| author | blanchet | 
| Fri, 10 Jan 2014 16:18:18 +0100 | |
| changeset 54979 | d7593bfccf25 | 
| parent 54863 | 82acc20ded73 | 
| child 55945 | e96383acecf9 | 
| permissions | -rw-r--r-- | 
| 51523 | 1 | (* Title: HOL/Real.thy | 
| 2 | Author: Jacques D. Fleuriot, University of Edinburgh, 1998 | |
| 3 | Author: Larry Paulson, University of Cambridge | |
| 4 | Author: Jeremy Avigad, Carnegie Mellon University | |
| 5 | Author: Florian Zuleger, Johannes Hoelzl, and Simon Funke, TU Muenchen | |
| 6 | Conversion to Isar and new proofs by Lawrence C Paulson, 2003/4 | |
| 7 | Construction of Cauchy Reals by Brian Huffman, 2010 | |
| 8 | *) | |
| 9 | ||
| 10 | header {* Development of the Reals using Cauchy Sequences *}
 | |
| 11 | ||
| 12 | theory Real | |
| 51773 | 13 | imports Rat Conditionally_Complete_Lattices | 
| 51523 | 14 | begin | 
| 15 | ||
| 16 | text {*
 | |
| 17 | This theory contains a formalization of the real numbers as | |
| 18 | equivalence classes of Cauchy sequences of rationals. See | |
| 19 |   @{file "~~/src/HOL/ex/Dedekind_Real.thy"} for an alternative
 | |
| 20 | construction using Dedekind cuts. | |
| 21 | *} | |
| 22 | ||
| 23 | subsection {* Preliminary lemmas *}
 | |
| 24 | ||
| 25 | lemma add_diff_add: | |
| 26 | fixes a b c d :: "'a::ab_group_add" | |
| 27 | shows "(a + c) - (b + d) = (a - b) + (c - d)" | |
| 28 | by simp | |
| 29 | ||
| 30 | lemma minus_diff_minus: | |
| 31 | fixes a b :: "'a::ab_group_add" | |
| 32 | shows "- a - - b = - (a - b)" | |
| 33 | by simp | |
| 34 | ||
| 35 | lemma mult_diff_mult: | |
| 36 | fixes x y a b :: "'a::ring" | |
| 37 | shows "(x * y - a * b) = x * (y - b) + (x - a) * b" | |
| 38 | by (simp add: algebra_simps) | |
| 39 | ||
| 40 | lemma inverse_diff_inverse: | |
| 41 | fixes a b :: "'a::division_ring" | |
| 42 | assumes "a \<noteq> 0" and "b \<noteq> 0" | |
| 43 | shows "inverse a - inverse b = - (inverse a * (a - b) * inverse b)" | |
| 44 | using assms by (simp add: algebra_simps) | |
| 45 | ||
| 46 | lemma obtain_pos_sum: | |
| 47 | fixes r :: rat assumes r: "0 < r" | |
| 48 | obtains s t where "0 < s" and "0 < t" and "r = s + t" | |
| 49 | proof | |
| 50 | from r show "0 < r/2" by simp | |
| 51 | from r show "0 < r/2" by simp | |
| 52 | show "r = r/2 + r/2" by simp | |
| 53 | qed | |
| 54 | ||
| 55 | subsection {* Sequences that converge to zero *}
 | |
| 56 | ||
| 57 | definition | |
| 58 | vanishes :: "(nat \<Rightarrow> rat) \<Rightarrow> bool" | |
| 59 | where | |
| 60 | "vanishes X = (\<forall>r>0. \<exists>k. \<forall>n\<ge>k. \<bar>X n\<bar> < r)" | |
| 61 | ||
| 62 | lemma vanishesI: "(\<And>r. 0 < r \<Longrightarrow> \<exists>k. \<forall>n\<ge>k. \<bar>X n\<bar> < r) \<Longrightarrow> vanishes X" | |
| 63 | unfolding vanishes_def by simp | |
| 64 | ||
| 65 | lemma vanishesD: "\<lbrakk>vanishes X; 0 < r\<rbrakk> \<Longrightarrow> \<exists>k. \<forall>n\<ge>k. \<bar>X n\<bar> < r" | |
| 66 | unfolding vanishes_def by simp | |
| 67 | ||
| 68 | lemma vanishes_const [simp]: "vanishes (\<lambda>n. c) \<longleftrightarrow> c = 0" | |
| 69 | unfolding vanishes_def | |
| 70 | apply (cases "c = 0", auto) | |
| 71 | apply (rule exI [where x="\<bar>c\<bar>"], auto) | |
| 72 | done | |
| 73 | ||
| 74 | lemma vanishes_minus: "vanishes X \<Longrightarrow> vanishes (\<lambda>n. - X n)" | |
| 75 | unfolding vanishes_def by simp | |
| 76 | ||
| 77 | lemma vanishes_add: | |
| 78 | assumes X: "vanishes X" and Y: "vanishes Y" | |
| 79 | shows "vanishes (\<lambda>n. X n + Y n)" | |
| 80 | proof (rule vanishesI) | |
| 81 | fix r :: rat assume "0 < r" | |
| 82 | then obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t" | |
| 83 | by (rule obtain_pos_sum) | |
| 84 | obtain i where i: "\<forall>n\<ge>i. \<bar>X n\<bar> < s" | |
| 85 | using vanishesD [OF X s] .. | |
| 86 | obtain j where j: "\<forall>n\<ge>j. \<bar>Y n\<bar> < t" | |
| 87 | using vanishesD [OF Y t] .. | |
| 88 | have "\<forall>n\<ge>max i j. \<bar>X n + Y n\<bar> < r" | |
| 89 | proof (clarsimp) | |
| 90 | fix n assume n: "i \<le> n" "j \<le> n" | |
| 91 | have "\<bar>X n + Y n\<bar> \<le> \<bar>X n\<bar> + \<bar>Y n\<bar>" by (rule abs_triangle_ineq) | |
| 92 | also have "\<dots> < s + t" by (simp add: add_strict_mono i j n) | |
| 93 | finally show "\<bar>X n + Y n\<bar> < r" unfolding r . | |
| 94 | qed | |
| 95 | thus "\<exists>k. \<forall>n\<ge>k. \<bar>X n + Y n\<bar> < r" .. | |
| 96 | qed | |
| 97 | ||
| 98 | lemma vanishes_diff: | |
| 99 | assumes X: "vanishes X" and Y: "vanishes Y" | |
| 100 | shows "vanishes (\<lambda>n. X n - Y n)" | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53652diff
changeset | 101 | unfolding diff_conv_add_uminus by (intro vanishes_add vanishes_minus X Y) | 
| 51523 | 102 | |
| 103 | lemma vanishes_mult_bounded: | |
| 104 | assumes X: "\<exists>a>0. \<forall>n. \<bar>X n\<bar> < a" | |
| 105 | assumes Y: "vanishes (\<lambda>n. Y n)" | |
| 106 | shows "vanishes (\<lambda>n. X n * Y n)" | |
| 107 | proof (rule vanishesI) | |
| 108 | fix r :: rat assume r: "0 < r" | |
| 109 | obtain a where a: "0 < a" "\<forall>n. \<bar>X n\<bar> < a" | |
| 110 | using X by fast | |
| 111 | obtain b where b: "0 < b" "r = a * b" | |
| 112 | proof | |
| 113 | show "0 < r / a" using r a by (simp add: divide_pos_pos) | |
| 114 | show "r = a * (r / a)" using a by simp | |
| 115 | qed | |
| 116 | obtain k where k: "\<forall>n\<ge>k. \<bar>Y n\<bar> < b" | |
| 117 | using vanishesD [OF Y b(1)] .. | |
| 118 | have "\<forall>n\<ge>k. \<bar>X n * Y n\<bar> < r" | |
| 119 | by (simp add: b(2) abs_mult mult_strict_mono' a k) | |
| 120 | thus "\<exists>k. \<forall>n\<ge>k. \<bar>X n * Y n\<bar> < r" .. | |
| 121 | qed | |
| 122 | ||
| 123 | subsection {* Cauchy sequences *}
 | |
| 124 | ||
| 125 | definition | |
| 126 | cauchy :: "(nat \<Rightarrow> rat) \<Rightarrow> bool" | |
| 127 | where | |
| 128 | "cauchy X \<longleftrightarrow> (\<forall>r>0. \<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < r)" | |
| 129 | ||
| 130 | lemma cauchyI: | |
| 131 | "(\<And>r. 0 < r \<Longrightarrow> \<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < r) \<Longrightarrow> cauchy X" | |
| 132 | unfolding cauchy_def by simp | |
| 133 | ||
| 134 | lemma cauchyD: | |
| 135 | "\<lbrakk>cauchy X; 0 < r\<rbrakk> \<Longrightarrow> \<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < r" | |
| 136 | unfolding cauchy_def by simp | |
| 137 | ||
| 138 | lemma cauchy_const [simp]: "cauchy (\<lambda>n. x)" | |
| 139 | unfolding cauchy_def by simp | |
| 140 | ||
| 141 | lemma cauchy_add [simp]: | |
| 142 | assumes X: "cauchy X" and Y: "cauchy Y" | |
| 143 | shows "cauchy (\<lambda>n. X n + Y n)" | |
| 144 | proof (rule cauchyI) | |
| 145 | fix r :: rat assume "0 < r" | |
| 146 | then obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t" | |
| 147 | by (rule obtain_pos_sum) | |
| 148 | obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>X m - X n\<bar> < s" | |
| 149 | using cauchyD [OF X s] .. | |
| 150 | obtain j where j: "\<forall>m\<ge>j. \<forall>n\<ge>j. \<bar>Y m - Y n\<bar> < t" | |
| 151 | using cauchyD [OF Y t] .. | |
| 152 | have "\<forall>m\<ge>max i j. \<forall>n\<ge>max i j. \<bar>(X m + Y m) - (X n + Y n)\<bar> < r" | |
| 153 | proof (clarsimp) | |
| 154 | fix m n assume *: "i \<le> m" "j \<le> m" "i \<le> n" "j \<le> n" | |
| 155 | have "\<bar>(X m + Y m) - (X n + Y n)\<bar> \<le> \<bar>X m - X n\<bar> + \<bar>Y m - Y n\<bar>" | |
| 156 | unfolding add_diff_add by (rule abs_triangle_ineq) | |
| 157 | also have "\<dots> < s + t" | |
| 158 | by (rule add_strict_mono, simp_all add: i j *) | |
| 159 | finally show "\<bar>(X m + Y m) - (X n + Y n)\<bar> < r" unfolding r . | |
| 160 | qed | |
| 161 | thus "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>(X m + Y m) - (X n + Y n)\<bar> < r" .. | |
| 162 | qed | |
| 163 | ||
| 164 | lemma cauchy_minus [simp]: | |
| 165 | assumes X: "cauchy X" | |
| 166 | shows "cauchy (\<lambda>n. - X n)" | |
| 167 | using assms unfolding cauchy_def | |
| 168 | unfolding minus_diff_minus abs_minus_cancel . | |
| 169 | ||
| 170 | lemma cauchy_diff [simp]: | |
| 171 | assumes X: "cauchy X" and Y: "cauchy Y" | |
| 172 | shows "cauchy (\<lambda>n. X n - Y n)" | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53652diff
changeset | 173 | using assms unfolding diff_conv_add_uminus by (simp del: add_uminus_conv_diff) | 
| 51523 | 174 | |
| 175 | lemma cauchy_imp_bounded: | |
| 176 | assumes "cauchy X" shows "\<exists>b>0. \<forall>n. \<bar>X n\<bar> < b" | |
| 177 | proof - | |
| 178 | obtain k where k: "\<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m - X n\<bar> < 1" | |
| 179 | using cauchyD [OF assms zero_less_one] .. | |
| 180 | show "\<exists>b>0. \<forall>n. \<bar>X n\<bar> < b" | |
| 181 | proof (intro exI conjI allI) | |
| 182 | have "0 \<le> \<bar>X 0\<bar>" by simp | |
| 183 |     also have "\<bar>X 0\<bar> \<le> Max (abs ` X ` {..k})" by simp
 | |
| 184 |     finally have "0 \<le> Max (abs ` X ` {..k})" .
 | |
| 185 |     thus "0 < Max (abs ` X ` {..k}) + 1" by simp
 | |
| 186 | next | |
| 187 | fix n :: nat | |
| 188 |     show "\<bar>X n\<bar> < Max (abs ` X ` {..k}) + 1"
 | |
| 189 | proof (rule linorder_le_cases) | |
| 190 | assume "n \<le> k" | |
| 191 |       hence "\<bar>X n\<bar> \<le> Max (abs ` X ` {..k})" by simp
 | |
| 192 |       thus "\<bar>X n\<bar> < Max (abs ` X ` {..k}) + 1" by simp
 | |
| 193 | next | |
| 194 | assume "k \<le> n" | |
| 195 | have "\<bar>X n\<bar> = \<bar>X k + (X n - X k)\<bar>" by simp | |
| 196 | also have "\<bar>X k + (X n - X k)\<bar> \<le> \<bar>X k\<bar> + \<bar>X n - X k\<bar>" | |
| 197 | by (rule abs_triangle_ineq) | |
| 198 |       also have "\<dots> < Max (abs ` X ` {..k}) + 1"
 | |
| 199 | by (rule add_le_less_mono, simp, simp add: k `k \<le> n`) | |
| 200 |       finally show "\<bar>X n\<bar> < Max (abs ` X ` {..k}) + 1" .
 | |
| 201 | qed | |
| 202 | qed | |
| 203 | qed | |
| 204 | ||
| 205 | lemma cauchy_mult [simp]: | |
| 206 | assumes X: "cauchy X" and Y: "cauchy Y" | |
| 207 | shows "cauchy (\<lambda>n. X n * Y n)" | |
| 208 | proof (rule cauchyI) | |
| 209 | fix r :: rat assume "0 < r" | |
| 210 | then obtain u v where u: "0 < u" and v: "0 < v" and "r = u + v" | |
| 211 | by (rule obtain_pos_sum) | |
| 212 | obtain a where a: "0 < a" "\<forall>n. \<bar>X n\<bar> < a" | |
| 213 | using cauchy_imp_bounded [OF X] by fast | |
| 214 | obtain b where b: "0 < b" "\<forall>n. \<bar>Y n\<bar> < b" | |
| 215 | using cauchy_imp_bounded [OF Y] by fast | |
| 216 | obtain s t where s: "0 < s" and t: "0 < t" and r: "r = a * t + s * b" | |
| 217 | proof | |
| 218 | show "0 < v/b" using v b(1) by (rule divide_pos_pos) | |
| 219 | show "0 < u/a" using u a(1) by (rule divide_pos_pos) | |
| 220 | show "r = a * (u/a) + (v/b) * b" | |
| 221 | using a(1) b(1) `r = u + v` by simp | |
| 222 | qed | |
| 223 | obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>X m - X n\<bar> < s" | |
| 224 | using cauchyD [OF X s] .. | |
| 225 | obtain j where j: "\<forall>m\<ge>j. \<forall>n\<ge>j. \<bar>Y m - Y n\<bar> < t" | |
| 226 | using cauchyD [OF Y t] .. | |
| 227 | have "\<forall>m\<ge>max i j. \<forall>n\<ge>max i j. \<bar>X m * Y m - X n * Y n\<bar> < r" | |
| 228 | proof (clarsimp) | |
| 229 | fix m n assume *: "i \<le> m" "j \<le> m" "i \<le> n" "j \<le> n" | |
| 230 | have "\<bar>X m * Y m - X n * Y n\<bar> = \<bar>X m * (Y m - Y n) + (X m - X n) * Y n\<bar>" | |
| 231 | unfolding mult_diff_mult .. | |
| 232 | also have "\<dots> \<le> \<bar>X m * (Y m - Y n)\<bar> + \<bar>(X m - X n) * Y n\<bar>" | |
| 233 | by (rule abs_triangle_ineq) | |
| 234 | also have "\<dots> = \<bar>X m\<bar> * \<bar>Y m - Y n\<bar> + \<bar>X m - X n\<bar> * \<bar>Y n\<bar>" | |
| 235 | unfolding abs_mult .. | |
| 236 | also have "\<dots> < a * t + s * b" | |
| 237 | by (simp_all add: add_strict_mono mult_strict_mono' a b i j *) | |
| 238 | finally show "\<bar>X m * Y m - X n * Y n\<bar> < r" unfolding r . | |
| 239 | qed | |
| 240 | thus "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>X m * Y m - X n * Y n\<bar> < r" .. | |
| 241 | qed | |
| 242 | ||
| 243 | lemma cauchy_not_vanishes_cases: | |
| 244 | assumes X: "cauchy X" | |
| 245 | assumes nz: "\<not> vanishes X" | |
| 246 | shows "\<exists>b>0. \<exists>k. (\<forall>n\<ge>k. b < - X n) \<or> (\<forall>n\<ge>k. b < X n)" | |
| 247 | proof - | |
| 248 | obtain r where "0 < r" and r: "\<forall>k. \<exists>n\<ge>k. r \<le> \<bar>X n\<bar>" | |
| 249 | using nz unfolding vanishes_def by (auto simp add: not_less) | |
| 250 | obtain s t where s: "0 < s" and t: "0 < t" and "r = s + t" | |
| 251 | using `0 < r` by (rule obtain_pos_sum) | |
| 252 | obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>X m - X n\<bar> < s" | |
| 253 | using cauchyD [OF X s] .. | |
| 254 | obtain k where "i \<le> k" and "r \<le> \<bar>X k\<bar>" | |
| 255 | using r by fast | |
| 256 | have k: "\<forall>n\<ge>k. \<bar>X n - X k\<bar> < s" | |
| 257 | using i `i \<le> k` by auto | |
| 258 | have "X k \<le> - r \<or> r \<le> X k" | |
| 259 | using `r \<le> \<bar>X k\<bar>` by auto | |
| 260 | hence "(\<forall>n\<ge>k. t < - X n) \<or> (\<forall>n\<ge>k. t < X n)" | |
| 261 | unfolding `r = s + t` using k by auto | |
| 262 | hence "\<exists>k. (\<forall>n\<ge>k. t < - X n) \<or> (\<forall>n\<ge>k. t < X n)" .. | |
| 263 | thus "\<exists>t>0. \<exists>k. (\<forall>n\<ge>k. t < - X n) \<or> (\<forall>n\<ge>k. t < X n)" | |
| 264 | using t by auto | |
| 265 | qed | |
| 266 | ||
| 267 | lemma cauchy_not_vanishes: | |
| 268 | assumes X: "cauchy X" | |
| 269 | assumes nz: "\<not> vanishes X" | |
| 270 | shows "\<exists>b>0. \<exists>k. \<forall>n\<ge>k. b < \<bar>X n\<bar>" | |
| 271 | using cauchy_not_vanishes_cases [OF assms] | |
| 272 | by clarify (rule exI, erule conjI, rule_tac x=k in exI, auto) | |
| 273 | ||
| 274 | lemma cauchy_inverse [simp]: | |
| 275 | assumes X: "cauchy X" | |
| 276 | assumes nz: "\<not> vanishes X" | |
| 277 | shows "cauchy (\<lambda>n. inverse (X n))" | |
| 278 | proof (rule cauchyI) | |
| 279 | fix r :: rat assume "0 < r" | |
| 280 | obtain b i where b: "0 < b" and i: "\<forall>n\<ge>i. b < \<bar>X n\<bar>" | |
| 281 | using cauchy_not_vanishes [OF X nz] by fast | |
| 282 | from b i have nz: "\<forall>n\<ge>i. X n \<noteq> 0" by auto | |
| 283 | obtain s where s: "0 < s" and r: "r = inverse b * s * inverse b" | |
| 284 | proof | |
| 285 | show "0 < b * r * b" | |
| 286 | by (simp add: `0 < r` b mult_pos_pos) | |
| 287 | show "r = inverse b * (b * r * b) * inverse b" | |
| 288 | using b by simp | |
| 289 | qed | |
| 290 | obtain j where j: "\<forall>m\<ge>j. \<forall>n\<ge>j. \<bar>X m - X n\<bar> < s" | |
| 291 | using cauchyD [OF X s] .. | |
| 292 | have "\<forall>m\<ge>max i j. \<forall>n\<ge>max i j. \<bar>inverse (X m) - inverse (X n)\<bar> < r" | |
| 293 | proof (clarsimp) | |
| 294 | fix m n assume *: "i \<le> m" "j \<le> m" "i \<le> n" "j \<le> n" | |
| 295 | have "\<bar>inverse (X m) - inverse (X n)\<bar> = | |
| 296 | inverse \<bar>X m\<bar> * \<bar>X m - X n\<bar> * inverse \<bar>X n\<bar>" | |
| 297 | by (simp add: inverse_diff_inverse nz * abs_mult) | |
| 298 | also have "\<dots> < inverse b * s * inverse b" | |
| 299 | by (simp add: mult_strict_mono less_imp_inverse_less | |
| 300 | mult_pos_pos i j b * s) | |
| 301 | finally show "\<bar>inverse (X m) - inverse (X n)\<bar> < r" unfolding r . | |
| 302 | qed | |
| 303 | thus "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. \<bar>inverse (X m) - inverse (X n)\<bar> < r" .. | |
| 304 | qed | |
| 305 | ||
| 306 | lemma vanishes_diff_inverse: | |
| 307 | assumes X: "cauchy X" "\<not> vanishes X" | |
| 308 | assumes Y: "cauchy Y" "\<not> vanishes Y" | |
| 309 | assumes XY: "vanishes (\<lambda>n. X n - Y n)" | |
| 310 | shows "vanishes (\<lambda>n. inverse (X n) - inverse (Y n))" | |
| 311 | proof (rule vanishesI) | |
| 312 | fix r :: rat assume r: "0 < r" | |
| 313 | obtain a i where a: "0 < a" and i: "\<forall>n\<ge>i. a < \<bar>X n\<bar>" | |
| 314 | using cauchy_not_vanishes [OF X] by fast | |
| 315 | obtain b j where b: "0 < b" and j: "\<forall>n\<ge>j. b < \<bar>Y n\<bar>" | |
| 316 | using cauchy_not_vanishes [OF Y] by fast | |
| 317 | obtain s where s: "0 < s" and "inverse a * s * inverse b = r" | |
| 318 | proof | |
| 319 | show "0 < a * r * b" | |
| 320 | using a r b by (simp add: mult_pos_pos) | |
| 321 | show "inverse a * (a * r * b) * inverse b = r" | |
| 322 | using a r b by simp | |
| 323 | qed | |
| 324 | obtain k where k: "\<forall>n\<ge>k. \<bar>X n - Y n\<bar> < s" | |
| 325 | using vanishesD [OF XY s] .. | |
| 326 | have "\<forall>n\<ge>max (max i j) k. \<bar>inverse (X n) - inverse (Y n)\<bar> < r" | |
| 327 | proof (clarsimp) | |
| 328 | fix n assume n: "i \<le> n" "j \<le> n" "k \<le> n" | |
| 329 | have "X n \<noteq> 0" and "Y n \<noteq> 0" | |
| 330 | using i j a b n by auto | |
| 331 | hence "\<bar>inverse (X n) - inverse (Y n)\<bar> = | |
| 332 | inverse \<bar>X n\<bar> * \<bar>X n - Y n\<bar> * inverse \<bar>Y n\<bar>" | |
| 333 | by (simp add: inverse_diff_inverse abs_mult) | |
| 334 | also have "\<dots> < inverse a * s * inverse b" | |
| 335 | apply (intro mult_strict_mono' less_imp_inverse_less) | |
| 336 | apply (simp_all add: a b i j k n mult_nonneg_nonneg) | |
| 337 | done | |
| 338 | also note `inverse a * s * inverse b = r` | |
| 339 | finally show "\<bar>inverse (X n) - inverse (Y n)\<bar> < r" . | |
| 340 | qed | |
| 341 | thus "\<exists>k. \<forall>n\<ge>k. \<bar>inverse (X n) - inverse (Y n)\<bar> < r" .. | |
| 342 | qed | |
| 343 | ||
| 344 | subsection {* Equivalence relation on Cauchy sequences *}
 | |
| 345 | ||
| 346 | definition realrel :: "(nat \<Rightarrow> rat) \<Rightarrow> (nat \<Rightarrow> rat) \<Rightarrow> bool" | |
| 347 | where "realrel = (\<lambda>X Y. cauchy X \<and> cauchy Y \<and> vanishes (\<lambda>n. X n - Y n))" | |
| 348 | ||
| 349 | lemma realrelI [intro?]: | |
| 350 | assumes "cauchy X" and "cauchy Y" and "vanishes (\<lambda>n. X n - Y n)" | |
| 351 | shows "realrel X Y" | |
| 352 | using assms unfolding realrel_def by simp | |
| 353 | ||
| 354 | lemma realrel_refl: "cauchy X \<Longrightarrow> realrel X X" | |
| 355 | unfolding realrel_def by simp | |
| 356 | ||
| 357 | lemma symp_realrel: "symp realrel" | |
| 358 | unfolding realrel_def | |
| 359 | by (rule sympI, clarify, drule vanishes_minus, simp) | |
| 360 | ||
| 361 | lemma transp_realrel: "transp realrel" | |
| 362 | unfolding realrel_def | |
| 363 | apply (rule transpI, clarify) | |
| 364 | apply (drule (1) vanishes_add) | |
| 365 | apply (simp add: algebra_simps) | |
| 366 | done | |
| 367 | ||
| 368 | lemma part_equivp_realrel: "part_equivp realrel" | |
| 369 | by (fast intro: part_equivpI symp_realrel transp_realrel | |
| 370 | realrel_refl cauchy_const) | |
| 371 | ||
| 372 | subsection {* The field of real numbers *}
 | |
| 373 | ||
| 374 | quotient_type real = "nat \<Rightarrow> rat" / partial: realrel | |
| 375 | morphisms rep_real Real | |
| 376 | by (rule part_equivp_realrel) | |
| 377 | ||
| 378 | lemma cr_real_eq: "pcr_real = (\<lambda>x y. cauchy x \<and> Real x = y)" | |
| 379 | unfolding real.pcr_cr_eq cr_real_def realrel_def by auto | |
| 380 | ||
| 381 | lemma Real_induct [induct type: real]: (* TODO: generate automatically *) | |
| 382 | assumes "\<And>X. cauchy X \<Longrightarrow> P (Real X)" shows "P x" | |
| 383 | proof (induct x) | |
| 384 | case (1 X) | |
| 385 | hence "cauchy X" by (simp add: realrel_def) | |
| 386 | thus "P (Real X)" by (rule assms) | |
| 387 | qed | |
| 388 | ||
| 389 | lemma eq_Real: | |
| 390 | "cauchy X \<Longrightarrow> cauchy Y \<Longrightarrow> Real X = Real Y \<longleftrightarrow> vanishes (\<lambda>n. X n - Y n)" | |
| 391 | using real.rel_eq_transfer | |
| 392 | unfolding real.pcr_cr_eq cr_real_def fun_rel_def realrel_def by simp | |
| 393 | ||
| 51956 
a4d81cdebf8b
better support for domains in Lifting/Transfer = replace Domainp T by the actual invariant in a transferred goal
 kuncar parents: 
51775diff
changeset | 394 | lemma Domainp_pcr_real [transfer_domain_rule]: "Domainp pcr_real = cauchy" | 
| 
a4d81cdebf8b
better support for domains in Lifting/Transfer = replace Domainp T by the actual invariant in a transferred goal
 kuncar parents: 
51775diff
changeset | 395 | by (simp add: real.domain_eq realrel_def) | 
| 51523 | 396 | |
| 397 | instantiation real :: field_inverse_zero | |
| 398 | begin | |
| 399 | ||
| 400 | lift_definition zero_real :: "real" is "\<lambda>n. 0" | |
| 401 | by (simp add: realrel_refl) | |
| 402 | ||
| 403 | lift_definition one_real :: "real" is "\<lambda>n. 1" | |
| 404 | by (simp add: realrel_refl) | |
| 405 | ||
| 406 | lift_definition plus_real :: "real \<Rightarrow> real \<Rightarrow> real" is "\<lambda>X Y n. X n + Y n" | |
| 407 | unfolding realrel_def add_diff_add | |
| 408 | by (simp only: cauchy_add vanishes_add simp_thms) | |
| 409 | ||
| 410 | lift_definition uminus_real :: "real \<Rightarrow> real" is "\<lambda>X n. - X n" | |
| 411 | unfolding realrel_def minus_diff_minus | |
| 412 | by (simp only: cauchy_minus vanishes_minus simp_thms) | |
| 413 | ||
| 414 | lift_definition times_real :: "real \<Rightarrow> real \<Rightarrow> real" is "\<lambda>X Y n. X n * Y n" | |
| 415 | unfolding realrel_def mult_diff_mult | |
| 416 | by (subst (4) mult_commute, simp only: cauchy_mult vanishes_add | |
| 417 | vanishes_mult_bounded cauchy_imp_bounded simp_thms) | |
| 418 | ||
| 419 | lift_definition inverse_real :: "real \<Rightarrow> real" | |
| 420 | is "\<lambda>X. if vanishes X then (\<lambda>n. 0) else (\<lambda>n. inverse (X n))" | |
| 421 | proof - | |
| 422 | fix X Y assume "realrel X Y" | |
| 423 | hence X: "cauchy X" and Y: "cauchy Y" and XY: "vanishes (\<lambda>n. X n - Y n)" | |
| 424 | unfolding realrel_def by simp_all | |
| 425 | have "vanishes X \<longleftrightarrow> vanishes Y" | |
| 426 | proof | |
| 427 | assume "vanishes X" | |
| 428 | from vanishes_diff [OF this XY] show "vanishes Y" by simp | |
| 429 | next | |
| 430 | assume "vanishes Y" | |
| 431 | from vanishes_add [OF this XY] show "vanishes X" by simp | |
| 432 | qed | |
| 433 | thus "?thesis X Y" | |
| 434 | unfolding realrel_def | |
| 435 | by (simp add: vanishes_diff_inverse X Y XY) | |
| 436 | qed | |
| 437 | ||
| 438 | definition | |
| 439 | "x - y = (x::real) + - y" | |
| 440 | ||
| 441 | definition | |
| 442 | "x / y = (x::real) * inverse y" | |
| 443 | ||
| 444 | lemma add_Real: | |
| 445 | assumes X: "cauchy X" and Y: "cauchy Y" | |
| 446 | shows "Real X + Real Y = Real (\<lambda>n. X n + Y n)" | |
| 447 | using assms plus_real.transfer | |
| 448 | unfolding cr_real_eq fun_rel_def by simp | |
| 449 | ||
| 450 | lemma minus_Real: | |
| 451 | assumes X: "cauchy X" | |
| 452 | shows "- Real X = Real (\<lambda>n. - X n)" | |
| 453 | using assms uminus_real.transfer | |
| 454 | unfolding cr_real_eq fun_rel_def by simp | |
| 455 | ||
| 456 | lemma diff_Real: | |
| 457 | assumes X: "cauchy X" and Y: "cauchy Y" | |
| 458 | shows "Real X - Real Y = Real (\<lambda>n. X n - Y n)" | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53652diff
changeset | 459 | unfolding minus_real_def | 
| 51523 | 460 | by (simp add: minus_Real add_Real X Y) | 
| 461 | ||
| 462 | lemma mult_Real: | |
| 463 | assumes X: "cauchy X" and Y: "cauchy Y" | |
| 464 | shows "Real X * Real Y = Real (\<lambda>n. X n * Y n)" | |
| 465 | using assms times_real.transfer | |
| 466 | unfolding cr_real_eq fun_rel_def by simp | |
| 467 | ||
| 468 | lemma inverse_Real: | |
| 469 | assumes X: "cauchy X" | |
| 470 | shows "inverse (Real X) = | |
| 471 | (if vanishes X then 0 else Real (\<lambda>n. inverse (X n)))" | |
| 472 | using assms inverse_real.transfer zero_real.transfer | |
| 473 | unfolding cr_real_eq fun_rel_def by (simp split: split_if_asm, metis) | |
| 474 | ||
| 475 | instance proof | |
| 476 | fix a b c :: real | |
| 477 | show "a + b = b + a" | |
| 478 | by transfer (simp add: add_ac realrel_def) | |
| 479 | show "(a + b) + c = a + (b + c)" | |
| 480 | by transfer (simp add: add_ac realrel_def) | |
| 481 | show "0 + a = a" | |
| 482 | by transfer (simp add: realrel_def) | |
| 483 | show "- a + a = 0" | |
| 484 | by transfer (simp add: realrel_def) | |
| 485 | show "a - b = a + - b" | |
| 486 | by (rule minus_real_def) | |
| 487 | show "(a * b) * c = a * (b * c)" | |
| 488 | by transfer (simp add: mult_ac realrel_def) | |
| 489 | show "a * b = b * a" | |
| 490 | by transfer (simp add: mult_ac realrel_def) | |
| 491 | show "1 * a = a" | |
| 492 | by transfer (simp add: mult_ac realrel_def) | |
| 493 | show "(a + b) * c = a * c + b * c" | |
| 494 | by transfer (simp add: distrib_right realrel_def) | |
| 495 | show "(0\<Colon>real) \<noteq> (1\<Colon>real)" | |
| 496 | by transfer (simp add: realrel_def) | |
| 497 | show "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1" | |
| 498 | apply transfer | |
| 499 | apply (simp add: realrel_def) | |
| 500 | apply (rule vanishesI) | |
| 501 | apply (frule (1) cauchy_not_vanishes, clarify) | |
| 502 | apply (rule_tac x=k in exI, clarify) | |
| 503 | apply (drule_tac x=n in spec, simp) | |
| 504 | done | |
| 505 | show "a / b = a * inverse b" | |
| 506 | by (rule divide_real_def) | |
| 507 | show "inverse (0::real) = 0" | |
| 508 | by transfer (simp add: realrel_def) | |
| 509 | qed | |
| 510 | ||
| 511 | end | |
| 512 | ||
| 513 | subsection {* Positive reals *}
 | |
| 514 | ||
| 515 | lift_definition positive :: "real \<Rightarrow> bool" | |
| 516 | is "\<lambda>X. \<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < X n" | |
| 517 | proof - | |
| 518 |   { fix X Y
 | |
| 519 | assume "realrel X Y" | |
| 520 | hence XY: "vanishes (\<lambda>n. X n - Y n)" | |
| 521 | unfolding realrel_def by simp_all | |
| 522 | assume "\<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < X n" | |
| 523 | then obtain r i where "0 < r" and i: "\<forall>n\<ge>i. r < X n" | |
| 524 | by fast | |
| 525 | obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t" | |
| 526 | using `0 < r` by (rule obtain_pos_sum) | |
| 527 | obtain j where j: "\<forall>n\<ge>j. \<bar>X n - Y n\<bar> < s" | |
| 528 | using vanishesD [OF XY s] .. | |
| 529 | have "\<forall>n\<ge>max i j. t < Y n" | |
| 530 | proof (clarsimp) | |
| 531 | fix n assume n: "i \<le> n" "j \<le> n" | |
| 532 | have "\<bar>X n - Y n\<bar> < s" and "r < X n" | |
| 533 | using i j n by simp_all | |
| 534 | thus "t < Y n" unfolding r by simp | |
| 535 | qed | |
| 536 | hence "\<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < Y n" using t by fast | |
| 537 | } note 1 = this | |
| 538 | fix X Y assume "realrel X Y" | |
| 539 | hence "realrel X Y" and "realrel Y X" | |
| 540 | using symp_realrel unfolding symp_def by auto | |
| 541 | thus "?thesis X Y" | |
| 542 | by (safe elim!: 1) | |
| 543 | qed | |
| 544 | ||
| 545 | lemma positive_Real: | |
| 546 | assumes X: "cauchy X" | |
| 547 | shows "positive (Real X) \<longleftrightarrow> (\<exists>r>0. \<exists>k. \<forall>n\<ge>k. r < X n)" | |
| 548 | using assms positive.transfer | |
| 549 | unfolding cr_real_eq fun_rel_def by simp | |
| 550 | ||
| 551 | lemma positive_zero: "\<not> positive 0" | |
| 552 | by transfer auto | |
| 553 | ||
| 554 | lemma positive_add: | |
| 555 | "positive x \<Longrightarrow> positive y \<Longrightarrow> positive (x + y)" | |
| 556 | apply transfer | |
| 557 | apply (clarify, rename_tac a b i j) | |
| 558 | apply (rule_tac x="a + b" in exI, simp) | |
| 559 | apply (rule_tac x="max i j" in exI, clarsimp) | |
| 560 | apply (simp add: add_strict_mono) | |
| 561 | done | |
| 562 | ||
| 563 | lemma positive_mult: | |
| 564 | "positive x \<Longrightarrow> positive y \<Longrightarrow> positive (x * y)" | |
| 565 | apply transfer | |
| 566 | apply (clarify, rename_tac a b i j) | |
| 567 | apply (rule_tac x="a * b" in exI, simp add: mult_pos_pos) | |
| 568 | apply (rule_tac x="max i j" in exI, clarsimp) | |
| 569 | apply (rule mult_strict_mono, auto) | |
| 570 | done | |
| 571 | ||
| 572 | lemma positive_minus: | |
| 573 | "\<not> positive x \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> positive (- x)" | |
| 574 | apply transfer | |
| 575 | apply (simp add: realrel_def) | |
| 576 | apply (drule (1) cauchy_not_vanishes_cases, safe, fast, fast) | |
| 577 | done | |
| 578 | ||
| 579 | instantiation real :: linordered_field_inverse_zero | |
| 580 | begin | |
| 581 | ||
| 582 | definition | |
| 583 | "x < y \<longleftrightarrow> positive (y - x)" | |
| 584 | ||
| 585 | definition | |
| 586 | "x \<le> (y::real) \<longleftrightarrow> x < y \<or> x = y" | |
| 587 | ||
| 588 | definition | |
| 589 | "abs (a::real) = (if a < 0 then - a else a)" | |
| 590 | ||
| 591 | definition | |
| 592 | "sgn (a::real) = (if a = 0 then 0 else if 0 < a then 1 else - 1)" | |
| 593 | ||
| 594 | instance proof | |
| 595 | fix a b c :: real | |
| 596 | show "\<bar>a\<bar> = (if a < 0 then - a else a)" | |
| 597 | by (rule abs_real_def) | |
| 598 | show "a < b \<longleftrightarrow> a \<le> b \<and> \<not> b \<le> a" | |
| 599 | unfolding less_eq_real_def less_real_def | |
| 600 | by (auto, drule (1) positive_add, simp_all add: positive_zero) | |
| 601 | show "a \<le> a" | |
| 602 | unfolding less_eq_real_def by simp | |
| 603 | show "a \<le> b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c" | |
| 604 | unfolding less_eq_real_def less_real_def | |
| 605 | by (auto, drule (1) positive_add, simp add: algebra_simps) | |
| 606 | show "a \<le> b \<Longrightarrow> b \<le> a \<Longrightarrow> a = b" | |
| 607 | unfolding less_eq_real_def less_real_def | |
| 608 | by (auto, drule (1) positive_add, simp add: positive_zero) | |
| 609 | show "a \<le> b \<Longrightarrow> c + a \<le> c + b" | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53652diff
changeset | 610 | unfolding less_eq_real_def less_real_def by auto | 
| 51523 | 611 | (* FIXME: Procedure int_combine_numerals: c + b - (c + a) \<equiv> b + - a *) | 
| 612 | (* Should produce c + b - (c + a) \<equiv> b - a *) | |
| 613 | show "sgn a = (if a = 0 then 0 else if 0 < a then 1 else - 1)" | |
| 614 | by (rule sgn_real_def) | |
| 615 | show "a \<le> b \<or> b \<le> a" | |
| 616 | unfolding less_eq_real_def less_real_def | |
| 617 | by (auto dest!: positive_minus) | |
| 618 | show "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b" | |
| 619 | unfolding less_real_def | |
| 620 | by (drule (1) positive_mult, simp add: algebra_simps) | |
| 621 | qed | |
| 622 | ||
| 623 | end | |
| 624 | ||
| 625 | instantiation real :: distrib_lattice | |
| 626 | begin | |
| 627 | ||
| 628 | definition | |
| 629 | "(inf :: real \<Rightarrow> real \<Rightarrow> real) = min" | |
| 630 | ||
| 631 | definition | |
| 632 | "(sup :: real \<Rightarrow> real \<Rightarrow> real) = max" | |
| 633 | ||
| 634 | instance proof | |
| 54863 
82acc20ded73
prefer more canonical names for lemmas on min/max
 haftmann parents: 
54489diff
changeset | 635 | qed (auto simp add: inf_real_def sup_real_def max_min_distrib2) | 
| 51523 | 636 | |
| 637 | end | |
| 638 | ||
| 639 | lemma of_nat_Real: "of_nat x = Real (\<lambda>n. of_nat x)" | |
| 640 | apply (induct x) | |
| 641 | apply (simp add: zero_real_def) | |
| 642 | apply (simp add: one_real_def add_Real) | |
| 643 | done | |
| 644 | ||
| 645 | lemma of_int_Real: "of_int x = Real (\<lambda>n. of_int x)" | |
| 646 | apply (cases x rule: int_diff_cases) | |
| 647 | apply (simp add: of_nat_Real diff_Real) | |
| 648 | done | |
| 649 | ||
| 650 | lemma of_rat_Real: "of_rat x = Real (\<lambda>n. x)" | |
| 651 | apply (induct x) | |
| 652 | apply (simp add: Fract_of_int_quotient of_rat_divide) | |
| 653 | apply (simp add: of_int_Real divide_inverse) | |
| 654 | apply (simp add: inverse_Real mult_Real) | |
| 655 | done | |
| 656 | ||
| 657 | instance real :: archimedean_field | |
| 658 | proof | |
| 659 | fix x :: real | |
| 660 | show "\<exists>z. x \<le> of_int z" | |
| 661 | apply (induct x) | |
| 662 | apply (frule cauchy_imp_bounded, clarify) | |
| 663 | apply (rule_tac x="ceiling b + 1" in exI) | |
| 664 | apply (rule less_imp_le) | |
| 665 | apply (simp add: of_int_Real less_real_def diff_Real positive_Real) | |
| 666 | apply (rule_tac x=1 in exI, simp add: algebra_simps) | |
| 667 | apply (rule_tac x=0 in exI, clarsimp) | |
| 668 | apply (rule le_less_trans [OF abs_ge_self]) | |
| 669 | apply (rule less_le_trans [OF _ le_of_int_ceiling]) | |
| 670 | apply simp | |
| 671 | done | |
| 672 | qed | |
| 673 | ||
| 674 | instantiation real :: floor_ceiling | |
| 675 | begin | |
| 676 | ||
| 677 | definition [code del]: | |
| 678 | "floor (x::real) = (THE z. of_int z \<le> x \<and> x < of_int (z + 1))" | |
| 679 | ||
| 680 | instance proof | |
| 681 | fix x :: real | |
| 682 | show "of_int (floor x) \<le> x \<and> x < of_int (floor x + 1)" | |
| 683 | unfolding floor_real_def using floor_exists1 by (rule theI') | |
| 684 | qed | |
| 685 | ||
| 686 | end | |
| 687 | ||
| 688 | subsection {* Completeness *}
 | |
| 689 | ||
| 690 | lemma not_positive_Real: | |
| 691 | assumes X: "cauchy X" | |
| 692 | shows "\<not> positive (Real X) \<longleftrightarrow> (\<forall>r>0. \<exists>k. \<forall>n\<ge>k. X n \<le> r)" | |
| 693 | unfolding positive_Real [OF X] | |
| 694 | apply (auto, unfold not_less) | |
| 695 | apply (erule obtain_pos_sum) | |
| 696 | apply (drule_tac x=s in spec, simp) | |
| 697 | apply (drule_tac r=t in cauchyD [OF X], clarify) | |
| 698 | apply (drule_tac x=k in spec, clarsimp) | |
| 699 | apply (rule_tac x=n in exI, clarify, rename_tac m) | |
| 700 | apply (drule_tac x=m in spec, simp) | |
| 701 | apply (drule_tac x=n in spec, simp) | |
| 702 | apply (drule spec, drule (1) mp, clarify, rename_tac i) | |
| 703 | apply (rule_tac x="max i k" in exI, simp) | |
| 704 | done | |
| 705 | ||
| 706 | lemma le_Real: | |
| 707 | assumes X: "cauchy X" and Y: "cauchy Y" | |
| 708 | shows "Real X \<le> Real Y = (\<forall>r>0. \<exists>k. \<forall>n\<ge>k. X n \<le> Y n + r)" | |
| 709 | unfolding not_less [symmetric, where 'a=real] less_real_def | |
| 710 | apply (simp add: diff_Real not_positive_Real X Y) | |
| 711 | apply (simp add: diff_le_eq add_ac) | |
| 712 | done | |
| 713 | ||
| 714 | lemma le_RealI: | |
| 715 | assumes Y: "cauchy Y" | |
| 716 | shows "\<forall>n. x \<le> of_rat (Y n) \<Longrightarrow> x \<le> Real Y" | |
| 717 | proof (induct x) | |
| 718 | fix X assume X: "cauchy X" and "\<forall>n. Real X \<le> of_rat (Y n)" | |
| 719 | hence le: "\<And>m r. 0 < r \<Longrightarrow> \<exists>k. \<forall>n\<ge>k. X n \<le> Y m + r" | |
| 720 | by (simp add: of_rat_Real le_Real) | |
| 721 |   {
 | |
| 722 | fix r :: rat assume "0 < r" | |
| 723 | then obtain s t where s: "0 < s" and t: "0 < t" and r: "r = s + t" | |
| 724 | by (rule obtain_pos_sum) | |
| 725 | obtain i where i: "\<forall>m\<ge>i. \<forall>n\<ge>i. \<bar>Y m - Y n\<bar> < s" | |
| 726 | using cauchyD [OF Y s] .. | |
| 727 | obtain j where j: "\<forall>n\<ge>j. X n \<le> Y i + t" | |
| 728 | using le [OF t] .. | |
| 729 | have "\<forall>n\<ge>max i j. X n \<le> Y n + r" | |
| 730 | proof (clarsimp) | |
| 731 | fix n assume n: "i \<le> n" "j \<le> n" | |
| 732 | have "X n \<le> Y i + t" using n j by simp | |
| 733 | moreover have "\<bar>Y i - Y n\<bar> < s" using n i by simp | |
| 734 | ultimately show "X n \<le> Y n + r" unfolding r by simp | |
| 735 | qed | |
| 736 | hence "\<exists>k. \<forall>n\<ge>k. X n \<le> Y n + r" .. | |
| 737 | } | |
| 738 | thus "Real X \<le> Real Y" | |
| 739 | by (simp add: of_rat_Real le_Real X Y) | |
| 740 | qed | |
| 741 | ||
| 742 | lemma Real_leI: | |
| 743 | assumes X: "cauchy X" | |
| 744 | assumes le: "\<forall>n. of_rat (X n) \<le> y" | |
| 745 | shows "Real X \<le> y" | |
| 746 | proof - | |
| 747 | have "- y \<le> - Real X" | |
| 748 | by (simp add: minus_Real X le_RealI of_rat_minus le) | |
| 749 | thus ?thesis by simp | |
| 750 | qed | |
| 751 | ||
| 752 | lemma less_RealD: | |
| 753 | assumes Y: "cauchy Y" | |
| 754 | shows "x < Real Y \<Longrightarrow> \<exists>n. x < of_rat (Y n)" | |
| 755 | by (erule contrapos_pp, simp add: not_less, erule Real_leI [OF Y]) | |
| 756 | ||
| 757 | lemma of_nat_less_two_power: | |
| 758 | "of_nat n < (2::'a::linordered_idom) ^ n" | |
| 759 | apply (induct n) | |
| 760 | apply simp | |
| 761 | apply (subgoal_tac "(1::'a) \<le> 2 ^ n") | |
| 762 | apply (drule (1) add_le_less_mono, simp) | |
| 763 | apply simp | |
| 764 | done | |
| 765 | ||
| 766 | lemma complete_real: | |
| 767 | fixes S :: "real set" | |
| 768 | assumes "\<exists>x. x \<in> S" and "\<exists>z. \<forall>x\<in>S. x \<le> z" | |
| 769 | shows "\<exists>y. (\<forall>x\<in>S. x \<le> y) \<and> (\<forall>z. (\<forall>x\<in>S. x \<le> z) \<longrightarrow> y \<le> z)" | |
| 770 | proof - | |
| 771 | obtain x where x: "x \<in> S" using assms(1) .. | |
| 772 | obtain z where z: "\<forall>x\<in>S. x \<le> z" using assms(2) .. | |
| 773 | ||
| 774 | def P \<equiv> "\<lambda>x. \<forall>y\<in>S. y \<le> of_rat x" | |
| 775 | obtain a where a: "\<not> P a" | |
| 776 | proof | |
| 777 | have "of_int (floor (x - 1)) \<le> x - 1" by (rule of_int_floor_le) | |
| 778 | also have "x - 1 < x" by simp | |
| 779 | finally have "of_int (floor (x - 1)) < x" . | |
| 780 | hence "\<not> x \<le> of_int (floor (x - 1))" by (simp only: not_le) | |
| 781 | then show "\<not> P (of_int (floor (x - 1)))" | |
| 782 | unfolding P_def of_rat_of_int_eq using x by fast | |
| 783 | qed | |
| 784 | obtain b where b: "P b" | |
| 785 | proof | |
| 786 | show "P (of_int (ceiling z))" | |
| 787 | unfolding P_def of_rat_of_int_eq | |
| 788 | proof | |
| 789 | fix y assume "y \<in> S" | |
| 790 | hence "y \<le> z" using z by simp | |
| 791 | also have "z \<le> of_int (ceiling z)" by (rule le_of_int_ceiling) | |
| 792 | finally show "y \<le> of_int (ceiling z)" . | |
| 793 | qed | |
| 794 | qed | |
| 795 | ||
| 796 | def avg \<equiv> "\<lambda>x y :: rat. x/2 + y/2" | |
| 797 | def bisect \<equiv> "\<lambda>(x, y). if P (avg x y) then (x, avg x y) else (avg x y, y)" | |
| 798 | def A \<equiv> "\<lambda>n. fst ((bisect ^^ n) (a, b))" | |
| 799 | def B \<equiv> "\<lambda>n. snd ((bisect ^^ n) (a, b))" | |
| 800 | def C \<equiv> "\<lambda>n. avg (A n) (B n)" | |
| 801 | have A_0 [simp]: "A 0 = a" unfolding A_def by simp | |
| 802 | have B_0 [simp]: "B 0 = b" unfolding B_def by simp | |
| 803 | have A_Suc [simp]: "\<And>n. A (Suc n) = (if P (C n) then A n else C n)" | |
| 804 | unfolding A_def B_def C_def bisect_def split_def by simp | |
| 805 | have B_Suc [simp]: "\<And>n. B (Suc n) = (if P (C n) then C n else B n)" | |
| 806 | unfolding A_def B_def C_def bisect_def split_def by simp | |
| 807 | ||
| 808 | have width: "\<And>n. B n - A n = (b - a) / 2^n" | |
| 809 | apply (simp add: eq_divide_eq) | |
| 810 | apply (induct_tac n, simp) | |
| 811 | apply (simp add: C_def avg_def algebra_simps) | |
| 812 | done | |
| 813 | ||
| 814 | have twos: "\<And>y r :: rat. 0 < r \<Longrightarrow> \<exists>n. y / 2 ^ n < r" | |
| 815 | apply (simp add: divide_less_eq) | |
| 816 | apply (subst mult_commute) | |
| 817 | apply (frule_tac y=y in ex_less_of_nat_mult) | |
| 818 | apply clarify | |
| 819 | apply (rule_tac x=n in exI) | |
| 820 | apply (erule less_trans) | |
| 821 | apply (rule mult_strict_right_mono) | |
| 822 | apply (rule le_less_trans [OF _ of_nat_less_two_power]) | |
| 823 | apply simp | |
| 824 | apply assumption | |
| 825 | done | |
| 826 | ||
| 827 | have PA: "\<And>n. \<not> P (A n)" | |
| 828 | by (induct_tac n, simp_all add: a) | |
| 829 | have PB: "\<And>n. P (B n)" | |
| 830 | by (induct_tac n, simp_all add: b) | |
| 831 | have ab: "a < b" | |
| 832 | using a b unfolding P_def | |
| 833 | apply (clarsimp simp add: not_le) | |
| 834 | apply (drule (1) bspec) | |
| 835 | apply (drule (1) less_le_trans) | |
| 836 | apply (simp add: of_rat_less) | |
| 837 | done | |
| 838 | have AB: "\<And>n. A n < B n" | |
| 839 | by (induct_tac n, simp add: ab, simp add: C_def avg_def) | |
| 840 | have A_mono: "\<And>i j. i \<le> j \<Longrightarrow> A i \<le> A j" | |
| 841 | apply (auto simp add: le_less [where 'a=nat]) | |
| 842 | apply (erule less_Suc_induct) | |
| 843 | apply (clarsimp simp add: C_def avg_def) | |
| 844 | apply (simp add: add_divide_distrib [symmetric]) | |
| 845 | apply (rule AB [THEN less_imp_le]) | |
| 846 | apply simp | |
| 847 | done | |
| 848 | have B_mono: "\<And>i j. i \<le> j \<Longrightarrow> B j \<le> B i" | |
| 849 | apply (auto simp add: le_less [where 'a=nat]) | |
| 850 | apply (erule less_Suc_induct) | |
| 851 | apply (clarsimp simp add: C_def avg_def) | |
| 852 | apply (simp add: add_divide_distrib [symmetric]) | |
| 853 | apply (rule AB [THEN less_imp_le]) | |
| 854 | apply simp | |
| 855 | done | |
| 856 | have cauchy_lemma: | |
| 857 | "\<And>X. \<forall>n. \<forall>i\<ge>n. A n \<le> X i \<and> X i \<le> B n \<Longrightarrow> cauchy X" | |
| 858 | apply (rule cauchyI) | |
| 859 | apply (drule twos [where y="b - a"]) | |
| 860 | apply (erule exE) | |
| 861 | apply (rule_tac x=n in exI, clarify, rename_tac i j) | |
| 862 | apply (rule_tac y="B n - A n" in le_less_trans) defer | |
| 863 | apply (simp add: width) | |
| 864 | apply (drule_tac x=n in spec) | |
| 865 | apply (frule_tac x=i in spec, drule (1) mp) | |
| 866 | apply (frule_tac x=j in spec, drule (1) mp) | |
| 867 | apply (frule A_mono, drule B_mono) | |
| 868 | apply (frule A_mono, drule B_mono) | |
| 869 | apply arith | |
| 870 | done | |
| 871 | have "cauchy A" | |
| 872 | apply (rule cauchy_lemma [rule_format]) | |
| 873 | apply (simp add: A_mono) | |
| 874 | apply (erule order_trans [OF less_imp_le [OF AB] B_mono]) | |
| 875 | done | |
| 876 | have "cauchy B" | |
| 877 | apply (rule cauchy_lemma [rule_format]) | |
| 878 | apply (simp add: B_mono) | |
| 879 | apply (erule order_trans [OF A_mono less_imp_le [OF AB]]) | |
| 880 | done | |
| 881 | have 1: "\<forall>x\<in>S. x \<le> Real B" | |
| 882 | proof | |
| 883 | fix x assume "x \<in> S" | |
| 884 | then show "x \<le> Real B" | |
| 885 | using PB [unfolded P_def] `cauchy B` | |
| 886 | by (simp add: le_RealI) | |
| 887 | qed | |
| 888 | have 2: "\<forall>z. (\<forall>x\<in>S. x \<le> z) \<longrightarrow> Real A \<le> z" | |
| 889 | apply clarify | |
| 890 | apply (erule contrapos_pp) | |
| 891 | apply (simp add: not_le) | |
| 892 | apply (drule less_RealD [OF `cauchy A`], clarify) | |
| 893 | apply (subgoal_tac "\<not> P (A n)") | |
| 894 | apply (simp add: P_def not_le, clarify) | |
| 895 | apply (erule rev_bexI) | |
| 896 | apply (erule (1) less_trans) | |
| 897 | apply (simp add: PA) | |
| 898 | done | |
| 899 | have "vanishes (\<lambda>n. (b - a) / 2 ^ n)" | |
| 900 | proof (rule vanishesI) | |
| 901 | fix r :: rat assume "0 < r" | |
| 902 | then obtain k where k: "\<bar>b - a\<bar> / 2 ^ k < r" | |
| 903 | using twos by fast | |
| 904 | have "\<forall>n\<ge>k. \<bar>(b - a) / 2 ^ n\<bar> < r" | |
| 905 | proof (clarify) | |
| 906 | fix n assume n: "k \<le> n" | |
| 907 | have "\<bar>(b - a) / 2 ^ n\<bar> = \<bar>b - a\<bar> / 2 ^ n" | |
| 908 | by simp | |
| 909 | also have "\<dots> \<le> \<bar>b - a\<bar> / 2 ^ k" | |
| 910 | using n by (simp add: divide_left_mono mult_pos_pos) | |
| 911 | also note k | |
| 912 | finally show "\<bar>(b - a) / 2 ^ n\<bar> < r" . | |
| 913 | qed | |
| 914 | thus "\<exists>k. \<forall>n\<ge>k. \<bar>(b - a) / 2 ^ n\<bar> < r" .. | |
| 915 | qed | |
| 916 | hence 3: "Real B = Real A" | |
| 917 | by (simp add: eq_Real `cauchy A` `cauchy B` width) | |
| 918 | show "\<exists>y. (\<forall>x\<in>S. x \<le> y) \<and> (\<forall>z. (\<forall>x\<in>S. x \<le> z) \<longrightarrow> y \<le> z)" | |
| 919 | using 1 2 3 by (rule_tac x="Real B" in exI, simp) | |
| 920 | qed | |
| 921 | ||
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51773diff
changeset | 922 | instantiation real :: linear_continuum | 
| 51523 | 923 | begin | 
| 924 | ||
| 925 | subsection{*Supremum of a set of reals*}
 | |
| 926 | ||
| 54281 | 927 | definition "Sup X = (LEAST z::real. \<forall>x\<in>X. x \<le> z)" | 
| 928 | definition "Inf (X::real set) = - Sup (uminus ` X)" | |
| 51523 | 929 | |
| 930 | instance | |
| 931 | proof | |
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54230diff
changeset | 932 |   { fix x :: real and X :: "real set"
 | 
| 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54230diff
changeset | 933 | assume x: "x \<in> X" "bdd_above X" | 
| 51523 | 934 | then obtain s where s: "\<forall>y\<in>X. y \<le> s" "\<And>z. \<forall>y\<in>X. y \<le> z \<Longrightarrow> s \<le> z" | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
54230diff
changeset | 935 | using complete_real[of X] unfolding bdd_above_def by blast | 
| 51523 | 936 | then show "x \<le> Sup X" | 
| 937 | unfolding Sup_real_def by (rule LeastI2_order) (auto simp: x) } | |
| 938 | note Sup_upper = this | |
| 939 | ||
| 940 |   { fix z :: real and X :: "real set"
 | |
| 941 |     assume x: "X \<noteq> {}" and z: "\<And>x. x \<in> X \<Longrightarrow> x \<le> z"
 | |
| 942 | then obtain s where s: "\<forall>y\<in>X. y \<le> s" "\<And>z. \<forall>y\<in>X. y \<le> z \<Longrightarrow> s \<le> z" | |
| 943 | using complete_real[of X] by blast | |
| 944 | then have "Sup X = s" | |
| 945 | unfolding Sup_real_def by (best intro: Least_equality) | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53076diff
changeset | 946 | also from s z have "... \<le> z" | 
| 51523 | 947 | by blast | 
| 948 | finally show "Sup X \<le> z" . } | |
| 949 | note Sup_least = this | |
| 950 | ||
| 54281 | 951 |   { fix x :: real and X :: "real set" assume x: "x \<in> X" "bdd_below X" then show "Inf X \<le> x"
 | 
| 952 | using Sup_upper[of "-x" "uminus ` X"] by (auto simp: Inf_real_def) } | |
| 953 |   { fix z :: real and X :: "real set" assume "X \<noteq> {}" "\<And>x. x \<in> X \<Longrightarrow> z \<le> x" then show "z \<le> Inf X"
 | |
| 954 | using Sup_least[of "uminus ` X" "- z"] by (force simp: Inf_real_def) } | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51773diff
changeset | 955 | show "\<exists>a b::real. a \<noteq> b" | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51773diff
changeset | 956 | using zero_neq_one by blast | 
| 51523 | 957 | qed | 
| 958 | end | |
| 959 | ||
| 960 | ||
| 961 | subsection {* Hiding implementation details *}
 | |
| 962 | ||
| 963 | hide_const (open) vanishes cauchy positive Real | |
| 964 | ||
| 965 | declare Real_induct [induct del] | |
| 966 | declare Abs_real_induct [induct del] | |
| 967 | declare Abs_real_cases [cases del] | |
| 968 | ||
| 53652 
18fbca265e2e
use lifting_forget for deregistering numeric types as a quotient type
 kuncar parents: 
53374diff
changeset | 969 | lifting_update real.lifting | 
| 
18fbca265e2e
use lifting_forget for deregistering numeric types as a quotient type
 kuncar parents: 
53374diff
changeset | 970 | lifting_forget real.lifting | 
| 51956 
a4d81cdebf8b
better support for domains in Lifting/Transfer = replace Domainp T by the actual invariant in a transferred goal
 kuncar parents: 
51775diff
changeset | 971 | |
| 51523 | 972 | subsection{*More Lemmas*}
 | 
| 973 | ||
| 974 | text {* BH: These lemmas should not be necessary; they should be
 | |
| 975 | covered by existing simp rules and simplification procedures. *} | |
| 976 | ||
| 977 | lemma real_mult_left_cancel: "(c::real) \<noteq> 0 ==> (c*a=c*b) = (a=b)" | |
| 978 | by simp (* redundant with mult_cancel_left *) | |
| 979 | ||
| 980 | lemma real_mult_right_cancel: "(c::real) \<noteq> 0 ==> (a*c=b*c) = (a=b)" | |
| 981 | by simp (* redundant with mult_cancel_right *) | |
| 982 | ||
| 983 | lemma real_mult_less_iff1 [simp]: "(0::real) < z ==> (x*z < y*z) = (x < y)" | |
| 984 | by simp (* solved by linordered_ring_less_cancel_factor simproc *) | |
| 985 | ||
| 986 | lemma real_mult_le_cancel_iff1 [simp]: "(0::real) < z ==> (x*z \<le> y*z) = (x\<le>y)" | |
| 987 | by simp (* solved by linordered_ring_le_cancel_factor simproc *) | |
| 988 | ||
| 989 | lemma real_mult_le_cancel_iff2 [simp]: "(0::real) < z ==> (z*x \<le> z*y) = (x\<le>y)" | |
| 990 | by simp (* solved by linordered_ring_le_cancel_factor simproc *) | |
| 991 | ||
| 992 | ||
| 993 | subsection {* Embedding numbers into the Reals *}
 | |
| 994 | ||
| 995 | abbreviation | |
| 996 | real_of_nat :: "nat \<Rightarrow> real" | |
| 997 | where | |
| 998 | "real_of_nat \<equiv> of_nat" | |
| 999 | ||
| 1000 | abbreviation | |
| 1001 | real_of_int :: "int \<Rightarrow> real" | |
| 1002 | where | |
| 1003 | "real_of_int \<equiv> of_int" | |
| 1004 | ||
| 1005 | abbreviation | |
| 1006 | real_of_rat :: "rat \<Rightarrow> real" | |
| 1007 | where | |
| 1008 | "real_of_rat \<equiv> of_rat" | |
| 1009 | ||
| 1010 | consts | |
| 1011 | (*overloaded constant for injecting other types into "real"*) | |
| 1012 | real :: "'a => real" | |
| 1013 | ||
| 1014 | defs (overloaded) | |
| 1015 | real_of_nat_def [code_unfold]: "real == real_of_nat" | |
| 1016 | real_of_int_def [code_unfold]: "real == real_of_int" | |
| 1017 | ||
| 1018 | declare [[coercion_enabled]] | |
| 1019 | declare [[coercion "real::nat\<Rightarrow>real"]] | |
| 1020 | declare [[coercion "real::int\<Rightarrow>real"]] | |
| 1021 | declare [[coercion "int"]] | |
| 1022 | ||
| 1023 | declare [[coercion_map map]] | |
| 1024 | declare [[coercion_map "% f g h x. g (h (f x))"]] | |
| 1025 | declare [[coercion_map "% f g (x,y) . (f x, g y)"]] | |
| 1026 | ||
| 1027 | lemma real_eq_of_nat: "real = of_nat" | |
| 1028 | unfolding real_of_nat_def .. | |
| 1029 | ||
| 1030 | lemma real_eq_of_int: "real = of_int" | |
| 1031 | unfolding real_of_int_def .. | |
| 1032 | ||
| 1033 | lemma real_of_int_zero [simp]: "real (0::int) = 0" | |
| 1034 | by (simp add: real_of_int_def) | |
| 1035 | ||
| 1036 | lemma real_of_one [simp]: "real (1::int) = (1::real)" | |
| 1037 | by (simp add: real_of_int_def) | |
| 1038 | ||
| 1039 | lemma real_of_int_add [simp]: "real(x + y) = real (x::int) + real y" | |
| 1040 | by (simp add: real_of_int_def) | |
| 1041 | ||
| 1042 | lemma real_of_int_minus [simp]: "real(-x) = -real (x::int)" | |
| 1043 | by (simp add: real_of_int_def) | |
| 1044 | ||
| 1045 | lemma real_of_int_diff [simp]: "real(x - y) = real (x::int) - real y" | |
| 1046 | by (simp add: real_of_int_def) | |
| 1047 | ||
| 1048 | lemma real_of_int_mult [simp]: "real(x * y) = real (x::int) * real y" | |
| 1049 | by (simp add: real_of_int_def) | |
| 1050 | ||
| 1051 | lemma real_of_int_power [simp]: "real (x ^ n) = real (x::int) ^ n" | |
| 1052 | by (simp add: real_of_int_def of_int_power) | |
| 1053 | ||
| 1054 | lemmas power_real_of_int = real_of_int_power [symmetric] | |
| 1055 | ||
| 1056 | lemma real_of_int_setsum [simp]: "real ((SUM x:A. f x)::int) = (SUM x:A. real(f x))" | |
| 1057 | apply (subst real_eq_of_int)+ | |
| 1058 | apply (rule of_int_setsum) | |
| 1059 | done | |
| 1060 | ||
| 1061 | lemma real_of_int_setprod [simp]: "real ((PROD x:A. f x)::int) = | |
| 1062 | (PROD x:A. real(f x))" | |
| 1063 | apply (subst real_eq_of_int)+ | |
| 1064 | apply (rule of_int_setprod) | |
| 1065 | done | |
| 1066 | ||
| 1067 | lemma real_of_int_zero_cancel [simp, algebra, presburger]: "(real x = 0) = (x = (0::int))" | |
| 1068 | by (simp add: real_of_int_def) | |
| 1069 | ||
| 1070 | lemma real_of_int_inject [iff, algebra, presburger]: "(real (x::int) = real y) = (x = y)" | |
| 1071 | by (simp add: real_of_int_def) | |
| 1072 | ||
| 1073 | lemma real_of_int_less_iff [iff, presburger]: "(real (x::int) < real y) = (x < y)" | |
| 1074 | by (simp add: real_of_int_def) | |
| 1075 | ||
| 1076 | lemma real_of_int_le_iff [simp, presburger]: "(real (x::int) \<le> real y) = (x \<le> y)" | |
| 1077 | by (simp add: real_of_int_def) | |
| 1078 | ||
| 1079 | lemma real_of_int_gt_zero_cancel_iff [simp, presburger]: "(0 < real (n::int)) = (0 < n)" | |
| 1080 | by (simp add: real_of_int_def) | |
| 1081 | ||
| 1082 | lemma real_of_int_ge_zero_cancel_iff [simp, presburger]: "(0 <= real (n::int)) = (0 <= n)" | |
| 1083 | by (simp add: real_of_int_def) | |
| 1084 | ||
| 1085 | lemma real_of_int_lt_zero_cancel_iff [simp, presburger]: "(real (n::int) < 0) = (n < 0)" | |
| 1086 | by (simp add: real_of_int_def) | |
| 1087 | ||
| 1088 | lemma real_of_int_le_zero_cancel_iff [simp, presburger]: "(real (n::int) <= 0) = (n <= 0)" | |
| 1089 | by (simp add: real_of_int_def) | |
| 1090 | ||
| 1091 | lemma one_less_real_of_int_cancel_iff: "1 < real (i :: int) \<longleftrightarrow> 1 < i" | |
| 1092 | unfolding real_of_one[symmetric] real_of_int_less_iff .. | |
| 1093 | ||
| 1094 | lemma one_le_real_of_int_cancel_iff: "1 \<le> real (i :: int) \<longleftrightarrow> 1 \<le> i" | |
| 1095 | unfolding real_of_one[symmetric] real_of_int_le_iff .. | |
| 1096 | ||
| 1097 | lemma real_of_int_less_one_cancel_iff: "real (i :: int) < 1 \<longleftrightarrow> i < 1" | |
| 1098 | unfolding real_of_one[symmetric] real_of_int_less_iff .. | |
| 1099 | ||
| 1100 | lemma real_of_int_le_one_cancel_iff: "real (i :: int) \<le> 1 \<longleftrightarrow> i \<le> 1" | |
| 1101 | unfolding real_of_one[symmetric] real_of_int_le_iff .. | |
| 1102 | ||
| 1103 | lemma real_of_int_abs [simp]: "real (abs x) = abs(real (x::int))" | |
| 1104 | by (auto simp add: abs_if) | |
| 1105 | ||
| 1106 | lemma int_less_real_le: "((n::int) < m) = (real n + 1 <= real m)" | |
| 1107 | apply (subgoal_tac "real n + 1 = real (n + 1)") | |
| 1108 | apply (simp del: real_of_int_add) | |
| 1109 | apply auto | |
| 1110 | done | |
| 1111 | ||
| 1112 | lemma int_le_real_less: "((n::int) <= m) = (real n < real m + 1)" | |
| 1113 | apply (subgoal_tac "real m + 1 = real (m + 1)") | |
| 1114 | apply (simp del: real_of_int_add) | |
| 1115 | apply simp | |
| 1116 | done | |
| 1117 | ||
| 1118 | lemma real_of_int_div_aux: "(real (x::int)) / (real d) = | |
| 1119 | real (x div d) + (real (x mod d)) / (real d)" | |
| 1120 | proof - | |
| 1121 | have "x = (x div d) * d + x mod d" | |
| 1122 | by auto | |
| 1123 | then have "real x = real (x div d) * real d + real(x mod d)" | |
| 1124 | by (simp only: real_of_int_mult [THEN sym] real_of_int_add [THEN sym]) | |
| 1125 | then have "real x / real d = ... / real d" | |
| 1126 | by simp | |
| 1127 | then show ?thesis | |
| 1128 | by (auto simp add: add_divide_distrib algebra_simps) | |
| 1129 | qed | |
| 1130 | ||
| 1131 | lemma real_of_int_div: "(d :: int) dvd n ==> | |
| 1132 | real(n div d) = real n / real d" | |
| 1133 | apply (subst real_of_int_div_aux) | |
| 1134 | apply simp | |
| 1135 | apply (simp add: dvd_eq_mod_eq_0) | |
| 1136 | done | |
| 1137 | ||
| 1138 | lemma real_of_int_div2: | |
| 1139 | "0 <= real (n::int) / real (x) - real (n div x)" | |
| 1140 | apply (case_tac "x = 0") | |
| 1141 | apply simp | |
| 1142 | apply (case_tac "0 < x") | |
| 1143 | apply (simp add: algebra_simps) | |
| 1144 | apply (subst real_of_int_div_aux) | |
| 1145 | apply simp | |
| 1146 | apply (subst zero_le_divide_iff) | |
| 1147 | apply auto | |
| 1148 | apply (simp add: algebra_simps) | |
| 1149 | apply (subst real_of_int_div_aux) | |
| 1150 | apply simp | |
| 1151 | apply (subst zero_le_divide_iff) | |
| 1152 | apply auto | |
| 1153 | done | |
| 1154 | ||
| 1155 | lemma real_of_int_div3: | |
| 1156 | "real (n::int) / real (x) - real (n div x) <= 1" | |
| 1157 | apply (simp add: algebra_simps) | |
| 1158 | apply (subst real_of_int_div_aux) | |
| 1159 | apply (auto simp add: divide_le_eq intro: order_less_imp_le) | |
| 1160 | done | |
| 1161 | ||
| 1162 | lemma real_of_int_div4: "real (n div x) <= real (n::int) / real x" | |
| 1163 | by (insert real_of_int_div2 [of n x], simp) | |
| 1164 | ||
| 1165 | lemma Ints_real_of_int [simp]: "real (x::int) \<in> Ints" | |
| 1166 | unfolding real_of_int_def by (rule Ints_of_int) | |
| 1167 | ||
| 1168 | ||
| 1169 | subsection{*Embedding the Naturals into the Reals*}
 | |
| 1170 | ||
| 1171 | lemma real_of_nat_zero [simp]: "real (0::nat) = 0" | |
| 1172 | by (simp add: real_of_nat_def) | |
| 1173 | ||
| 1174 | lemma real_of_nat_1 [simp]: "real (1::nat) = 1" | |
| 1175 | by (simp add: real_of_nat_def) | |
| 1176 | ||
| 1177 | lemma real_of_nat_one [simp]: "real (Suc 0) = (1::real)" | |
| 1178 | by (simp add: real_of_nat_def) | |
| 1179 | ||
| 1180 | lemma real_of_nat_add [simp]: "real (m + n) = real (m::nat) + real n" | |
| 1181 | by (simp add: real_of_nat_def) | |
| 1182 | ||
| 1183 | (*Not for addsimps: often the LHS is used to represent a positive natural*) | |
| 1184 | lemma real_of_nat_Suc: "real (Suc n) = real n + (1::real)" | |
| 1185 | by (simp add: real_of_nat_def) | |
| 1186 | ||
| 1187 | lemma real_of_nat_less_iff [iff]: | |
| 1188 | "(real (n::nat) < real m) = (n < m)" | |
| 1189 | by (simp add: real_of_nat_def) | |
| 1190 | ||
| 1191 | lemma real_of_nat_le_iff [iff]: "(real (n::nat) \<le> real m) = (n \<le> m)" | |
| 1192 | by (simp add: real_of_nat_def) | |
| 1193 | ||
| 1194 | lemma real_of_nat_ge_zero [iff]: "0 \<le> real (n::nat)" | |
| 1195 | by (simp add: real_of_nat_def) | |
| 1196 | ||
| 1197 | lemma real_of_nat_Suc_gt_zero: "0 < real (Suc n)" | |
| 1198 | by (simp add: real_of_nat_def del: of_nat_Suc) | |
| 1199 | ||
| 1200 | lemma real_of_nat_mult [simp]: "real (m * n) = real (m::nat) * real n" | |
| 1201 | by (simp add: real_of_nat_def of_nat_mult) | |
| 1202 | ||
| 1203 | lemma real_of_nat_power [simp]: "real (m ^ n) = real (m::nat) ^ n" | |
| 1204 | by (simp add: real_of_nat_def of_nat_power) | |
| 1205 | ||
| 1206 | lemmas power_real_of_nat = real_of_nat_power [symmetric] | |
| 1207 | ||
| 1208 | lemma real_of_nat_setsum [simp]: "real ((SUM x:A. f x)::nat) = | |
| 1209 | (SUM x:A. real(f x))" | |
| 1210 | apply (subst real_eq_of_nat)+ | |
| 1211 | apply (rule of_nat_setsum) | |
| 1212 | done | |
| 1213 | ||
| 1214 | lemma real_of_nat_setprod [simp]: "real ((PROD x:A. f x)::nat) = | |
| 1215 | (PROD x:A. real(f x))" | |
| 1216 | apply (subst real_eq_of_nat)+ | |
| 1217 | apply (rule of_nat_setprod) | |
| 1218 | done | |
| 1219 | ||
| 1220 | lemma real_of_card: "real (card A) = setsum (%x.1) A" | |
| 1221 | apply (subst card_eq_setsum) | |
| 1222 | apply (subst real_of_nat_setsum) | |
| 1223 | apply simp | |
| 1224 | done | |
| 1225 | ||
| 1226 | lemma real_of_nat_inject [iff]: "(real (n::nat) = real m) = (n = m)" | |
| 1227 | by (simp add: real_of_nat_def) | |
| 1228 | ||
| 1229 | lemma real_of_nat_zero_iff [iff]: "(real (n::nat) = 0) = (n = 0)" | |
| 1230 | by (simp add: real_of_nat_def) | |
| 1231 | ||
| 1232 | lemma real_of_nat_diff: "n \<le> m ==> real (m - n) = real (m::nat) - real n" | |
| 1233 | by (simp add: add: real_of_nat_def of_nat_diff) | |
| 1234 | ||
| 1235 | lemma real_of_nat_gt_zero_cancel_iff [simp]: "(0 < real (n::nat)) = (0 < n)" | |
| 1236 | by (auto simp: real_of_nat_def) | |
| 1237 | ||
| 1238 | lemma real_of_nat_le_zero_cancel_iff [simp]: "(real (n::nat) \<le> 0) = (n = 0)" | |
| 1239 | by (simp add: add: real_of_nat_def) | |
| 1240 | ||
| 1241 | lemma not_real_of_nat_less_zero [simp]: "~ real (n::nat) < 0" | |
| 1242 | by (simp add: add: real_of_nat_def) | |
| 1243 | ||
| 1244 | lemma nat_less_real_le: "((n::nat) < m) = (real n + 1 <= real m)" | |
| 1245 | apply (subgoal_tac "real n + 1 = real (Suc n)") | |
| 1246 | apply simp | |
| 1247 | apply (auto simp add: real_of_nat_Suc) | |
| 1248 | done | |
| 1249 | ||
| 1250 | lemma nat_le_real_less: "((n::nat) <= m) = (real n < real m + 1)" | |
| 1251 | apply (subgoal_tac "real m + 1 = real (Suc m)") | |
| 1252 | apply (simp add: less_Suc_eq_le) | |
| 1253 | apply (simp add: real_of_nat_Suc) | |
| 1254 | done | |
| 1255 | ||
| 1256 | lemma real_of_nat_div_aux: "(real (x::nat)) / (real d) = | |
| 1257 | real (x div d) + (real (x mod d)) / (real d)" | |
| 1258 | proof - | |
| 1259 | have "x = (x div d) * d + x mod d" | |
| 1260 | by auto | |
| 1261 | then have "real x = real (x div d) * real d + real(x mod d)" | |
| 1262 | by (simp only: real_of_nat_mult [THEN sym] real_of_nat_add [THEN sym]) | |
| 1263 | then have "real x / real d = \<dots> / real d" | |
| 1264 | by simp | |
| 1265 | then show ?thesis | |
| 1266 | by (auto simp add: add_divide_distrib algebra_simps) | |
| 1267 | qed | |
| 1268 | ||
| 1269 | lemma real_of_nat_div: "(d :: nat) dvd n ==> | |
| 1270 | real(n div d) = real n / real d" | |
| 1271 | by (subst real_of_nat_div_aux) | |
| 1272 | (auto simp add: dvd_eq_mod_eq_0 [symmetric]) | |
| 1273 | ||
| 1274 | lemma real_of_nat_div2: | |
| 1275 | "0 <= real (n::nat) / real (x) - real (n div x)" | |
| 1276 | apply (simp add: algebra_simps) | |
| 1277 | apply (subst real_of_nat_div_aux) | |
| 1278 | apply simp | |
| 1279 | apply (subst zero_le_divide_iff) | |
| 1280 | apply simp | |
| 1281 | done | |
| 1282 | ||
| 1283 | lemma real_of_nat_div3: | |
| 1284 | "real (n::nat) / real (x) - real (n div x) <= 1" | |
| 1285 | apply(case_tac "x = 0") | |
| 1286 | apply (simp) | |
| 1287 | apply (simp add: algebra_simps) | |
| 1288 | apply (subst real_of_nat_div_aux) | |
| 1289 | apply simp | |
| 1290 | done | |
| 1291 | ||
| 1292 | lemma real_of_nat_div4: "real (n div x) <= real (n::nat) / real x" | |
| 1293 | by (insert real_of_nat_div2 [of n x], simp) | |
| 1294 | ||
| 1295 | lemma real_of_int_of_nat_eq [simp]: "real (of_nat n :: int) = real n" | |
| 1296 | by (simp add: real_of_int_def real_of_nat_def) | |
| 1297 | ||
| 1298 | lemma real_nat_eq_real [simp]: "0 <= x ==> real(nat x) = real x" | |
| 1299 | apply (subgoal_tac "real(int(nat x)) = real(nat x)") | |
| 1300 | apply force | |
| 1301 | apply (simp only: real_of_int_of_nat_eq) | |
| 1302 | done | |
| 1303 | ||
| 1304 | lemma Nats_real_of_nat [simp]: "real (n::nat) \<in> Nats" | |
| 1305 | unfolding real_of_nat_def by (rule of_nat_in_Nats) | |
| 1306 | ||
| 1307 | lemma Ints_real_of_nat [simp]: "real (n::nat) \<in> Ints" | |
| 1308 | unfolding real_of_nat_def by (rule Ints_of_nat) | |
| 1309 | ||
| 1310 | subsection {* The Archimedean Property of the Reals *}
 | |
| 1311 | ||
| 1312 | theorem reals_Archimedean: | |
| 1313 | assumes x_pos: "0 < x" | |
| 1314 | shows "\<exists>n. inverse (real (Suc n)) < x" | |
| 1315 | unfolding real_of_nat_def using x_pos | |
| 1316 | by (rule ex_inverse_of_nat_Suc_less) | |
| 1317 | ||
| 1318 | lemma reals_Archimedean2: "\<exists>n. (x::real) < real (n::nat)" | |
| 1319 | unfolding real_of_nat_def by (rule ex_less_of_nat) | |
| 1320 | ||
| 1321 | lemma reals_Archimedean3: | |
| 1322 | assumes x_greater_zero: "0 < x" | |
| 1323 | shows "\<forall>(y::real). \<exists>(n::nat). y < real n * x" | |
| 1324 | unfolding real_of_nat_def using `0 < x` | |
| 1325 | by (auto intro: ex_less_of_nat_mult) | |
| 1326 | ||
| 1327 | ||
| 1328 | subsection{* Rationals *}
 | |
| 1329 | ||
| 1330 | lemma Rats_real_nat[simp]: "real(n::nat) \<in> \<rat>" | |
| 1331 | by (simp add: real_eq_of_nat) | |
| 1332 | ||
| 1333 | ||
| 1334 | lemma Rats_eq_int_div_int: | |
| 1335 |   "\<rat> = { real(i::int)/real(j::int) |i j. j \<noteq> 0}" (is "_ = ?S")
 | |
| 1336 | proof | |
| 1337 | show "\<rat> \<subseteq> ?S" | |
| 1338 | proof | |
| 1339 | fix x::real assume "x : \<rat>" | |
| 1340 | then obtain r where "x = of_rat r" unfolding Rats_def .. | |
| 1341 | have "of_rat r : ?S" | |
| 1342 | by (cases r)(auto simp add:of_rat_rat real_eq_of_int) | |
| 1343 | thus "x : ?S" using `x = of_rat r` by simp | |
| 1344 | qed | |
| 1345 | next | |
| 1346 | show "?S \<subseteq> \<rat>" | |
| 1347 | proof(auto simp:Rats_def) | |
| 1348 | fix i j :: int assume "j \<noteq> 0" | |
| 1349 | hence "real i / real j = of_rat(Fract i j)" | |
| 1350 | by (simp add:of_rat_rat real_eq_of_int) | |
| 1351 | thus "real i / real j \<in> range of_rat" by blast | |
| 1352 | qed | |
| 1353 | qed | |
| 1354 | ||
| 1355 | lemma Rats_eq_int_div_nat: | |
| 1356 |   "\<rat> = { real(i::int)/real(n::nat) |i n. n \<noteq> 0}"
 | |
| 1357 | proof(auto simp:Rats_eq_int_div_int) | |
| 1358 | fix i j::int assume "j \<noteq> 0" | |
| 1359 | show "EX (i'::int) (n::nat). real i/real j = real i'/real n \<and> 0<n" | |
| 1360 | proof cases | |
| 1361 | assume "j>0" | |
| 1362 | hence "real i/real j = real i/real(nat j) \<and> 0<nat j" | |
| 1363 | by (simp add: real_eq_of_int real_eq_of_nat of_nat_nat) | |
| 1364 | thus ?thesis by blast | |
| 1365 | next | |
| 1366 | assume "~ j>0" | |
| 1367 | hence "real i/real j = real(-i)/real(nat(-j)) \<and> 0<nat(-j)" using `j\<noteq>0` | |
| 1368 | by (simp add: real_eq_of_int real_eq_of_nat of_nat_nat) | |
| 1369 | thus ?thesis by blast | |
| 1370 | qed | |
| 1371 | next | |
| 1372 | fix i::int and n::nat assume "0 < n" | |
| 1373 | hence "real i/real n = real i/real(int n) \<and> int n \<noteq> 0" by simp | |
| 1374 | thus "\<exists>(i'::int) j::int. real i/real n = real i'/real j \<and> j \<noteq> 0" by blast | |
| 1375 | qed | |
| 1376 | ||
| 1377 | lemma Rats_abs_nat_div_natE: | |
| 1378 | assumes "x \<in> \<rat>" | |
| 1379 | obtains m n :: nat | |
| 1380 | where "n \<noteq> 0" and "\<bar>x\<bar> = real m / real n" and "gcd m n = 1" | |
| 1381 | proof - | |
| 1382 | from `x \<in> \<rat>` obtain i::int and n::nat where "n \<noteq> 0" and "x = real i / real n" | |
| 1383 | by(auto simp add: Rats_eq_int_div_nat) | |
| 1384 | hence "\<bar>x\<bar> = real(nat(abs i)) / real n" by simp | |
| 1385 | then obtain m :: nat where x_rat: "\<bar>x\<bar> = real m / real n" by blast | |
| 1386 | let ?gcd = "gcd m n" | |
| 1387 | from `n\<noteq>0` have gcd: "?gcd \<noteq> 0" by simp | |
| 1388 | let ?k = "m div ?gcd" | |
| 1389 | let ?l = "n div ?gcd" | |
| 1390 | let ?gcd' = "gcd ?k ?l" | |
| 1391 | have "?gcd dvd m" .. then have gcd_k: "?gcd * ?k = m" | |
| 1392 | by (rule dvd_mult_div_cancel) | |
| 1393 | have "?gcd dvd n" .. then have gcd_l: "?gcd * ?l = n" | |
| 1394 | by (rule dvd_mult_div_cancel) | |
| 1395 | from `n\<noteq>0` and gcd_l have "?l \<noteq> 0" by (auto iff del: neq0_conv) | |
| 1396 | moreover | |
| 1397 | have "\<bar>x\<bar> = real ?k / real ?l" | |
| 1398 | proof - | |
| 1399 | from gcd have "real ?k / real ?l = | |
| 1400 | real (?gcd * ?k) / real (?gcd * ?l)" by simp | |
| 1401 | also from gcd_k and gcd_l have "\<dots> = real m / real n" by simp | |
| 1402 | also from x_rat have "\<dots> = \<bar>x\<bar>" .. | |
| 1403 | finally show ?thesis .. | |
| 1404 | qed | |
| 1405 | moreover | |
| 1406 | have "?gcd' = 1" | |
| 1407 | proof - | |
| 1408 | have "?gcd * ?gcd' = gcd (?gcd * ?k) (?gcd * ?l)" | |
| 1409 | by (rule gcd_mult_distrib_nat) | |
| 1410 | with gcd_k gcd_l have "?gcd * ?gcd' = ?gcd" by simp | |
| 1411 | with gcd show ?thesis by auto | |
| 1412 | qed | |
| 1413 | ultimately show ?thesis .. | |
| 1414 | qed | |
| 1415 | ||
| 1416 | subsection{*Density of the Rational Reals in the Reals*}
 | |
| 1417 | ||
| 1418 | text{* This density proof is due to Stefan Richter and was ported by TN.  The
 | |
| 1419 | original source is \emph{Real Analysis} by H.L. Royden.
 | |
| 1420 | It employs the Archimedean property of the reals. *} | |
| 1421 | ||
| 1422 | lemma Rats_dense_in_real: | |
| 1423 | fixes x :: real | |
| 1424 | assumes "x < y" shows "\<exists>r\<in>\<rat>. x < r \<and> r < y" | |
| 1425 | proof - | |
| 1426 | from `x<y` have "0 < y-x" by simp | |
| 1427 | with reals_Archimedean obtain q::nat | |
| 1428 | where q: "inverse (real q) < y-x" and "0 < q" by auto | |
| 1429 | def p \<equiv> "ceiling (y * real q) - 1" | |
| 1430 | def r \<equiv> "of_int p / real q" | |
| 1431 | from q have "x < y - inverse (real q)" by simp | |
| 1432 | also have "y - inverse (real q) \<le> r" | |
| 1433 | unfolding r_def p_def | |
| 1434 | by (simp add: le_divide_eq left_diff_distrib le_of_int_ceiling `0 < q`) | |
| 1435 | finally have "x < r" . | |
| 1436 | moreover have "r < y" | |
| 1437 | unfolding r_def p_def | |
| 1438 | by (simp add: divide_less_eq diff_less_eq `0 < q` | |
| 1439 | less_ceiling_iff [symmetric]) | |
| 1440 | moreover from r_def have "r \<in> \<rat>" by simp | |
| 1441 | ultimately show ?thesis by fast | |
| 1442 | qed | |
| 1443 | ||
| 1444 | ||
| 1445 | ||
| 1446 | subsection{*Numerals and Arithmetic*}
 | |
| 1447 | ||
| 1448 | lemma [code_abbrev]: | |
| 1449 | "real_of_int (numeral k) = numeral k" | |
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54281diff
changeset | 1450 | "real_of_int (- numeral k) = - numeral k" | 
| 51523 | 1451 | by simp_all | 
| 1452 | ||
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54281diff
changeset | 1453 | text{*Collapse applications of @{const real} to @{const numeral}*}
 | 
| 51523 | 1454 | lemma real_numeral [simp]: | 
| 1455 | "real (numeral v :: int) = numeral v" | |
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54281diff
changeset | 1456 | "real (- numeral v :: int) = - numeral v" | 
| 51523 | 1457 | by (simp_all add: real_of_int_def) | 
| 1458 | ||
| 1459 | lemma real_of_nat_numeral [simp]: | |
| 1460 | "real (numeral v :: nat) = numeral v" | |
| 1461 | by (simp add: real_of_nat_def) | |
| 1462 | ||
| 1463 | declaration {*
 | |
| 1464 |   K (Lin_Arith.add_inj_thms [@{thm real_of_nat_le_iff} RS iffD2, @{thm real_of_nat_inject} RS iffD2]
 | |
| 1465 | (* not needed because x < (y::nat) can be rewritten as Suc x <= y: real_of_nat_less_iff RS iffD2 *) | |
| 1466 |   #> Lin_Arith.add_inj_thms [@{thm real_of_int_le_iff} RS iffD2, @{thm real_of_int_inject} RS iffD2]
 | |
| 1467 | (* not needed because x < (y::int) can be rewritten as x + 1 <= y: real_of_int_less_iff RS iffD2 *) | |
| 1468 |   #> Lin_Arith.add_simps [@{thm real_of_nat_zero}, @{thm real_of_nat_Suc}, @{thm real_of_nat_add},
 | |
| 1469 |       @{thm real_of_nat_mult}, @{thm real_of_int_zero}, @{thm real_of_one},
 | |
| 1470 |       @{thm real_of_int_add}, @{thm real_of_int_minus}, @{thm real_of_int_diff},
 | |
| 1471 |       @{thm real_of_int_mult}, @{thm real_of_int_of_nat_eq},
 | |
| 1472 |       @{thm real_of_nat_numeral}, @{thm real_numeral(1)}, @{thm real_numeral(2)}]
 | |
| 1473 |   #> Lin_Arith.add_inj_const (@{const_name real}, @{typ "nat \<Rightarrow> real"})
 | |
| 1474 |   #> Lin_Arith.add_inj_const (@{const_name real}, @{typ "int \<Rightarrow> real"}))
 | |
| 1475 | *} | |
| 1476 | ||
| 1477 | ||
| 1478 | subsection{* Simprules combining x+y and 0: ARE THEY NEEDED?*}
 | |
| 1479 | ||
| 1480 | lemma real_add_minus_iff [simp]: "(x + - a = (0::real)) = (x=a)" | |
| 1481 | by arith | |
| 1482 | ||
| 1483 | text {* FIXME: redundant with @{text add_eq_0_iff} below *}
 | |
| 1484 | lemma real_add_eq_0_iff: "(x+y = (0::real)) = (y = -x)" | |
| 1485 | by auto | |
| 1486 | ||
| 1487 | lemma real_add_less_0_iff: "(x+y < (0::real)) = (y < -x)" | |
| 1488 | by auto | |
| 1489 | ||
| 1490 | lemma real_0_less_add_iff: "((0::real) < x+y) = (-x < y)" | |
| 1491 | by auto | |
| 1492 | ||
| 1493 | lemma real_add_le_0_iff: "(x+y \<le> (0::real)) = (y \<le> -x)" | |
| 1494 | by auto | |
| 1495 | ||
| 1496 | lemma real_0_le_add_iff: "((0::real) \<le> x+y) = (-x \<le> y)" | |
| 1497 | by auto | |
| 1498 | ||
| 1499 | subsection {* Lemmas about powers *}
 | |
| 1500 | ||
| 1501 | text {* FIXME: declare this in Rings.thy or not at all *}
 | |
| 1502 | declare abs_mult_self [simp] | |
| 1503 | ||
| 1504 | (* used by Import/HOL/real.imp *) | |
| 1505 | lemma two_realpow_ge_one: "(1::real) \<le> 2 ^ n" | |
| 1506 | by simp | |
| 1507 | ||
| 1508 | lemma two_realpow_gt [simp]: "real (n::nat) < 2 ^ n" | |
| 1509 | apply (induct "n") | |
| 1510 | apply (auto simp add: real_of_nat_Suc) | |
| 1511 | apply (subst mult_2) | |
| 1512 | apply (erule add_less_le_mono) | |
| 1513 | apply (rule two_realpow_ge_one) | |
| 1514 | done | |
| 1515 | ||
| 1516 | text {* TODO: no longer real-specific; rename and move elsewhere *}
 | |
| 1517 | lemma realpow_Suc_le_self: | |
| 1518 | fixes r :: "'a::linordered_semidom" | |
| 1519 | shows "[| 0 \<le> r; r \<le> 1 |] ==> r ^ Suc n \<le> r" | |
| 1520 | by (insert power_decreasing [of 1 "Suc n" r], simp) | |
| 1521 | ||
| 1522 | text {* TODO: no longer real-specific; rename and move elsewhere *}
 | |
| 1523 | lemma realpow_minus_mult: | |
| 1524 | fixes x :: "'a::monoid_mult" | |
| 1525 | shows "0 < n \<Longrightarrow> x ^ (n - 1) * x = x ^ n" | |
| 1526 | by (simp add: power_commutes split add: nat_diff_split) | |
| 1527 | ||
| 1528 | text {* FIXME: declare this [simp] for all types, or not at all *}
 | |
| 1529 | lemma real_two_squares_add_zero_iff [simp]: | |
| 1530 | "(x * x + y * y = 0) = ((x::real) = 0 \<and> y = 0)" | |
| 1531 | by (rule sum_squares_eq_zero_iff) | |
| 1532 | ||
| 1533 | text {* FIXME: declare this [simp] for all types, or not at all *}
 | |
| 1534 | lemma realpow_two_sum_zero_iff [simp]: | |
| 53076 | 1535 | "(x\<^sup>2 + y\<^sup>2 = (0::real)) = (x = 0 & y = 0)" | 
| 51523 | 1536 | by (rule sum_power2_eq_zero_iff) | 
| 1537 | ||
| 1538 | lemma real_minus_mult_self_le [simp]: "-(u * u) \<le> (x * (x::real))" | |
| 1539 | by (rule_tac y = 0 in order_trans, auto) | |
| 1540 | ||
| 53076 | 1541 | lemma realpow_square_minus_le [simp]: "- u\<^sup>2 \<le> (x::real)\<^sup>2" | 
| 51523 | 1542 | by (auto simp add: power2_eq_square) | 
| 1543 | ||
| 1544 | ||
| 1545 | lemma numeral_power_le_real_of_nat_cancel_iff[simp]: | |
| 1546 | "(numeral x::real) ^ n \<le> real a \<longleftrightarrow> (numeral x::nat) ^ n \<le> a" | |
| 1547 | unfolding real_of_nat_le_iff[symmetric] by simp | |
| 1548 | ||
| 1549 | lemma real_of_nat_le_numeral_power_cancel_iff[simp]: | |
| 1550 | "real a \<le> (numeral x::real) ^ n \<longleftrightarrow> a \<le> (numeral x::nat) ^ n" | |
| 1551 | unfolding real_of_nat_le_iff[symmetric] by simp | |
| 1552 | ||
| 1553 | lemma numeral_power_le_real_of_int_cancel_iff[simp]: | |
| 1554 | "(numeral x::real) ^ n \<le> real a \<longleftrightarrow> (numeral x::int) ^ n \<le> a" | |
| 1555 | unfolding real_of_int_le_iff[symmetric] by simp | |
| 1556 | ||
| 1557 | lemma real_of_int_le_numeral_power_cancel_iff[simp]: | |
| 1558 | "real a \<le> (numeral x::real) ^ n \<longleftrightarrow> a \<le> (numeral x::int) ^ n" | |
| 1559 | unfolding real_of_int_le_iff[symmetric] by simp | |
| 1560 | ||
| 1561 | lemma neg_numeral_power_le_real_of_int_cancel_iff[simp]: | |
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54281diff
changeset | 1562 | "(- numeral x::real) ^ n \<le> real a \<longleftrightarrow> (- numeral x::int) ^ n \<le> a" | 
| 51523 | 1563 | unfolding real_of_int_le_iff[symmetric] by simp | 
| 1564 | ||
| 1565 | lemma real_of_int_le_neg_numeral_power_cancel_iff[simp]: | |
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54281diff
changeset | 1566 | "real a \<le> (- numeral x::real) ^ n \<longleftrightarrow> a \<le> (- numeral x::int) ^ n" | 
| 51523 | 1567 | unfolding real_of_int_le_iff[symmetric] by simp | 
| 1568 | ||
| 1569 | subsection{*Density of the Reals*}
 | |
| 1570 | ||
| 1571 | lemma real_lbound_gt_zero: | |
| 1572 | "[| (0::real) < d1; 0 < d2 |] ==> \<exists>e. 0 < e & e < d1 & e < d2" | |
| 1573 | apply (rule_tac x = " (min d1 d2) /2" in exI) | |
| 1574 | apply (simp add: min_def) | |
| 1575 | done | |
| 1576 | ||
| 1577 | ||
| 1578 | text{*Similar results are proved in @{text Fields}*}
 | |
| 1579 | lemma real_less_half_sum: "x < y ==> x < (x+y) / (2::real)" | |
| 1580 | by auto | |
| 1581 | ||
| 1582 | lemma real_gt_half_sum: "x < y ==> (x+y)/(2::real) < y" | |
| 1583 | by auto | |
| 1584 | ||
| 1585 | lemma real_sum_of_halves: "x/2 + x/2 = (x::real)" | |
| 1586 | by simp | |
| 1587 | ||
| 1588 | subsection{*Absolute Value Function for the Reals*}
 | |
| 1589 | ||
| 1590 | lemma abs_minus_add_cancel: "abs(x + (-y)) = abs (y + (-(x::real)))" | |
| 1591 | by (simp add: abs_if) | |
| 1592 | ||
| 1593 | (* FIXME: redundant, but used by Integration/RealRandVar.thy in AFP *) | |
| 1594 | lemma abs_le_interval_iff: "(abs x \<le> r) = (-r\<le>x & x\<le>(r::real))" | |
| 1595 | by (force simp add: abs_le_iff) | |
| 1596 | ||
| 1597 | lemma abs_add_one_gt_zero: "(0::real) < 1 + abs(x)" | |
| 1598 | by (simp add: abs_if) | |
| 1599 | ||
| 1600 | lemma abs_real_of_nat_cancel [simp]: "abs (real x) = real (x::nat)" | |
| 1601 | by (rule abs_of_nonneg [OF real_of_nat_ge_zero]) | |
| 1602 | ||
| 1603 | lemma abs_add_one_not_less_self: "~ abs(x) + (1::real) < x" | |
| 1604 | by simp | |
| 1605 | ||
| 1606 | lemma abs_sum_triangle_ineq: "abs ((x::real) + y + (-l + -m)) \<le> abs(x + -l) + abs(y + -m)" | |
| 1607 | by simp | |
| 1608 | ||
| 1609 | ||
| 1610 | subsection{*Floor and Ceiling Functions from the Reals to the Integers*}
 | |
| 1611 | ||
| 1612 | (* FIXME: theorems for negative numerals *) | |
| 1613 | lemma numeral_less_real_of_int_iff [simp]: | |
| 1614 | "((numeral n) < real (m::int)) = (numeral n < m)" | |
| 1615 | apply auto | |
| 1616 | apply (rule real_of_int_less_iff [THEN iffD1]) | |
| 1617 | apply (drule_tac [2] real_of_int_less_iff [THEN iffD2], auto) | |
| 1618 | done | |
| 1619 | ||
| 1620 | lemma numeral_less_real_of_int_iff2 [simp]: | |
| 1621 | "(real (m::int) < (numeral n)) = (m < numeral n)" | |
| 1622 | apply auto | |
| 1623 | apply (rule real_of_int_less_iff [THEN iffD1]) | |
| 1624 | apply (drule_tac [2] real_of_int_less_iff [THEN iffD2], auto) | |
| 1625 | done | |
| 1626 | ||
| 1627 | lemma numeral_le_real_of_int_iff [simp]: | |
| 1628 | "((numeral n) \<le> real (m::int)) = (numeral n \<le> m)" | |
| 1629 | by (simp add: linorder_not_less [symmetric]) | |
| 1630 | ||
| 1631 | lemma numeral_le_real_of_int_iff2 [simp]: | |
| 1632 | "(real (m::int) \<le> (numeral n)) = (m \<le> numeral n)" | |
| 1633 | by (simp add: linorder_not_less [symmetric]) | |
| 1634 | ||
| 1635 | lemma floor_real_of_nat [simp]: "floor (real (n::nat)) = int n" | |
| 1636 | unfolding real_of_nat_def by simp | |
| 1637 | ||
| 1638 | lemma floor_minus_real_of_nat [simp]: "floor (- real (n::nat)) = - int n" | |
| 1639 | unfolding real_of_nat_def by (simp add: floor_minus) | |
| 1640 | ||
| 1641 | lemma floor_real_of_int [simp]: "floor (real (n::int)) = n" | |
| 1642 | unfolding real_of_int_def by simp | |
| 1643 | ||
| 1644 | lemma floor_minus_real_of_int [simp]: "floor (- real (n::int)) = - n" | |
| 1645 | unfolding real_of_int_def by (simp add: floor_minus) | |
| 1646 | ||
| 1647 | lemma real_lb_ub_int: " \<exists>n::int. real n \<le> r & r < real (n+1)" | |
| 1648 | unfolding real_of_int_def by (rule floor_exists) | |
| 1649 | ||
| 1650 | lemma lemma_floor: | |
| 1651 | assumes a1: "real m \<le> r" and a2: "r < real n + 1" | |
| 1652 | shows "m \<le> (n::int)" | |
| 1653 | proof - | |
| 1654 | have "real m < real n + 1" using a1 a2 by (rule order_le_less_trans) | |
| 1655 | also have "... = real (n + 1)" by simp | |
| 1656 | finally have "m < n + 1" by (simp only: real_of_int_less_iff) | |
| 1657 | thus ?thesis by arith | |
| 1658 | qed | |
| 1659 | ||
| 1660 | lemma real_of_int_floor_le [simp]: "real (floor r) \<le> r" | |
| 1661 | unfolding real_of_int_def by (rule of_int_floor_le) | |
| 1662 | ||
| 1663 | lemma lemma_floor2: "real n < real (x::int) + 1 ==> n \<le> x" | |
| 1664 | by (auto intro: lemma_floor) | |
| 1665 | ||
| 1666 | lemma real_of_int_floor_cancel [simp]: | |
| 1667 | "(real (floor x) = x) = (\<exists>n::int. x = real n)" | |
| 1668 | using floor_real_of_int by metis | |
| 1669 | ||
| 1670 | lemma floor_eq: "[| real n < x; x < real n + 1 |] ==> floor x = n" | |
| 1671 | unfolding real_of_int_def using floor_unique [of n x] by simp | |
| 1672 | ||
| 1673 | lemma floor_eq2: "[| real n \<le> x; x < real n + 1 |] ==> floor x = n" | |
| 1674 | unfolding real_of_int_def by (rule floor_unique) | |
| 1675 | ||
| 1676 | lemma floor_eq3: "[| real n < x; x < real (Suc n) |] ==> nat(floor x) = n" | |
| 1677 | apply (rule inj_int [THEN injD]) | |
| 1678 | apply (simp add: real_of_nat_Suc) | |
| 1679 | apply (simp add: real_of_nat_Suc floor_eq floor_eq [where n = "int n"]) | |
| 1680 | done | |
| 1681 | ||
| 1682 | lemma floor_eq4: "[| real n \<le> x; x < real (Suc n) |] ==> nat(floor x) = n" | |
| 1683 | apply (drule order_le_imp_less_or_eq) | |
| 1684 | apply (auto intro: floor_eq3) | |
| 1685 | done | |
| 1686 | ||
| 1687 | lemma real_of_int_floor_ge_diff_one [simp]: "r - 1 \<le> real(floor r)" | |
| 1688 | unfolding real_of_int_def using floor_correct [of r] by simp | |
| 1689 | ||
| 1690 | lemma real_of_int_floor_gt_diff_one [simp]: "r - 1 < real(floor r)" | |
| 1691 | unfolding real_of_int_def using floor_correct [of r] by simp | |
| 1692 | ||
| 1693 | lemma real_of_int_floor_add_one_ge [simp]: "r \<le> real(floor r) + 1" | |
| 1694 | unfolding real_of_int_def using floor_correct [of r] by simp | |
| 1695 | ||
| 1696 | lemma real_of_int_floor_add_one_gt [simp]: "r < real(floor r) + 1" | |
| 1697 | unfolding real_of_int_def using floor_correct [of r] by simp | |
| 1698 | ||
| 1699 | lemma le_floor: "real a <= x ==> a <= floor x" | |
| 1700 | unfolding real_of_int_def by (simp add: le_floor_iff) | |
| 1701 | ||
| 1702 | lemma real_le_floor: "a <= floor x ==> real a <= x" | |
| 1703 | unfolding real_of_int_def by (simp add: le_floor_iff) | |
| 1704 | ||
| 1705 | lemma le_floor_eq: "(a <= floor x) = (real a <= x)" | |
| 1706 | unfolding real_of_int_def by (rule le_floor_iff) | |
| 1707 | ||
| 1708 | lemma floor_less_eq: "(floor x < a) = (x < real a)" | |
| 1709 | unfolding real_of_int_def by (rule floor_less_iff) | |
| 1710 | ||
| 1711 | lemma less_floor_eq: "(a < floor x) = (real a + 1 <= x)" | |
| 1712 | unfolding real_of_int_def by (rule less_floor_iff) | |
| 1713 | ||
| 1714 | lemma floor_le_eq: "(floor x <= a) = (x < real a + 1)" | |
| 1715 | unfolding real_of_int_def by (rule floor_le_iff) | |
| 1716 | ||
| 1717 | lemma floor_add [simp]: "floor (x + real a) = floor x + a" | |
| 1718 | unfolding real_of_int_def by (rule floor_add_of_int) | |
| 1719 | ||
| 1720 | lemma floor_subtract [simp]: "floor (x - real a) = floor x - a" | |
| 1721 | unfolding real_of_int_def by (rule floor_diff_of_int) | |
| 1722 | ||
| 1723 | lemma le_mult_floor: | |
| 1724 | assumes "0 \<le> (a :: real)" and "0 \<le> b" | |
| 1725 | shows "floor a * floor b \<le> floor (a * b)" | |
| 1726 | proof - | |
| 1727 | have "real (floor a) \<le> a" | |
| 1728 | and "real (floor b) \<le> b" by auto | |
| 1729 | hence "real (floor a * floor b) \<le> a * b" | |
| 1730 | using assms by (auto intro!: mult_mono) | |
| 1731 | also have "a * b < real (floor (a * b) + 1)" by auto | |
| 1732 | finally show ?thesis unfolding real_of_int_less_iff by simp | |
| 1733 | qed | |
| 1734 | ||
| 1735 | lemma floor_divide_eq_div: | |
| 1736 | "floor (real a / real b) = a div b" | |
| 1737 | proof cases | |
| 1738 | assume "b \<noteq> 0 \<or> b dvd a" | |
| 1739 | with real_of_int_div3[of a b] show ?thesis | |
| 1740 | by (auto simp: real_of_int_div[symmetric] intro!: floor_eq2 real_of_int_div4 neq_le_trans) | |
| 1741 | (metis add_left_cancel zero_neq_one real_of_int_div_aux real_of_int_inject | |
| 1742 | real_of_int_zero_cancel right_inverse_eq div_self mod_div_trivial) | |
| 1743 | qed (auto simp: real_of_int_div) | |
| 1744 | ||
| 1745 | lemma ceiling_real_of_nat [simp]: "ceiling (real (n::nat)) = int n" | |
| 1746 | unfolding real_of_nat_def by simp | |
| 1747 | ||
| 1748 | lemma real_of_int_ceiling_ge [simp]: "r \<le> real (ceiling r)" | |
| 1749 | unfolding real_of_int_def by (rule le_of_int_ceiling) | |
| 1750 | ||
| 1751 | lemma ceiling_real_of_int [simp]: "ceiling (real (n::int)) = n" | |
| 1752 | unfolding real_of_int_def by simp | |
| 1753 | ||
| 1754 | lemma real_of_int_ceiling_cancel [simp]: | |
| 1755 | "(real (ceiling x) = x) = (\<exists>n::int. x = real n)" | |
| 1756 | using ceiling_real_of_int by metis | |
| 1757 | ||
| 1758 | lemma ceiling_eq: "[| real n < x; x < real n + 1 |] ==> ceiling x = n + 1" | |
| 1759 | unfolding real_of_int_def using ceiling_unique [of "n + 1" x] by simp | |
| 1760 | ||
| 1761 | lemma ceiling_eq2: "[| real n < x; x \<le> real n + 1 |] ==> ceiling x = n + 1" | |
| 1762 | unfolding real_of_int_def using ceiling_unique [of "n + 1" x] by simp | |
| 1763 | ||
| 1764 | lemma ceiling_eq3: "[| real n - 1 < x; x \<le> real n |] ==> ceiling x = n" | |
| 1765 | unfolding real_of_int_def using ceiling_unique [of n x] by simp | |
| 1766 | ||
| 1767 | lemma real_of_int_ceiling_diff_one_le [simp]: "real (ceiling r) - 1 \<le> r" | |
| 1768 | unfolding real_of_int_def using ceiling_correct [of r] by simp | |
| 1769 | ||
| 1770 | lemma real_of_int_ceiling_le_add_one [simp]: "real (ceiling r) \<le> r + 1" | |
| 1771 | unfolding real_of_int_def using ceiling_correct [of r] by simp | |
| 1772 | ||
| 1773 | lemma ceiling_le: "x <= real a ==> ceiling x <= a" | |
| 1774 | unfolding real_of_int_def by (simp add: ceiling_le_iff) | |
| 1775 | ||
| 1776 | lemma ceiling_le_real: "ceiling x <= a ==> x <= real a" | |
| 1777 | unfolding real_of_int_def by (simp add: ceiling_le_iff) | |
| 1778 | ||
| 1779 | lemma ceiling_le_eq: "(ceiling x <= a) = (x <= real a)" | |
| 1780 | unfolding real_of_int_def by (rule ceiling_le_iff) | |
| 1781 | ||
| 1782 | lemma less_ceiling_eq: "(a < ceiling x) = (real a < x)" | |
| 1783 | unfolding real_of_int_def by (rule less_ceiling_iff) | |
| 1784 | ||
| 1785 | lemma ceiling_less_eq: "(ceiling x < a) = (x <= real a - 1)" | |
| 1786 | unfolding real_of_int_def by (rule ceiling_less_iff) | |
| 1787 | ||
| 1788 | lemma le_ceiling_eq: "(a <= ceiling x) = (real a - 1 < x)" | |
| 1789 | unfolding real_of_int_def by (rule le_ceiling_iff) | |
| 1790 | ||
| 1791 | lemma ceiling_add [simp]: "ceiling (x + real a) = ceiling x + a" | |
| 1792 | unfolding real_of_int_def by (rule ceiling_add_of_int) | |
| 1793 | ||
| 1794 | lemma ceiling_subtract [simp]: "ceiling (x - real a) = ceiling x - a" | |
| 1795 | unfolding real_of_int_def by (rule ceiling_diff_of_int) | |
| 1796 | ||
| 1797 | ||
| 1798 | subsubsection {* Versions for the natural numbers *}
 | |
| 1799 | ||
| 1800 | definition | |
| 1801 | natfloor :: "real => nat" where | |
| 1802 | "natfloor x = nat(floor x)" | |
| 1803 | ||
| 1804 | definition | |
| 1805 | natceiling :: "real => nat" where | |
| 1806 | "natceiling x = nat(ceiling x)" | |
| 1807 | ||
| 1808 | lemma natfloor_zero [simp]: "natfloor 0 = 0" | |
| 1809 | by (unfold natfloor_def, simp) | |
| 1810 | ||
| 1811 | lemma natfloor_one [simp]: "natfloor 1 = 1" | |
| 1812 | by (unfold natfloor_def, simp) | |
| 1813 | ||
| 1814 | lemma zero_le_natfloor [simp]: "0 <= natfloor x" | |
| 1815 | by (unfold natfloor_def, simp) | |
| 1816 | ||
| 1817 | lemma natfloor_numeral_eq [simp]: "natfloor (numeral n) = numeral n" | |
| 1818 | by (unfold natfloor_def, simp) | |
| 1819 | ||
| 1820 | lemma natfloor_real_of_nat [simp]: "natfloor(real n) = n" | |
| 1821 | by (unfold natfloor_def, simp) | |
| 1822 | ||
| 1823 | lemma real_natfloor_le: "0 <= x ==> real(natfloor x) <= x" | |
| 1824 | by (unfold natfloor_def, simp) | |
| 1825 | ||
| 1826 | lemma natfloor_neg: "x <= 0 ==> natfloor x = 0" | |
| 1827 | unfolding natfloor_def by simp | |
| 1828 | ||
| 1829 | lemma natfloor_mono: "x <= y ==> natfloor x <= natfloor y" | |
| 1830 | unfolding natfloor_def by (intro nat_mono floor_mono) | |
| 1831 | ||
| 1832 | lemma le_natfloor: "real x <= a ==> x <= natfloor a" | |
| 1833 | apply (unfold natfloor_def) | |
| 1834 | apply (subst nat_int [THEN sym]) | |
| 1835 | apply (rule nat_mono) | |
| 1836 | apply (rule le_floor) | |
| 1837 | apply simp | |
| 1838 | done | |
| 1839 | ||
| 1840 | lemma natfloor_less_iff: "0 \<le> x \<Longrightarrow> natfloor x < n \<longleftrightarrow> x < real n" | |
| 1841 | unfolding natfloor_def real_of_nat_def | |
| 1842 | by (simp add: nat_less_iff floor_less_iff) | |
| 1843 | ||
| 1844 | lemma less_natfloor: | |
| 1845 | assumes "0 \<le> x" and "x < real (n :: nat)" | |
| 1846 | shows "natfloor x < n" | |
| 1847 | using assms by (simp add: natfloor_less_iff) | |
| 1848 | ||
| 1849 | lemma le_natfloor_eq: "0 <= x ==> (a <= natfloor x) = (real a <= x)" | |
| 1850 | apply (rule iffI) | |
| 1851 | apply (rule order_trans) | |
| 1852 | prefer 2 | |
| 1853 | apply (erule real_natfloor_le) | |
| 1854 | apply (subst real_of_nat_le_iff) | |
| 1855 | apply assumption | |
| 1856 | apply (erule le_natfloor) | |
| 1857 | done | |
| 1858 | ||
| 1859 | lemma le_natfloor_eq_numeral [simp]: | |
| 1860 | "~ neg((numeral n)::int) ==> 0 <= x ==> | |
| 1861 | (numeral n <= natfloor x) = (numeral n <= x)" | |
| 1862 | apply (subst le_natfloor_eq, assumption) | |
| 1863 | apply simp | |
| 1864 | done | |
| 1865 | ||
| 1866 | lemma le_natfloor_eq_one [simp]: "(1 <= natfloor x) = (1 <= x)" | |
| 1867 | apply (case_tac "0 <= x") | |
| 1868 | apply (subst le_natfloor_eq, assumption, simp) | |
| 1869 | apply (rule iffI) | |
| 1870 | apply (subgoal_tac "natfloor x <= natfloor 0") | |
| 1871 | apply simp | |
| 1872 | apply (rule natfloor_mono) | |
| 1873 | apply simp | |
| 1874 | apply simp | |
| 1875 | done | |
| 1876 | ||
| 1877 | lemma natfloor_eq: "real n <= x ==> x < real n + 1 ==> natfloor x = n" | |
| 1878 | unfolding natfloor_def by (simp add: floor_eq2 [where n="int n"]) | |
| 1879 | ||
| 1880 | lemma real_natfloor_add_one_gt: "x < real(natfloor x) + 1" | |
| 1881 | apply (case_tac "0 <= x") | |
| 1882 | apply (unfold natfloor_def) | |
| 1883 | apply simp | |
| 1884 | apply simp_all | |
| 1885 | done | |
| 1886 | ||
| 1887 | lemma real_natfloor_gt_diff_one: "x - 1 < real(natfloor x)" | |
| 1888 | using real_natfloor_add_one_gt by (simp add: algebra_simps) | |
| 1889 | ||
| 1890 | lemma ge_natfloor_plus_one_imp_gt: "natfloor z + 1 <= n ==> z < real n" | |
| 1891 | apply (subgoal_tac "z < real(natfloor z) + 1") | |
| 1892 | apply arith | |
| 1893 | apply (rule real_natfloor_add_one_gt) | |
| 1894 | done | |
| 1895 | ||
| 1896 | lemma natfloor_add [simp]: "0 <= x ==> natfloor (x + real a) = natfloor x + a" | |
| 1897 | unfolding natfloor_def | |
| 1898 | unfolding real_of_int_of_nat_eq [symmetric] floor_add | |
| 1899 | by (simp add: nat_add_distrib) | |
| 1900 | ||
| 1901 | lemma natfloor_add_numeral [simp]: | |
| 1902 | "~neg ((numeral n)::int) ==> 0 <= x ==> | |
| 1903 | natfloor (x + numeral n) = natfloor x + numeral n" | |
| 1904 | by (simp add: natfloor_add [symmetric]) | |
| 1905 | ||
| 1906 | lemma natfloor_add_one: "0 <= x ==> natfloor(x + 1) = natfloor x + 1" | |
| 1907 | by (simp add: natfloor_add [symmetric] del: One_nat_def) | |
| 1908 | ||
| 1909 | lemma natfloor_subtract [simp]: | |
| 1910 | "natfloor(x - real a) = natfloor x - a" | |
| 1911 | unfolding natfloor_def real_of_int_of_nat_eq [symmetric] floor_subtract | |
| 1912 | by simp | |
| 1913 | ||
| 1914 | lemma natfloor_div_nat: | |
| 1915 | assumes "1 <= x" and "y > 0" | |
| 1916 | shows "natfloor (x / real y) = natfloor x div y" | |
| 1917 | proof (rule natfloor_eq) | |
| 1918 | have "(natfloor x) div y * y \<le> natfloor x" | |
| 1919 | by (rule add_leD1 [where k="natfloor x mod y"], simp) | |
| 1920 | thus "real (natfloor x div y) \<le> x / real y" | |
| 1921 | using assms by (simp add: le_divide_eq le_natfloor_eq) | |
| 1922 | have "natfloor x < (natfloor x) div y * y + y" | |
| 1923 | apply (subst mod_div_equality [symmetric]) | |
| 1924 | apply (rule add_strict_left_mono) | |
| 1925 | apply (rule mod_less_divisor) | |
| 1926 | apply fact | |
| 1927 | done | |
| 1928 | thus "x / real y < real (natfloor x div y) + 1" | |
| 1929 | using assms | |
| 1930 | by (simp add: divide_less_eq natfloor_less_iff distrib_right) | |
| 1931 | qed | |
| 1932 | ||
| 1933 | lemma le_mult_natfloor: | |
| 1934 | shows "natfloor a * natfloor b \<le> natfloor (a * b)" | |
| 1935 | by (cases "0 <= a & 0 <= b") | |
| 1936 | (auto simp add: le_natfloor_eq mult_nonneg_nonneg mult_mono' real_natfloor_le natfloor_neg) | |
| 1937 | ||
| 1938 | lemma natceiling_zero [simp]: "natceiling 0 = 0" | |
| 1939 | by (unfold natceiling_def, simp) | |
| 1940 | ||
| 1941 | lemma natceiling_one [simp]: "natceiling 1 = 1" | |
| 1942 | by (unfold natceiling_def, simp) | |
| 1943 | ||
| 1944 | lemma zero_le_natceiling [simp]: "0 <= natceiling x" | |
| 1945 | by (unfold natceiling_def, simp) | |
| 1946 | ||
| 1947 | lemma natceiling_numeral_eq [simp]: "natceiling (numeral n) = numeral n" | |
| 1948 | by (unfold natceiling_def, simp) | |
| 1949 | ||
| 1950 | lemma natceiling_real_of_nat [simp]: "natceiling(real n) = n" | |
| 1951 | by (unfold natceiling_def, simp) | |
| 1952 | ||
| 1953 | lemma real_natceiling_ge: "x <= real(natceiling x)" | |
| 1954 | unfolding natceiling_def by (cases "x < 0", simp_all) | |
| 1955 | ||
| 1956 | lemma natceiling_neg: "x <= 0 ==> natceiling x = 0" | |
| 1957 | unfolding natceiling_def by simp | |
| 1958 | ||
| 1959 | lemma natceiling_mono: "x <= y ==> natceiling x <= natceiling y" | |
| 1960 | unfolding natceiling_def by (intro nat_mono ceiling_mono) | |
| 1961 | ||
| 1962 | lemma natceiling_le: "x <= real a ==> natceiling x <= a" | |
| 1963 | unfolding natceiling_def real_of_nat_def | |
| 1964 | by (simp add: nat_le_iff ceiling_le_iff) | |
| 1965 | ||
| 1966 | lemma natceiling_le_eq: "(natceiling x <= a) = (x <= real a)" | |
| 1967 | unfolding natceiling_def real_of_nat_def | |
| 1968 | by (simp add: nat_le_iff ceiling_le_iff) | |
| 1969 | ||
| 1970 | lemma natceiling_le_eq_numeral [simp]: | |
| 1971 | "~ neg((numeral n)::int) ==> | |
| 1972 | (natceiling x <= numeral n) = (x <= numeral n)" | |
| 1973 | by (simp add: natceiling_le_eq) | |
| 1974 | ||
| 1975 | lemma natceiling_le_eq_one: "(natceiling x <= 1) = (x <= 1)" | |
| 1976 | unfolding natceiling_def | |
| 1977 | by (simp add: nat_le_iff ceiling_le_iff) | |
| 1978 | ||
| 1979 | lemma natceiling_eq: "real n < x ==> x <= real n + 1 ==> natceiling x = n + 1" | |
| 1980 | unfolding natceiling_def | |
| 1981 | by (simp add: ceiling_eq2 [where n="int n"]) | |
| 1982 | ||
| 1983 | lemma natceiling_add [simp]: "0 <= x ==> | |
| 1984 | natceiling (x + real a) = natceiling x + a" | |
| 1985 | unfolding natceiling_def | |
| 1986 | unfolding real_of_int_of_nat_eq [symmetric] ceiling_add | |
| 1987 | by (simp add: nat_add_distrib) | |
| 1988 | ||
| 1989 | lemma natceiling_add_numeral [simp]: | |
| 1990 | "~ neg ((numeral n)::int) ==> 0 <= x ==> | |
| 1991 | natceiling (x + numeral n) = natceiling x + numeral n" | |
| 1992 | by (simp add: natceiling_add [symmetric]) | |
| 1993 | ||
| 1994 | lemma natceiling_add_one: "0 <= x ==> natceiling(x + 1) = natceiling x + 1" | |
| 1995 | by (simp add: natceiling_add [symmetric] del: One_nat_def) | |
| 1996 | ||
| 1997 | lemma natceiling_subtract [simp]: "natceiling(x - real a) = natceiling x - a" | |
| 1998 | unfolding natceiling_def real_of_int_of_nat_eq [symmetric] ceiling_subtract | |
| 1999 | by simp | |
| 2000 | ||
| 2001 | subsection {* Exponentiation with floor *}
 | |
| 2002 | ||
| 2003 | lemma floor_power: | |
| 2004 | assumes "x = real (floor x)" | |
| 2005 | shows "floor (x ^ n) = floor x ^ n" | |
| 2006 | proof - | |
| 2007 | have *: "x ^ n = real (floor x ^ n)" | |
| 2008 | using assms by (induct n arbitrary: x) simp_all | |
| 2009 | show ?thesis unfolding real_of_int_inject[symmetric] | |
| 2010 | unfolding * floor_real_of_int .. | |
| 2011 | qed | |
| 2012 | ||
| 2013 | lemma natfloor_power: | |
| 2014 | assumes "x = real (natfloor x)" | |
| 2015 | shows "natfloor (x ^ n) = natfloor x ^ n" | |
| 2016 | proof - | |
| 2017 | from assms have "0 \<le> floor x" by auto | |
| 2018 | note assms[unfolded natfloor_def real_nat_eq_real[OF `0 \<le> floor x`]] | |
| 2019 | from floor_power[OF this] | |
| 2020 | show ?thesis unfolding natfloor_def nat_power_eq[OF `0 \<le> floor x`, symmetric] | |
| 2021 | by simp | |
| 2022 | qed | |
| 2023 | ||
| 2024 | ||
| 2025 | subsection {* Implementation of rational real numbers *}
 | |
| 2026 | ||
| 2027 | text {* Formal constructor *}
 | |
| 2028 | ||
| 2029 | definition Ratreal :: "rat \<Rightarrow> real" where | |
| 2030 | [code_abbrev, simp]: "Ratreal = of_rat" | |
| 2031 | ||
| 2032 | code_datatype Ratreal | |
| 2033 | ||
| 2034 | ||
| 2035 | text {* Numerals *}
 | |
| 2036 | ||
| 2037 | lemma [code_abbrev]: | |
| 2038 | "(of_rat (of_int a) :: real) = of_int a" | |
| 2039 | by simp | |
| 2040 | ||
| 2041 | lemma [code_abbrev]: | |
| 2042 | "(of_rat 0 :: real) = 0" | |
| 2043 | by simp | |
| 2044 | ||
| 2045 | lemma [code_abbrev]: | |
| 2046 | "(of_rat 1 :: real) = 1" | |
| 2047 | by simp | |
| 2048 | ||
| 2049 | lemma [code_abbrev]: | |
| 2050 | "(of_rat (numeral k) :: real) = numeral k" | |
| 2051 | by simp | |
| 2052 | ||
| 2053 | lemma [code_abbrev]: | |
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54281diff
changeset | 2054 | "(of_rat (- numeral k) :: real) = - numeral k" | 
| 51523 | 2055 | by simp | 
| 2056 | ||
| 2057 | lemma [code_post]: | |
| 2058 | "(of_rat (0 / r) :: real) = 0" | |
| 2059 | "(of_rat (r / 0) :: real) = 0" | |
| 2060 | "(of_rat (1 / 1) :: real) = 1" | |
| 2061 | "(of_rat (numeral k / 1) :: real) = numeral k" | |
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54281diff
changeset | 2062 | "(of_rat (- numeral k / 1) :: real) = - numeral k" | 
| 51523 | 2063 | "(of_rat (1 / numeral k) :: real) = 1 / numeral k" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54281diff
changeset | 2064 | "(of_rat (1 / - numeral k) :: real) = 1 / - numeral k" | 
| 51523 | 2065 | "(of_rat (numeral k / numeral l) :: real) = numeral k / numeral l" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54281diff
changeset | 2066 | "(of_rat (numeral k / - numeral l) :: real) = numeral k / - numeral l" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54281diff
changeset | 2067 | "(of_rat (- numeral k / numeral l) :: real) = - numeral k / numeral l" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54281diff
changeset | 2068 | "(of_rat (- numeral k / - numeral l) :: real) = - numeral k / - numeral l" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54281diff
changeset | 2069 | by (simp_all add: of_rat_divide of_rat_minus) | 
| 51523 | 2070 | |
| 2071 | ||
| 2072 | text {* Operations *}
 | |
| 2073 | ||
| 2074 | lemma zero_real_code [code]: | |
| 2075 | "0 = Ratreal 0" | |
| 2076 | by simp | |
| 2077 | ||
| 2078 | lemma one_real_code [code]: | |
| 2079 | "1 = Ratreal 1" | |
| 2080 | by simp | |
| 2081 | ||
| 2082 | instantiation real :: equal | |
| 2083 | begin | |
| 2084 | ||
| 2085 | definition "HOL.equal (x\<Colon>real) y \<longleftrightarrow> x - y = 0" | |
| 2086 | ||
| 2087 | instance proof | |
| 2088 | qed (simp add: equal_real_def) | |
| 2089 | ||
| 2090 | lemma real_equal_code [code]: | |
| 2091 | "HOL.equal (Ratreal x) (Ratreal y) \<longleftrightarrow> HOL.equal x y" | |
| 2092 | by (simp add: equal_real_def equal) | |
| 2093 | ||
| 2094 | lemma [code nbe]: | |
| 2095 | "HOL.equal (x::real) x \<longleftrightarrow> True" | |
| 2096 | by (rule equal_refl) | |
| 2097 | ||
| 2098 | end | |
| 2099 | ||
| 2100 | lemma real_less_eq_code [code]: "Ratreal x \<le> Ratreal y \<longleftrightarrow> x \<le> y" | |
| 2101 | by (simp add: of_rat_less_eq) | |
| 2102 | ||
| 2103 | lemma real_less_code [code]: "Ratreal x < Ratreal y \<longleftrightarrow> x < y" | |
| 2104 | by (simp add: of_rat_less) | |
| 2105 | ||
| 2106 | lemma real_plus_code [code]: "Ratreal x + Ratreal y = Ratreal (x + y)" | |
| 2107 | by (simp add: of_rat_add) | |
| 2108 | ||
| 2109 | lemma real_times_code [code]: "Ratreal x * Ratreal y = Ratreal (x * y)" | |
| 2110 | by (simp add: of_rat_mult) | |
| 2111 | ||
| 2112 | lemma real_uminus_code [code]: "- Ratreal x = Ratreal (- x)" | |
| 2113 | by (simp add: of_rat_minus) | |
| 2114 | ||
| 2115 | lemma real_minus_code [code]: "Ratreal x - Ratreal y = Ratreal (x - y)" | |
| 2116 | by (simp add: of_rat_diff) | |
| 2117 | ||
| 2118 | lemma real_inverse_code [code]: "inverse (Ratreal x) = Ratreal (inverse x)" | |
| 2119 | by (simp add: of_rat_inverse) | |
| 2120 | ||
| 2121 | lemma real_divide_code [code]: "Ratreal x / Ratreal y = Ratreal (x / y)" | |
| 2122 | by (simp add: of_rat_divide) | |
| 2123 | ||
| 2124 | lemma real_floor_code [code]: "floor (Ratreal x) = floor x" | |
| 2125 | by (metis Ratreal_def floor_le_iff floor_unique le_floor_iff of_int_floor_le of_rat_of_int_eq real_less_eq_code) | |
| 2126 | ||
| 2127 | ||
| 2128 | text {* Quickcheck *}
 | |
| 2129 | ||
| 2130 | definition (in term_syntax) | |
| 2131 | valterm_ratreal :: "rat \<times> (unit \<Rightarrow> Code_Evaluation.term) \<Rightarrow> real \<times> (unit \<Rightarrow> Code_Evaluation.term)" where | |
| 2132 |   [code_unfold]: "valterm_ratreal k = Code_Evaluation.valtermify Ratreal {\<cdot>} k"
 | |
| 2133 | ||
| 2134 | notation fcomp (infixl "\<circ>>" 60) | |
| 2135 | notation scomp (infixl "\<circ>\<rightarrow>" 60) | |
| 2136 | ||
| 2137 | instantiation real :: random | |
| 2138 | begin | |
| 2139 | ||
| 2140 | definition | |
| 2141 | "Quickcheck_Random.random i = Quickcheck_Random.random i \<circ>\<rightarrow> (\<lambda>r. Pair (valterm_ratreal r))" | |
| 2142 | ||
| 2143 | instance .. | |
| 2144 | ||
| 2145 | end | |
| 2146 | ||
| 2147 | no_notation fcomp (infixl "\<circ>>" 60) | |
| 2148 | no_notation scomp (infixl "\<circ>\<rightarrow>" 60) | |
| 2149 | ||
| 2150 | instantiation real :: exhaustive | |
| 2151 | begin | |
| 2152 | ||
| 2153 | definition | |
| 2154 | "exhaustive_real f d = Quickcheck_Exhaustive.exhaustive (%r. f (Ratreal r)) d" | |
| 2155 | ||
| 2156 | instance .. | |
| 2157 | ||
| 2158 | end | |
| 2159 | ||
| 2160 | instantiation real :: full_exhaustive | |
| 2161 | begin | |
| 2162 | ||
| 2163 | definition | |
| 2164 | "full_exhaustive_real f d = Quickcheck_Exhaustive.full_exhaustive (%r. f (valterm_ratreal r)) d" | |
| 2165 | ||
| 2166 | instance .. | |
| 2167 | ||
| 2168 | end | |
| 2169 | ||
| 2170 | instantiation real :: narrowing | |
| 2171 | begin | |
| 2172 | ||
| 2173 | definition | |
| 2174 | "narrowing = Quickcheck_Narrowing.apply (Quickcheck_Narrowing.cons Ratreal) narrowing" | |
| 2175 | ||
| 2176 | instance .. | |
| 2177 | ||
| 2178 | end | |
| 2179 | ||
| 2180 | ||
| 2181 | subsection {* Setup for Nitpick *}
 | |
| 2182 | ||
| 2183 | declaration {*
 | |
| 2184 |   Nitpick_HOL.register_frac_type @{type_name real}
 | |
| 2185 |    [(@{const_name zero_real_inst.zero_real}, @{const_name Nitpick.zero_frac}),
 | |
| 2186 |     (@{const_name one_real_inst.one_real}, @{const_name Nitpick.one_frac}),
 | |
| 2187 |     (@{const_name plus_real_inst.plus_real}, @{const_name Nitpick.plus_frac}),
 | |
| 2188 |     (@{const_name times_real_inst.times_real}, @{const_name Nitpick.times_frac}),
 | |
| 2189 |     (@{const_name uminus_real_inst.uminus_real}, @{const_name Nitpick.uminus_frac}),
 | |
| 2190 |     (@{const_name inverse_real_inst.inverse_real}, @{const_name Nitpick.inverse_frac}),
 | |
| 2191 |     (@{const_name ord_real_inst.less_real}, @{const_name Nitpick.less_frac}),
 | |
| 2192 |     (@{const_name ord_real_inst.less_eq_real}, @{const_name Nitpick.less_eq_frac})]
 | |
| 2193 | *} | |
| 2194 | ||
| 2195 | lemmas [nitpick_unfold] = inverse_real_inst.inverse_real one_real_inst.one_real | |
| 2196 | ord_real_inst.less_real ord_real_inst.less_eq_real plus_real_inst.plus_real | |
| 2197 | times_real_inst.times_real uminus_real_inst.uminus_real | |
| 2198 | zero_real_inst.zero_real | |
| 2199 | ||
| 2200 | ML_file "Tools/SMT/smt_real.ML" | |
| 2201 | setup SMT_Real.setup | |
| 2202 | ||
| 2203 | end |