_unit c" | |
| 1207 | using assms by (auto simp: coprime_def) | |
| 1208 | ||
| 1209 | lemma coprime_imp_coprime: | |
| 1210 | "coprime a b" if "coprime c d" | |
| 1211 | and "\<And>e. \<not> is_unit e \<Longrightarrow> e dvd a \<Longrightarrow> e dvd b \<Longrightarrow> e dvd c" | |
| 1212 | and "\<And>e. \<not> is_unit e \<Longrightarrow> e dvd a \<Longrightarrow> e dvd b \<Longrightarrow> e dvd d" | |
| 1213 | proof (rule coprimeI) | |
| 1214 | fix e | |
| 1215 | assume "e dvd a" and "e dvd b" | |
| 1216 | with that have "e dvd c" and "e dvd d" | |
| 1217 | by (auto intro: dvd_trans) | |
| 1218 | with \<open>coprime c d\<close> show "is_unit e" | |
| 1219 | by (rule coprime_common_divisor) | |
| 1220 | qed | |
| 1221 | ||
| 1222 | lemma coprime_divisors: | |
| 1223 | "coprime a b" if "a dvd c" "b dvd d" and "coprime c d" | |
| 1224 | using \<open>coprime c d\<close> proof (rule coprime_imp_coprime) | |
| 1225 | fix e | |
| 1226 | assume "e dvd a" then show "e dvd c" | |
| 1227 | using \<open>a dvd c\<close> by (rule dvd_trans) | |
| 1228 | assume "e dvd b" then show "e dvd d" | |
| 1229 | using \<open>b dvd d\<close> by (rule dvd_trans) | |
| 1230 | qed | |
| 1231 | ||
| 1232 | lemma coprime_self [simp]: | |
| 1233 | "coprime a a \<longleftrightarrow> is_unit a" (is "?P \<longleftrightarrow> ?Q") | |
| 1234 | proof | |
| 1235 | assume ?P | |
| 1236 | then show ?Q | |
| 1237 | by (rule coprime_common_divisor) simp_all | |
| 1238 | next | |
| 1239 | assume ?Q | |
| 1240 | show ?P | |
| 1241 | by (rule coprimeI) (erule dvd_unit_imp_unit, rule \<open>?Q\<close>) | |
| 1242 | qed | |
| 1243 | ||
| 1244 | lemma coprime_commute [ac_simps]: | |
| 1245 | "coprime b a \<longleftrightarrow> coprime a b" | |
| 1246 | unfolding coprime_def by auto | |
| 1247 | ||
| 1248 | lemma is_unit_left_imp_coprime: | |
| 1249 | "coprime a b" if "is_unit a" | |
| 1250 | proof (rule coprimeI) | |
| 1251 | fix c | |
| 1252 | assume "c dvd a" | |
| 1253 | with that show "is_unit c" | |
| 1254 | by (auto intro: dvd_unit_imp_unit) | |
| 1255 | qed | |
| 1256 | ||
| 1257 | lemma is_unit_right_imp_coprime: | |
| 1258 | "coprime a b" if "is_unit b" | |
| 1259 | using that is_unit_left_imp_coprime [of b a] by (simp add: ac_simps) | |
| 1260 | ||
| 1261 | lemma coprime_1_left [simp]: | |
| 1262 | "coprime 1 a" | |
| 1263 | by (rule coprimeI) | |
| 1264 | ||
| 1265 | lemma coprime_1_right [simp]: | |
| 1266 | "coprime a 1" | |
| 1267 | by (rule coprimeI) | |
| 1268 | ||
| 1269 | lemma coprime_0_left_iff [simp]: | |
| 1270 | "coprime 0 a \<longleftrightarrow> is_unit a" | |
| 1271 | by (auto intro: coprimeI dvd_unit_imp_unit coprime_common_divisor [of 0 a a]) | |
| 1272 | ||
| 1273 | lemma coprime_0_right_iff [simp]: | |
| 1274 | "coprime a 0 \<longleftrightarrow> is_unit a" | |
| 1275 | using coprime_0_left_iff [of a] by (simp add: ac_simps) | |
| 1276 | ||
| 1277 | lemma coprime_mult_self_left_iff [simp]: | |
| 1278 | "coprime (c * a) (c * b) \<longleftrightarrow> is_unit c \<and> coprime a b" | |
| 1279 | by (auto intro: coprime_common_divisor) | |
| 1280 | (rule coprimeI, auto intro: coprime_common_divisor simp add: dvd_mult_unit_iff')+ | |
| 1281 | ||
| 1282 | lemma coprime_mult_self_right_iff [simp]: | |
| 1283 | "coprime (a * c) (b * c) \<longleftrightarrow> is_unit c \<and> coprime a b" | |
| 1284 | using coprime_mult_self_left_iff [of c a b] by (simp add: ac_simps) | |
| 1285 | ||
| 67234 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67226diff
changeset | 1286 | lemma coprime_absorb_left: | 
| 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67226diff
changeset | 1287 | assumes "x dvd y" | 
| 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67226diff
changeset | 1288 | shows "coprime x y \<longleftrightarrow> is_unit x" | 
| 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67226diff
changeset | 1289 | using assms coprime_common_divisor is_unit_left_imp_coprime by auto | 
| 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67226diff
changeset | 1290 | |
| 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67226diff
changeset | 1291 | lemma coprime_absorb_right: | 
| 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67226diff
changeset | 1292 | assumes "y dvd x" | 
| 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67226diff
changeset | 1293 | shows "coprime x y \<longleftrightarrow> is_unit y" | 
| 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67226diff
changeset | 1294 | using assms coprime_common_divisor is_unit_right_imp_coprime by auto | 
| 
ab10ea1d6fd0
Some lemmas on complex numbers and coprimality
 eberlm <eberlm@in.tum.de> parents: 
67226diff
changeset | 1295 | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1296 | end | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1297 | |
| 64848 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1298 | class unit_factor = | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1299 | fixes unit_factor :: "'a \<Rightarrow> 'a" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1300 | |
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1301 | class semidom_divide_unit_factor = semidom_divide + unit_factor + | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1302 | assumes unit_factor_0 [simp]: "unit_factor 0 = 0" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1303 | and is_unit_unit_factor: "a dvd 1 \<Longrightarrow> unit_factor a = a" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1304 | and unit_factor_is_unit: "a \<noteq> 0 \<Longrightarrow> unit_factor a dvd 1" | 
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1305 | and unit_factor_mult_unit_left: "a dvd 1 \<Longrightarrow> unit_factor (a * b) = a * unit_factor b" | 
| 67226 | 1306 | \<comment> \<open>This fine-grained hierarchy will later on allow lean normalization of polynomials\<close> | 
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1307 | begin | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1308 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1309 | lemma unit_factor_mult_unit_right: "a dvd 1 \<Longrightarrow> unit_factor (b * a) = unit_factor b * a" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1310 | using unit_factor_mult_unit_left[of a b] by (simp add: mult_ac) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1311 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1312 | lemmas [simp] = unit_factor_mult_unit_left unit_factor_mult_unit_right | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1313 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1314 | end | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1315 | |
| 64848 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1316 | class normalization_semidom = algebraic_semidom + semidom_divide_unit_factor + | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1317 | fixes normalize :: "'a \<Rightarrow> 'a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1318 | assumes unit_factor_mult_normalize [simp]: "unit_factor a * normalize a = a" | 
| 63588 | 1319 | and normalize_0 [simp]: "normalize 0 = 0" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1320 | begin | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1321 | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1322 | text \<open> | 
| 69593 | 1323 | Class \<^class>\<open>normalization_semidom\<close> cultivates the idea that each integral | 
| 63588 | 1324 | domain can be split into equivalence classes whose representants are | 
| 69593 | 1325 | associated, i.e. divide each other. \<^const>\<open>normalize\<close> specifies a canonical | 
| 63588 | 1326 | representant for each equivalence class. The rationale behind this is that | 
| 1327 | it is easier to reason about equality than equivalences, hence we prefer to | |
| 1328 | think about equality of normalized values rather than associated elements. | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1329 | \<close> | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1330 | |
| 64848 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1331 | declare unit_factor_is_unit [iff] | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1332 | |
| 63325 | 1333 | lemma unit_factor_dvd [simp]: "a \<noteq> 0 \<Longrightarrow> unit_factor a dvd b" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1334 | by (rule unit_imp_dvd) simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1335 | |
| 63325 | 1336 | lemma unit_factor_self [simp]: "unit_factor a dvd a" | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1337 | by (cases "a = 0") simp_all | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1338 | |
| 63325 | 1339 | lemma normalize_mult_unit_factor [simp]: "normalize a * unit_factor a = a" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1340 | using unit_factor_mult_normalize [of a] by (simp add: ac_simps) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1341 | |
| 63325 | 1342 | lemma normalize_eq_0_iff [simp]: "normalize a = 0 \<longleftrightarrow> a = 0" | 
| 63588 | 1343 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1344 | proof | 
| 63588 | 1345 | assume ?lhs | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1346 | moreover have "unit_factor a * normalize a = a" by simp | 
| 63588 | 1347 | ultimately show ?rhs by simp | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1348 | next | 
| 63588 | 1349 | assume ?rhs | 
| 1350 | then show ?lhs by simp | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1351 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1352 | |
| 63325 | 1353 | lemma unit_factor_eq_0_iff [simp]: "unit_factor a = 0 \<longleftrightarrow> a = 0" | 
| 63588 | 1354 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1355 | proof | 
| 63588 | 1356 | assume ?lhs | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1357 | moreover have "unit_factor a * normalize a = a" by simp | 
| 63588 | 1358 | ultimately show ?rhs by simp | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1359 | next | 
| 63588 | 1360 | assume ?rhs | 
| 1361 | then show ?lhs by simp | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1362 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1363 | |
| 64848 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1364 | lemma div_unit_factor [simp]: "a div unit_factor a = normalize a" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1365 | proof (cases "a = 0") | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1366 | case True | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1367 | then show ?thesis by simp | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1368 | next | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1369 | case False | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1370 | then have "unit_factor a \<noteq> 0" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1371 | by simp | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1372 | with nonzero_mult_div_cancel_left | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1373 | have "unit_factor a * normalize a div unit_factor a = normalize a" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1374 | by blast | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1375 | then show ?thesis by simp | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1376 | qed | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1377 | |
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1378 | lemma normalize_div [simp]: "normalize a div a = 1 div unit_factor a" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1379 | proof (cases "a = 0") | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1380 | case True | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1381 | then show ?thesis by simp | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1382 | next | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1383 | case False | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1384 | have "normalize a div a = normalize a div (unit_factor a * normalize a)" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1385 | by simp | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1386 | also have "\<dots> = 1 div unit_factor a" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1387 | using False by (subst is_unit_div_mult_cancel_right) simp_all | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1388 | finally show ?thesis . | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1389 | qed | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1390 | |
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1391 | lemma is_unit_normalize: | 
| 63325 | 1392 | assumes "is_unit a" | 
| 64848 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1393 | shows "normalize a = 1" | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1394 | proof - | 
| 64848 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1395 | from assms have "unit_factor a = a" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1396 | by (rule is_unit_unit_factor) | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1397 | moreover from assms have "a \<noteq> 0" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1398 | by auto | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1399 | moreover have "normalize a = a div unit_factor a" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1400 | by simp | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1401 | ultimately show ?thesis | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1402 | by simp | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1403 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1404 | |
| 63325 | 1405 | lemma unit_factor_1 [simp]: "unit_factor 1 = 1" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1406 | by (rule is_unit_unit_factor) simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1407 | |
| 63325 | 1408 | lemma normalize_1 [simp]: "normalize 1 = 1" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1409 | by (rule is_unit_normalize) simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1410 | |
| 63325 | 1411 | lemma normalize_1_iff: "normalize a = 1 \<longleftrightarrow> is_unit a" | 
| 63588 | 1412 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1413 | proof | 
| 63588 | 1414 | assume ?rhs | 
| 1415 | then show ?lhs by (rule is_unit_normalize) | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1416 | next | 
| 63588 | 1417 | assume ?lhs | 
| 1418 | then have "unit_factor a * normalize a = unit_factor a * 1" | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1419 | by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1420 | then have "unit_factor a = a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1421 | by simp | 
| 63588 | 1422 | moreover | 
| 1423 | from \<open>?lhs\<close> have "a \<noteq> 0" by auto | |
| 1424 | then have "is_unit (unit_factor a)" by simp | |
| 1425 | ultimately show ?rhs by simp | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1426 | qed | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1427 | |
| 63325 | 1428 | lemma div_normalize [simp]: "a div normalize a = unit_factor a" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1429 | proof (cases "a = 0") | 
| 63325 | 1430 | case True | 
| 1431 | then show ?thesis by simp | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1432 | next | 
| 63325 | 1433 | case False | 
| 1434 | then have "normalize a \<noteq> 0" by simp | |
| 64240 | 1435 | with nonzero_mult_div_cancel_right | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1436 | have "unit_factor a * normalize a div normalize a = unit_factor a" by blast | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1437 | then show ?thesis by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1438 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1439 | |
| 63325 | 1440 | lemma mult_one_div_unit_factor [simp]: "a * (1 div unit_factor b) = a div unit_factor b" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1441 | by (cases "b = 0") simp_all | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1442 | |
| 63947 | 1443 | lemma inv_unit_factor_eq_0_iff [simp]: | 
| 1444 | "1 div unit_factor a = 0 \<longleftrightarrow> a = 0" | |
| 1445 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 1446 | proof | |
| 1447 | assume ?lhs | |
| 1448 | then have "a * (1 div unit_factor a) = a * 0" | |
| 1449 | by simp | |
| 1450 | then show ?rhs | |
| 1451 | by simp | |
| 1452 | next | |
| 1453 | assume ?rhs | |
| 1454 | then show ?lhs by simp | |
| 1455 | qed | |
| 1456 | ||
| 63325 | 1457 | lemma unit_factor_idem [simp]: "unit_factor (unit_factor a) = unit_factor a" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1458 | by (cases "a = 0") (auto intro: is_unit_unit_factor) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1459 | |
| 63325 | 1460 | lemma normalize_unit_factor [simp]: "a \<noteq> 0 \<Longrightarrow> normalize (unit_factor a) = 1" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1461 | by (rule is_unit_normalize) simp | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1462 | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1463 | lemma normalize_mult_unit_left [simp]: | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1464 | assumes "a dvd 1" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1465 | shows "normalize (a * b) = normalize b" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1466 | proof (cases "b = 0") | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1467 | case False | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1468 | have "a * unit_factor b * normalize (a * b) = unit_factor (a * b) * normalize (a * b)" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1469 | using assms by (subst unit_factor_mult_unit_left) auto | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1470 | also have "\<dots> = a * b" by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1471 | also have "b = unit_factor b * normalize b" by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1472 | hence "a * b = a * unit_factor b * normalize b" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1473 | by (simp only: mult_ac) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1474 | finally show ?thesis | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1475 | using assms False by auto | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1476 | qed auto | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1477 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1478 | lemma normalize_mult_unit_right [simp]: | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1479 | assumes "b dvd 1" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1480 | shows "normalize (a * b) = normalize a" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1481 | using assms by (subst mult.commute) auto | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1482 | |
| 63325 | 1483 | lemma normalize_idem [simp]: "normalize (normalize a) = normalize a" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1484 | proof (cases "a = 0") | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1485 | case False | 
| 63325 | 1486 | have "normalize a = normalize (unit_factor a * normalize a)" | 
| 1487 | by simp | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1488 | also from False have "\<dots> = normalize (normalize a)" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1489 | by (subst normalize_mult_unit_left) auto | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1490 | finally show ?thesis .. | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1491 | qed auto | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1492 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1493 | lemma unit_factor_normalize [simp]: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1494 | assumes "a \<noteq> 0" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1495 | shows "unit_factor (normalize a) = 1" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1496 | proof - | 
| 63325 | 1497 | from assms have *: "normalize a \<noteq> 0" | 
| 1498 | by simp | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1499 | have "unit_factor (normalize a) * normalize (normalize a) = normalize a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1500 | by (simp only: unit_factor_mult_normalize) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1501 | then have "unit_factor (normalize a) * normalize a = normalize a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1502 | by simp | 
| 63325 | 1503 | with * have "unit_factor (normalize a) * normalize a div normalize a = normalize a div normalize a" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1504 | by simp | 
| 63325 | 1505 | with * show ?thesis | 
| 1506 | by simp | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1507 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1508 | |
| 63325 | 1509 | lemma normalize_dvd_iff [simp]: "normalize a dvd b \<longleftrightarrow> a dvd b" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1510 | proof - | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1511 | have "normalize a dvd b \<longleftrightarrow> unit_factor a * normalize a dvd b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1512 | using mult_unit_dvd_iff [of "unit_factor a" "normalize a" b] | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1513 | by (cases "a = 0") simp_all | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1514 | then show ?thesis by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1515 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1516 | |
| 63325 | 1517 | lemma dvd_normalize_iff [simp]: "a dvd normalize b \<longleftrightarrow> a dvd b" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1518 | proof - | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1519 | have "a dvd normalize b \<longleftrightarrow> a dvd normalize b * unit_factor b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1520 | using dvd_mult_unit_iff [of "unit_factor b" a "normalize b"] | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1521 | by (cases "b = 0") simp_all | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1522 | then show ?thesis by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1523 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1524 | |
| 65811 | 1525 | lemma normalize_idem_imp_unit_factor_eq: | 
| 1526 | assumes "normalize a = a" | |
| 1527 | shows "unit_factor a = of_bool (a \<noteq> 0)" | |
| 1528 | proof (cases "a = 0") | |
| 1529 | case True | |
| 1530 | then show ?thesis | |
| 1531 | by simp | |
| 1532 | next | |
| 1533 | case False | |
| 1534 | then show ?thesis | |
| 1535 | using assms unit_factor_normalize [of a] by simp | |
| 1536 | qed | |
| 1537 | ||
| 1538 | lemma normalize_idem_imp_is_unit_iff: | |
| 1539 | assumes "normalize a = a" | |
| 1540 | shows "is_unit a \<longleftrightarrow> a = 1" | |
| 1541 | using assms by (cases "a = 0") (auto dest: is_unit_normalize) | |
| 1542 | ||
| 67051 | 1543 | lemma coprime_normalize_left_iff [simp]: | 
| 1544 | "coprime (normalize a) b \<longleftrightarrow> coprime a b" | |
| 1545 | by (rule; rule coprimeI) (auto intro: coprime_common_divisor) | |
| 1546 | ||
| 1547 | lemma coprime_normalize_right_iff [simp]: | |
| 1548 | "coprime a (normalize b) \<longleftrightarrow> coprime a b" | |
| 1549 | using coprime_normalize_left_iff [of b a] by (simp add: ac_simps) | |
| 1550 | ||
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1551 | text \<open> | 
| 63588 | 1552 | We avoid an explicit definition of associated elements but prefer explicit | 
| 69593 | 1553 | normalisation instead. In theory we could define an abbreviation like \<^prop>\<open>associated a b \<longleftrightarrow> normalize a = normalize b\<close> but this is counterproductive | 
| 63588 | 1554 | without suggestive infix syntax, which we do not want to sacrifice for this | 
| 1555 | purpose here. | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1556 | \<close> | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1557 | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1558 | lemma associatedI: | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1559 | assumes "a dvd b" and "b dvd a" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1560 | shows "normalize a = normalize b" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1561 | proof (cases "a = 0 \<or> b = 0") | 
| 63325 | 1562 | case True | 
| 1563 | with assms show ?thesis by auto | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1564 | next | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1565 | case False | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1566 | from \<open>a dvd b\<close> obtain c where b: "b = a * c" .. | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1567 | moreover from \<open>b dvd a\<close> obtain d where a: "a = b * d" .. | 
| 63325 | 1568 | ultimately have "b * 1 = b * (c * d)" | 
| 1569 | by (simp add: ac_simps) | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1570 | with False have "1 = c * d" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1571 | unfolding mult_cancel_left by simp | 
| 63325 | 1572 | then have "is_unit c" and "is_unit d" | 
| 1573 | by auto | |
| 1574 | with a b show ?thesis | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1575 | by (simp add: is_unit_normalize) | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1576 | qed | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1577 | |
| 63325 | 1578 | lemma associatedD1: "normalize a = normalize b \<Longrightarrow> a dvd b" | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1579 | using dvd_normalize_iff [of _ b, symmetric] normalize_dvd_iff [of a _, symmetric] | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1580 | by simp | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1581 | |
| 63325 | 1582 | lemma associatedD2: "normalize a = normalize b \<Longrightarrow> b dvd a" | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1583 | using dvd_normalize_iff [of _ a, symmetric] normalize_dvd_iff [of b _, symmetric] | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1584 | by simp | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1585 | |
| 63325 | 1586 | lemma associated_unit: "normalize a = normalize b \<Longrightarrow> is_unit a \<Longrightarrow> is_unit b" | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1587 | using dvd_unit_imp_unit by (auto dest!: associatedD1 associatedD2) | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1588 | |
| 63325 | 1589 | lemma associated_iff_dvd: "normalize a = normalize b \<longleftrightarrow> a dvd b \<and> b dvd a" | 
| 63588 | 1590 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1591 | proof | 
| 63588 | 1592 | assume ?rhs | 
| 1593 | then show ?lhs by (auto intro!: associatedI) | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1594 | next | 
| 63588 | 1595 | assume ?lhs | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1596 | then have "unit_factor a * normalize a = unit_factor a * normalize b" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1597 | by simp | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1598 | then have *: "normalize b * unit_factor a = a" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1599 | by (simp add: ac_simps) | 
| 63588 | 1600 | show ?rhs | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1601 | proof (cases "a = 0 \<or> b = 0") | 
| 63325 | 1602 | case True | 
| 63588 | 1603 | with \<open>?lhs\<close> show ?thesis by auto | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1604 | next | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1605 | case False | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1606 | then have "b dvd normalize b * unit_factor a" and "normalize b * unit_factor a dvd b" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1607 | by (simp_all add: mult_unit_dvd_iff dvd_mult_unit_iff) | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1608 | with * show ?thesis by simp | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1609 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1610 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1611 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1612 | lemma associated_eqI: | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1613 | assumes "a dvd b" and "b dvd a" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1614 | assumes "normalize a = a" and "normalize b = b" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1615 | shows "a = b" | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1616 | proof - | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1617 | from assms have "normalize a = normalize b" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1618 | unfolding associated_iff_dvd by simp | 
| 63588 | 1619 | with \<open>normalize a = a\<close> have "a = normalize b" | 
| 1620 | by simp | |
| 1621 | with \<open>normalize b = b\<close> show "a = b" | |
| 1622 | by simp | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1623 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1624 | |
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1625 | lemma normalize_unit_factor_eqI: | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1626 | assumes "normalize a = normalize b" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1627 | and "unit_factor a = unit_factor b" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1628 | shows "a = b" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1629 | proof - | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1630 | from assms have "unit_factor a * normalize a = unit_factor b * normalize b" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1631 | by simp | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1632 | then show ?thesis | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1633 | by simp | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1634 | qed | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1635 | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1636 | lemma normalize_mult_normalize_left [simp]: "normalize (normalize a * b) = normalize (a * b)" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1637 | by (rule associated_eqI) (auto intro!: mult_dvd_mono) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1638 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1639 | lemma normalize_mult_normalize_right [simp]: "normalize (a * normalize b) = normalize (a * b)" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1640 | by (rule associated_eqI) (auto intro!: mult_dvd_mono) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1641 | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1642 | end | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1643 | |
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1644 | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1645 | class normalization_semidom_multiplicative = normalization_semidom + | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1646 | assumes unit_factor_mult: "unit_factor (a * b) = unit_factor a * unit_factor b" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1647 | begin | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1648 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1649 | lemma normalize_mult: "normalize (a * b) = normalize a * normalize b" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1650 | proof (cases "a = 0 \<or> b = 0") | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1651 | case True | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1652 | then show ?thesis by auto | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1653 | next | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1654 | case False | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1655 | have "unit_factor (a * b) * normalize (a * b) = a * b" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1656 | by (rule unit_factor_mult_normalize) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1657 | then have "normalize (a * b) = a * b div unit_factor (a * b)" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1658 | by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1659 | also have "\<dots> = a * b div unit_factor (b * a)" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1660 | by (simp add: ac_simps) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1661 | also have "\<dots> = a * b div unit_factor b div unit_factor a" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1662 | using False by (simp add: unit_factor_mult is_unit_div_mult2_eq [symmetric]) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1663 | also have "\<dots> = a * (b div unit_factor b) div unit_factor a" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1664 | using False by (subst unit_div_mult_swap) simp_all | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1665 | also have "\<dots> = normalize a * normalize b" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1666 | using False | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1667 | by (simp add: mult.commute [of a] mult.commute [of "normalize a"] unit_div_mult_swap [symmetric]) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1668 | finally show ?thesis . | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1669 | qed | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1670 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1671 | lemma dvd_unit_factor_div: | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1672 | assumes "b dvd a" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1673 | shows "unit_factor (a div b) = unit_factor a div unit_factor b" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1674 | proof - | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1675 | from assms have "a = a div b * b" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1676 | by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1677 | then have "unit_factor a = unit_factor (a div b * b)" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1678 | by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1679 | then show ?thesis | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1680 | by (cases "b = 0") (simp_all add: unit_factor_mult) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1681 | qed | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1682 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1683 | lemma dvd_normalize_div: | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1684 | assumes "b dvd a" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1685 | shows "normalize (a div b) = normalize a div normalize b" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1686 | proof - | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1687 | from assms have "a = a div b * b" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1688 | by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1689 | then have "normalize a = normalize (a div b * b)" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1690 | by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1691 | then show ?thesis | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1692 | by (cases "b = 0") (simp_all add: normalize_mult) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1693 | qed | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1694 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1695 | end | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1696 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1697 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1698 | |
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
71167diff
changeset | 1699 | |
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1700 | text \<open>Syntactic division remainder operator\<close> | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1701 | |
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1702 | class modulo = dvd + divide + | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1703 | fixes modulo :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "mod" 70) | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1704 | |
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1705 | text \<open>Arbitrary quotient and remainder partitions\<close> | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1706 | |
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1707 | class semiring_modulo = comm_semiring_1_cancel + divide + modulo + | 
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1708 | assumes div_mult_mod_eq: "a div b * b + a mod b = a" | 
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1709 | begin | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1710 | |
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1711 | lemma mod_div_decomp: | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1712 | fixes a b | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1713 | obtains q r where "q = a div b" and "r = a mod b" | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1714 | and "a = q * b + r" | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1715 | proof - | 
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1716 | from div_mult_mod_eq have "a = a div b * b + a mod b" by simp | 
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1717 | moreover have "a div b = a div b" .. | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1718 | moreover have "a mod b = a mod b" .. | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1719 | note that ultimately show thesis by blast | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1720 | qed | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1721 | |
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1722 | lemma mult_div_mod_eq: "b * (a div b) + a mod b = a" | 
| 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1723 | using div_mult_mod_eq [of a b] by (simp add: ac_simps) | 
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1724 | |
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1725 | lemma mod_div_mult_eq: "a mod b + a div b * b = a" | 
| 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1726 | using div_mult_mod_eq [of a b] by (simp add: ac_simps) | 
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1727 | |
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1728 | lemma mod_mult_div_eq: "a mod b + b * (a div b) = a" | 
| 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1729 | using div_mult_mod_eq [of a b] by (simp add: ac_simps) | 
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1730 | |
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1731 | lemma minus_div_mult_eq_mod: "a - a div b * b = a mod b" | 
| 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1732 | by (rule add_implies_diff [symmetric]) (fact mod_div_mult_eq) | 
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1733 | |
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1734 | lemma minus_mult_div_eq_mod: "a - b * (a div b) = a mod b" | 
| 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1735 | by (rule add_implies_diff [symmetric]) (fact mod_mult_div_eq) | 
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1736 | |
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1737 | lemma minus_mod_eq_div_mult: "a - a mod b = a div b * b" | 
| 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1738 | by (rule add_implies_diff [symmetric]) (fact div_mult_mod_eq) | 
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1739 | |
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1740 | lemma minus_mod_eq_mult_div: "a - a mod b = b * (a div b)" | 
| 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1741 | by (rule add_implies_diff [symmetric]) (fact mult_div_mod_eq) | 
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1742 | |
| 70902 | 1743 | lemma mod_0_imp_dvd [dest!]: | 
| 1744 | "b dvd a" if "a mod b = 0" | |
| 1745 | proof - | |
| 1746 | have "b dvd (a div b) * b" by simp | |
| 1747 | also have "(a div b) * b = a" | |
| 1748 | using div_mult_mod_eq [of a b] by (simp add: that) | |
| 1749 | finally show ?thesis . | |
| 1750 | qed | |
| 1751 | ||
| 68253 | 1752 | lemma [nitpick_unfold]: | 
| 1753 | "a mod b = a - a div b * b" | |
| 1754 | by (fact minus_div_mult_eq_mod [symmetric]) | |
| 1755 | ||
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1756 | end | 
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1757 | |
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1758 | |
| 70145 | 1759 | subsection \<open>Quotient and remainder in integral domains\<close> | 
| 66807 | 1760 | |
| 1761 | class semidom_modulo = algebraic_semidom + semiring_modulo | |
| 1762 | begin | |
| 1763 | ||
| 1764 | lemma mod_0 [simp]: "0 mod a = 0" | |
| 1765 | using div_mult_mod_eq [of 0 a] by simp | |
| 1766 | ||
| 1767 | lemma mod_by_0 [simp]: "a mod 0 = a" | |
| 1768 | using div_mult_mod_eq [of a 0] by simp | |
| 1769 | ||
| 1770 | lemma mod_by_1 [simp]: | |
| 1771 | "a mod 1 = 0" | |
| 1772 | proof - | |
| 1773 | from div_mult_mod_eq [of a one] div_by_1 have "a + a mod 1 = a" by simp | |
| 1774 | then have "a + a mod 1 = a + 0" by simp | |
| 1775 | then show ?thesis by (rule add_left_imp_eq) | |
| 1776 | qed | |
| 1777 | ||
| 1778 | lemma mod_self [simp]: | |
| 1779 | "a mod a = 0" | |
| 1780 | using div_mult_mod_eq [of a a] by simp | |
| 1781 | ||
| 1782 | lemma dvd_imp_mod_0 [simp]: | |
| 67084 | 1783 | "b mod a = 0" if "a dvd b" | 
| 1784 | using that minus_div_mult_eq_mod [of b a] by simp | |
| 66807 | 1785 | |
| 1786 | lemma mod_eq_0_iff_dvd: | |
| 1787 | "a mod b = 0 \<longleftrightarrow> b dvd a" | |
| 1788 | by (auto intro: mod_0_imp_dvd) | |
| 1789 | ||
| 1790 | lemma dvd_eq_mod_eq_0 [nitpick_unfold, code]: | |
| 1791 | "a dvd b \<longleftrightarrow> b mod a = 0" | |
| 1792 | by (simp add: mod_eq_0_iff_dvd) | |
| 1793 | ||
| 1794 | lemma dvd_mod_iff: | |
| 1795 | assumes "c dvd b" | |
| 1796 | shows "c dvd a mod b \<longleftrightarrow> c dvd a" | |
| 1797 | proof - | |
| 1798 | from assms have "(c dvd a mod b) \<longleftrightarrow> (c dvd ((a div b) * b + a mod b))" | |
| 1799 | by (simp add: dvd_add_right_iff) | |
| 1800 | also have "(a div b) * b + a mod b = a" | |
| 1801 | using div_mult_mod_eq [of a b] by simp | |
| 1802 | finally show ?thesis . | |
| 1803 | qed | |
| 1804 | ||
| 1805 | lemma dvd_mod_imp_dvd: | |
| 1806 | assumes "c dvd a mod b" and "c dvd b" | |
| 1807 | shows "c dvd a" | |
| 1808 | using assms dvd_mod_iff [of c b a] by simp | |
| 1809 | ||
| 66808 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1810 | lemma dvd_minus_mod [simp]: | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1811 | "b dvd a - a mod b" | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1812 | by (simp add: minus_mod_eq_div_mult) | 
| 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66807diff
changeset | 1813 | |
| 66810 | 1814 | lemma cancel_div_mod_rules: | 
| 1815 | "((a div b) * b + a mod b) + c = a + c" | |
| 1816 | "(b * (a div b) + a mod b) + c = a + c" | |
| 1817 | by (simp_all add: div_mult_mod_eq mult_div_mod_eq) | |
| 1818 | ||
| 66807 | 1819 | end | 
| 1820 | ||
| 70145 | 1821 | class idom_modulo = idom + semidom_modulo | 
| 1822 | begin | |
| 1823 | ||
| 1824 | subclass idom_divide .. | |
| 1825 | ||
| 1826 | lemma div_diff [simp]: | |
| 1827 | "c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> (a - b) div c = a div c - b div c" | |
| 1828 | using div_add [of _ _ "- b"] by (simp add: dvd_neg_div) | |
| 1829 | ||
| 1830 | end | |
| 1831 | ||
| 1832 | ||
| 1833 | subsection \<open>Interlude: basic tool support for algebraic and arithmetic calculations\<close> | |
| 66810 | 1834 | |
| 1835 | named_theorems arith "arith facts -- only ground formulas" | |
| 69605 | 1836 | ML_file \<open>Tools/arith_data.ML\<close> | 
| 1837 | ||
| 1838 | ML_file \<open>~~/src/Provers/Arith/cancel_div_mod.ML\<close> | |
| 66810 | 1839 | |
| 1840 | ML \<open> | |
| 1841 | structure Cancel_Div_Mod_Ring = Cancel_Div_Mod | |
| 1842 | ( | |
| 69593 | 1843 | val div_name = \<^const_name>\<open>divide\<close>; | 
| 1844 | val mod_name = \<^const_name>\<open>modulo\<close>; | |
| 66810 | 1845 | val mk_binop = HOLogic.mk_binop; | 
| 1846 | val mk_sum = Arith_Data.mk_sum; | |
| 1847 | val dest_sum = Arith_Data.dest_sum; | |
| 1848 | ||
| 1849 |   val div_mod_eqs = map mk_meta_eq @{thms cancel_div_mod_rules};
 | |
| 1850 | ||
| 1851 | val prove_eq_sums = Arith_Data.prove_conv2 all_tac (Arith_Data.simp_all_tac | |
| 1852 |     @{thms diff_conv_add_uminus add_0_left add_0_right ac_simps})
 | |
| 1853 | ) | |
| 1854 | \<close> | |
| 1855 | ||
| 1856 | simproc_setup cancel_div_mod_int ("(a::'a::semidom_modulo) + b") =
 | |
| 1857 | \<open>K Cancel_Div_Mod_Ring.proc\<close> | |
| 1858 | ||
| 70145 | 1859 | |
| 1860 | subsection \<open>Ordered semirings and rings\<close> | |
| 1861 | ||
| 1862 | text \<open> | |
| 1863 | The theory of partially ordered rings is taken from the books: | |
| 1864 | \<^item> \<^emph>\<open>Lattice Theory\<close> by Garret Birkhoff, American Mathematical Society, 1979 | |
| 1865 | \<^item> \<^emph>\<open>Partially Ordered Algebraic Systems\<close>, Pergamon Press, 1963 | |
| 1866 | ||
| 1867 | Most of the used notions can also be looked up in | |
| 1868 | \<^item> \<^url>\<open>http://www.mathworld.com\<close> by Eric Weisstein et. al. | |
| 1869 | \<^item> \<^emph>\<open>Algebra I\<close> by van der Waerden, Springer | |
| 1870 | \<close> | |
| 66807 | 1871 | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1872 | class ordered_semiring = semiring + ordered_comm_monoid_add + | 
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 1873 | assumes mult_left_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b" | 
| 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 1874 | assumes mult_right_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * c" | 
| 25230 | 1875 | begin | 
| 1876 | ||
| 63325 | 1877 | lemma mult_mono: "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * d" | 
| 1878 | apply (erule (1) mult_right_mono [THEN order_trans]) | |
| 1879 | apply (erule (1) mult_left_mono) | |
| 1880 | done | |
| 25230 | 1881 | |
| 63325 | 1882 | lemma mult_mono': "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * d" | 
| 63588 | 1883 | by (rule mult_mono) (fast intro: order_trans)+ | 
| 25230 | 1884 | |
| 1885 | end | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 1886 | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1887 | class ordered_semiring_0 = semiring_0 + ordered_semiring | 
| 25267 | 1888 | begin | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1889 | |
| 63325 | 1890 | lemma mult_nonneg_nonneg [simp]: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a * b" | 
| 1891 | using mult_left_mono [of 0 b a] by simp | |
| 25230 | 1892 | |
| 1893 | lemma mult_nonneg_nonpos: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> a * b \<le> 0" | |
| 63325 | 1894 | using mult_left_mono [of b 0 a] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1895 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1896 | lemma mult_nonpos_nonneg: "a \<le> 0 \<Longrightarrow> 0 \<le> b \<Longrightarrow> a * b \<le> 0" | 
| 63325 | 1897 | using mult_right_mono [of a 0 b] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1898 | |
| 63588 | 1899 | text \<open>Legacy -- use @{thm [source] mult_nonpos_nonneg}.\<close>
 | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1900 | lemma mult_nonneg_nonpos2: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> b * a \<le> 0" | 
| 63588 | 1901 | by (drule mult_right_mono [of b 0]) auto | 
| 25230 | 1902 | |
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1903 | lemma split_mult_neg_le: "(0 \<le> a \<and> b \<le> 0) \<or> (a \<le> 0 \<and> 0 \<le> b) \<Longrightarrow> a * b \<le> 0" | 
| 63325 | 1904 | by (auto simp add: mult_nonneg_nonpos mult_nonneg_nonpos2) | 
| 25230 | 1905 | |
| 1906 | end | |
| 1907 | ||
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1908 | class ordered_cancel_semiring = ordered_semiring + cancel_comm_monoid_add | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1909 | begin | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1910 | |
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1911 | subclass semiring_0_cancel .. | 
| 63588 | 1912 | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1913 | subclass ordered_semiring_0 .. | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1914 | |
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1915 | end | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1916 | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 1917 | class linordered_semiring = ordered_semiring + linordered_cancel_ab_semigroup_add | 
| 25267 | 1918 | begin | 
| 25230 | 1919 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1920 | subclass ordered_cancel_semiring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1921 | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1922 | subclass ordered_cancel_comm_monoid_add .. | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1923 | |
| 63456 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63359diff
changeset | 1924 | subclass ordered_ab_semigroup_monoid_add_imp_le .. | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63359diff
changeset | 1925 | |
| 63325 | 1926 | lemma mult_left_less_imp_less: "c * a < c * b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b" | 
| 1927 | by (force simp add: mult_left_mono not_le [symmetric]) | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1928 | |
| 63325 | 1929 | lemma mult_right_less_imp_less: "a * c < b * c \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b" | 
| 1930 | by (force simp add: mult_right_mono not_le [symmetric]) | |
| 23521 | 1931 | |
| 25186 | 1932 | end | 
| 25152 | 1933 | |
| 66937 | 1934 | class zero_less_one = order + zero + one + | 
| 1935 | assumes zero_less_one [simp]: "0 < 1" | |
| 73545 | 1936 | begin | 
| 1937 | ||
| 1938 | subclass zero_neq_one | |
| 1939 | by standard (simp add: less_imp_neq) | |
| 1940 | ||
| 1941 | lemma zero_le_one [simp]: | |
| 1942 | \<open>0 \<le> 1\<close> by (rule less_imp_le) simp | |
| 1943 | ||
| 1944 | end | |
| 66937 | 1945 | |
| 1946 | class linordered_semiring_1 = linordered_semiring + semiring_1 + zero_less_one | |
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1947 | begin | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1948 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1949 | lemma convex_bound_le: | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1950 | assumes "x \<le> a" "y \<le> a" "0 \<le> u" "0 \<le> v" "u + v = 1" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1951 | shows "u * x + v * y \<le> a" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1952 | proof- | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1953 | from assms have "u * x + v * y \<le> u * a + v * a" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1954 | by (simp add: add_mono mult_left_mono) | 
| 63325 | 1955 | with assms show ?thesis | 
| 1956 | unfolding distrib_right[symmetric] by simp | |
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1957 | qed | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1958 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1959 | end | 
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 1960 | |
| 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 1961 | class linordered_semiring_strict = semiring + comm_monoid_add + linordered_cancel_ab_semigroup_add + | 
| 25062 | 1962 | assumes mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b" | 
| 1963 | assumes mult_strict_right_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> a * c < b * c" | |
| 25267 | 1964 | begin | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14334diff
changeset | 1965 | |
| 27516 | 1966 | subclass semiring_0_cancel .. | 
| 14940 | 1967 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1968 | subclass linordered_semiring | 
| 28823 | 1969 | proof | 
| 23550 | 1970 | fix a b c :: 'a | 
| 63588 | 1971 | assume *: "a \<le> b" "0 \<le> c" | 
| 1972 | then show "c * a \<le> c * b" | |
| 25186 | 1973 | unfolding le_less | 
| 1974 | using mult_strict_left_mono by (cases "c = 0") auto | |
| 63588 | 1975 | from * show "a * c \<le> b * c" | 
| 25152 | 1976 | unfolding le_less | 
| 25186 | 1977 | using mult_strict_right_mono by (cases "c = 0") auto | 
| 25152 | 1978 | qed | 
| 1979 | ||
| 63325 | 1980 | lemma mult_left_le_imp_le: "c * a \<le> c * b \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b" | 
| 1981 | by (auto simp add: mult_strict_left_mono _not_less [symmetric]) | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1982 | |
| 63325 | 1983 | lemma mult_right_le_imp_le: "a * c \<le> b * c \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b" | 
| 1984 | by (auto simp add: mult_strict_right_mono not_less [symmetric]) | |
| 25230 | 1985 | |
| 56544 | 1986 | lemma mult_pos_pos[simp]: "0 < a \<Longrightarrow> 0 < b \<Longrightarrow> 0 < a * b" | 
| 63325 | 1987 | using mult_strict_left_mono [of 0 b a] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1988 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1989 | lemma mult_pos_neg: "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> a * b < 0" | 
| 63325 | 1990 | using mult_strict_left_mono [of b 0 a] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1991 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1992 | lemma mult_neg_pos: "a < 0 \<Longrightarrow> 0 < b \<Longrightarrow> a * b < 0" | 
| 63325 | 1993 | using mult_strict_right_mono [of a 0 b] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1994 | |
| 63588 | 1995 | text \<open>Legacy -- use @{thm [source] mult_neg_pos}.\<close>
 | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1996 | lemma mult_pos_neg2: "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> b * a < 0" | 
| 63588 | 1997 | by (drule mult_strict_right_mono [of b 0]) auto | 
| 25230 | 1998 | |
| 71697 | 1999 | lemma zero_less_mult_pos: | 
| 2000 | assumes "0 < a * b" "0 < a" shows "0 < b" | |
| 2001 | proof (cases "b \<le> 0") | |
| 2002 | case True | |
| 2003 | then show ?thesis | |
| 2004 | using assms by (auto simp: le_less dest: less_not_sym mult_pos_neg [of a b]) | |
| 2005 | qed (auto simp add: le_less not_less) | |
| 2006 | ||
| 2007 | ||
| 2008 | lemma zero_less_mult_pos2: | |
| 2009 | assumes "0 < b * a" "0 < a" shows "0 < b" | |
| 2010 | proof (cases "b \<le> 0") | |
| 2011 | case True | |
| 2012 | then show ?thesis | |
| 2013 | using assms by (auto simp: le_less dest: less_not_sym mult_pos_neg2 [of a b]) | |
| 2014 | qed (auto simp add: le_less not_less) | |
| 63325 | 2015 | |
| 2016 | text \<open>Strict monotonicity in both arguments\<close> | |
| 26193 | 2017 | lemma mult_strict_mono: | 
| 71697 | 2018 | assumes "a < b" "c < d" "0 < b" "0 \<le> c" | 
| 26193 | 2019 | shows "a * c < b * d" | 
| 71697 | 2020 | proof (cases "c = 0") | 
| 2021 | case True | |
| 2022 | with assms show ?thesis | |
| 2023 | by simp | |
| 2024 | next | |
| 2025 | case False | |
| 2026 | with assms have "a*c < b*c" | |
| 2027 | by (simp add: mult_strict_right_mono [OF \<open>a < b\<close>]) | |
| 2028 | also have "\<dots> < b*d" | |
| 2029 | by (simp add: assms mult_strict_left_mono) | |
| 2030 | finally show ?thesis . | |
| 2031 | qed | |
| 26193 | 2032 | |
| 63325 | 2033 | text \<open>This weaker variant has more natural premises\<close> | 
| 26193 | 2034 | lemma mult_strict_mono': | 
| 2035 | assumes "a < b" and "c < d" and "0 \<le> a" and "0 \<le> c" | |
| 2036 | shows "a * c < b * d" | |
| 63325 | 2037 | by (rule mult_strict_mono) (insert assms, auto) | 
| 26193 | 2038 | |
| 2039 | lemma mult_less_le_imp_less: | |
| 2040 | assumes "a < b" and "c \<le> d" and "0 \<le> a" and "0 < c" | |
| 2041 | shows "a * c < b * d" | |
| 71697 | 2042 | proof - | 
| 2043 | have "a * c < b * c" | |
| 2044 | by (simp add: assms mult_strict_right_mono) | |
| 2045 | also have "... \<le> b * d" | |
| 2046 | by (intro mult_left_mono) (use assms in auto) | |
| 2047 | finally show ?thesis . | |
| 2048 | qed | |
| 26193 | 2049 | |
| 2050 | lemma mult_le_less_imp_less: | |
| 2051 | assumes "a \<le> b" and "c < d" and "0 < a" and "0 \<le> c" | |
| 2052 | shows "a * c < b * d" | |
| 71697 | 2053 | proof - | 
| 2054 | have "a * c \<le> b * c" | |
| 2055 | by (simp add: assms mult_right_mono) | |
| 2056 | also have "... < b * d" | |
| 2057 | by (intro mult_strict_left_mono) (use assms in auto) | |
| 2058 | finally show ?thesis . | |
| 2059 | qed | |
| 26193 | 2060 | |
| 25230 | 2061 | end | 
| 2062 | ||
| 66937 | 2063 | class linordered_semiring_1_strict = linordered_semiring_strict + semiring_1 + zero_less_one | 
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 2064 | begin | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 2065 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 2066 | subclass linordered_semiring_1 .. | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 2067 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 2068 | lemma convex_bound_lt: | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 2069 | assumes "x < a" "y < a" "0 \<le> u" "0 \<le> v" "u + v = 1" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 2070 | shows "u * x + v * y < a" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 2071 | proof - | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 2072 | from assms have "u * x + v * y < u * a + v * a" | 
| 63325 | 2073 | by (cases "u = 0") (auto intro!: add_less_le_mono mult_strict_left_mono mult_left_mono) | 
| 2074 | with assms show ?thesis | |
| 2075 | unfolding distrib_right[symmetric] by simp | |
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 2076 | qed | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 2077 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 2078 | end | 
| 33319 | 2079 | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 2080 | class ordered_comm_semiring = comm_semiring_0 + ordered_ab_semigroup_add + | 
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 2081 | assumes comm_mult_left_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b" | 
| 25186 | 2082 | begin | 
| 25152 | 2083 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2084 | subclass ordered_semiring | 
| 28823 | 2085 | proof | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 2086 | fix a b c :: 'a | 
| 23550 | 2087 | assume "a \<le> b" "0 \<le> c" | 
| 63325 | 2088 | then show "c * a \<le> c * b" by (rule comm_mult_left_mono) | 
| 2089 | then show "a * c \<le> b * c" by (simp only: mult.commute) | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 2090 | qed | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 2091 | |
| 25267 | 2092 | end | 
| 2093 | ||
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 2094 | class ordered_cancel_comm_semiring = ordered_comm_semiring + cancel_comm_monoid_add | 
| 25267 | 2095 | begin | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 2096 | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 2097 | subclass comm_semiring_0_cancel .. | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2098 | subclass ordered_comm_semiring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2099 | subclass ordered_cancel_semiring .. | 
| 25267 | 2100 | |
| 2101 | end | |
| 2102 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2103 | class linordered_comm_semiring_strict = comm_semiring_0 + linordered_cancel_ab_semigroup_add + | 
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 2104 | assumes comm_mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b" | 
| 25267 | 2105 | begin | 
| 2106 | ||
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 2107 | subclass linordered_semiring_strict | 
| 28823 | 2108 | proof | 
| 23550 | 2109 | fix a b c :: 'a | 
| 2110 | assume "a < b" "0 < c" | |
| 63588 | 2111 | then show "c * a < c * b" | 
| 2112 | by (rule comm_mult_strict_left_mono) | |
| 2113 | then show "a * c < b * c" | |
| 2114 | by (simp only: mult.commute) | |
| 23550 | 2115 | qed | 
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 2116 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2117 | subclass ordered_cancel_comm_semiring | 
| 28823 | 2118 | proof | 
| 23550 | 2119 | fix a b c :: 'a | 
| 2120 | assume "a \<le> b" "0 \<le> c" | |
| 63325 | 2121 | then show "c * a \<le> c * b" | 
| 25186 | 2122 | unfolding le_less | 
| 26193 | 2123 | using mult_strict_left_mono by (cases "c = 0") auto | 
| 23550 | 2124 | qed | 
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 2125 | |
| 25267 | 2126 | end | 
| 25230 | 2127 | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 2128 | class ordered_ring = ring + ordered_cancel_semiring | 
| 25267 | 2129 | begin | 
| 25230 | 2130 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2131 | subclass ordered_ab_group_add .. | 
| 14270 | 2132 | |
| 63325 | 2133 | lemma less_add_iff1: "a * e + c < b * e + d \<longleftrightarrow> (a - b) * e + c < d" | 
| 2134 | by (simp add: algebra_simps) | |
| 25230 | 2135 | |
| 63325 | 2136 | lemma less_add_iff2: "a * e + c < b * e + d \<longleftrightarrow> c < (b - a) * e + d" | 
| 2137 | by (simp add: algebra_simps) | |
| 25230 | 2138 | |
| 63325 | 2139 | lemma le_add_iff1: "a * e + c \<le> b * e + d \<longleftrightarrow> (a - b) * e + c \<le> d" | 
| 2140 | by (simp add: algebra_simps) | |
| 25230 | 2141 | |
| 63325 | 2142 | lemma le_add_iff2: "a * e + c \<le> b * e + d \<longleftrightarrow> c \<le> (b - a) * e + d" | 
| 2143 | by (simp add: algebra_simps) | |
| 25230 | 2144 | |
| 63325 | 2145 | lemma mult_left_mono_neg: "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> c * a \<le> c * b" | 
| 71697 | 2146 | by (auto dest: mult_left_mono [of _ _ "- c"]) | 
| 25230 | 2147 | |
| 63325 | 2148 | lemma mult_right_mono_neg: "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> a * c \<le> b * c" | 
| 71697 | 2149 | by (auto dest: mult_right_mono [of _ _ "- c"]) | 
| 25230 | 2150 | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 2151 | lemma mult_nonpos_nonpos: "a \<le> 0 \<Longrightarrow> b \<le> 0 \<Longrightarrow> 0 \<le> a * b" | 
| 63325 | 2152 | using mult_right_mono_neg [of a 0 b] by simp | 
| 25230 | 2153 | |
| 63325 | 2154 | lemma split_mult_pos_le: "(0 \<le> a \<and> 0 \<le> b) \<or> (a \<le> 0 \<and> b \<le> 0) \<Longrightarrow> 0 \<le> a * b" | 
| 2155 | by (auto simp add: mult_nonpos_nonpos) | |
| 25186 | 2156 | |
| 2157 | end | |
| 14270 | 2158 | |
| 64290 | 2159 | class abs_if = minus + uminus + ord + zero + abs + | 
| 2160 | assumes abs_if: "\<bar>a\<bar> = (if a < 0 then - a else a)" | |
| 2161 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2162 | class linordered_ring = ring + linordered_semiring + linordered_ab_group_add + abs_if | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2163 | begin | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2164 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2165 | subclass ordered_ring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2166 | |
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2167 | subclass ordered_ab_group_add_abs | 
| 28823 | 2168 | proof | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2169 | fix a b | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2170 | show "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>" | 
| 63325 | 2171 | by (auto simp add: abs_if not_le not_less algebra_simps | 
| 2172 | simp del: add.commute dest: add_neg_neg add_nonneg_nonneg) | |
| 63588 | 2173 | qed (auto simp: abs_if) | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2174 | |
| 35631 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 2175 | lemma zero_le_square [simp]: "0 \<le> a * a" | 
| 63325 | 2176 | using linear [of 0 a] by (auto simp add: mult_nonpos_nonpos) | 
| 35631 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 2177 | |
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 2178 | lemma not_square_less_zero [simp]: "\<not> (a * a < 0)" | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 2179 | by (simp add: not_less) | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 2180 | |
| 61944 | 2181 | proposition abs_eq_iff: "\<bar>x\<bar> = \<bar>y\<bar> \<longleftrightarrow> x = y \<or> x = -y" | 
| 62390 | 2182 | by (auto simp add: abs_if split: if_split_asm) | 
| 61762 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61649diff
changeset | 2183 | |
| 64848 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 2184 | lemma abs_eq_iff': | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 2185 | "\<bar>a\<bar> = b \<longleftrightarrow> b \<ge> 0 \<and> (a = b \<or> a = - b)" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 2186 | by (cases "a \<ge> 0") auto | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 2187 | |
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 2188 | lemma eq_abs_iff': | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 2189 | "a = \<bar>b\<bar> \<longleftrightarrow> a \<ge> 0 \<and> (b = a \<or> b = - a)" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 2190 | using abs_eq_iff' [of b a] by auto | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 2191 | |
| 63325 | 2192 | lemma sum_squares_ge_zero: "0 \<le> x * x + y * y" | 
| 62347 | 2193 | by (intro add_nonneg_nonneg zero_le_square) | 
| 2194 | ||
| 63325 | 2195 | lemma not_sum_squares_lt_zero: "\<not> x * x + y * y < 0" | 
| 62347 | 2196 | by (simp add: not_less sum_squares_ge_zero) | 
| 2197 | ||
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2198 | end | 
| 23521 | 2199 | |
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 2200 | class linordered_ring_strict = ring + linordered_semiring_strict | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2201 | + ordered_ab_group_add + abs_if | 
| 25230 | 2202 | begin | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
14341diff
changeset | 2203 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2204 | subclass linordered_ring .. | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2205 | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 2206 | lemma mult_strict_left_mono_neg: "b < a \<Longrightarrow> c < 0 \<Longrightarrow> c * a < c * b" | 
| 63325 | 2207 | using mult_strict_left_mono [of b a "- c"] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 2208 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 2209 | lemma mult_strict_right_mono_neg: "b < a \<Longrightarrow> c < 0 \<Longrightarrow> a * c < b * c" | 
| 63325 | 2210 | using mult_strict_right_mono [of b a "- c"] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 2211 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 2212 | lemma mult_neg_neg: "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> 0 < a * b" | 
| 63325 | 2213 | using mult_strict_right_mono_neg [of a 0 b] by simp | 
| 14738 | 2214 | |
| 25917 | 2215 | subclass ring_no_zero_divisors | 
| 28823 | 2216 | proof | 
| 25917 | 2217 | fix a b | 
| 63325 | 2218 | assume "a \<noteq> 0" | 
| 63588 | 2219 | then have a: "a < 0 \<or> 0 < a" by (simp add: neq_iff) | 
| 63325 | 2220 | assume "b \<noteq> 0" | 
| 63588 | 2221 | then have b: "b < 0 \<or> 0 < b" by (simp add: neq_iff) | 
| 25917 | 2222 | have "a * b < 0 \<or> 0 < a * b" | 
| 2223 | proof (cases "a < 0") | |
| 63588 | 2224 | case True | 
| 63325 | 2225 | show ?thesis | 
| 2226 | proof (cases "b < 0") | |
| 2227 | case True | |
| 63588 | 2228 | with \<open>a < 0\<close> show ?thesis by (auto dest: mult_neg_neg) | 
| 25917 | 2229 | next | 
| 63325 | 2230 | case False | 
| 63588 | 2231 | with b have "0 < b" by auto | 
| 2232 | with \<open>a < 0\<close> show ?thesis by (auto dest: mult_strict_right_mono) | |
| 25917 | 2233 | qed | 
| 2234 | next | |
| 63325 | 2235 | case False | 
| 63588 | 2236 | with a have "0 < a" by auto | 
| 63325 | 2237 | show ?thesis | 
| 2238 | proof (cases "b < 0") | |
| 2239 | case True | |
| 63588 | 2240 | with \<open>0 < a\<close> show ?thesis | 
| 63325 | 2241 | by (auto dest: mult_strict_right_mono_neg) | 
| 25917 | 2242 | next | 
| 63325 | 2243 | case False | 
| 63588 | 2244 | with b have "0 < b" by auto | 
| 2245 | with \<open>0 < a\<close> show ?thesis by auto | |
| 25917 | 2246 | qed | 
| 2247 | qed | |
| 63325 | 2248 | then show "a * b \<noteq> 0" | 
| 2249 | by (simp add: neq_iff) | |
| 25917 | 2250 | qed | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2251 | |
| 70817 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70347diff
changeset | 2252 | lemma zero_less_mult_iff [algebra_split_simps, field_split_simps]: | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70347diff
changeset | 2253 | "0 < a * b \<longleftrightarrow> 0 < a \<and> 0 < b \<or> a < 0 \<and> b < 0" | 
| 56480 
093ea91498e6
field_simps: better support for negation and division, and power
 hoelzl parents: 
56217diff
changeset | 2254 | by (cases a 0 b 0 rule: linorder_cases[case_product linorder_cases]) | 
| 56544 | 2255 | (auto simp add: mult_neg_neg not_less le_less dest: zero_less_mult_pos zero_less_mult_pos2) | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 2256 | |
| 70817 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70347diff
changeset | 2257 | lemma zero_le_mult_iff [algebra_split_simps, field_split_simps]: | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70347diff
changeset | 2258 | "0 \<le> a * b \<longleftrightarrow> 0 \<le> a \<and> 0 \<le> b \<or> a \<le> 0 \<and> b \<le> 0" | 
| 56480 
093ea91498e6
field_simps: better support for negation and division, and power
 hoelzl parents: 
56217diff
changeset | 2259 | by (auto simp add: eq_commute [of 0] le_less not_less zero_less_mult_iff) | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 2260 | |
| 70817 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70347diff
changeset | 2261 | lemma mult_less_0_iff [algebra_split_simps, field_split_simps]: | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70347diff
changeset | 2262 | "a * b < 0 \<longleftrightarrow> 0 < a \<and> b < 0 \<or> a < 0 \<and> 0 < b" | 
| 63325 | 2263 | using zero_less_mult_iff [of "- a" b] by auto | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 2264 | |
| 70817 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70347diff
changeset | 2265 | lemma mult_le_0_iff [algebra_split_simps, field_split_simps]: | 
| 
dd675800469d
dedicated fact collections for algebraic simplification rules potentially splitting goals
 haftmann parents: 
70347diff
changeset | 2266 | "a * b \<le> 0 \<longleftrightarrow> 0 \<le> a \<and> b \<le> 0 \<or> a \<le> 0 \<and> 0 \<le> b" | 
| 63325 | 2267 | using zero_le_mult_iff [of "- a" b] by auto | 
| 25917 | 2268 | |
| 63325 | 2269 | text \<open> | 
| 69593 | 2270 | Cancellation laws for \<^term>\<open>c * a < c * b\<close> and \<^term>\<open>a * c < b * c\<close>, | 
| 63325 | 2271 | also with the relations \<open>\<le>\<close> and equality. | 
| 2272 | \<close> | |
| 26193 | 2273 | |
| 63325 | 2274 | text \<open> | 
| 2275 | These ``disjunction'' versions produce two cases when the comparison is | |
| 2276 | an assumption, but effectively four when the comparison is a goal. | |
| 2277 | \<close> | |
| 26193 | 2278 | |
| 71699 | 2279 | lemma mult_less_cancel_right_disj: "a * c < b * c \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and> b < a" | 
| 2280 | proof (cases "c = 0") | |
| 2281 | case False | |
| 2282 | show ?thesis (is "?lhs \<longleftrightarrow> ?rhs") | |
| 2283 | proof | |
| 2284 | assume ?lhs | |
| 2285 | then have "c < 0 \<Longrightarrow> b < a" "c > 0 \<Longrightarrow> b > a" | |
| 2286 | by (auto simp flip: not_le intro: mult_right_mono mult_right_mono_neg) | |
| 2287 | with False show ?rhs | |
| 2288 | by (auto simp add: neq_iff) | |
| 2289 | next | |
| 2290 | assume ?rhs | |
| 2291 | with False show ?lhs | |
| 2292 | by (auto simp add: mult_strict_right_mono mult_strict_right_mono_neg) | |
| 2293 | qed | |
| 2294 | qed auto | |
| 2295 | ||
| 2296 | lemma mult_less_cancel_left_disj: "c * a < c * b \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and> b < a" | |
| 2297 | proof (cases "c = 0") | |
| 2298 | case False | |
| 2299 | show ?thesis (is "?lhs \<longleftrightarrow> ?rhs") | |
| 2300 | proof | |
| 2301 | assume ?lhs | |
| 2302 | then have "c < 0 \<Longrightarrow> b < a" "c > 0 \<Longrightarrow> b > a" | |
| 2303 | by (auto simp flip: not_le intro: mult_left_mono mult_left_mono_neg) | |
| 2304 | with False show ?rhs | |
| 2305 | by (auto simp add: neq_iff) | |
| 2306 | next | |
| 2307 | assume ?rhs | |
| 2308 | with False show ?lhs | |
| 2309 | by (auto simp add: mult_strict_left_mono mult_strict_left_mono_neg) | |
| 2310 | qed | |
| 2311 | qed auto | |
| 26193 | 2312 | |
| 63325 | 2313 | text \<open> | 
| 2314 | The ``conjunction of implication'' lemmas produce two cases when the | |
| 2315 | comparison is a goal, but give four when the comparison is an assumption. | |
| 2316 | \<close> | |
| 26193 | 2317 | |
| 63325 | 2318 | lemma mult_less_cancel_right: "a * c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)" | 
| 26193 | 2319 | using mult_less_cancel_right_disj [of a c b] by auto | 
| 2320 | ||
| 63325 | 2321 | lemma mult_less_cancel_left: "c * a < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)" | 
| 26193 | 2322 | using mult_less_cancel_left_disj [of c a b] by auto | 
| 2323 | ||
| 63325 | 2324 | lemma mult_le_cancel_right: "a * c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" | 
| 2325 | by (simp add: not_less [symmetric] mult_less_cancel_right_disj) | |
| 26193 | 2326 | |
| 63325 | 2327 | lemma mult_le_cancel_left: "c * a \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" | 
| 2328 | by (simp add: not_less [symmetric] mult_less_cancel_left_disj) | |
| 26193 | 2329 | |
| 63325 | 2330 | lemma mult_le_cancel_left_pos: "0 < c \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> a \<le> b" | 
| 2331 | by (auto simp: mult_le_cancel_left) | |
| 30649 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 2332 | |
| 63325 | 2333 | lemma mult_le_cancel_left_neg: "c < 0 \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> b \<le> a" | 
| 2334 | by (auto simp: mult_le_cancel_left) | |
| 30649 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 2335 | |
| 63325 | 2336 | lemma mult_less_cancel_left_pos: "0 < c \<Longrightarrow> c * a < c * b \<longleftrightarrow> a < b" | 
| 2337 | by (auto simp: mult_less_cancel_left) | |
| 30649 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 2338 | |
| 63325 | 2339 | lemma mult_less_cancel_left_neg: "c < 0 \<Longrightarrow> c * a < c * b \<longleftrightarrow> b < a" | 
| 2340 | by (auto simp: mult_less_cancel_left) | |
| 30649 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 2341 | |
| 25917 | 2342 | end | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 2343 | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 2344 | lemmas mult_sign_intros = | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 2345 | mult_nonneg_nonneg mult_nonneg_nonpos | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 2346 | mult_nonpos_nonneg mult_nonpos_nonpos | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 2347 | mult_pos_pos mult_pos_neg | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 2348 | mult_neg_pos mult_neg_neg | 
| 25230 | 2349 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2350 | class ordered_comm_ring = comm_ring + ordered_comm_semiring | 
| 25267 | 2351 | begin | 
| 25230 | 2352 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2353 | subclass ordered_ring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2354 | subclass ordered_cancel_comm_semiring .. | 
| 25230 | 2355 | |
| 25267 | 2356 | end | 
| 25230 | 2357 | |
| 67689 
2c38ffd6ec71
type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
 paulson <lp15@cam.ac.uk> parents: 
67234diff
changeset | 2358 | class linordered_nonzero_semiring = ordered_comm_semiring + monoid_mult + linorder + zero_less_one + | 
| 
2c38ffd6ec71
type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
 paulson <lp15@cam.ac.uk> parents: 
67234diff
changeset | 2359 | assumes add_mono1: "a < b \<Longrightarrow> a + 1 < b + 1" | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2360 | begin | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2361 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2362 | subclass zero_neq_one | 
| 63325 | 2363 | by standard (insert zero_less_one, blast) | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2364 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2365 | subclass comm_semiring_1 | 
| 63325 | 2366 | by standard (rule mult_1_left) | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2367 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2368 | lemma zero_le_one [simp]: "0 \<le> 1" | 
| 63325 | 2369 | by (rule zero_less_one [THEN less_imp_le]) | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2370 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2371 | lemma not_one_le_zero [simp]: "\<not> 1 \<le> 0" | 
| 63325 | 2372 | by (simp add: not_le) | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2373 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2374 | lemma not_one_less_zero [simp]: "\<not> 1 < 0" | 
| 63325 | 2375 | by (simp add: not_less) | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2376 | |
| 73535 | 2377 | lemma of_bool_less_eq_iff [simp]: | 
| 2378 | \<open>of_bool P \<le> of_bool Q \<longleftrightarrow> (P \<longrightarrow> Q)\<close> | |
| 2379 | by auto | |
| 2380 | ||
| 2381 | lemma of_bool_less_iff [simp]: | |
| 2382 | \<open>of_bool P < of_bool Q \<longleftrightarrow> \<not> P \<and> Q\<close> | |
| 2383 | by auto | |
| 2384 | ||
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2385 | lemma mult_left_le: "c \<le> 1 \<Longrightarrow> 0 \<le> a \<Longrightarrow> a * c \<le> a" | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2386 | using mult_left_mono[of c 1 a] by simp | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2387 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2388 | lemma mult_le_one: "a \<le> 1 \<Longrightarrow> 0 \<le> b \<Longrightarrow> b \<le> 1 \<Longrightarrow> a * b \<le> 1" | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2389 | using mult_mono[of a 1 b 1] by simp | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2390 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2391 | lemma zero_less_two: "0 < 1 + 1" | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2392 | using add_pos_pos[OF zero_less_one zero_less_one] . | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2393 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2394 | end | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2395 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2396 | class linordered_semidom = semidom + linordered_comm_semiring_strict + zero_less_one + | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 2397 | assumes le_add_diff_inverse2 [simp]: "b \<le> a \<Longrightarrow> a - b + b = a" | 
| 25230 | 2398 | begin | 
| 2399 | ||
| 67689 
2c38ffd6ec71
type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
 paulson <lp15@cam.ac.uk> parents: 
67234diff
changeset | 2400 | subclass linordered_nonzero_semiring | 
| 
2c38ffd6ec71
type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
 paulson <lp15@cam.ac.uk> parents: 
67234diff
changeset | 2401 | proof | 
| 
2c38ffd6ec71
type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
 paulson <lp15@cam.ac.uk> parents: 
67234diff
changeset | 2402 | show "a + 1 < b + 1" if "a < b" for a b | 
| 
2c38ffd6ec71
type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
 paulson <lp15@cam.ac.uk> parents: 
67234diff
changeset | 2403 | proof (rule ccontr, simp add: not_less) | 
| 
2c38ffd6ec71
type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
 paulson <lp15@cam.ac.uk> parents: 
67234diff
changeset | 2404 | assume "b \<le> a" | 
| 
2c38ffd6ec71
type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
 paulson <lp15@cam.ac.uk> parents: 
67234diff
changeset | 2405 | with that show False | 
| 
2c38ffd6ec71
type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
 paulson <lp15@cam.ac.uk> parents: 
67234diff
changeset | 2406 | by (simp add: ) | 
| 
2c38ffd6ec71
type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
 paulson <lp15@cam.ac.uk> parents: 
67234diff
changeset | 2407 | qed | 
| 
2c38ffd6ec71
type class linordered_nonzero_semiring has new axiom to guarantee characteristic 0
 paulson <lp15@cam.ac.uk> parents: 
67234diff
changeset | 2408 | qed | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2409 | |
| 73535 | 2410 | lemma zero_less_eq_of_bool [simp]: | 
| 2411 | \<open>0 \<le> of_bool P\<close> | |
| 2412 | by simp | |
| 2413 | ||
| 2414 | lemma zero_less_of_bool_iff [simp]: | |
| 2415 | \<open>0 < of_bool P \<longleftrightarrow> P\<close> | |
| 2416 | by simp | |
| 2417 | ||
| 2418 | lemma of_bool_less_eq_one [simp]: | |
| 2419 | \<open>of_bool P \<le> 1\<close> | |
| 2420 | by simp | |
| 2421 | ||
| 2422 | lemma of_bool_less_one_iff [simp]: | |
| 2423 | \<open>of_bool P < 1 \<longleftrightarrow> \<not> P\<close> | |
| 2424 | by simp | |
| 2425 | ||
| 2426 | lemma of_bool_or_iff [simp]: | |
| 2427 | \<open>of_bool (P \<or> Q) = max (of_bool P) (of_bool Q)\<close> | |
| 2428 | by (simp add: max_def) | |
| 2429 | ||
| 60758 | 2430 | text \<open>Addition is the inverse of subtraction.\<close> | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 2431 | |
| 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 2432 | lemma le_add_diff_inverse [simp]: "b \<le> a \<Longrightarrow> b + (a - b) = a" | 
| 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 2433 | by (frule le_add_diff_inverse2) (simp add: add.commute) | 
| 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 2434 | |
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2435 | lemma add_diff_inverse: "\<not> a < b \<Longrightarrow> b + (a - b) = a" | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 2436 | by simp | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 2437 | |
| 71699 | 2438 | lemma add_le_imp_le_diff: | 
| 2439 | assumes "i + k \<le> n" shows "i \<le> n - k" | |
| 2440 | proof - | |
| 2441 | have "n - (i + k) + i + k = n" | |
| 2442 | by (simp add: assms add.assoc) | |
| 2443 | with assms add_implies_diff have "i + k \<le> n - k + k" | |
| 2444 | by fastforce | |
| 2445 | then show ?thesis | |
| 2446 | by simp | |
| 2447 | qed | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 2448 | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2449 | lemma add_le_add_imp_diff_le: | 
| 63325 | 2450 | assumes 1: "i + k \<le> n" | 
| 2451 | and 2: "n \<le> j + k" | |
| 2452 | shows "i + k \<le> n \<Longrightarrow> n \<le> j + k \<Longrightarrow> n - k \<le> j" | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 2453 | proof - | 
| 71699 | 2454 | have "n - (i + k) + i + k = n" | 
| 2455 | using 1 by (simp add: add.assoc) | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 2456 | moreover have "n - k = n - k - i + i" | 
| 63325 | 2457 | using 1 by (simp add: add_le_imp_le_diff) | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 2458 | ultimately show ?thesis | 
| 71699 | 2459 | using 2 add_le_imp_le_diff [of "n-k" k "j + k"] | 
| 2460 | by (simp add: add.commute diff_diff_add) | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 2461 | qed | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 2462 | |
| 63325 | 2463 | lemma less_1_mult: "1 < m \<Longrightarrow> 1 < n \<Longrightarrow> 1 < m * n" | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2464 | using mult_strict_mono [of 1 m 1 n] by (simp add: less_trans [OF zero_less_one]) | 
| 59000 | 2465 | |
| 25230 | 2466 | end | 
| 2467 | ||
| 66937 | 2468 | class linordered_idom = comm_ring_1 + linordered_comm_semiring_strict + | 
| 2469 | ordered_ab_group_add + abs_if + sgn + | |
| 64290 | 2470 | assumes sgn_if: "sgn x = (if x = 0 then 0 else if 0 < x then 1 else - 1)" | 
| 25917 | 2471 | begin | 
| 2472 | ||
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 2473 | subclass linordered_ring_strict .. | 
| 66937 | 2474 | |
| 2475 | subclass linordered_semiring_1_strict | |
| 2476 | proof | |
| 2477 | have "0 \<le> 1 * 1" | |
| 2478 | by (fact zero_le_square) | |
| 2479 | then show "0 < 1" | |
| 2480 | by (simp add: le_less) | |
| 2481 | qed | |
| 2482 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2483 | subclass ordered_comm_ring .. | 
| 27516 | 2484 | subclass idom .. | 
| 25917 | 2485 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2486 | subclass linordered_semidom | 
| 66937 | 2487 | by standard simp | 
| 25917 | 2488 | |
| 64290 | 2489 | subclass idom_abs_sgn | 
| 2490 | by standard | |
| 2491 | (auto simp add: sgn_if abs_if zero_less_mult_iff) | |
| 2492 | ||
| 73535 | 2493 | lemma abs_bool_eq [simp]: | 
| 2494 | \<open>\<bar>of_bool P\<bar> = of_bool P\<close> | |
| 2495 | by simp | |
| 2496 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2497 | lemma linorder_neqE_linordered_idom: | 
| 63325 | 2498 | assumes "x \<noteq> y" | 
| 2499 | obtains "x < y" | "y < x" | |
| 26193 | 2500 | using assms by (rule neqE) | 
| 2501 | ||
| 63588 | 2502 | text \<open>These cancellation simp rules also produce two cases when the comparison is a goal.\<close> | 
| 26274 | 2503 | |
| 63325 | 2504 | lemma mult_le_cancel_right1: "c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)" | 
| 2505 | using mult_le_cancel_right [of 1 c b] by simp | |
| 26274 | 2506 | |
| 63325 | 2507 | lemma mult_le_cancel_right2: "a * c \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)" | 
| 2508 | using mult_le_cancel_right [of a c 1] by simp | |
| 26274 | 2509 | |
| 63325 | 2510 | lemma mult_le_cancel_left1: "c \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)" | 
| 2511 | using mult_le_cancel_left [of c 1 b] by simp | |
| 26274 | 2512 | |
| 63325 | 2513 | lemma mult_le_cancel_left2: "c * a \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)" | 
| 2514 | using mult_le_cancel_left [of c a 1] by simp | |
| 26274 | 2515 | |
| 63325 | 2516 | lemma mult_less_cancel_right1: "c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)" | 
| 2517 | using mult_less_cancel_right [of 1 c b] by simp | |
| 26274 | 2518 | |
| 63325 | 2519 | lemma mult_less_cancel_right2: "a * c < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)" | 
| 2520 | using mult_less_cancel_right [of a c 1] by simp | |
| 26274 | 2521 | |
| 63325 | 2522 | lemma mult_less_cancel_left1: "c < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)" | 
| 2523 | using mult_less_cancel_left [of c 1 b] by simp | |
| 26274 | 2524 | |
| 63325 | 2525 | lemma mult_less_cancel_left2: "c * a < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)" | 
| 2526 | using mult_less_cancel_left [of c a 1] by simp | |
| 26274 | 2527 | |
| 63325 | 2528 | lemma sgn_0_0: "sgn a = 0 \<longleftrightarrow> a = 0" | 
| 64290 | 2529 | by (fact sgn_eq_0_iff) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 2530 | |
| 63325 | 2531 | lemma sgn_1_pos: "sgn a = 1 \<longleftrightarrow> a > 0" | 
| 2532 | unfolding sgn_if by simp | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 2533 | |
| 63325 | 2534 | lemma sgn_1_neg: "sgn a = - 1 \<longleftrightarrow> a < 0" | 
| 2535 | unfolding sgn_if by auto | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 2536 | |
| 63325 | 2537 | lemma sgn_pos [simp]: "0 < a \<Longrightarrow> sgn a = 1" | 
| 2538 | by (simp only: sgn_1_pos) | |
| 29940 | 2539 | |
| 63325 | 2540 | lemma sgn_neg [simp]: "a < 0 \<Longrightarrow> sgn a = - 1" | 
| 2541 | by (simp only: sgn_1_neg) | |
| 29940 | 2542 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2543 | lemma abs_sgn: "\<bar>k\<bar> = k * sgn k" | 
| 63325 | 2544 | unfolding sgn_if abs_if by auto | 
| 29700 | 2545 | |
| 63325 | 2546 | lemma sgn_greater [simp]: "0 < sgn a \<longleftrightarrow> 0 < a" | 
| 29940 | 2547 | unfolding sgn_if by auto | 
| 2548 | ||
| 63325 | 2549 | lemma sgn_less [simp]: "sgn a < 0 \<longleftrightarrow> a < 0" | 
| 29940 | 2550 | unfolding sgn_if by auto | 
| 2551 | ||
| 64239 | 2552 | lemma abs_sgn_eq_1 [simp]: | 
| 2553 | "a \<noteq> 0 \<Longrightarrow> \<bar>sgn a\<bar> = 1" | |
| 64290 | 2554 | by simp | 
| 64239 | 2555 | |
| 63325 | 2556 | lemma abs_sgn_eq: "\<bar>sgn a\<bar> = (if a = 0 then 0 else 1)" | 
| 62347 | 2557 | by (simp add: sgn_if) | 
| 2558 | ||
| 64713 | 2559 | lemma sgn_mult_self_eq [simp]: | 
| 2560 | "sgn a * sgn a = of_bool (a \<noteq> 0)" | |
| 2561 | by (cases "a > 0") simp_all | |
| 2562 | ||
| 2563 | lemma abs_mult_self_eq [simp]: | |
| 2564 | "\<bar>a\<bar> * \<bar>a\<bar> = a * a" | |
| 2565 | by (cases "a > 0") simp_all | |
| 2566 | ||
| 2567 | lemma same_sgn_sgn_add: | |
| 2568 | "sgn (a + b) = sgn a" if "sgn b = sgn a" | |
| 2569 | proof (cases a 0 rule: linorder_cases) | |
| 2570 | case equal | |
| 2571 | with that show ?thesis | |
| 2572 | by simp | |
| 2573 | next | |
| 2574 | case less | |
| 2575 | with that have "b < 0" | |
| 2576 | by (simp add: sgn_1_neg) | |
| 2577 | with \<open>a < 0\<close> have "a + b < 0" | |
| 2578 | by (rule add_neg_neg) | |
| 2579 | with \<open>a < 0\<close> show ?thesis | |
| 2580 | by simp | |
| 2581 | next | |
| 2582 | case greater | |
| 2583 | with that have "b > 0" | |
| 2584 | by (simp add: sgn_1_pos) | |
| 2585 | with \<open>a > 0\<close> have "a + b > 0" | |
| 2586 | by (rule add_pos_pos) | |
| 2587 | with \<open>a > 0\<close> show ?thesis | |
| 2588 | by simp | |
| 2589 | qed | |
| 2590 | ||
| 2591 | lemma same_sgn_abs_add: | |
| 2592 | "\<bar>a + b\<bar> = \<bar>a\<bar> + \<bar>b\<bar>" if "sgn b = sgn a" | |
| 2593 | proof - | |
| 2594 | have "a + b = sgn a * \<bar>a\<bar> + sgn b * \<bar>b\<bar>" | |
| 2595 | by (simp add: sgn_mult_abs) | |
| 2596 | also have "\<dots> = sgn a * (\<bar>a\<bar> + \<bar>b\<bar>)" | |
| 2597 | using that by (simp add: algebra_simps) | |
| 2598 | finally show ?thesis | |
| 2599 | by (auto simp add: abs_mult) | |
| 2600 | qed | |
| 2601 | ||
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66810diff
changeset | 2602 | lemma sgn_not_eq_imp: | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66810diff
changeset | 2603 | "sgn a = - sgn b" if "sgn b \<noteq> sgn a" and "sgn a \<noteq> 0" and "sgn b \<noteq> 0" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66810diff
changeset | 2604 | using that by (cases "a < 0") (auto simp add: sgn_0_0 sgn_1_pos sgn_1_neg) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66810diff
changeset | 2605 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2606 | lemma abs_dvd_iff [simp]: "\<bar>m\<bar> dvd k \<longleftrightarrow> m dvd k" | 
| 29949 | 2607 | by (simp add: abs_if) | 
| 2608 | ||
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2609 | lemma dvd_abs_iff [simp]: "m dvd \<bar>k\<bar> \<longleftrightarrow> m dvd k" | 
| 29949 | 2610 | by (simp add: abs_if) | 
| 29653 | 2611 | |
| 63325 | 2612 | lemma dvd_if_abs_eq: "\<bar>l\<bar> = \<bar>k\<bar> \<Longrightarrow> l dvd k" | 
| 2613 | by (subst abs_dvd_iff [symmetric]) simp | |
| 33676 
802f5e233e48
moved lemma from Algebra/IntRing to Ring_and_Field
 nipkow parents: 
33364diff
changeset | 2614 | |
| 63325 | 2615 | text \<open> | 
| 2616 | The following lemmas can be proven in more general structures, but | |
| 2617 |   are dangerous as simp rules in absence of @{thm neg_equal_zero},
 | |
| 2618 |   @{thm neg_less_pos}, @{thm neg_less_eq_nonneg}.
 | |
| 2619 | \<close> | |
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2620 | |
| 63325 | 2621 | lemma equation_minus_iff_1 [simp, no_atp]: "1 = - a \<longleftrightarrow> a = - 1" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2622 | by (fact equation_minus_iff) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2623 | |
| 63325 | 2624 | lemma minus_equation_iff_1 [simp, no_atp]: "- a = 1 \<longleftrightarrow> a = - 1" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2625 | by (subst minus_equation_iff, auto) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2626 | |
| 63325 | 2627 | lemma le_minus_iff_1 [simp, no_atp]: "1 \<le> - b \<longleftrightarrow> b \<le> - 1" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2628 | by (fact le_minus_iff) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2629 | |
| 63325 | 2630 | lemma minus_le_iff_1 [simp, no_atp]: "- a \<le> 1 \<longleftrightarrow> - 1 \<le> a" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2631 | by (fact minus_le_iff) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2632 | |
| 63325 | 2633 | lemma less_minus_iff_1 [simp, no_atp]: "1 < - b \<longleftrightarrow> b < - 1" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2634 | by (fact less_minus_iff) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2635 | |
| 63325 | 2636 | lemma minus_less_iff_1 [simp, no_atp]: "- a < 1 \<longleftrightarrow> - 1 < a" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2637 | by (fact minus_less_iff) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2638 | |
| 66793 
deabce3ccf1f
new material about connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
65811diff
changeset | 2639 | lemma add_less_zeroD: | 
| 
deabce3ccf1f
new material about connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
65811diff
changeset | 2640 | shows "x+y < 0 \<Longrightarrow> x<0 \<or> y<0" | 
| 
deabce3ccf1f
new material about connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
65811diff
changeset | 2641 | by (auto simp: not_less intro: le_less_trans [of _ "x+y"]) | 
| 
deabce3ccf1f
new material about connectedness, etc.
 paulson <lp15@cam.ac.uk> parents: 
65811diff
changeset | 2642 | |
| 25917 | 2643 | end | 
| 25230 | 2644 | |
| 60758 | 2645 | text \<open>Reasoning about inequalities with division\<close> | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2646 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2647 | context linordered_semidom | 
| 25193 | 2648 | begin | 
| 2649 | ||
| 2650 | lemma less_add_one: "a < a + 1" | |
| 14293 | 2651 | proof - | 
| 25193 | 2652 | have "a + 0 < a + 1" | 
| 23482 | 2653 | by (blast intro: zero_less_one add_strict_left_mono) | 
| 63325 | 2654 | then show ?thesis by simp | 
| 14293 | 2655 | qed | 
| 2656 | ||
| 25193 | 2657 | end | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 2658 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2659 | context linordered_idom | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2660 | begin | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 2661 | |
| 63325 | 2662 | lemma mult_right_le_one_le: "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> x * y \<le> x" | 
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 2663 | by (rule mult_left_le) | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2664 | |
| 63325 | 2665 | lemma mult_left_le_one_le: "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> y * x \<le> x" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2666 | by (auto simp add: mult_le_cancel_right2) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2667 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2668 | end | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2669 | |
| 60758 | 2670 | text \<open>Absolute Value\<close> | 
| 14293 | 2671 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2672 | context linordered_idom | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2673 | begin | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2674 | |
| 63325 | 2675 | lemma mult_sgn_abs: "sgn x * \<bar>x\<bar> = x" | 
| 64290 | 2676 | by (fact sgn_mult_abs) | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2677 | |
| 64290 | 2678 | lemma abs_one: "\<bar>1\<bar> = 1" | 
| 2679 | by (fact abs_1) | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2680 | |
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2681 | end | 
| 24491 | 2682 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2683 | class ordered_ring_abs = ordered_ring + ordered_ab_group_add_abs + | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2684 | assumes abs_eq_mult: | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2685 | "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0) \<Longrightarrow> \<bar>a * b\<bar> = \<bar>a\<bar> * \<bar>b\<bar>" | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2686 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2687 | context linordered_idom | 
| 30961 | 2688 | begin | 
| 2689 | ||
| 63325 | 2690 | subclass ordered_ring_abs | 
| 63588 | 2691 | by standard (auto simp: abs_if not_less mult_less_0_iff) | 
| 30961 | 2692 | |
| 67051 | 2693 | lemma abs_mult_self: "\<bar>a\<bar> * \<bar>a\<bar> = a * a" | 
| 2694 | by (fact abs_mult_self_eq) | |
| 30961 | 2695 | |
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2696 | lemma abs_mult_less: | 
| 63325 | 2697 | assumes ac: "\<bar>a\<bar> < c" | 
| 2698 | and bd: "\<bar>b\<bar> < d" | |
| 2699 | shows "\<bar>a\<bar> * \<bar>b\<bar> < c * d" | |
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2700 | proof - | 
| 63325 | 2701 | from ac have "0 < c" | 
| 2702 | by (blast intro: le_less_trans abs_ge_zero) | |
| 2703 | with bd show ?thesis by (simp add: ac mult_strict_mono) | |
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2704 | qed | 
| 14293 | 2705 | |
| 63325 | 2706 | lemma abs_less_iff: "\<bar>a\<bar> < b \<longleftrightarrow> a < b \<and> - a < b" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2707 | by (simp add: less_le abs_le_iff) (auto simp add: abs_if) | 
| 14738 | 2708 | |
| 63325 | 2709 | lemma abs_mult_pos: "0 \<le> x \<Longrightarrow> \<bar>y\<bar> * x = \<bar>y * x\<bar>" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2710 | by (simp add: abs_mult) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2711 | |
| 63325 | 2712 | lemma abs_diff_less_iff: "\<bar>x - a\<bar> < r \<longleftrightarrow> a - r < x \<and> x < a + r" | 
| 51520 
e9b361845809
move real_isLub_unique to isLub_unique in Lubs; real_sum_of_halves to RealDef; abs_diff_less_iff to Rings
 hoelzl parents: 
50420diff
changeset | 2713 | by (auto simp add: diff_less_eq ac_simps abs_less_iff) | 
| 
e9b361845809
move real_isLub_unique to isLub_unique in Lubs; real_sum_of_halves to RealDef; abs_diff_less_iff to Rings
 hoelzl parents: 
50420diff
changeset | 2714 | |
| 63325 | 2715 | lemma abs_diff_le_iff: "\<bar>x - a\<bar> \<le> r \<longleftrightarrow> a - r \<le> x \<and> x \<le> a + r" | 
| 59865 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59833diff
changeset | 2716 | by (auto simp add: diff_le_eq ac_simps abs_le_iff) | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59833diff
changeset | 2717 | |
| 62626 
de25474ce728
Contractible sets. Also removal of obsolete theorems and refactoring
 paulson <lp15@cam.ac.uk> parents: 
62608diff
changeset | 2718 | lemma abs_add_one_gt_zero: "0 < 1 + \<bar>x\<bar>" | 
| 63325 | 2719 | by (auto simp: abs_if not_less intro: zero_less_one add_strict_increasing less_trans) | 
| 62626 
de25474ce728
Contractible sets. Also removal of obsolete theorems and refactoring
 paulson <lp15@cam.ac.uk> parents: 
62608diff
changeset | 2720 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2721 | end | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2722 | |
| 70145 | 2723 | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2724 | subsection \<open>Dioids\<close> | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2725 | |
| 63325 | 2726 | text \<open> | 
| 2727 | Dioids are the alternative extensions of semirings, a semiring can | |
| 2728 | either be a ring or a dioid but never both. | |
| 2729 | \<close> | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2730 | |
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2731 | class dioid = semiring_1 + canonically_ordered_monoid_add | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2732 | begin | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2733 | |
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2734 | subclass ordered_semiring | 
| 63325 | 2735 | by standard (auto simp: le_iff_add distrib_left distrib_right) | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2736 | |
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2737 | end | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2738 | |
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2739 | |
| 59557 | 2740 | hide_fact (open) comm_mult_left_mono comm_mult_strict_left_mono distrib | 
| 2741 | ||
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51520diff
changeset | 2742 | code_identifier | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51520diff
changeset | 2743 | code_module Rings \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith | 
| 33364 | 2744 | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 2745 | end |