| author | wenzelm | 
| Wed, 24 Oct 2007 19:21:40 +0200 | |
| changeset 25174 | d70d6dbc3a60 | 
| parent 23743 | 52fbc991039f | 
| child 25295 | 12985023be5e | 
| permissions | -rw-r--r-- | 
| 10213 | 1 | (* Title: HOL/Transitive_Closure.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 4 | Copyright 1992 University of Cambridge | |
| 5 | *) | |
| 6 | ||
| 12691 | 7 | header {* Reflexive and Transitive closure of a relation *}
 | 
| 8 | ||
| 15131 | 9 | theory Transitive_Closure | 
| 22262 | 10 | imports Predicate | 
| 21589 | 11 | uses "~~/src/Provers/trancl.ML" | 
| 15131 | 12 | begin | 
| 12691 | 13 | |
| 14 | text {*
 | |
| 15 |   @{text rtrancl} is reflexive/transitive closure,
 | |
| 16 |   @{text trancl} is transitive closure,
 | |
| 17 |   @{text reflcl} is reflexive closure.
 | |
| 18 | ||
| 19 |   These postfix operators have \emph{maximum priority}, forcing their
 | |
| 20 | operands to be atomic. | |
| 21 | *} | |
| 10213 | 22 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 23 | inductive_set | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 24 |   rtrancl :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set"   ("(_^*)" [1000] 999)
 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 25 |   for r :: "('a \<times> 'a) set"
 | 
| 22262 | 26 | where | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 27 | rtrancl_refl [intro!, Pure.intro!, simp]: "(a, a) : r^*" | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 28 | | rtrancl_into_rtrancl [Pure.intro]: "(a, b) : r^* ==> (b, c) : r ==> (a, c) : r^*" | 
| 11327 
cd2c27a23df1
Transitive closure is now defined via "inductive".
 berghofe parents: 
11115diff
changeset | 29 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 30 | inductive_set | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 31 |   trancl :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set"  ("(_^+)" [1000] 999)
 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 32 |   for r :: "('a \<times> 'a) set"
 | 
| 22262 | 33 | where | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 34 | r_into_trancl [intro, Pure.intro]: "(a, b) : r ==> (a, b) : r^+" | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 35 | | trancl_into_trancl [Pure.intro]: "(a, b) : r^+ ==> (b, c) : r ==> (a, c) : r^+" | 
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 36 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 37 | notation | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 38 |   rtranclp  ("(_^**)" [1000] 1000) and
 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 39 |   tranclp  ("(_^++)" [1000] 1000)
 | 
| 10213 | 40 | |
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19623diff
changeset | 41 | abbreviation | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 42 |   reflclp :: "('a => 'a => bool) => 'a => 'a => bool"  ("(_^==)" [1000] 1000) where
 | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22262diff
changeset | 43 | "r^== == sup r op =" | 
| 22262 | 44 | |
| 45 | abbreviation | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 46 |   reflcl :: "('a \<times> 'a) set => ('a \<times> 'a) set"  ("(_^=)" [1000] 999) where
 | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19623diff
changeset | 47 | "r^= == r \<union> Id" | 
| 10213 | 48 | |
| 21210 | 49 | notation (xsymbols) | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 50 |   rtranclp  ("(_\<^sup>*\<^sup>*)" [1000] 1000) and
 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 51 |   tranclp  ("(_\<^sup>+\<^sup>+)" [1000] 1000) and
 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 52 |   reflclp  ("(_\<^sup>=\<^sup>=)" [1000] 1000) and
 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 53 |   rtrancl  ("(_\<^sup>*)" [1000] 999) and
 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 54 |   trancl  ("(_\<^sup>+)" [1000] 999) and
 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 55 |   reflcl  ("(_\<^sup>=)" [1000] 999)
 | 
| 12691 | 56 | |
| 21210 | 57 | notation (HTML output) | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 58 |   rtranclp  ("(_\<^sup>*\<^sup>*)" [1000] 1000) and
 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 59 |   tranclp  ("(_\<^sup>+\<^sup>+)" [1000] 1000) and
 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 60 |   reflclp  ("(_\<^sup>=\<^sup>=)" [1000] 1000) and
 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 61 |   rtrancl  ("(_\<^sup>*)" [1000] 999) and
 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 62 |   trancl  ("(_\<^sup>+)" [1000] 999) and
 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 63 |   reflcl  ("(_\<^sup>=)" [1000] 999)
 | 
| 14565 | 64 | |
| 12691 | 65 | |
| 66 | subsection {* Reflexive-transitive closure *}
 | |
| 67 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 68 | lemma reflcl_set_eq [pred_set_conv]: "(sup (\<lambda>x y. (x, y) \<in> r) op =) = (\<lambda>x y. (x, y) \<in> r Un Id)" | 
| 22262 | 69 | by (simp add: expand_fun_eq) | 
| 70 | ||
| 12691 | 71 | lemma r_into_rtrancl [intro]: "!!p. p \<in> r ==> p \<in> r^*" | 
| 72 |   -- {* @{text rtrancl} of @{text r} contains @{text r} *}
 | |
| 73 | apply (simp only: split_tupled_all) | |
| 74 | apply (erule rtrancl_refl [THEN rtrancl_into_rtrancl]) | |
| 75 | done | |
| 76 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 77 | lemma r_into_rtranclp [intro]: "r x y ==> r^** x y" | 
| 22262 | 78 |   -- {* @{text rtrancl} of @{text r} contains @{text r} *}
 | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 79 | by (erule rtranclp.rtrancl_refl [THEN rtranclp.rtrancl_into_rtrancl]) | 
| 22262 | 80 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 81 | lemma rtranclp_mono: "r \<le> s ==> r^** \<le> s^**" | 
| 12691 | 82 |   -- {* monotonicity of @{text rtrancl} *}
 | 
| 22262 | 83 | apply (rule predicate2I) | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 84 | apply (erule rtranclp.induct) | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 85 | apply (rule_tac [2] rtranclp.rtrancl_into_rtrancl, blast+) | 
| 12691 | 86 | done | 
| 87 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 88 | lemmas rtrancl_mono = rtranclp_mono [to_set] | 
| 22262 | 89 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 90 | theorem rtranclp_induct [consumes 1, induct set: rtranclp]: | 
| 22262 | 91 | assumes a: "r^** a b" | 
| 92 | and cases: "P a" "!!y z. [| r^** a y; r y z; P y |] ==> P z" | |
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12823diff
changeset | 93 | shows "P b" | 
| 12691 | 94 | proof - | 
| 95 | from a have "a = a --> P b" | |
| 17589 | 96 | by (induct "%x y. x = a --> P y" a b) (iprover intro: cases)+ | 
| 97 | thus ?thesis by iprover | |
| 12691 | 98 | qed | 
| 99 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 100 | lemmas rtrancl_induct [consumes 1, induct set: rtrancl] = rtranclp_induct [to_set] | 
| 22262 | 101 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 102 | lemmas rtranclp_induct2 = | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 103 | rtranclp_induct[of _ "(ax,ay)" "(bx,by)", split_rule, | 
| 22262 | 104 | consumes 1, case_names refl step] | 
| 105 | ||
| 14404 
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
 nipkow parents: 
14398diff
changeset | 106 | lemmas rtrancl_induct2 = | 
| 
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
 nipkow parents: 
14398diff
changeset | 107 | rtrancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete), | 
| 
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
 nipkow parents: 
14398diff
changeset | 108 | consumes 1, case_names refl step] | 
| 18372 | 109 | |
| 19228 | 110 | lemma reflexive_rtrancl: "reflexive (r^*)" | 
| 111 | by (unfold refl_def) fast | |
| 112 | ||
| 12691 | 113 | lemma trans_rtrancl: "trans(r^*)" | 
| 114 |   -- {* transitivity of transitive closure!! -- by induction *}
 | |
| 12823 | 115 | proof (rule transI) | 
| 116 | fix x y z | |
| 117 | assume "(x, y) \<in> r\<^sup>*" | |
| 118 | assume "(y, z) \<in> r\<^sup>*" | |
| 17589 | 119 | thus "(x, z) \<in> r\<^sup>*" by induct (iprover!)+ | 
| 12823 | 120 | qed | 
| 12691 | 121 | |
| 122 | lemmas rtrancl_trans = trans_rtrancl [THEN transD, standard] | |
| 123 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 124 | lemma rtranclp_trans: | 
| 22262 | 125 | assumes xy: "r^** x y" | 
| 126 | and yz: "r^** y z" | |
| 127 | shows "r^** x z" using yz xy | |
| 128 | by induct iprover+ | |
| 129 | ||
| 12691 | 130 | lemma rtranclE: | 
| 18372 | 131 | assumes major: "(a::'a,b) : r^*" | 
| 132 | and cases: "(a = b) ==> P" | |
| 133 | "!!y. [| (a,y) : r^*; (y,b) : r |] ==> P" | |
| 134 | shows P | |
| 12691 | 135 |   -- {* elimination of @{text rtrancl} -- by induction on a special formula *}
 | 
| 18372 | 136 | apply (subgoal_tac "(a::'a) = b | (EX y. (a,y) : r^* & (y,b) : r)") | 
| 137 | apply (rule_tac [2] major [THEN rtrancl_induct]) | |
| 138 | prefer 2 apply blast | |
| 139 | prefer 2 apply blast | |
| 140 | apply (erule asm_rl exE disjE conjE cases)+ | |
| 141 | done | |
| 12691 | 142 | |
| 22080 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 paulson parents: 
21589diff
changeset | 143 | lemma rtrancl_Int_subset: "[| Id \<subseteq> s; r O (r^* \<inter> s) \<subseteq> s|] ==> r^* \<subseteq> s" | 
| 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 paulson parents: 
21589diff
changeset | 144 | apply (rule subsetI) | 
| 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 paulson parents: 
21589diff
changeset | 145 | apply (rule_tac p="x" in PairE, clarify) | 
| 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 paulson parents: 
21589diff
changeset | 146 | apply (erule rtrancl_induct, auto) | 
| 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 paulson parents: 
21589diff
changeset | 147 | done | 
| 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 paulson parents: 
21589diff
changeset | 148 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 149 | lemma converse_rtranclp_into_rtranclp: | 
| 22262 | 150 | "r a b \<Longrightarrow> r\<^sup>*\<^sup>* b c \<Longrightarrow> r\<^sup>*\<^sup>* a c" | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 151 | by (rule rtranclp_trans) iprover+ | 
| 22262 | 152 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 153 | lemmas converse_rtrancl_into_rtrancl = converse_rtranclp_into_rtranclp [to_set] | 
| 12691 | 154 | |
| 155 | text {*
 | |
| 156 |   \medskip More @{term "r^*"} equations and inclusions.
 | |
| 157 | *} | |
| 158 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 159 | lemma rtranclp_idemp [simp]: "(r^**)^** = r^**" | 
| 22262 | 160 | apply (auto intro!: order_antisym) | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 161 | apply (erule rtranclp_induct) | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 162 | apply (rule rtranclp.rtrancl_refl) | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 163 | apply (blast intro: rtranclp_trans) | 
| 12691 | 164 | done | 
| 165 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 166 | lemmas rtrancl_idemp [simp] = rtranclp_idemp [to_set] | 
| 22262 | 167 | |
| 12691 | 168 | lemma rtrancl_idemp_self_comp [simp]: "R^* O R^* = R^*" | 
| 169 | apply (rule set_ext) | |
| 170 | apply (simp only: split_tupled_all) | |
| 171 | apply (blast intro: rtrancl_trans) | |
| 172 | done | |
| 173 | ||
| 174 | lemma rtrancl_subset_rtrancl: "r \<subseteq> s^* ==> r^* \<subseteq> s^*" | |
| 14208 | 175 | by (drule rtrancl_mono, simp) | 
| 12691 | 176 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 177 | lemma rtranclp_subset: "R \<le> S ==> S \<le> R^** ==> S^** = R^**" | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 178 | apply (drule rtranclp_mono) | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 179 | apply (drule rtranclp_mono, simp) | 
| 12691 | 180 | done | 
| 181 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 182 | lemmas rtrancl_subset = rtranclp_subset [to_set] | 
| 22262 | 183 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 184 | lemma rtranclp_sup_rtranclp: "(sup (R^**) (S^**))^** = (sup R S)^**" | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 185 | by (blast intro!: rtranclp_subset intro: rtranclp_mono [THEN predicate2D]) | 
| 12691 | 186 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 187 | lemmas rtrancl_Un_rtrancl = rtranclp_sup_rtranclp [to_set] | 
| 22262 | 188 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 189 | lemma rtranclp_reflcl [simp]: "(R^==)^** = R^**" | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 190 | by (blast intro!: rtranclp_subset) | 
| 22262 | 191 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 192 | lemmas rtrancl_reflcl [simp] = rtranclp_reflcl [to_set] | 
| 12691 | 193 | |
| 194 | lemma rtrancl_r_diff_Id: "(r - Id)^* = r^*" | |
| 195 | apply (rule sym) | |
| 14208 | 196 | apply (rule rtrancl_subset, blast, clarify) | 
| 12691 | 197 | apply (rename_tac a b) | 
| 14208 | 198 | apply (case_tac "a = b", blast) | 
| 12691 | 199 | apply (blast intro!: r_into_rtrancl) | 
| 200 | done | |
| 201 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 202 | lemma rtranclp_r_diff_Id: "(inf r op ~=)^** = r^**" | 
| 22262 | 203 | apply (rule sym) | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 204 | apply (rule rtranclp_subset) | 
| 22262 | 205 | apply blast+ | 
| 206 | done | |
| 207 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 208 | theorem rtranclp_converseD: | 
| 22262 | 209 | assumes r: "(r^--1)^** x y" | 
| 210 | shows "r^** y x" | |
| 12823 | 211 | proof - | 
| 212 | from r show ?thesis | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 213 | by induct (iprover intro: rtranclp_trans dest!: conversepD)+ | 
| 12823 | 214 | qed | 
| 12691 | 215 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 216 | lemmas rtrancl_converseD = rtranclp_converseD [to_set] | 
| 22262 | 217 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 218 | theorem rtranclp_converseI: | 
| 22262 | 219 | assumes r: "r^** y x" | 
| 220 | shows "(r^--1)^** x y" | |
| 12823 | 221 | proof - | 
| 222 | from r show ?thesis | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 223 | by induct (iprover intro: rtranclp_trans conversepI)+ | 
| 12823 | 224 | qed | 
| 12691 | 225 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 226 | lemmas rtrancl_converseI = rtranclp_converseI [to_set] | 
| 22262 | 227 | |
| 12691 | 228 | lemma rtrancl_converse: "(r^-1)^* = (r^*)^-1" | 
| 229 | by (fast dest!: rtrancl_converseD intro!: rtrancl_converseI) | |
| 230 | ||
| 19228 | 231 | lemma sym_rtrancl: "sym r ==> sym (r^*)" | 
| 232 | by (simp only: sym_conv_converse_eq rtrancl_converse [symmetric]) | |
| 233 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 234 | theorem converse_rtranclp_induct[consumes 1]: | 
| 22262 | 235 | assumes major: "r^** a b" | 
| 236 | and cases: "P b" "!!y z. [| r y z; r^** z b; P z |] ==> P y" | |
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12823diff
changeset | 237 | shows "P a" | 
| 12691 | 238 | proof - | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 239 | from rtranclp_converseI [OF major] | 
| 12691 | 240 | show ?thesis | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 241 | by induct (iprover intro: cases dest!: conversepD rtranclp_converseD)+ | 
| 12691 | 242 | qed | 
| 243 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 244 | lemmas converse_rtrancl_induct[consumes 1] = converse_rtranclp_induct [to_set] | 
| 22262 | 245 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 246 | lemmas converse_rtranclp_induct2 = | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 247 | converse_rtranclp_induct[of _ "(ax,ay)" "(bx,by)", split_rule, | 
| 22262 | 248 | consumes 1, case_names refl step] | 
| 249 | ||
| 14404 
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
 nipkow parents: 
14398diff
changeset | 250 | lemmas converse_rtrancl_induct2 = | 
| 
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
 nipkow parents: 
14398diff
changeset | 251 | converse_rtrancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete), | 
| 
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
 nipkow parents: 
14398diff
changeset | 252 | consumes 1, case_names refl step] | 
| 12691 | 253 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 254 | lemma converse_rtranclpE: | 
| 22262 | 255 | assumes major: "r^** x z" | 
| 18372 | 256 | and cases: "x=z ==> P" | 
| 22262 | 257 | "!!y. [| r x y; r^** y z |] ==> P" | 
| 18372 | 258 | shows P | 
| 22262 | 259 | apply (subgoal_tac "x = z | (EX y. r x y & r^** y z)") | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 260 | apply (rule_tac [2] major [THEN converse_rtranclp_induct]) | 
| 18372 | 261 | prefer 2 apply iprover | 
| 262 | prefer 2 apply iprover | |
| 263 | apply (erule asm_rl exE disjE conjE cases)+ | |
| 264 | done | |
| 12691 | 265 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 266 | lemmas converse_rtranclE = converse_rtranclpE [to_set] | 
| 22262 | 267 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 268 | lemmas converse_rtranclpE2 = converse_rtranclpE [of _ "(xa,xb)" "(za,zb)", split_rule] | 
| 22262 | 269 | |
| 270 | lemmas converse_rtranclE2 = converse_rtranclE [of "(xa,xb)" "(za,zb)", split_rule] | |
| 12691 | 271 | |
| 272 | lemma r_comp_rtrancl_eq: "r O r^* = r^* O r" | |
| 273 | by (blast elim: rtranclE converse_rtranclE | |
| 274 | intro: rtrancl_into_rtrancl converse_rtrancl_into_rtrancl) | |
| 275 | ||
| 20716 
a6686a8e1b68
Changed precedence of "op O" (relation composition) from 60 to 75.
 krauss parents: 
19656diff
changeset | 276 | lemma rtrancl_unfold: "r^* = Id Un r O r^*" | 
| 15551 | 277 | by (auto intro: rtrancl_into_rtrancl elim: rtranclE) | 
| 278 | ||
| 12691 | 279 | |
| 280 | subsection {* Transitive closure *}
 | |
| 10331 | 281 | |
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 282 | lemma trancl_mono: "!!p. p \<in> r^+ ==> r \<subseteq> s ==> p \<in> s^+" | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 283 | apply (simp add: split_tupled_all) | 
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 284 | apply (erule trancl.induct) | 
| 17589 | 285 | apply (iprover dest: subsetD)+ | 
| 12691 | 286 | done | 
| 287 | ||
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 288 | lemma r_into_trancl': "!!p. p : r ==> p : r^+" | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 289 | by (simp only: split_tupled_all) (erule r_into_trancl) | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 290 | |
| 12691 | 291 | text {*
 | 
| 292 |   \medskip Conversions between @{text trancl} and @{text rtrancl}.
 | |
| 293 | *} | |
| 294 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 295 | lemma tranclp_into_rtranclp: "r^++ a b ==> r^** a b" | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 296 | by (erule tranclp.induct) iprover+ | 
| 12691 | 297 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 298 | lemmas trancl_into_rtrancl = tranclp_into_rtranclp [to_set] | 
| 22262 | 299 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 300 | lemma rtranclp_into_tranclp1: assumes r: "r^** a b" | 
| 22262 | 301 | shows "!!c. r b c ==> r^++ a c" using r | 
| 17589 | 302 | by induct iprover+ | 
| 12691 | 303 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 304 | lemmas rtrancl_into_trancl1 = rtranclp_into_tranclp1 [to_set] | 
| 22262 | 305 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 306 | lemma rtranclp_into_tranclp2: "[| r a b; r^** b c |] ==> r^++ a c" | 
| 12691 | 307 |   -- {* intro rule from @{text r} and @{text rtrancl} *}
 | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 308 | apply (erule rtranclp.cases, iprover) | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 309 | apply (rule rtranclp_trans [THEN rtranclp_into_tranclp1]) | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 310 | apply (simp | rule r_into_rtranclp)+ | 
| 12691 | 311 | done | 
| 312 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 313 | lemmas rtrancl_into_trancl2 = rtranclp_into_tranclp2 [to_set] | 
| 22262 | 314 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 315 | lemma tranclp_induct [consumes 1, induct set: tranclp]: | 
| 22262 | 316 | assumes a: "r^++ a b" | 
| 317 | and cases: "!!y. r a y ==> P y" | |
| 318 | "!!y z. r^++ a y ==> r y z ==> P y ==> P z" | |
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 319 | shows "P b" | 
| 12691 | 320 |   -- {* Nice induction rule for @{text trancl} *}
 | 
| 321 | proof - | |
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 322 | from a have "a = a --> P b" | 
| 17589 | 323 | by (induct "%x y. x = a --> P y" a b) (iprover intro: cases)+ | 
| 324 | thus ?thesis by iprover | |
| 12691 | 325 | qed | 
| 326 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 327 | lemmas trancl_induct [consumes 1, induct set: trancl] = tranclp_induct [to_set] | 
| 22262 | 328 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 329 | lemmas tranclp_induct2 = | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 330 | tranclp_induct[of _ "(ax,ay)" "(bx,by)", split_rule, | 
| 22262 | 331 | consumes 1, case_names base step] | 
| 332 | ||
| 22172 | 333 | lemmas trancl_induct2 = | 
| 334 | trancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete), | |
| 335 | consumes 1, case_names base step] | |
| 336 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 337 | lemma tranclp_trans_induct: | 
| 22262 | 338 | assumes major: "r^++ x y" | 
| 339 | and cases: "!!x y. r x y ==> P x y" | |
| 340 | "!!x y z. [| r^++ x y; P x y; r^++ y z; P y z |] ==> P x z" | |
| 18372 | 341 | shows "P x y" | 
| 12691 | 342 |   -- {* Another induction rule for trancl, incorporating transitivity *}
 | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 343 | by (iprover intro: major [THEN tranclp_induct] cases) | 
| 12691 | 344 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 345 | lemmas trancl_trans_induct = tranclp_trans_induct [to_set] | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 346 | |
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 347 | inductive_cases tranclE: "(a, b) : r^+" | 
| 10980 | 348 | |
| 22080 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 paulson parents: 
21589diff
changeset | 349 | lemma trancl_Int_subset: "[| r \<subseteq> s; r O (r^+ \<inter> s) \<subseteq> s|] ==> r^+ \<subseteq> s" | 
| 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 paulson parents: 
21589diff
changeset | 350 | apply (rule subsetI) | 
| 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 paulson parents: 
21589diff
changeset | 351 | apply (rule_tac p="x" in PairE, clarify) | 
| 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 paulson parents: 
21589diff
changeset | 352 | apply (erule trancl_induct, auto) | 
| 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 paulson parents: 
21589diff
changeset | 353 | done | 
| 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 paulson parents: 
21589diff
changeset | 354 | |
| 20716 
a6686a8e1b68
Changed precedence of "op O" (relation composition) from 60 to 75.
 krauss parents: 
19656diff
changeset | 355 | lemma trancl_unfold: "r^+ = r Un r O r^+" | 
| 15551 | 356 | by (auto intro: trancl_into_trancl elim: tranclE) | 
| 357 | ||
| 19623 | 358 | lemma trans_trancl[simp]: "trans(r^+)" | 
| 12691 | 359 |   -- {* Transitivity of @{term "r^+"} *}
 | 
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 360 | proof (rule transI) | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 361 | fix x y z | 
| 18372 | 362 | assume xy: "(x, y) \<in> r^+" | 
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 363 | assume "(y, z) \<in> r^+" | 
| 18372 | 364 | thus "(x, z) \<in> r^+" by induct (insert xy, iprover)+ | 
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 365 | qed | 
| 12691 | 366 | |
| 367 | lemmas trancl_trans = trans_trancl [THEN transD, standard] | |
| 368 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 369 | lemma tranclp_trans: | 
| 22262 | 370 | assumes xy: "r^++ x y" | 
| 371 | and yz: "r^++ y z" | |
| 372 | shows "r^++ x z" using yz xy | |
| 373 | by induct iprover+ | |
| 374 | ||
| 19623 | 375 | lemma trancl_id[simp]: "trans r \<Longrightarrow> r^+ = r" | 
| 376 | apply(auto) | |
| 377 | apply(erule trancl_induct) | |
| 378 | apply assumption | |
| 379 | apply(unfold trans_def) | |
| 380 | apply(blast) | |
| 381 | done | |
| 382 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 383 | lemma rtranclp_tranclp_tranclp: assumes r: "r^** x y" | 
| 22262 | 384 | shows "!!z. r^++ y z ==> r^++ x z" using r | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 385 | by induct (iprover intro: tranclp_trans)+ | 
| 12691 | 386 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 387 | lemmas rtrancl_trancl_trancl = rtranclp_tranclp_tranclp [to_set] | 
| 22262 | 388 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 389 | lemma tranclp_into_tranclp2: "r a b ==> r^++ b c ==> r^++ a c" | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 390 | by (erule tranclp_trans [OF tranclp.r_into_trancl]) | 
| 22262 | 391 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 392 | lemmas trancl_into_trancl2 = tranclp_into_tranclp2 [to_set] | 
| 12691 | 393 | |
| 394 | lemma trancl_insert: | |
| 395 |   "(insert (y, x) r)^+ = r^+ \<union> {(a, b). (a, y) \<in> r^* \<and> (x, b) \<in> r^*}"
 | |
| 396 |   -- {* primitive recursion for @{text trancl} over finite relations *}
 | |
| 397 | apply (rule equalityI) | |
| 398 | apply (rule subsetI) | |
| 399 | apply (simp only: split_tupled_all) | |
| 14208 | 400 | apply (erule trancl_induct, blast) | 
| 12691 | 401 | apply (blast intro: rtrancl_into_trancl1 trancl_into_rtrancl r_into_trancl trancl_trans) | 
| 402 | apply (rule subsetI) | |
| 403 | apply (blast intro: trancl_mono rtrancl_mono | |
| 404 | [THEN [2] rev_subsetD] rtrancl_trancl_trancl rtrancl_into_trancl2) | |
| 405 | done | |
| 406 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 407 | lemma tranclp_converseI: "(r^++)^--1 x y ==> (r^--1)^++ x y" | 
| 22262 | 408 | apply (drule conversepD) | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 409 | apply (erule tranclp_induct) | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 410 | apply (iprover intro: conversepI tranclp_trans)+ | 
| 12691 | 411 | done | 
| 412 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 413 | lemmas trancl_converseI = tranclp_converseI [to_set] | 
| 22262 | 414 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 415 | lemma tranclp_converseD: "(r^--1)^++ x y ==> (r^++)^--1 x y" | 
| 22262 | 416 | apply (rule conversepI) | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 417 | apply (erule tranclp_induct) | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 418 | apply (iprover dest: conversepD intro: tranclp_trans)+ | 
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 419 | done | 
| 12691 | 420 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 421 | lemmas trancl_converseD = tranclp_converseD [to_set] | 
| 22262 | 422 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 423 | lemma tranclp_converse: "(r^--1)^++ = (r^++)^--1" | 
| 22262 | 424 | by (fastsimp simp add: expand_fun_eq | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 425 | intro!: tranclp_converseI dest!: tranclp_converseD) | 
| 22262 | 426 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 427 | lemmas trancl_converse = tranclp_converse [to_set] | 
| 12691 | 428 | |
| 19228 | 429 | lemma sym_trancl: "sym r ==> sym (r^+)" | 
| 430 | by (simp only: sym_conv_converse_eq trancl_converse [symmetric]) | |
| 431 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 432 | lemma converse_tranclp_induct: | 
| 22262 | 433 | assumes major: "r^++ a b" | 
| 434 | and cases: "!!y. r y b ==> P(y)" | |
| 435 | "!!y z.[| r y z; r^++ z b; P(z) |] ==> P(y)" | |
| 18372 | 436 | shows "P a" | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 437 | apply (rule tranclp_induct [OF tranclp_converseI, OF conversepI, OF major]) | 
| 18372 | 438 | apply (rule cases) | 
| 22262 | 439 | apply (erule conversepD) | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 440 | apply (blast intro: prems dest!: tranclp_converseD conversepD) | 
| 18372 | 441 | done | 
| 12691 | 442 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 443 | lemmas converse_trancl_induct = converse_tranclp_induct [to_set] | 
| 22262 | 444 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 445 | lemma tranclpD: "R^++ x y ==> EX z. R x z \<and> R^** z y" | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 446 | apply (erule converse_tranclp_induct, auto) | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 447 | apply (blast intro: rtranclp_trans) | 
| 12691 | 448 | done | 
| 449 | ||
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 450 | lemmas tranclD = tranclpD [to_set] | 
| 22262 | 451 | |
| 13867 | 452 | lemma irrefl_tranclI: "r^-1 \<inter> r^* = {} ==> (x, x) \<notin> r^+"
 | 
| 18372 | 453 | by (blast elim: tranclE dest: trancl_into_rtrancl) | 
| 12691 | 454 | |
| 455 | lemma irrefl_trancl_rD: "!!X. ALL x. (x, x) \<notin> r^+ ==> (x, y) \<in> r ==> x \<noteq> y" | |
| 456 | by (blast dest: r_into_trancl) | |
| 457 | ||
| 458 | lemma trancl_subset_Sigma_aux: | |
| 459 | "(a, b) \<in> r^* ==> r \<subseteq> A \<times> A ==> a = b \<or> a \<in> A" | |
| 18372 | 460 | by (induct rule: rtrancl_induct) auto | 
| 12691 | 461 | |
| 462 | lemma trancl_subset_Sigma: "r \<subseteq> A \<times> A ==> r^+ \<subseteq> A \<times> A" | |
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 463 | apply (rule subsetI) | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 464 | apply (simp only: split_tupled_all) | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 465 | apply (erule tranclE) | 
| 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
12937diff
changeset | 466 | apply (blast dest!: trancl_into_rtrancl trancl_subset_Sigma_aux)+ | 
| 12691 | 467 | done | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 468 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 469 | lemma reflcl_tranclp [simp]: "(r^++)^== = r^**" | 
| 22262 | 470 | apply (safe intro!: order_antisym) | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 471 | apply (erule tranclp_into_rtranclp) | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 472 | apply (blast elim: rtranclp.cases dest: rtranclp_into_tranclp1) | 
| 11084 | 473 | done | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 474 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 475 | lemmas reflcl_trancl [simp] = reflcl_tranclp [to_set] | 
| 22262 | 476 | |
| 11090 | 477 | lemma trancl_reflcl [simp]: "(r^=)^+ = r^*" | 
| 11084 | 478 | apply safe | 
| 14208 | 479 | apply (drule trancl_into_rtrancl, simp) | 
| 480 | apply (erule rtranclE, safe) | |
| 481 | apply (rule r_into_trancl, simp) | |
| 11084 | 482 | apply (rule rtrancl_into_trancl1) | 
| 14208 | 483 | apply (erule rtrancl_reflcl [THEN equalityD2, THEN subsetD], fast) | 
| 11084 | 484 | done | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 485 | |
| 11090 | 486 | lemma trancl_empty [simp]: "{}^+ = {}"
 | 
| 11084 | 487 | by (auto elim: trancl_induct) | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 488 | |
| 11090 | 489 | lemma rtrancl_empty [simp]: "{}^* = Id"
 | 
| 11084 | 490 | by (rule subst [OF reflcl_trancl]) simp | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 491 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 492 | lemma rtranclpD: "R^** a b ==> a = b \<or> a \<noteq> b \<and> R^++ a b" | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 493 | by (force simp add: reflcl_tranclp [symmetric] simp del: reflcl_tranclp) | 
| 22262 | 494 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 495 | lemmas rtranclD = rtranclpD [to_set] | 
| 11084 | 496 | |
| 16514 | 497 | lemma rtrancl_eq_or_trancl: | 
| 498 | "(x,y) \<in> R\<^sup>* = (x=y \<or> x\<noteq>y \<and> (x,y) \<in> R\<^sup>+)" | |
| 499 | by (fast elim: trancl_into_rtrancl dest: rtranclD) | |
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 500 | |
| 12691 | 501 | text {* @{text Domain} and @{text Range} *}
 | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 502 | |
| 11090 | 503 | lemma Domain_rtrancl [simp]: "Domain (R^*) = UNIV" | 
| 11084 | 504 | by blast | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 505 | |
| 11090 | 506 | lemma Range_rtrancl [simp]: "Range (R^*) = UNIV" | 
| 11084 | 507 | by blast | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 508 | |
| 11090 | 509 | lemma rtrancl_Un_subset: "(R^* \<union> S^*) \<subseteq> (R Un S)^*" | 
| 11084 | 510 | by (rule rtrancl_Un_rtrancl [THEN subst]) fast | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 511 | |
| 11090 | 512 | lemma in_rtrancl_UnI: "x \<in> R^* \<or> x \<in> S^* ==> x \<in> (R \<union> S)^*" | 
| 11084 | 513 | by (blast intro: subsetD [OF rtrancl_Un_subset]) | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 514 | |
| 11090 | 515 | lemma trancl_domain [simp]: "Domain (r^+) = Domain r" | 
| 11084 | 516 | by (unfold Domain_def) (blast dest: tranclD) | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 517 | |
| 11090 | 518 | lemma trancl_range [simp]: "Range (r^+) = Range r" | 
| 11084 | 519 | by (simp add: Range_def trancl_converse [symmetric]) | 
| 10996 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 nipkow parents: 
10980diff
changeset | 520 | |
| 11115 | 521 | lemma Not_Domain_rtrancl: | 
| 12691 | 522 | "x ~: Domain R ==> ((x, y) : R^*) = (x = y)" | 
| 523 | apply auto | |
| 524 | by (erule rev_mp, erule rtrancl_induct, auto) | |
| 525 | ||
| 11327 
cd2c27a23df1
Transitive closure is now defined via "inductive".
 berghofe parents: 
11115diff
changeset | 526 | |
| 12691 | 527 | text {* More about converse @{text rtrancl} and @{text trancl}, should
 | 
| 528 | be merged with main body. *} | |
| 12428 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 529 | |
| 14337 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 nipkow parents: 
14208diff
changeset | 530 | lemma single_valued_confluent: | 
| 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 nipkow parents: 
14208diff
changeset | 531 | "\<lbrakk> single_valued r; (x,y) \<in> r^*; (x,z) \<in> r^* \<rbrakk> | 
| 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 nipkow parents: 
14208diff
changeset | 532 | \<Longrightarrow> (y,z) \<in> r^* \<or> (z,y) \<in> r^*" | 
| 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 nipkow parents: 
14208diff
changeset | 533 | apply(erule rtrancl_induct) | 
| 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 nipkow parents: 
14208diff
changeset | 534 | apply simp | 
| 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 nipkow parents: 
14208diff
changeset | 535 | apply(erule disjE) | 
| 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 nipkow parents: 
14208diff
changeset | 536 | apply(blast elim:converse_rtranclE dest:single_valuedD) | 
| 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 nipkow parents: 
14208diff
changeset | 537 | apply(blast intro:rtrancl_trans) | 
| 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 nipkow parents: 
14208diff
changeset | 538 | done | 
| 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 nipkow parents: 
14208diff
changeset | 539 | |
| 12691 | 540 | lemma r_r_into_trancl: "(a, b) \<in> R ==> (b, c) \<in> R ==> (a, c) \<in> R^+" | 
| 12428 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 541 | by (fast intro: trancl_trans) | 
| 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 542 | |
| 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 543 | lemma trancl_into_trancl [rule_format]: | 
| 12691 | 544 | "(a, b) \<in> r\<^sup>+ ==> (b, c) \<in> r --> (a,c) \<in> r\<^sup>+" | 
| 545 | apply (erule trancl_induct) | |
| 12428 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 546 | apply (fast intro: r_r_into_trancl) | 
| 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 547 | apply (fast intro: r_r_into_trancl trancl_trans) | 
| 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 548 | done | 
| 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 549 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 550 | lemma tranclp_rtranclp_tranclp: | 
| 22262 | 551 | "r\<^sup>+\<^sup>+ a b ==> r\<^sup>*\<^sup>* b c ==> r\<^sup>+\<^sup>+ a c" | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 552 | apply (drule tranclpD) | 
| 12428 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 553 | apply (erule exE, erule conjE) | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 554 | apply (drule rtranclp_trans, assumption) | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 555 | apply (drule rtranclp_into_tranclp2, assumption, assumption) | 
| 12428 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 556 | done | 
| 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 557 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 558 | lemmas trancl_rtrancl_trancl = tranclp_rtranclp_tranclp [to_set] | 
| 22262 | 559 | |
| 12691 | 560 | lemmas transitive_closure_trans [trans] = | 
| 561 | r_r_into_trancl trancl_trans rtrancl_trans | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 562 | trancl.trancl_into_trancl trancl_into_trancl2 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 563 | rtrancl.rtrancl_into_rtrancl converse_rtrancl_into_rtrancl | 
| 12691 | 564 | rtrancl_trancl_trancl trancl_rtrancl_trancl | 
| 12428 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 565 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 566 | lemmas transitive_closurep_trans' [trans] = | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 567 | tranclp_trans rtranclp_trans | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 568 | tranclp.trancl_into_trancl tranclp_into_tranclp2 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 569 | rtranclp.rtrancl_into_rtrancl converse_rtranclp_into_rtranclp | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 570 | rtranclp_tranclp_tranclp tranclp_rtranclp_tranclp | 
| 22262 | 571 | |
| 12428 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 kleing parents: 
11327diff
changeset | 572 | declare trancl_into_rtrancl [elim] | 
| 11327 
cd2c27a23df1
Transitive closure is now defined via "inductive".
 berghofe parents: 
11115diff
changeset | 573 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 574 | declare rtranclE [cases set: rtrancl] | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 575 | declare tranclE [cases set: trancl] | 
| 11327 
cd2c27a23df1
Transitive closure is now defined via "inductive".
 berghofe parents: 
11115diff
changeset | 576 | |
| 15551 | 577 | |
| 578 | ||
| 579 | ||
| 580 | ||
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 581 | subsection {* Setup of transitivity reasoner *}
 | 
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 582 | |
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 583 | ML_setup {*
 | 
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 584 | |
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 585 | structure Trancl_Tac = Trancl_Tac_Fun ( | 
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 586 | struct | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 587 | val r_into_trancl = thm "trancl.r_into_trancl"; | 
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 588 | val trancl_trans = thm "trancl_trans"; | 
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 589 | val rtrancl_refl = thm "rtrancl.rtrancl_refl"; | 
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 590 | val r_into_rtrancl = thm "r_into_rtrancl"; | 
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 591 | val trancl_into_rtrancl = thm "trancl_into_rtrancl"; | 
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 592 | val rtrancl_trancl_trancl = thm "rtrancl_trancl_trancl"; | 
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 593 | val trancl_rtrancl_trancl = thm "trancl_rtrancl_trancl"; | 
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 594 | val rtrancl_trans = thm "rtrancl_trans"; | 
| 15096 | 595 | |
| 18372 | 596 | fun decomp (Trueprop $ t) = | 
| 597 |     let fun dec (Const ("op :", _) $ (Const ("Pair", _) $ a $ b) $ rel ) =
 | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 598 |         let fun decr (Const ("Transitive_Closure.rtrancl", _ ) $ r) = (r,"r*")
 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 599 |               | decr (Const ("Transitive_Closure.trancl", _ ) $ r)  = (r,"r+")
 | 
| 18372 | 600 | | decr r = (r,"r"); | 
| 601 | val (rel,r) = decr rel; | |
| 602 | in SOME (a,b,rel,r) end | |
| 603 | | dec _ = NONE | |
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 604 | in dec t end; | 
| 18372 | 605 | |
| 21589 | 606 | end); | 
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 607 | |
| 22262 | 608 | structure Tranclp_Tac = Trancl_Tac_Fun ( | 
| 609 | struct | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 610 | val r_into_trancl = thm "tranclp.r_into_trancl"; | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 611 | val trancl_trans = thm "tranclp_trans"; | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 612 | val rtrancl_refl = thm "rtranclp.rtrancl_refl"; | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 613 | val r_into_rtrancl = thm "r_into_rtranclp"; | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 614 | val trancl_into_rtrancl = thm "tranclp_into_rtranclp"; | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 615 | val rtrancl_trancl_trancl = thm "rtranclp_tranclp_tranclp"; | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 616 | val trancl_rtrancl_trancl = thm "tranclp_rtranclp_tranclp"; | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 617 | val rtrancl_trans = thm "rtranclp_trans"; | 
| 22262 | 618 | |
| 619 | fun decomp (Trueprop $ t) = | |
| 620 | let fun dec (rel $ a $ b) = | |
| 23743 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 621 |         let fun decr (Const ("Transitive_Closure.rtranclp", _ ) $ r) = (r,"r*")
 | 
| 
52fbc991039f
rtrancl and trancl are now defined using inductive_set.
 berghofe parents: 
22422diff
changeset | 622 |               | decr (Const ("Transitive_Closure.tranclp", _ ) $ r)  = (r,"r+")
 | 
| 22262 | 623 | | decr r = (r,"r"); | 
| 624 | val (rel,r) = decr rel; | |
| 625 | in SOME (a, b, Envir.beta_eta_contract rel, r) end | |
| 626 | | dec _ = NONE | |
| 627 | in dec t end; | |
| 628 | ||
| 629 | end); | |
| 630 | ||
| 17876 | 631 | change_simpset (fn ss => ss | 
| 632 | addSolver (mk_solver "Trancl" (fn _ => Trancl_Tac.trancl_tac)) | |
| 22262 | 633 | addSolver (mk_solver "Rtrancl" (fn _ => Trancl_Tac.rtrancl_tac)) | 
| 634 | addSolver (mk_solver "Tranclp" (fn _ => Tranclp_Tac.trancl_tac)) | |
| 635 | addSolver (mk_solver "Rtranclp" (fn _ => Tranclp_Tac.rtrancl_tac))); | |
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 636 | |
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 637 | *} | 
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 638 | |
| 21589 | 639 | (* Optional methods *) | 
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 640 | |
| 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 641 | method_setup trancl = | 
| 21589 | 642 |   {* Method.no_args (Method.SIMPLE_METHOD' Trancl_Tac.trancl_tac) *}
 | 
| 18372 | 643 |   {* simple transitivity reasoner *}
 | 
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 644 | method_setup rtrancl = | 
| 21589 | 645 |   {* Method.no_args (Method.SIMPLE_METHOD' Trancl_Tac.rtrancl_tac) *}
 | 
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 646 |   {* simple transitivity reasoner *}
 | 
| 22262 | 647 | method_setup tranclp = | 
| 648 |   {* Method.no_args (Method.SIMPLE_METHOD' Tranclp_Tac.trancl_tac) *}
 | |
| 649 |   {* simple transitivity reasoner (predicate version) *}
 | |
| 650 | method_setup rtranclp = | |
| 651 |   {* Method.no_args (Method.SIMPLE_METHOD' Tranclp_Tac.rtrancl_tac) *}
 | |
| 652 |   {* simple transitivity reasoner (predicate version) *}
 | |
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14565diff
changeset | 653 | |
| 10213 | 654 | end |