| author | wenzelm | 
| Fri, 07 Dec 2007 22:19:45 +0100 | |
| changeset 25577 | d739f48ef40c | 
| parent 25510 | 38c15efe603b | 
| child 25614 | 0b8baa94b866 | 
| permissions | -rw-r--r-- | 
| 15524 | 1 | (* Title: HOL/Orderings.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson | |
| 4 | *) | |
| 5 | ||
| 21329 | 6 | header {* Syntactic and abstract orders *}
 | 
| 15524 | 7 | |
| 8 | theory Orderings | |
| 23881 | 9 | imports Set Fun | 
| 23263 | 10 | uses | 
| 11 | "~~/src/Provers/order.ML" | |
| 15524 | 12 | begin | 
| 13 | ||
| 22841 | 14 | subsection {* Partial orders *}
 | 
| 15524 | 15 | |
| 22841 | 16 | class order = ord + | 
| 25062 | 17 | assumes less_le: "x < y \<longleftrightarrow> x \<le> y \<and> x \<noteq> y" | 
| 18 | and order_refl [iff]: "x \<le> x" | |
| 19 | and order_trans: "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z" | |
| 20 | assumes antisym: "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y" | |
| 21248 | 21 | begin | 
| 22 | ||
| 15524 | 23 | text {* Reflexivity. *}
 | 
| 24 | ||
| 25062 | 25 | lemma eq_refl: "x = y \<Longrightarrow> x \<le> y" | 
| 15524 | 26 |     -- {* This form is useful with the classical reasoner. *}
 | 
| 23212 | 27 | by (erule ssubst) (rule order_refl) | 
| 15524 | 28 | |
| 25062 | 29 | lemma less_irrefl [iff]: "\<not> x < x" | 
| 23212 | 30 | by (simp add: less_le) | 
| 15524 | 31 | |
| 25062 | 32 | lemma le_less: "x \<le> y \<longleftrightarrow> x < y \<or> x = y" | 
| 15524 | 33 |     -- {* NOT suitable for iff, since it can cause PROOF FAILED. *}
 | 
| 23212 | 34 | by (simp add: less_le) blast | 
| 15524 | 35 | |
| 25062 | 36 | lemma le_imp_less_or_eq: "x \<le> y \<Longrightarrow> x < y \<or> x = y" | 
| 23212 | 37 | unfolding less_le by blast | 
| 15524 | 38 | |
| 25062 | 39 | lemma less_imp_le: "x < y \<Longrightarrow> x \<le> y" | 
| 23212 | 40 | unfolding less_le by blast | 
| 21248 | 41 | |
| 25062 | 42 | lemma less_imp_neq: "x < y \<Longrightarrow> x \<noteq> y" | 
| 23212 | 43 | by (erule contrapos_pn, erule subst, rule less_irrefl) | 
| 21329 | 44 | |
| 45 | ||
| 46 | text {* Useful for simplification, but too risky to include by default. *}
 | |
| 47 | ||
| 25062 | 48 | lemma less_imp_not_eq: "x < y \<Longrightarrow> (x = y) \<longleftrightarrow> False" | 
| 23212 | 49 | by auto | 
| 21329 | 50 | |
| 25062 | 51 | lemma less_imp_not_eq2: "x < y \<Longrightarrow> (y = x) \<longleftrightarrow> False" | 
| 23212 | 52 | by auto | 
| 21329 | 53 | |
| 54 | ||
| 55 | text {* Transitivity rules for calculational reasoning *}
 | |
| 56 | ||
| 25062 | 57 | lemma neq_le_trans: "a \<noteq> b \<Longrightarrow> a \<le> b \<Longrightarrow> a < b" | 
| 23212 | 58 | by (simp add: less_le) | 
| 21329 | 59 | |
| 25062 | 60 | lemma le_neq_trans: "a \<le> b \<Longrightarrow> a \<noteq> b \<Longrightarrow> a < b" | 
| 23212 | 61 | by (simp add: less_le) | 
| 21329 | 62 | |
| 15524 | 63 | |
| 64 | text {* Asymmetry. *}
 | |
| 65 | ||
| 25062 | 66 | lemma less_not_sym: "x < y \<Longrightarrow> \<not> (y < x)" | 
| 23212 | 67 | by (simp add: less_le antisym) | 
| 15524 | 68 | |
| 25062 | 69 | lemma less_asym: "x < y \<Longrightarrow> (\<not> P \<Longrightarrow> y < x) \<Longrightarrow> P" | 
| 23212 | 70 | by (drule less_not_sym, erule contrapos_np) simp | 
| 15524 | 71 | |
| 25062 | 72 | lemma eq_iff: "x = y \<longleftrightarrow> x \<le> y \<and> y \<le> x" | 
| 23212 | 73 | by (blast intro: antisym) | 
| 15524 | 74 | |
| 25062 | 75 | lemma antisym_conv: "y \<le> x \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y" | 
| 23212 | 76 | by (blast intro: antisym) | 
| 15524 | 77 | |
| 25062 | 78 | lemma less_imp_neq: "x < y \<Longrightarrow> x \<noteq> y" | 
| 23212 | 79 | by (erule contrapos_pn, erule subst, rule less_irrefl) | 
| 21248 | 80 | |
| 21083 | 81 | |
| 15524 | 82 | text {* Transitivity. *}
 | 
| 83 | ||
| 25062 | 84 | lemma less_trans: "x < y \<Longrightarrow> y < z \<Longrightarrow> x < z" | 
| 23212 | 85 | by (simp add: less_le) (blast intro: order_trans antisym) | 
| 15524 | 86 | |
| 25062 | 87 | lemma le_less_trans: "x \<le> y \<Longrightarrow> y < z \<Longrightarrow> x < z" | 
| 23212 | 88 | by (simp add: less_le) (blast intro: order_trans antisym) | 
| 15524 | 89 | |
| 25062 | 90 | lemma less_le_trans: "x < y \<Longrightarrow> y \<le> z \<Longrightarrow> x < z" | 
| 23212 | 91 | by (simp add: less_le) (blast intro: order_trans antisym) | 
| 15524 | 92 | |
| 93 | ||
| 94 | text {* Useful for simplification, but too risky to include by default. *}
 | |
| 95 | ||
| 25062 | 96 | lemma less_imp_not_less: "x < y \<Longrightarrow> (\<not> y < x) \<longleftrightarrow> True" | 
| 23212 | 97 | by (blast elim: less_asym) | 
| 15524 | 98 | |
| 25062 | 99 | lemma less_imp_triv: "x < y \<Longrightarrow> (y < x \<longrightarrow> P) \<longleftrightarrow> True" | 
| 23212 | 100 | by (blast elim: less_asym) | 
| 15524 | 101 | |
| 21248 | 102 | |
| 21083 | 103 | text {* Transitivity rules for calculational reasoning *}
 | 
| 15524 | 104 | |
| 25062 | 105 | lemma less_asym': "a < b \<Longrightarrow> b < a \<Longrightarrow> P" | 
| 23212 | 106 | by (rule less_asym) | 
| 21248 | 107 | |
| 22916 | 108 | |
| 109 | text {* Reverse order *}
 | |
| 110 | ||
| 111 | lemma order_reverse: | |
| 25103 | 112 | "order (op \<ge>) (op >)" | 
| 23212 | 113 | by unfold_locales | 
| 114 | (simp add: less_le, auto intro: antisym order_trans) | |
| 22916 | 115 | |
| 21248 | 116 | end | 
| 15524 | 117 | |
| 21329 | 118 | |
| 119 | subsection {* Linear (total) orders *}
 | |
| 120 | ||
| 22316 | 121 | class linorder = order + | 
| 25207 | 122 | assumes linear: "x \<le> y \<or> y \<le> x" | 
| 21248 | 123 | begin | 
| 124 | ||
| 25062 | 125 | lemma less_linear: "x < y \<or> x = y \<or> y < x" | 
| 23212 | 126 | unfolding less_le using less_le linear by blast | 
| 21248 | 127 | |
| 25062 | 128 | lemma le_less_linear: "x \<le> y \<or> y < x" | 
| 23212 | 129 | by (simp add: le_less less_linear) | 
| 21248 | 130 | |
| 131 | lemma le_cases [case_names le ge]: | |
| 25062 | 132 | "(x \<le> y \<Longrightarrow> P) \<Longrightarrow> (y \<le> x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 23212 | 133 | using linear by blast | 
| 21248 | 134 | |
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 135 | lemma linorder_cases [case_names less equal greater]: | 
| 25062 | 136 | "(x < y \<Longrightarrow> P) \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> (y < x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 23212 | 137 | using less_linear by blast | 
| 21248 | 138 | |
| 25062 | 139 | lemma not_less: "\<not> x < y \<longleftrightarrow> y \<le> x" | 
| 23212 | 140 | apply (simp add: less_le) | 
| 141 | using linear apply (blast intro: antisym) | |
| 142 | done | |
| 143 | ||
| 144 | lemma not_less_iff_gr_or_eq: | |
| 25062 | 145 | "\<not>(x < y) \<longleftrightarrow> (x > y | x = y)" | 
| 23212 | 146 | apply(simp add:not_less le_less) | 
| 147 | apply blast | |
| 148 | done | |
| 15524 | 149 | |
| 25062 | 150 | lemma not_le: "\<not> x \<le> y \<longleftrightarrow> y < x" | 
| 23212 | 151 | apply (simp add: less_le) | 
| 152 | using linear apply (blast intro: antisym) | |
| 153 | done | |
| 15524 | 154 | |
| 25062 | 155 | lemma neq_iff: "x \<noteq> y \<longleftrightarrow> x < y \<or> y < x" | 
| 23212 | 156 | by (cut_tac x = x and y = y in less_linear, auto) | 
| 15524 | 157 | |
| 25062 | 158 | lemma neqE: "x \<noteq> y \<Longrightarrow> (x < y \<Longrightarrow> R) \<Longrightarrow> (y < x \<Longrightarrow> R) \<Longrightarrow> R" | 
| 23212 | 159 | by (simp add: neq_iff) blast | 
| 15524 | 160 | |
| 25062 | 161 | lemma antisym_conv1: "\<not> x < y \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y" | 
| 23212 | 162 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 163 | |
| 25062 | 164 | lemma antisym_conv2: "x \<le> y \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y" | 
| 23212 | 165 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 166 | |
| 25062 | 167 | lemma antisym_conv3: "\<not> y < x \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y" | 
| 23212 | 168 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 169 | |
| 16796 | 170 | text{*Replacing the old Nat.leI*}
 | 
| 25062 | 171 | lemma leI: "\<not> x < y \<Longrightarrow> y \<le> x" | 
| 23212 | 172 | unfolding not_less . | 
| 16796 | 173 | |
| 25062 | 174 | lemma leD: "y \<le> x \<Longrightarrow> \<not> x < y" | 
| 23212 | 175 | unfolding not_less . | 
| 16796 | 176 | |
| 177 | (*FIXME inappropriate name (or delete altogether)*) | |
| 25062 | 178 | lemma not_leE: "\<not> y \<le> x \<Longrightarrow> x < y" | 
| 23212 | 179 | unfolding not_le . | 
| 21248 | 180 | |
| 22916 | 181 | |
| 182 | text {* Reverse order *}
 | |
| 183 | ||
| 184 | lemma linorder_reverse: | |
| 25103 | 185 | "linorder (op \<ge>) (op >)" | 
| 23212 | 186 | by unfold_locales | 
| 187 | (simp add: less_le, auto intro: antisym order_trans simp add: linear) | |
| 22916 | 188 | |
| 189 | ||
| 23881 | 190 | text {* min/max *}
 | 
| 191 | ||
| 192 | text {* for historic reasons, definitions are done in context ord *}
 | |
| 193 | ||
| 194 | definition (in ord) | |
| 195 | min :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where | |
| 25062 | 196 | [code unfold, code inline del]: "min a b = (if a \<le> b then a else b)" | 
| 23881 | 197 | |
| 198 | definition (in ord) | |
| 199 | max :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where | |
| 25062 | 200 | [code unfold, code inline del]: "max a b = (if a \<le> b then b else a)" | 
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 201 | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 202 | lemma min_le_iff_disj: | 
| 25062 | 203 | "min x y \<le> z \<longleftrightarrow> x \<le> z \<or> y \<le> z" | 
| 23212 | 204 | unfolding min_def using linear by (auto intro: order_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 205 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 206 | lemma le_max_iff_disj: | 
| 25062 | 207 | "z \<le> max x y \<longleftrightarrow> z \<le> x \<or> z \<le> y" | 
| 23212 | 208 | unfolding max_def using linear by (auto intro: order_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 209 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 210 | lemma min_less_iff_disj: | 
| 25062 | 211 | "min x y < z \<longleftrightarrow> x < z \<or> y < z" | 
| 23212 | 212 | unfolding min_def le_less using less_linear by (auto intro: less_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 213 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 214 | lemma less_max_iff_disj: | 
| 25062 | 215 | "z < max x y \<longleftrightarrow> z < x \<or> z < y" | 
| 23212 | 216 | unfolding max_def le_less using less_linear by (auto intro: less_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 217 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 218 | lemma min_less_iff_conj [simp]: | 
| 25062 | 219 | "z < min x y \<longleftrightarrow> z < x \<and> z < y" | 
| 23212 | 220 | unfolding min_def le_less using less_linear by (auto intro: less_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 221 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 222 | lemma max_less_iff_conj [simp]: | 
| 25062 | 223 | "max x y < z \<longleftrightarrow> x < z \<and> y < z" | 
| 23212 | 224 | unfolding max_def le_less using less_linear by (auto intro: less_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 225 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23948diff
changeset | 226 | lemma split_min [noatp]: | 
| 25062 | 227 | "P (min i j) \<longleftrightarrow> (i \<le> j \<longrightarrow> P i) \<and> (\<not> i \<le> j \<longrightarrow> P j)" | 
| 23212 | 228 | by (simp add: min_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 229 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23948diff
changeset | 230 | lemma split_max [noatp]: | 
| 25062 | 231 | "P (max i j) \<longleftrightarrow> (i \<le> j \<longrightarrow> P j) \<and> (\<not> i \<le> j \<longrightarrow> P i)" | 
| 23212 | 232 | by (simp add: max_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 233 | |
| 21248 | 234 | end | 
| 235 | ||
| 23948 | 236 | |
| 21083 | 237 | subsection {* Reasoning tools setup *}
 | 
| 238 | ||
| 21091 | 239 | ML {*
 | 
| 240 | ||
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 241 | signature ORDERS = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 242 | sig | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 243 | val print_structures: Proof.context -> unit | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 244 | val setup: theory -> theory | 
| 24704 
9a95634ab135
Transitivity reasoner gets additional argument of premises to improve integration with simplifier.
 ballarin parents: 
24641diff
changeset | 245 | val order_tac: thm list -> Proof.context -> int -> tactic | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 246 | end; | 
| 21091 | 247 | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 248 | structure Orders: ORDERS = | 
| 21248 | 249 | struct | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 250 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 251 | (** Theory and context data **) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 252 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 253 | fun struct_eq ((s1: string, ts1), (s2, ts2)) = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 254 | (s1 = s2) andalso eq_list (op aconv) (ts1, ts2); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 255 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 256 | structure Data = GenericDataFun | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 257 | ( | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 258 | type T = ((string * term list) * Order_Tac.less_arith) list; | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 259 | (* Order structures: | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 260 | identifier of the structure, list of operations and record of theorems | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 261 | needed to set up the transitivity reasoner, | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 262 | identifier and operations identify the structure uniquely. *) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 263 | val empty = []; | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 264 | val extend = I; | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 265 | fun merge _ = AList.join struct_eq (K fst); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 266 | ); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 267 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 268 | fun print_structures ctxt = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 269 | let | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 270 | val structs = Data.get (Context.Proof ctxt); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 271 | fun pretty_term t = Pretty.block | 
| 24920 | 272 | [Pretty.quote (Syntax.pretty_term ctxt t), Pretty.brk 1, | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 273 | Pretty.str "::", Pretty.brk 1, | 
| 24920 | 274 | Pretty.quote (Syntax.pretty_typ ctxt (type_of t))]; | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 275 | fun pretty_struct ((s, ts), _) = Pretty.block | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 276 | [Pretty.str s, Pretty.str ":", Pretty.brk 1, | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 277 |        Pretty.enclose "(" ")" (Pretty.breaks (map pretty_term ts))];
 | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 278 | in | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 279 | Pretty.writeln (Pretty.big_list "Order structures:" (map pretty_struct structs)) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 280 | end; | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 281 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 282 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 283 | (** Method **) | 
| 21091 | 284 | |
| 24704 
9a95634ab135
Transitivity reasoner gets additional argument of premises to improve integration with simplifier.
 ballarin parents: 
24641diff
changeset | 285 | fun struct_tac ((s, [eq, le, less]), thms) prems = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 286 | let | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 287 | fun decomp thy (Trueprop $ t) = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 288 | let | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 289 | fun excluded t = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 290 | (* exclude numeric types: linear arithmetic subsumes transitivity *) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 291 | let val T = type_of t | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 292 | in | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 293 | T = HOLogic.natT orelse T = HOLogic.intT orelse T = HOLogic.realT | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 294 | end; | 
| 24741 
a53f5db5acbb
Fixed setup of transitivity reasoner (function decomp).
 ballarin parents: 
24704diff
changeset | 295 | fun rel (bin_op $ t1 $ t2) = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 296 | if excluded t1 then NONE | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 297 | else if Pattern.matches thy (eq, bin_op) then SOME (t1, "=", t2) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 298 | else if Pattern.matches thy (le, bin_op) then SOME (t1, "<=", t2) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 299 | else if Pattern.matches thy (less, bin_op) then SOME (t1, "<", t2) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 300 | else NONE | 
| 24741 
a53f5db5acbb
Fixed setup of transitivity reasoner (function decomp).
 ballarin parents: 
24704diff
changeset | 301 | | rel _ = NONE; | 
| 
a53f5db5acbb
Fixed setup of transitivity reasoner (function decomp).
 ballarin parents: 
24704diff
changeset | 302 | 	fun dec (Const (@{const_name Not}, _) $ t) = (case rel t
 | 
| 
a53f5db5acbb
Fixed setup of transitivity reasoner (function decomp).
 ballarin parents: 
24704diff
changeset | 303 | of NONE => NONE | 
| 
a53f5db5acbb
Fixed setup of transitivity reasoner (function decomp).
 ballarin parents: 
24704diff
changeset | 304 | | SOME (t1, rel, t2) => SOME (t1, "~" ^ rel, t2)) | 
| 
a53f5db5acbb
Fixed setup of transitivity reasoner (function decomp).
 ballarin parents: 
24704diff
changeset | 305 | | dec x = rel x; | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 306 | in dec t end; | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 307 | in | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 308 | case s of | 
| 24704 
9a95634ab135
Transitivity reasoner gets additional argument of premises to improve integration with simplifier.
 ballarin parents: 
24641diff
changeset | 309 | "order" => Order_Tac.partial_tac decomp thms prems | 
| 
9a95634ab135
Transitivity reasoner gets additional argument of premises to improve integration with simplifier.
 ballarin parents: 
24641diff
changeset | 310 | | "linorder" => Order_Tac.linear_tac decomp thms prems | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 311 |     | _ => error ("Unknown kind of order `" ^ s ^ "' encountered in transitivity reasoner.")
 | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 312 | end | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 313 | |
| 24704 
9a95634ab135
Transitivity reasoner gets additional argument of premises to improve integration with simplifier.
 ballarin parents: 
24641diff
changeset | 314 | fun order_tac prems ctxt = | 
| 
9a95634ab135
Transitivity reasoner gets additional argument of premises to improve integration with simplifier.
 ballarin parents: 
24641diff
changeset | 315 | FIRST' (map (fn s => CHANGED o struct_tac s prems) (Data.get (Context.Proof ctxt))); | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 316 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 317 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 318 | (** Attribute **) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 319 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 320 | fun add_struct_thm s tag = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 321 | Thm.declaration_attribute | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 322 | (fn thm => Data.map (AList.map_default struct_eq (s, Order_Tac.empty TrueI) (Order_Tac.update tag thm))); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 323 | fun del_struct s = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 324 | Thm.declaration_attribute | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 325 | (fn _ => Data.map (AList.delete struct_eq s)); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 326 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 327 | val attribute = Attrib.syntax | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 328 | (Scan.lift ((Args.add -- Args.name >> (fn (_, s) => SOME s) || | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 329 | Args.del >> K NONE) --| Args.colon (* FIXME || | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 330 | Scan.succeed true *) ) -- Scan.lift Args.name -- | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 331 | Scan.repeat Args.term | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 332 | >> (fn ((SOME tag, n), ts) => add_struct_thm (n, ts) tag | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 333 | | ((NONE, n), ts) => del_struct (n, ts))); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 334 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 335 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 336 | (** Diagnostic command **) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 337 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 338 | val print = Toplevel.unknown_context o | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 339 | Toplevel.keep (Toplevel.node_case | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 340 | (Context.cases (print_structures o ProofContext.init) print_structures) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 341 | (print_structures o Proof.context_of)); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 342 | |
| 24867 | 343 | val _ = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 344 | OuterSyntax.improper_command "print_orders" | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 345 | "print order structures available to transitivity reasoner" OuterKeyword.diag | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 346 | (Scan.succeed (Toplevel.no_timing o print)); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 347 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 348 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 349 | (** Setup **) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 350 | |
| 24867 | 351 | val setup = | 
| 352 | Method.add_methods | |
| 353 |     [("order", Method.ctxt_args (Method.SIMPLE_METHOD' o order_tac []), "transitivity reasoner")] #>
 | |
| 354 |   Attrib.add_attributes [("order", attribute, "theorems controlling transitivity reasoner")];
 | |
| 21091 | 355 | |
| 356 | end; | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 357 | |
| 21091 | 358 | *} | 
| 359 | ||
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 360 | setup Orders.setup | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 361 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 362 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 363 | text {* Declarations to set up transitivity reasoner of partial and linear orders. *}
 | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 364 | |
| 25076 | 365 | context order | 
| 366 | begin | |
| 367 | ||
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 368 | (* The type constraint on @{term op =} below is necessary since the operation
 | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 369 | is not a parameter of the locale. *) | 
| 25076 | 370 | |
| 371 | lemmas | |
| 372 | [order add less_reflE: order "op = :: 'a \<Rightarrow> 'a \<Rightarrow> bool" "op <=" "op <"] = | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 373 | less_irrefl [THEN notE] | 
| 25076 | 374 | lemmas | 
| 25062 | 375 | [order add le_refl: order "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 376 | order_refl | 
| 25076 | 377 | lemmas | 
| 25062 | 378 | [order add less_imp_le: order "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 379 | less_imp_le | 
| 25076 | 380 | lemmas | 
| 25062 | 381 | [order add eqI: order "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 382 | antisym | 
| 25076 | 383 | lemmas | 
| 25062 | 384 | [order add eqD1: order "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 385 | eq_refl | 
| 25076 | 386 | lemmas | 
| 25062 | 387 | [order add eqD2: order "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 388 | sym [THEN eq_refl] | 
| 25076 | 389 | lemmas | 
| 25062 | 390 | [order add less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 391 | less_trans | 
| 25076 | 392 | lemmas | 
| 25062 | 393 | [order add less_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 394 | less_le_trans | 
| 25076 | 395 | lemmas | 
| 25062 | 396 | [order add le_less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 397 | le_less_trans | 
| 25076 | 398 | lemmas | 
| 25062 | 399 | [order add le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 400 | order_trans | 
| 25076 | 401 | lemmas | 
| 25062 | 402 | [order add le_neq_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 403 | le_neq_trans | 
| 25076 | 404 | lemmas | 
| 25062 | 405 | [order add neq_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 406 | neq_le_trans | 
| 25076 | 407 | lemmas | 
| 25062 | 408 | [order add less_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 409 | less_imp_neq | 
| 25076 | 410 | lemmas | 
| 25062 | 411 | [order add eq_neq_eq_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 412 | eq_neq_eq_imp_neq | 
| 25076 | 413 | lemmas | 
| 25062 | 414 | [order add not_sym: order "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 415 | not_sym | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 416 | |
| 25076 | 417 | end | 
| 418 | ||
| 419 | context linorder | |
| 420 | begin | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 421 | |
| 25076 | 422 | lemmas | 
| 423 | [order del: order "op = :: 'a => 'a => bool" "op <=" "op <"] = _ | |
| 424 | ||
| 425 | lemmas | |
| 25062 | 426 | [order add less_reflE: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 427 | less_irrefl [THEN notE] | 
| 25076 | 428 | lemmas | 
| 25062 | 429 | [order add le_refl: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 430 | order_refl | 
| 25076 | 431 | lemmas | 
| 25062 | 432 | [order add less_imp_le: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 433 | less_imp_le | 
| 25076 | 434 | lemmas | 
| 25062 | 435 | [order add not_lessI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 436 | not_less [THEN iffD2] | 
| 25076 | 437 | lemmas | 
| 25062 | 438 | [order add not_leI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 439 | not_le [THEN iffD2] | 
| 25076 | 440 | lemmas | 
| 25062 | 441 | [order add not_lessD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 442 | not_less [THEN iffD1] | 
| 25076 | 443 | lemmas | 
| 25062 | 444 | [order add not_leD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 445 | not_le [THEN iffD1] | 
| 25076 | 446 | lemmas | 
| 25062 | 447 | [order add eqI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 448 | antisym | 
| 25076 | 449 | lemmas | 
| 25062 | 450 | [order add eqD1: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 451 | eq_refl | 
| 25076 | 452 | lemmas | 
| 25062 | 453 | [order add eqD2: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 454 | sym [THEN eq_refl] | 
| 25076 | 455 | lemmas | 
| 25062 | 456 | [order add less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 457 | less_trans | 
| 25076 | 458 | lemmas | 
| 25062 | 459 | [order add less_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 460 | less_le_trans | 
| 25076 | 461 | lemmas | 
| 25062 | 462 | [order add le_less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 463 | le_less_trans | 
| 25076 | 464 | lemmas | 
| 25062 | 465 | [order add le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 466 | order_trans | 
| 25076 | 467 | lemmas | 
| 25062 | 468 | [order add le_neq_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 469 | le_neq_trans | 
| 25076 | 470 | lemmas | 
| 25062 | 471 | [order add neq_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 472 | neq_le_trans | 
| 25076 | 473 | lemmas | 
| 25062 | 474 | [order add less_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 475 | less_imp_neq | 
| 25076 | 476 | lemmas | 
| 25062 | 477 | [order add eq_neq_eq_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 478 | eq_neq_eq_imp_neq | 
| 25076 | 479 | lemmas | 
| 25062 | 480 | [order add not_sym: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 481 | not_sym | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 482 | |
| 25076 | 483 | end | 
| 484 | ||
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 485 | |
| 21083 | 486 | setup {*
 | 
| 487 | let | |
| 488 | ||
| 489 | fun prp t thm = (#prop (rep_thm thm) = t); | |
| 15524 | 490 | |
| 21083 | 491 | fun prove_antisym_le sg ss ((le as Const(_,T)) $ r $ s) = | 
| 492 | let val prems = prems_of_ss ss; | |
| 22916 | 493 |       val less = Const (@{const_name less}, T);
 | 
| 21083 | 494 | val t = HOLogic.mk_Trueprop(le $ s $ r); | 
| 495 | in case find_first (prp t) prems of | |
| 496 | NONE => | |
| 497 | let val t = HOLogic.mk_Trueprop(HOLogic.Not $ (less $ r $ s)) | |
| 498 | in case find_first (prp t) prems of | |
| 499 | NONE => NONE | |
| 24422 | 500 |             | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv1}))
 | 
| 21083 | 501 | end | 
| 24422 | 502 |      | SOME thm => SOME(mk_meta_eq(thm RS @{thm order_class.antisym_conv}))
 | 
| 21083 | 503 | end | 
| 504 | handle THM _ => NONE; | |
| 15524 | 505 | |
| 21083 | 506 | fun prove_antisym_less sg ss (NotC $ ((less as Const(_,T)) $ r $ s)) = | 
| 507 | let val prems = prems_of_ss ss; | |
| 22916 | 508 |       val le = Const (@{const_name less_eq}, T);
 | 
| 21083 | 509 | val t = HOLogic.mk_Trueprop(le $ r $ s); | 
| 510 | in case find_first (prp t) prems of | |
| 511 | NONE => | |
| 512 | let val t = HOLogic.mk_Trueprop(NotC $ (less $ s $ r)) | |
| 513 | in case find_first (prp t) prems of | |
| 514 | NONE => NONE | |
| 24422 | 515 |             | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv3}))
 | 
| 21083 | 516 | end | 
| 24422 | 517 |      | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv2}))
 | 
| 21083 | 518 | end | 
| 519 | handle THM _ => NONE; | |
| 15524 | 520 | |
| 21248 | 521 | fun add_simprocs procs thy = | 
| 522 | (Simplifier.change_simpset_of thy (fn ss => ss | |
| 523 | addsimprocs (map (fn (name, raw_ts, proc) => | |
| 524 | Simplifier.simproc thy name raw_ts proc)) procs); thy); | |
| 525 | fun add_solver name tac thy = | |
| 526 | (Simplifier.change_simpset_of thy (fn ss => ss addSolver | |
| 24704 
9a95634ab135
Transitivity reasoner gets additional argument of premises to improve integration with simplifier.
 ballarin parents: 
24641diff
changeset | 527 | (mk_solver' name (fn ss => tac (MetaSimplifier.prems_of_ss ss) (MetaSimplifier.the_context ss)))); thy); | 
| 21083 | 528 | |
| 529 | in | |
| 21248 | 530 | add_simprocs [ | 
| 531 |        ("antisym le", ["(x::'a::order) <= y"], prove_antisym_le),
 | |
| 532 |        ("antisym less", ["~ (x::'a::linorder) < y"], prove_antisym_less)
 | |
| 533 | ] | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 534 | #> add_solver "Transitivity" Orders.order_tac | 
| 21248 | 535 | (* Adding the transitivity reasoners also as safe solvers showed a slight | 
| 536 | speed up, but the reasoning strength appears to be not higher (at least | |
| 537 | no breaking of additional proofs in the entire HOL distribution, as | |
| 538 | of 5 March 2004, was observed). *) | |
| 21083 | 539 | end | 
| 540 | *} | |
| 15524 | 541 | |
| 542 | ||
| 24422 | 543 | subsection {* Dense orders *}
 | 
| 544 | ||
| 545 | class dense_linear_order = linorder + | |
| 25076 | 546 | assumes gt_ex: "\<exists>y. x < y" | 
| 547 | and lt_ex: "\<exists>y. y < x" | |
| 548 | and dense: "x < y \<Longrightarrow> (\<exists>z. x < z \<and> z < y)" | |
| 24422 | 549 | (*see further theory Dense_Linear_Order*) | 
| 25076 | 550 | begin | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 551 | |
| 24422 | 552 | lemma interval_empty_iff: | 
| 25076 | 553 |   "{y. x < y \<and> y < z} = {} \<longleftrightarrow> \<not> x < z"
 | 
| 24422 | 554 | by (auto dest: dense) | 
| 555 | ||
| 25076 | 556 | end | 
| 557 | ||
| 24422 | 558 | subsection {* Name duplicates *}
 | 
| 559 | ||
| 560 | lemmas order_less_le = less_le | |
| 561 | lemmas order_eq_refl = order_class.eq_refl | |
| 562 | lemmas order_less_irrefl = order_class.less_irrefl | |
| 563 | lemmas order_le_less = order_class.le_less | |
| 564 | lemmas order_le_imp_less_or_eq = order_class.le_imp_less_or_eq | |
| 565 | lemmas order_less_imp_le = order_class.less_imp_le | |
| 566 | lemmas order_less_imp_not_eq = order_class.less_imp_not_eq | |
| 567 | lemmas order_less_imp_not_eq2 = order_class.less_imp_not_eq2 | |
| 568 | lemmas order_neq_le_trans = order_class.neq_le_trans | |
| 569 | lemmas order_le_neq_trans = order_class.le_neq_trans | |
| 570 | ||
| 571 | lemmas order_antisym = antisym | |
| 572 | lemmas order_less_not_sym = order_class.less_not_sym | |
| 573 | lemmas order_less_asym = order_class.less_asym | |
| 574 | lemmas order_eq_iff = order_class.eq_iff | |
| 575 | lemmas order_antisym_conv = order_class.antisym_conv | |
| 576 | lemmas order_less_trans = order_class.less_trans | |
| 577 | lemmas order_le_less_trans = order_class.le_less_trans | |
| 578 | lemmas order_less_le_trans = order_class.less_le_trans | |
| 579 | lemmas order_less_imp_not_less = order_class.less_imp_not_less | |
| 580 | lemmas order_less_imp_triv = order_class.less_imp_triv | |
| 581 | lemmas order_less_asym' = order_class.less_asym' | |
| 582 | ||
| 583 | lemmas linorder_linear = linear | |
| 584 | lemmas linorder_less_linear = linorder_class.less_linear | |
| 585 | lemmas linorder_le_less_linear = linorder_class.le_less_linear | |
| 586 | lemmas linorder_le_cases = linorder_class.le_cases | |
| 587 | lemmas linorder_not_less = linorder_class.not_less | |
| 588 | lemmas linorder_not_le = linorder_class.not_le | |
| 589 | lemmas linorder_neq_iff = linorder_class.neq_iff | |
| 590 | lemmas linorder_neqE = linorder_class.neqE | |
| 591 | lemmas linorder_antisym_conv1 = linorder_class.antisym_conv1 | |
| 592 | lemmas linorder_antisym_conv2 = linorder_class.antisym_conv2 | |
| 593 | lemmas linorder_antisym_conv3 = linorder_class.antisym_conv3 | |
| 594 | ||
| 595 | ||
| 21083 | 596 | subsection {* Bounded quantifiers *}
 | 
| 597 | ||
| 598 | syntax | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 599 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3ALL _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 600 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3EX _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 601 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _<=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 602 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _<=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 603 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 604 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3ALL _>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 605 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3EX _>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 606 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _>=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 607 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _>=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 608 | |
| 609 | syntax (xsymbols) | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 610 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 611 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 612 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 613 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 614 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 615 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 616 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 617 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 618 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 619 | |
| 620 | syntax (HOL) | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 621 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3! _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 622 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3? _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 623 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3! _<=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 624 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3? _<=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 625 | |
| 626 | syntax (HTML output) | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 627 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 628 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 629 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 630 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 631 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 632 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 633 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 634 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 635 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 636 | |
| 637 | translations | |
| 638 | "ALL x<y. P" => "ALL x. x < y \<longrightarrow> P" | |
| 639 | "EX x<y. P" => "EX x. x < y \<and> P" | |
| 640 | "ALL x<=y. P" => "ALL x. x <= y \<longrightarrow> P" | |
| 641 | "EX x<=y. P" => "EX x. x <= y \<and> P" | |
| 642 | "ALL x>y. P" => "ALL x. x > y \<longrightarrow> P" | |
| 643 | "EX x>y. P" => "EX x. x > y \<and> P" | |
| 644 | "ALL x>=y. P" => "ALL x. x >= y \<longrightarrow> P" | |
| 645 | "EX x>=y. P" => "EX x. x >= y \<and> P" | |
| 646 | ||
| 647 | print_translation {*
 | |
| 648 | let | |
| 22916 | 649 |   val All_binder = Syntax.binder_name @{const_syntax All};
 | 
| 650 |   val Ex_binder = Syntax.binder_name @{const_syntax Ex};
 | |
| 22377 | 651 |   val impl = @{const_syntax "op -->"};
 | 
| 652 |   val conj = @{const_syntax "op &"};
 | |
| 22916 | 653 |   val less = @{const_syntax less};
 | 
| 654 |   val less_eq = @{const_syntax less_eq};
 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 655 | |
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 656 | val trans = | 
| 21524 | 657 |    [((All_binder, impl, less), ("_All_less", "_All_greater")),
 | 
| 658 |     ((All_binder, impl, less_eq), ("_All_less_eq", "_All_greater_eq")),
 | |
| 659 |     ((Ex_binder, conj, less), ("_Ex_less", "_Ex_greater")),
 | |
| 660 |     ((Ex_binder, conj, less_eq), ("_Ex_less_eq", "_Ex_greater_eq"))];
 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 661 | |
| 22344 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 662 | fun matches_bound v t = | 
| 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 663 |      case t of (Const ("_bound", _) $ Free (v', _)) => (v = v')
 | 
| 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 664 | | _ => false | 
| 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 665 | fun contains_var v = Term.exists_subterm (fn Free (x, _) => x = v | _ => false) | 
| 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 666 | fun mk v c n P = Syntax.const c $ Syntax.mark_bound v $ n $ P | 
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 667 | |
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 668 | fun tr' q = (q, | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 669 |     fn [Const ("_bound", _) $ Free (v, _), Const (c, _) $ (Const (d, _) $ t $ u) $ P] =>
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 670 | (case AList.lookup (op =) trans (q, c, d) of | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 671 | NONE => raise Match | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 672 | | SOME (l, g) => | 
| 22344 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 673 | if matches_bound v t andalso not (contains_var v u) then mk v l u P | 
| 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 674 | else if matches_bound v u andalso not (contains_var v t) then mk v g t P | 
| 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 675 | else raise Match) | 
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 676 | | _ => raise Match); | 
| 21524 | 677 | in [tr' All_binder, tr' Ex_binder] end | 
| 21083 | 678 | *} | 
| 679 | ||
| 680 | ||
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 681 | subsection {* Transitivity reasoning *}
 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 682 | |
| 25193 | 683 | context ord | 
| 684 | begin | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 685 | |
| 25193 | 686 | lemma ord_le_eq_trans: "a \<le> b \<Longrightarrow> b = c \<Longrightarrow> a \<le> c" | 
| 687 | by (rule subst) | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 688 | |
| 25193 | 689 | lemma ord_eq_le_trans: "a = b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c" | 
| 690 | by (rule ssubst) | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 691 | |
| 25193 | 692 | lemma ord_less_eq_trans: "a < b \<Longrightarrow> b = c \<Longrightarrow> a < c" | 
| 693 | by (rule subst) | |
| 694 | ||
| 695 | lemma ord_eq_less_trans: "a = b \<Longrightarrow> b < c \<Longrightarrow> a < c" | |
| 696 | by (rule ssubst) | |
| 697 | ||
| 698 | end | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 699 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 700 | lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 701 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 702 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 703 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 704 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 705 | also assume "f b < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 706 | finally (order_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 707 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 708 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 709 | lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 710 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 711 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 712 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 713 | assume "a < f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 714 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 715 | finally (order_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 716 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 717 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 718 | lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 719 | (!!x y. x <= y ==> f x <= f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 720 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 721 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 722 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 723 | also assume "f b < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 724 | finally (order_le_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 725 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 726 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 727 | lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 728 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 729 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 730 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 731 | assume "a <= f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 732 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 733 | finally (order_le_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 734 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 735 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 736 | lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 737 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 738 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 739 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 740 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 741 | also assume "f b <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 742 | finally (order_less_le_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 743 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 744 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 745 | lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 746 | (!!x y. x <= y ==> f x <= f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 747 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 748 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 749 | assume "a < f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 750 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 751 | finally (order_less_le_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 752 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 753 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 754 | lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 755 | (!!x y. x <= y ==> f x <= f y) ==> a <= f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 756 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 757 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 758 | assume "a <= f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 759 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 760 | finally (order_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 761 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 762 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 763 | lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 764 | (!!x y. x <= y ==> f x <= f y) ==> f a <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 765 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 766 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 767 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 768 | also assume "f b <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 769 | finally (order_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 770 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 771 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 772 | lemma ord_le_eq_subst: "a <= b ==> f b = c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 773 | (!!x y. x <= y ==> f x <= f y) ==> f a <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 774 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 775 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 776 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 777 | also assume "f b = c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 778 | finally (ord_le_eq_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 779 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 780 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 781 | lemma ord_eq_le_subst: "a = f b ==> b <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 782 | (!!x y. x <= y ==> f x <= f y) ==> a <= f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 783 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 784 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 785 | assume "a = f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 786 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 787 | finally (ord_eq_le_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 788 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 789 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 790 | lemma ord_less_eq_subst: "a < b ==> f b = c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 791 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 792 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 793 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 794 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 795 | also assume "f b = c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 796 | finally (ord_less_eq_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 797 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 798 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 799 | lemma ord_eq_less_subst: "a = f b ==> b < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 800 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 801 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 802 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 803 | assume "a = f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 804 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 805 | finally (ord_eq_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 806 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 807 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 808 | text {*
 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 809 | Note that this list of rules is in reverse order of priorities. | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 810 | *} | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 811 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 812 | lemmas order_trans_rules [trans] = | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 813 | order_less_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 814 | order_less_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 815 | order_le_less_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 816 | order_le_less_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 817 | order_less_le_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 818 | order_less_le_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 819 | order_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 820 | order_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 821 | ord_le_eq_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 822 | ord_eq_le_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 823 | ord_less_eq_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 824 | ord_eq_less_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 825 | forw_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 826 | back_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 827 | rev_mp | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 828 | mp | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 829 | order_neq_le_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 830 | order_le_neq_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 831 | order_less_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 832 | order_less_asym' | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 833 | order_le_less_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 834 | order_less_le_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 835 | order_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 836 | order_antisym | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 837 | ord_le_eq_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 838 | ord_eq_le_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 839 | ord_less_eq_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 840 | ord_eq_less_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 841 | trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 842 | |
| 21083 | 843 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 844 | (* FIXME cleanup *) | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 845 | |
| 21083 | 846 | text {* These support proving chains of decreasing inequalities
 | 
| 847 | a >= b >= c ... in Isar proofs. *} | |
| 848 | ||
| 849 | lemma xt1: | |
| 850 | "a = b ==> b > c ==> a > c" | |
| 851 | "a > b ==> b = c ==> a > c" | |
| 852 | "a = b ==> b >= c ==> a >= c" | |
| 853 | "a >= b ==> b = c ==> a >= c" | |
| 854 | "(x::'a::order) >= y ==> y >= x ==> x = y" | |
| 855 | "(x::'a::order) >= y ==> y >= z ==> x >= z" | |
| 856 | "(x::'a::order) > y ==> y >= z ==> x > z" | |
| 857 | "(x::'a::order) >= y ==> y > z ==> x > z" | |
| 23417 | 858 | "(a::'a::order) > b ==> b > a ==> P" | 
| 21083 | 859 | "(x::'a::order) > y ==> y > z ==> x > z" | 
| 860 | "(a::'a::order) >= b ==> a ~= b ==> a > b" | |
| 861 | "(a::'a::order) ~= b ==> a >= b ==> a > b" | |
| 862 | "a = f b ==> b > c ==> (!!x y. x > y ==> f x > f y) ==> a > f c" | |
| 863 | "a > b ==> f b = c ==> (!!x y. x > y ==> f x > f y) ==> f a > c" | |
| 864 | "a = f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" | |
| 865 | "a >= b ==> f b = c ==> (!! x y. x >= y ==> f x >= f y) ==> f a >= c" | |
| 25076 | 866 | by auto | 
| 21083 | 867 | |
| 868 | lemma xt2: | |
| 869 | "(a::'a::order) >= f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" | |
| 870 | by (subgoal_tac "f b >= f c", force, force) | |
| 871 | ||
| 872 | lemma xt3: "(a::'a::order) >= b ==> (f b::'b::order) >= c ==> | |
| 873 | (!!x y. x >= y ==> f x >= f y) ==> f a >= c" | |
| 874 | by (subgoal_tac "f a >= f b", force, force) | |
| 875 | ||
| 876 | lemma xt4: "(a::'a::order) > f b ==> (b::'b::order) >= c ==> | |
| 877 | (!!x y. x >= y ==> f x >= f y) ==> a > f c" | |
| 878 | by (subgoal_tac "f b >= f c", force, force) | |
| 879 | ||
| 880 | lemma xt5: "(a::'a::order) > b ==> (f b::'b::order) >= c==> | |
| 881 | (!!x y. x > y ==> f x > f y) ==> f a > c" | |
| 882 | by (subgoal_tac "f a > f b", force, force) | |
| 883 | ||
| 884 | lemma xt6: "(a::'a::order) >= f b ==> b > c ==> | |
| 885 | (!!x y. x > y ==> f x > f y) ==> a > f c" | |
| 886 | by (subgoal_tac "f b > f c", force, force) | |
| 887 | ||
| 888 | lemma xt7: "(a::'a::order) >= b ==> (f b::'b::order) > c ==> | |
| 889 | (!!x y. x >= y ==> f x >= f y) ==> f a > c" | |
| 890 | by (subgoal_tac "f a >= f b", force, force) | |
| 891 | ||
| 892 | lemma xt8: "(a::'a::order) > f b ==> (b::'b::order) > c ==> | |
| 893 | (!!x y. x > y ==> f x > f y) ==> a > f c" | |
| 894 | by (subgoal_tac "f b > f c", force, force) | |
| 895 | ||
| 896 | lemma xt9: "(a::'a::order) > b ==> (f b::'b::order) > c ==> | |
| 897 | (!!x y. x > y ==> f x > f y) ==> f a > c" | |
| 898 | by (subgoal_tac "f a > f b", force, force) | |
| 899 | ||
| 900 | lemmas xtrans = xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 | |
| 901 | ||
| 902 | (* | |
| 903 | Since "a >= b" abbreviates "b <= a", the abbreviation "..." stands | |
| 904 | for the wrong thing in an Isar proof. | |
| 905 | ||
| 906 | The extra transitivity rules can be used as follows: | |
| 907 | ||
| 908 | lemma "(a::'a::order) > z" | |
| 909 | proof - | |
| 910 | have "a >= b" (is "_ >= ?rhs") | |
| 911 | sorry | |
| 912 | also have "?rhs >= c" (is "_ >= ?rhs") | |
| 913 | sorry | |
| 914 | also (xtrans) have "?rhs = d" (is "_ = ?rhs") | |
| 915 | sorry | |
| 916 | also (xtrans) have "?rhs >= e" (is "_ >= ?rhs") | |
| 917 | sorry | |
| 918 | also (xtrans) have "?rhs > f" (is "_ > ?rhs") | |
| 919 | sorry | |
| 920 | also (xtrans) have "?rhs > z" | |
| 921 | sorry | |
| 922 | finally (xtrans) show ?thesis . | |
| 923 | qed | |
| 924 | ||
| 925 | Alternatively, one can use "declare xtrans [trans]" and then | |
| 926 | leave out the "(xtrans)" above. | |
| 927 | *) | |
| 928 | ||
| 21546 | 929 | subsection {* Order on bool *}
 | 
| 930 | ||
| 25510 | 931 | instantiation bool :: order | 
| 932 | begin | |
| 933 | ||
| 934 | definition | |
| 935 | le_bool_def [code func del]: "P \<le> Q \<longleftrightarrow> P \<longrightarrow> Q" | |
| 936 | ||
| 937 | definition | |
| 938 | less_bool_def [code func del]: "(P\<Colon>bool) < Q \<longleftrightarrow> P \<le> Q \<and> P \<noteq> Q" | |
| 939 | ||
| 940 | instance | |
| 22916 | 941 | by intro_classes (auto simp add: le_bool_def less_bool_def) | 
| 25510 | 942 | |
| 943 | end | |
| 21546 | 944 | |
| 945 | lemma le_boolI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<le> Q" | |
| 23212 | 946 | by (simp add: le_bool_def) | 
| 21546 | 947 | |
| 948 | lemma le_boolI': "P \<longrightarrow> Q \<Longrightarrow> P \<le> Q" | |
| 23212 | 949 | by (simp add: le_bool_def) | 
| 21546 | 950 | |
| 951 | lemma le_boolE: "P \<le> Q \<Longrightarrow> P \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R" | |
| 23212 | 952 | by (simp add: le_bool_def) | 
| 21546 | 953 | |
| 954 | lemma le_boolD: "P \<le> Q \<Longrightarrow> P \<longrightarrow> Q" | |
| 23212 | 955 | by (simp add: le_bool_def) | 
| 21546 | 956 | |
| 22348 | 957 | lemma [code func]: | 
| 958 | "False \<le> b \<longleftrightarrow> True" | |
| 959 | "True \<le> b \<longleftrightarrow> b" | |
| 960 | "False < b \<longleftrightarrow> b" | |
| 961 | "True < b \<longleftrightarrow> False" | |
| 962 | unfolding le_bool_def less_bool_def by simp_all | |
| 963 | ||
| 22424 | 964 | |
| 23881 | 965 | subsection {* Order on sets *}
 | 
| 966 | ||
| 967 | instance set :: (type) order | |
| 968 | by (intro_classes, | |
| 969 | (assumption | rule subset_refl subset_trans subset_antisym psubset_eq)+) | |
| 970 | ||
| 971 | lemmas basic_trans_rules [trans] = | |
| 972 | order_trans_rules set_rev_mp set_mp | |
| 973 | ||
| 974 | ||
| 975 | subsection {* Order on functions *}
 | |
| 976 | ||
| 25510 | 977 | instantiation "fun" :: (type, ord) ord | 
| 978 | begin | |
| 979 | ||
| 980 | definition | |
| 981 | le_fun_def [code func del]: "f \<le> g \<longleftrightarrow> (\<forall>x. f x \<le> g x)" | |
| 23881 | 982 | |
| 25510 | 983 | definition | 
| 984 | less_fun_def [code func del]: "(f\<Colon>'a \<Rightarrow> 'b) < g \<longleftrightarrow> f \<le> g \<and> f \<noteq> g" | |
| 985 | ||
| 986 | instance .. | |
| 987 | ||
| 988 | end | |
| 23881 | 989 | |
| 990 | instance "fun" :: (type, order) order | |
| 991 | by default | |
| 992 | (auto simp add: le_fun_def less_fun_def expand_fun_eq | |
| 993 | intro: order_trans order_antisym) | |
| 994 | ||
| 995 | lemma le_funI: "(\<And>x. f x \<le> g x) \<Longrightarrow> f \<le> g" | |
| 996 | unfolding le_fun_def by simp | |
| 997 | ||
| 998 | lemma le_funE: "f \<le> g \<Longrightarrow> (f x \<le> g x \<Longrightarrow> P) \<Longrightarrow> P" | |
| 999 | unfolding le_fun_def by simp | |
| 1000 | ||
| 1001 | lemma le_funD: "f \<le> g \<Longrightarrow> f x \<le> g x" | |
| 1002 | unfolding le_fun_def by simp | |
| 1003 | ||
| 1004 | text {*
 | |
| 1005 |   Handy introduction and elimination rules for @{text "\<le>"}
 | |
| 1006 | on unary and binary predicates | |
| 1007 | *} | |
| 1008 | ||
| 1009 | lemma predicate1I [Pure.intro!, intro!]: | |
| 1010 | assumes PQ: "\<And>x. P x \<Longrightarrow> Q x" | |
| 1011 | shows "P \<le> Q" | |
| 1012 | apply (rule le_funI) | |
| 1013 | apply (rule le_boolI) | |
| 1014 | apply (rule PQ) | |
| 1015 | apply assumption | |
| 1016 | done | |
| 1017 | ||
| 1018 | lemma predicate1D [Pure.dest, dest]: "P \<le> Q \<Longrightarrow> P x \<Longrightarrow> Q x" | |
| 1019 | apply (erule le_funE) | |
| 1020 | apply (erule le_boolE) | |
| 1021 | apply assumption+ | |
| 1022 | done | |
| 1023 | ||
| 1024 | lemma predicate2I [Pure.intro!, intro!]: | |
| 1025 | assumes PQ: "\<And>x y. P x y \<Longrightarrow> Q x y" | |
| 1026 | shows "P \<le> Q" | |
| 1027 | apply (rule le_funI)+ | |
| 1028 | apply (rule le_boolI) | |
| 1029 | apply (rule PQ) | |
| 1030 | apply assumption | |
| 1031 | done | |
| 1032 | ||
| 1033 | lemma predicate2D [Pure.dest, dest]: "P \<le> Q \<Longrightarrow> P x y \<Longrightarrow> Q x y" | |
| 1034 | apply (erule le_funE)+ | |
| 1035 | apply (erule le_boolE) | |
| 1036 | apply assumption+ | |
| 1037 | done | |
| 1038 | ||
| 1039 | lemma rev_predicate1D: "P x ==> P <= Q ==> Q x" | |
| 1040 | by (rule predicate1D) | |
| 1041 | ||
| 1042 | lemma rev_predicate2D: "P x y ==> P <= Q ==> Q x y" | |
| 1043 | by (rule predicate2D) | |
| 1044 | ||
| 1045 | ||
| 1046 | subsection {* Monotonicity, least value operator and min/max *}
 | |
| 21083 | 1047 | |
| 25076 | 1048 | context order | 
| 1049 | begin | |
| 1050 | ||
| 1051 | definition | |
| 1052 |   mono :: "('a \<Rightarrow> 'b\<Colon>order) \<Rightarrow> bool"
 | |
| 1053 | where | |
| 1054 | "mono f \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> f x \<le> f y)" | |
| 1055 | ||
| 1056 | lemma monoI [intro?]: | |
| 1057 | fixes f :: "'a \<Rightarrow> 'b\<Colon>order" | |
| 1058 | shows "(\<And>x y. x \<le> y \<Longrightarrow> f x \<le> f y) \<Longrightarrow> mono f" | |
| 1059 | unfolding mono_def by iprover | |
| 21216 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 haftmann parents: 
21204diff
changeset | 1060 | |
| 25076 | 1061 | lemma monoD [dest?]: | 
| 1062 | fixes f :: "'a \<Rightarrow> 'b\<Colon>order" | |
| 1063 | shows "mono f \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y" | |
| 1064 | unfolding mono_def by iprover | |
| 1065 | ||
| 1066 | end | |
| 1067 | ||
| 1068 | context linorder | |
| 1069 | begin | |
| 1070 | ||
| 1071 | lemma min_of_mono: | |
| 1072 | fixes f :: "'a \<Rightarrow> 'b\<Colon>linorder" | |
| 25377 | 1073 | shows "mono f \<Longrightarrow> min (f m) (f n) = f (min m n)" | 
| 25076 | 1074 | by (auto simp: mono_def Orderings.min_def min_def intro: Orderings.antisym) | 
| 1075 | ||
| 1076 | lemma max_of_mono: | |
| 1077 | fixes f :: "'a \<Rightarrow> 'b\<Colon>linorder" | |
| 25377 | 1078 | shows "mono f \<Longrightarrow> max (f m) (f n) = f (max m n)" | 
| 25076 | 1079 | by (auto simp: mono_def Orderings.max_def max_def intro: Orderings.antisym) | 
| 1080 | ||
| 1081 | end | |
| 21083 | 1082 | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1083 | lemma LeastI2_order: | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1084 | "[| P (x::'a::order); | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1085 | !!y. P y ==> x <= y; | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1086 | !!x. [| P x; ALL y. P y --> x \<le> y |] ==> Q x |] | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1087 | ==> Q (Least P)" | 
| 23212 | 1088 | apply (unfold Least_def) | 
| 1089 | apply (rule theI2) | |
| 1090 | apply (blast intro: order_antisym)+ | |
| 1091 | done | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1092 | |
| 23881 | 1093 | lemma Least_mono: | 
| 1094 | "mono (f::'a::order => 'b::order) ==> EX x:S. ALL y:S. x <= y | |
| 1095 | ==> (LEAST y. y : f ` S) = f (LEAST x. x : S)" | |
| 1096 |     -- {* Courtesy of Stephan Merz *}
 | |
| 1097 | apply clarify | |
| 1098 | apply (erule_tac P = "%x. x : S" in LeastI2_order, fast) | |
| 1099 | apply (rule LeastI2_order) | |
| 1100 | apply (auto elim: monoD intro!: order_antisym) | |
| 1101 | done | |
| 1102 | ||
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1103 | lemma Least_equality: | 
| 23212 | 1104 | "[| P (k::'a::order); !!x. P x ==> k <= x |] ==> (LEAST x. P x) = k" | 
| 1105 | apply (simp add: Least_def) | |
| 1106 | apply (rule the_equality) | |
| 1107 | apply (auto intro!: order_antisym) | |
| 1108 | done | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1109 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1110 | lemma min_leastL: "(!!x. least <= x) ==> min least x = least" | 
| 23212 | 1111 | by (simp add: min_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1112 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1113 | lemma max_leastL: "(!!x. least <= x) ==> max least x = x" | 
| 23212 | 1114 | by (simp add: max_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1115 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1116 | lemma min_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> min x least = least" | 
| 23212 | 1117 | apply (simp add: min_def) | 
| 1118 | apply (blast intro: order_antisym) | |
| 1119 | done | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1120 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1121 | lemma max_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> max x least = x" | 
| 23212 | 1122 | apply (simp add: max_def) | 
| 1123 | apply (blast intro: order_antisym) | |
| 1124 | done | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1125 | |
| 15524 | 1126 | end |