src/HOL/List.ML
author paulson
Fri, 26 Sep 1997 10:21:14 +0200
changeset 3718 d78cf498a88c
parent 3708 56facaebf3e3
child 3842 b55686a7b22c
permissions -rw-r--r--
Minor tidying to use Clarify_tac, etc.
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
1465
5d7a7e439cec expanded tabs
clasohm
parents: 1419
diff changeset
     1
(*  Title:      HOL/List
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     2
    ID:         $Id$
1465
5d7a7e439cec expanded tabs
clasohm
parents: 1419
diff changeset
     3
    Author:     Tobias Nipkow
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     4
    Copyright   1994 TU Muenchen
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     5
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     6
List lemmas
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     7
*)
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     8
3708
56facaebf3e3 Changed some proofs to use Clarify_tac
paulson
parents: 3647
diff changeset
     9
open List;
56facaebf3e3 Changed some proofs to use Clarify_tac
paulson
parents: 3647
diff changeset
    10
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
    11
goal thy "!x. xs ~= x#xs";
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
    12
by (induct_tac "xs" 1);
1264
3eb91524b938 added local simpsets; removed IOA from 'make test'
clasohm
parents: 1202
diff changeset
    13
by (ALLGOALS Asm_simp_tac);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
    14
qed_spec_mp "not_Cons_self";
3574
5995ab73d790 Added a few lemmas.
nipkow
parents: 3571
diff changeset
    15
bind_thm("not_Cons_self2",not_Cons_self RS not_sym);
5995ab73d790 Added a few lemmas.
nipkow
parents: 3571
diff changeset
    16
Addsimps [not_Cons_self,not_Cons_self2];
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    17
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
    18
goal thy "(xs ~= []) = (? y ys. xs = y#ys)";
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
    19
by (induct_tac "xs" 1);
1264
3eb91524b938 added local simpsets; removed IOA from 'make test'
clasohm
parents: 1202
diff changeset
    20
by (Simp_tac 1);
3eb91524b938 added local simpsets; removed IOA from 'make test'
clasohm
parents: 1202
diff changeset
    21
by (Asm_simp_tac 1);
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    22
qed "neq_Nil_conv";
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    23
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    24
3468
1f972dc8eafb New laws for the "lists" operator
paulson
parents: 3467
diff changeset
    25
(** "lists": the list-forming operator over sets **)
3342
ec3b55fcb165 New operator "lists" for formalizing sets of lists
paulson
parents: 3292
diff changeset
    26
ec3b55fcb165 New operator "lists" for formalizing sets of lists
paulson
parents: 3292
diff changeset
    27
goalw thy lists.defs "!!A B. A<=B ==> lists A <= lists B";
ec3b55fcb165 New operator "lists" for formalizing sets of lists
paulson
parents: 3292
diff changeset
    28
by (rtac lfp_mono 1);
ec3b55fcb165 New operator "lists" for formalizing sets of lists
paulson
parents: 3292
diff changeset
    29
by (REPEAT (ares_tac basic_monos 1));
ec3b55fcb165 New operator "lists" for formalizing sets of lists
paulson
parents: 3292
diff changeset
    30
qed "lists_mono";
3196
c522bc46aea7 Added pred_list for TFL
paulson
parents: 3040
diff changeset
    31
3468
1f972dc8eafb New laws for the "lists" operator
paulson
parents: 3467
diff changeset
    32
val listsE = lists.mk_cases list.simps  "x#l : lists A";
1f972dc8eafb New laws for the "lists" operator
paulson
parents: 3467
diff changeset
    33
AddSEs [listsE];
1f972dc8eafb New laws for the "lists" operator
paulson
parents: 3467
diff changeset
    34
AddSIs lists.intrs;
1f972dc8eafb New laws for the "lists" operator
paulson
parents: 3467
diff changeset
    35
1f972dc8eafb New laws for the "lists" operator
paulson
parents: 3467
diff changeset
    36
goal thy "!!l. l: lists A ==> l: lists B --> l: lists (A Int B)";
1f972dc8eafb New laws for the "lists" operator
paulson
parents: 3467
diff changeset
    37
by (etac lists.induct 1);
1f972dc8eafb New laws for the "lists" operator
paulson
parents: 3467
diff changeset
    38
by (ALLGOALS Blast_tac);
1f972dc8eafb New laws for the "lists" operator
paulson
parents: 3467
diff changeset
    39
qed_spec_mp "lists_IntI";
1f972dc8eafb New laws for the "lists" operator
paulson
parents: 3467
diff changeset
    40
1f972dc8eafb New laws for the "lists" operator
paulson
parents: 3467
diff changeset
    41
goal thy "lists (A Int B) = lists A Int lists B";
1f972dc8eafb New laws for the "lists" operator
paulson
parents: 3467
diff changeset
    42
br (mono_Int RS equalityI) 1;
1f972dc8eafb New laws for the "lists" operator
paulson
parents: 3467
diff changeset
    43
by (simp_tac (!simpset addsimps [mono_def, lists_mono]) 1);
1f972dc8eafb New laws for the "lists" operator
paulson
parents: 3467
diff changeset
    44
by (blast_tac (!claset addSIs [lists_IntI]) 1);
1f972dc8eafb New laws for the "lists" operator
paulson
parents: 3467
diff changeset
    45
qed "lists_Int_eq";
1f972dc8eafb New laws for the "lists" operator
paulson
parents: 3467
diff changeset
    46
Addsimps [lists_Int_eq];
1f972dc8eafb New laws for the "lists" operator
paulson
parents: 3467
diff changeset
    47
3196
c522bc46aea7 Added pred_list for TFL
paulson
parents: 3040
diff changeset
    48
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
    49
(** list_case **)
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
    50
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
    51
goal thy
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
    52
 "P(list_case a f xs) = ((xs=[] --> P(a)) & \
2891
d8f254ad1ab9 Calls Blast_tac
paulson
parents: 2739
diff changeset
    53
\                        (!y ys. xs=y#ys --> P(f y ys)))";
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
    54
by (induct_tac "xs" 1);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
    55
by (ALLGOALS Asm_simp_tac);
2891
d8f254ad1ab9 Calls Blast_tac
paulson
parents: 2739
diff changeset
    56
by (Blast_tac 1);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
    57
qed "expand_list_case";
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
    58
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
    59
val prems = goal thy "[| P([]); !!x xs. P(x#xs) |] ==> P(xs)";
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
    60
by (induct_tac "xs" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
    61
by (REPEAT(resolve_tac prems 1));
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
    62
qed "list_cases";
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
    63
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
    64
goal thy  "(xs=[] --> P([])) & (!y ys. xs=y#ys --> P(y#ys)) --> P(xs)";
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
    65
by (induct_tac "xs" 1);
2891
d8f254ad1ab9 Calls Blast_tac
paulson
parents: 2739
diff changeset
    66
by (Blast_tac 1);
d8f254ad1ab9 Calls Blast_tac
paulson
parents: 2739
diff changeset
    67
by (Blast_tac 1);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
    68
bind_thm("list_eq_cases",
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
    69
  impI RSN (2,allI RSN (2,allI RSN (2,impI RS (conjI RS (result() RS mp))))));
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
    70
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
    71
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    72
(** @ - append **)
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    73
3467
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
    74
section "@ - append";
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
    75
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
    76
goal thy "(xs@ys)@zs = xs@(ys@zs)";
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
    77
by (induct_tac "xs" 1);
1264
3eb91524b938 added local simpsets; removed IOA from 'make test'
clasohm
parents: 1202
diff changeset
    78
by (ALLGOALS Asm_simp_tac);
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    79
qed "append_assoc";
2512
0231e4f467f2 Got rid of Alls in List.
nipkow
parents: 1985
diff changeset
    80
Addsimps [append_assoc];
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    81
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
    82
goal thy "xs @ [] = xs";
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
    83
by (induct_tac "xs" 1);
1264
3eb91524b938 added local simpsets; removed IOA from 'make test'
clasohm
parents: 1202
diff changeset
    84
by (ALLGOALS Asm_simp_tac);
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    85
qed "append_Nil2";
2512
0231e4f467f2 Got rid of Alls in List.
nipkow
parents: 1985
diff changeset
    86
Addsimps [append_Nil2];
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    87
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
    88
goal thy "(xs@ys = []) = (xs=[] & ys=[])";
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
    89
by (induct_tac "xs" 1);
1264
3eb91524b938 added local simpsets; removed IOA from 'make test'
clasohm
parents: 1202
diff changeset
    90
by (ALLGOALS Asm_simp_tac);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
    91
qed "append_is_Nil_conv";
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
    92
AddIffs [append_is_Nil_conv];
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
    93
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
    94
goal thy "([] = xs@ys) = (xs=[] & ys=[])";
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
    95
by (induct_tac "xs" 1);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
    96
by (ALLGOALS Asm_simp_tac);
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
    97
by (Blast_tac 1);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
    98
qed "Nil_is_append_conv";
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
    99
AddIffs [Nil_is_append_conv];
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   100
3574
5995ab73d790 Added a few lemmas.
nipkow
parents: 3571
diff changeset
   101
goal thy "(xs @ ys = xs) = (ys=[])";
5995ab73d790 Added a few lemmas.
nipkow
parents: 3571
diff changeset
   102
by (induct_tac "xs" 1);
5995ab73d790 Added a few lemmas.
nipkow
parents: 3571
diff changeset
   103
by (ALLGOALS Asm_simp_tac);
5995ab73d790 Added a few lemmas.
nipkow
parents: 3571
diff changeset
   104
qed "append_self_conv";
5995ab73d790 Added a few lemmas.
nipkow
parents: 3571
diff changeset
   105
5995ab73d790 Added a few lemmas.
nipkow
parents: 3571
diff changeset
   106
goal thy "(xs = xs @ ys) = (ys=[])";
5995ab73d790 Added a few lemmas.
nipkow
parents: 3571
diff changeset
   107
by (induct_tac "xs" 1);
5995ab73d790 Added a few lemmas.
nipkow
parents: 3571
diff changeset
   108
by (ALLGOALS Asm_simp_tac);
5995ab73d790 Added a few lemmas.
nipkow
parents: 3571
diff changeset
   109
by (Blast_tac 1);
5995ab73d790 Added a few lemmas.
nipkow
parents: 3571
diff changeset
   110
qed "self_append_conv";
5995ab73d790 Added a few lemmas.
nipkow
parents: 3571
diff changeset
   111
AddIffs [append_self_conv,self_append_conv];
5995ab73d790 Added a few lemmas.
nipkow
parents: 3571
diff changeset
   112
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   113
goal thy "(xs @ ys = xs @ zs) = (ys=zs)";
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
   114
by (induct_tac "xs" 1);
1264
3eb91524b938 added local simpsets; removed IOA from 'make test'
clasohm
parents: 1202
diff changeset
   115
by (ALLGOALS Asm_simp_tac);
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   116
qed "same_append_eq";
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   117
AddIffs [same_append_eq];
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   118
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   119
goal thy "!ys. (xs @ [x] = ys @ [y]) = (xs = ys & x = y)"; 
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   120
by (induct_tac "xs" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   121
 by (rtac allI 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   122
 by (induct_tac "ys" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   123
  by (ALLGOALS Asm_simp_tac);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   124
by (rtac allI 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   125
by (induct_tac "ys" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   126
 by (ALLGOALS Asm_simp_tac);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   127
qed_spec_mp "append1_eq_conv";
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   128
AddIffs [append1_eq_conv];
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   129
3571
f1c8fa0f0bf9 List.ML: added lemmas by Stefan Merz.
nipkow
parents: 3468
diff changeset
   130
goal thy "!ys zs. (ys @ xs = zs @ xs) = (ys=zs)";
f1c8fa0f0bf9 List.ML: added lemmas by Stefan Merz.
nipkow
parents: 3468
diff changeset
   131
by (induct_tac "xs" 1);
f1c8fa0f0bf9 List.ML: added lemmas by Stefan Merz.
nipkow
parents: 3468
diff changeset
   132
by (Simp_tac 1);
3708
56facaebf3e3 Changed some proofs to use Clarify_tac
paulson
parents: 3647
diff changeset
   133
by (Clarify_tac 1);
3571
f1c8fa0f0bf9 List.ML: added lemmas by Stefan Merz.
nipkow
parents: 3468
diff changeset
   134
by (subgoal_tac "((ys @ [a]) @ list = (zs @ [a]) @ list) = (ys=zs)" 1);
f1c8fa0f0bf9 List.ML: added lemmas by Stefan Merz.
nipkow
parents: 3468
diff changeset
   135
by (Asm_full_simp_tac 1);
f1c8fa0f0bf9 List.ML: added lemmas by Stefan Merz.
nipkow
parents: 3468
diff changeset
   136
by (Blast_tac 1);
f1c8fa0f0bf9 List.ML: added lemmas by Stefan Merz.
nipkow
parents: 3468
diff changeset
   137
qed_spec_mp "append_same_eq";
f1c8fa0f0bf9 List.ML: added lemmas by Stefan Merz.
nipkow
parents: 3468
diff changeset
   138
AddIffs [append_same_eq];
f1c8fa0f0bf9 List.ML: added lemmas by Stefan Merz.
nipkow
parents: 3468
diff changeset
   139
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   140
goal thy "xs ~= [] --> hd xs # tl xs = xs";
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   141
by (induct_tac "xs" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   142
by (ALLGOALS Asm_simp_tac);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   143
qed_spec_mp "hd_Cons_tl";
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   144
Addsimps [hd_Cons_tl];
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   145
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   146
goal thy "hd(xs@ys) = (if xs=[] then hd ys else hd xs)";
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
   147
by (induct_tac "xs" 1);
1327
6c29cfab679c added new arithmetic lemmas and the functions take and drop.
nipkow
parents: 1301
diff changeset
   148
by (ALLGOALS Asm_simp_tac);
6c29cfab679c added new arithmetic lemmas and the functions take and drop.
nipkow
parents: 1301
diff changeset
   149
qed "hd_append";
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   150
3571
f1c8fa0f0bf9 List.ML: added lemmas by Stefan Merz.
nipkow
parents: 3468
diff changeset
   151
goal thy "!!xs. xs ~= [] ==> hd(xs @ ys) = hd xs";
f1c8fa0f0bf9 List.ML: added lemmas by Stefan Merz.
nipkow
parents: 3468
diff changeset
   152
by (asm_simp_tac (!simpset addsimps [hd_append]
f1c8fa0f0bf9 List.ML: added lemmas by Stefan Merz.
nipkow
parents: 3468
diff changeset
   153
                           setloop (split_tac [expand_list_case])) 1);
f1c8fa0f0bf9 List.ML: added lemmas by Stefan Merz.
nipkow
parents: 3468
diff changeset
   154
qed "hd_append2";
f1c8fa0f0bf9 List.ML: added lemmas by Stefan Merz.
nipkow
parents: 3468
diff changeset
   155
Addsimps [hd_append2];
f1c8fa0f0bf9 List.ML: added lemmas by Stefan Merz.
nipkow
parents: 3468
diff changeset
   156
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   157
goal thy "tl(xs@ys) = (case xs of [] => tl(ys) | z#zs => zs@ys)";
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   158
by (simp_tac (!simpset setloop(split_tac[expand_list_case])) 1);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   159
qed "tl_append";
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   160
3571
f1c8fa0f0bf9 List.ML: added lemmas by Stefan Merz.
nipkow
parents: 3468
diff changeset
   161
goal thy "!!xs. xs ~= [] ==> tl(xs @ ys) = (tl xs) @ ys";
f1c8fa0f0bf9 List.ML: added lemmas by Stefan Merz.
nipkow
parents: 3468
diff changeset
   162
by (asm_simp_tac (!simpset addsimps [tl_append]
f1c8fa0f0bf9 List.ML: added lemmas by Stefan Merz.
nipkow
parents: 3468
diff changeset
   163
                           setloop (split_tac [expand_list_case])) 1);
f1c8fa0f0bf9 List.ML: added lemmas by Stefan Merz.
nipkow
parents: 3468
diff changeset
   164
qed "tl_append2";
f1c8fa0f0bf9 List.ML: added lemmas by Stefan Merz.
nipkow
parents: 3468
diff changeset
   165
Addsimps [tl_append2];
f1c8fa0f0bf9 List.ML: added lemmas by Stefan Merz.
nipkow
parents: 3468
diff changeset
   166
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   167
(** map **)
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   168
3467
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   169
section "map";
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   170
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   171
goal thy
3465
e85c24717cad set_of_list -> set
nipkow
parents: 3457
diff changeset
   172
  "(!x. x : set xs --> f x = g x) --> map f xs = map g xs";
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   173
by (induct_tac "xs" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   174
by (ALLGOALS Asm_simp_tac);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   175
bind_thm("map_ext", impI RS (allI RS (result() RS mp)));
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   176
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   177
goal thy "map (%x.x) = (%xs.xs)";
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   178
by (rtac ext 1);
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
   179
by (induct_tac "xs" 1);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   180
by (ALLGOALS Asm_simp_tac);
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   181
qed "map_ident";
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   182
Addsimps[map_ident];
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   183
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   184
goal thy "map f (xs@ys) = map f xs @ map f ys";
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
   185
by (induct_tac "xs" 1);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   186
by (ALLGOALS Asm_simp_tac);
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   187
qed "map_append";
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   188
Addsimps[map_append];
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   189
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   190
goalw thy [o_def] "map (f o g) xs = map f (map g xs)";
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
   191
by (induct_tac "xs" 1);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   192
by (ALLGOALS Asm_simp_tac);
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   193
qed "map_compose";
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   194
Addsimps[map_compose];
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   195
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   196
goal thy "rev(map f xs) = map f (rev xs)";
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
   197
by (induct_tac "xs" 1);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   198
by (ALLGOALS Asm_simp_tac);
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   199
qed "rev_map";
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   200
3589
244daa75f890 Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents: 3586
diff changeset
   201
(* a congruence rule for map: *)
244daa75f890 Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents: 3586
diff changeset
   202
goal thy
244daa75f890 Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents: 3586
diff changeset
   203
 "(xs=ys) --> (!x. x : set ys --> f x = g x) --> map f xs = map g ys";
244daa75f890 Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents: 3586
diff changeset
   204
by(rtac impI 1);
244daa75f890 Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents: 3586
diff changeset
   205
by(hyp_subst_tac 1);
244daa75f890 Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents: 3586
diff changeset
   206
by(induct_tac "ys" 1);
244daa75f890 Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents: 3586
diff changeset
   207
by(ALLGOALS Asm_simp_tac);
244daa75f890 Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents: 3586
diff changeset
   208
val lemma = result();
244daa75f890 Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents: 3586
diff changeset
   209
bind_thm("map_cong",impI RSN (2,allI RSN (2,lemma RS mp RS mp)));
244daa75f890 Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents: 3586
diff changeset
   210
1169
5873833cf37f Added function rev and its properties length_rev, etc.
lcp
parents: 995
diff changeset
   211
(** rev **)
5873833cf37f Added function rev and its properties length_rev, etc.
lcp
parents: 995
diff changeset
   212
3467
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   213
section "rev";
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   214
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   215
goal thy "rev(xs@ys) = rev(ys) @ rev(xs)";
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
   216
by (induct_tac "xs" 1);
2512
0231e4f467f2 Got rid of Alls in List.
nipkow
parents: 1985
diff changeset
   217
by (ALLGOALS Asm_simp_tac);
1169
5873833cf37f Added function rev and its properties length_rev, etc.
lcp
parents: 995
diff changeset
   218
qed "rev_append";
2512
0231e4f467f2 Got rid of Alls in List.
nipkow
parents: 1985
diff changeset
   219
Addsimps[rev_append];
1169
5873833cf37f Added function rev and its properties length_rev, etc.
lcp
parents: 995
diff changeset
   220
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   221
goal thy "rev(rev l) = l";
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
   222
by (induct_tac "l" 1);
2512
0231e4f467f2 Got rid of Alls in List.
nipkow
parents: 1985
diff changeset
   223
by (ALLGOALS Asm_simp_tac);
1169
5873833cf37f Added function rev and its properties length_rev, etc.
lcp
parents: 995
diff changeset
   224
qed "rev_rev_ident";
2512
0231e4f467f2 Got rid of Alls in List.
nipkow
parents: 1985
diff changeset
   225
Addsimps[rev_rev_ident];
1169
5873833cf37f Added function rev and its properties length_rev, etc.
lcp
parents: 995
diff changeset
   226
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   227
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   228
(** mem **)
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   229
3467
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   230
section "mem";
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   231
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   232
goal thy "x mem (xs@ys) = (x mem xs | x mem ys)";
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
   233
by (induct_tac "xs" 1);
1264
3eb91524b938 added local simpsets; removed IOA from 'make test'
clasohm
parents: 1202
diff changeset
   234
by (ALLGOALS (asm_simp_tac (!simpset setloop (split_tac [expand_if]))));
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   235
qed "mem_append";
2512
0231e4f467f2 Got rid of Alls in List.
nipkow
parents: 1985
diff changeset
   236
Addsimps[mem_append];
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   237
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   238
goal thy "x mem [x:xs.P(x)] = (x mem xs & P(x))";
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
   239
by (induct_tac "xs" 1);
1264
3eb91524b938 added local simpsets; removed IOA from 'make test'
clasohm
parents: 1202
diff changeset
   240
by (ALLGOALS (asm_simp_tac (!simpset setloop (split_tac [expand_if]))));
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   241
qed "mem_filter";
2512
0231e4f467f2 Got rid of Alls in List.
nipkow
parents: 1985
diff changeset
   242
Addsimps[mem_filter];
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   243
3465
e85c24717cad set_of_list -> set
nipkow
parents: 3457
diff changeset
   244
(** set **)
1812
debfc40b7756 Addition of setOfList
paulson
parents: 1760
diff changeset
   245
3467
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   246
section "set";
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   247
3465
e85c24717cad set_of_list -> set
nipkow
parents: 3457
diff changeset
   248
goal thy "set (xs@ys) = (set xs Un set ys)";
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
   249
by (induct_tac "xs" 1);
1812
debfc40b7756 Addition of setOfList
paulson
parents: 1760
diff changeset
   250
by (ALLGOALS Asm_simp_tac);
3647
a64c8fbcd98f Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents: 3589
diff changeset
   251
qed "set_append";
a64c8fbcd98f Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents: 3589
diff changeset
   252
Addsimps[set_append];
1812
debfc40b7756 Addition of setOfList
paulson
parents: 1760
diff changeset
   253
3465
e85c24717cad set_of_list -> set
nipkow
parents: 3457
diff changeset
   254
goal thy "(x mem xs) = (x: set xs)";
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
   255
by (induct_tac "xs" 1);
1812
debfc40b7756 Addition of setOfList
paulson
parents: 1760
diff changeset
   256
by (ALLGOALS (asm_simp_tac (!simpset setloop (split_tac [expand_if]))));
2891
d8f254ad1ab9 Calls Blast_tac
paulson
parents: 2739
diff changeset
   257
by (Blast_tac 1);
3647
a64c8fbcd98f Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents: 3589
diff changeset
   258
qed "set_mem_eq";
1812
debfc40b7756 Addition of setOfList
paulson
parents: 1760
diff changeset
   259
3465
e85c24717cad set_of_list -> set
nipkow
parents: 3457
diff changeset
   260
goal thy "set l <= set (x#l)";
1936
979e8b4f5fa5 Proved set_of_list_subset_Cons
paulson
parents: 1908
diff changeset
   261
by (Simp_tac 1);
2891
d8f254ad1ab9 Calls Blast_tac
paulson
parents: 2739
diff changeset
   262
by (Blast_tac 1);
3647
a64c8fbcd98f Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents: 3589
diff changeset
   263
qed "set_subset_Cons";
1936
979e8b4f5fa5 Proved set_of_list_subset_Cons
paulson
parents: 1908
diff changeset
   264
3465
e85c24717cad set_of_list -> set
nipkow
parents: 3457
diff changeset
   265
goal thy "(set xs = {}) = (xs = [])";
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   266
by (induct_tac "xs" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   267
by (ALLGOALS Asm_simp_tac);
3647
a64c8fbcd98f Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents: 3589
diff changeset
   268
qed "set_empty";
a64c8fbcd98f Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents: 3589
diff changeset
   269
Addsimps [set_empty];
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   270
3465
e85c24717cad set_of_list -> set
nipkow
parents: 3457
diff changeset
   271
goal thy "set(rev xs) = set(xs)";
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   272
by (induct_tac "xs" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   273
by (ALLGOALS Asm_simp_tac);
3647
a64c8fbcd98f Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents: 3589
diff changeset
   274
qed "set_rev";
a64c8fbcd98f Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents: 3589
diff changeset
   275
Addsimps [set_rev];
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   276
3465
e85c24717cad set_of_list -> set
nipkow
parents: 3457
diff changeset
   277
goal thy "set(map f xs) = f``(set xs)";
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   278
by (induct_tac "xs" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   279
by (ALLGOALS Asm_simp_tac);
3647
a64c8fbcd98f Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents: 3589
diff changeset
   280
qed "set_map";
a64c8fbcd98f Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents: 3589
diff changeset
   281
Addsimps [set_map];
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   282
1812
debfc40b7756 Addition of setOfList
paulson
parents: 1760
diff changeset
   283
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   284
(** list_all **)
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   285
3467
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   286
section "list_all";
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   287
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   288
goal thy "list_all (%x.True) xs = True";
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
   289
by (induct_tac "xs" 1);
1264
3eb91524b938 added local simpsets; removed IOA from 'make test'
clasohm
parents: 1202
diff changeset
   290
by (ALLGOALS Asm_simp_tac);
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   291
qed "list_all_True";
2512
0231e4f467f2 Got rid of Alls in List.
nipkow
parents: 1985
diff changeset
   292
Addsimps [list_all_True];
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   293
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   294
goal thy "list_all p (xs@ys) = (list_all p xs & list_all p ys)";
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
   295
by (induct_tac "xs" 1);
1264
3eb91524b938 added local simpsets; removed IOA from 'make test'
clasohm
parents: 1202
diff changeset
   296
by (ALLGOALS Asm_simp_tac);
2512
0231e4f467f2 Got rid of Alls in List.
nipkow
parents: 1985
diff changeset
   297
qed "list_all_append";
0231e4f467f2 Got rid of Alls in List.
nipkow
parents: 1985
diff changeset
   298
Addsimps [list_all_append];
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   299
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   300
goal thy "list_all P xs = (!x. x mem xs --> P(x))";
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
   301
by (induct_tac "xs" 1);
1264
3eb91524b938 added local simpsets; removed IOA from 'make test'
clasohm
parents: 1202
diff changeset
   302
by (ALLGOALS (asm_simp_tac (!simpset setloop (split_tac [expand_if]))));
2891
d8f254ad1ab9 Calls Blast_tac
paulson
parents: 2739
diff changeset
   303
by (Blast_tac 1);
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   304
qed "list_all_mem_conv";
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   305
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   306
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   307
(** filter **)
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   308
3467
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   309
section "filter";
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   310
3383
7707cb7a5054 Corrected statement of filter_append; added filter_size
paulson
parents: 3342
diff changeset
   311
goal thy "filter P (xs@ys) = filter P xs @ filter P ys";
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   312
by (induct_tac "xs" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   313
 by (ALLGOALS (asm_simp_tac (!simpset setloop (split_tac [expand_if]))));
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   314
qed "filter_append";
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   315
Addsimps [filter_append];
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   316
3383
7707cb7a5054 Corrected statement of filter_append; added filter_size
paulson
parents: 3342
diff changeset
   317
goal thy "size (filter P xs) <= size xs";
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   318
by (induct_tac "xs" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   319
 by (ALLGOALS (asm_simp_tac (!simpset setloop (split_tac [expand_if]))));
3383
7707cb7a5054 Corrected statement of filter_append; added filter_size
paulson
parents: 3342
diff changeset
   320
qed "filter_size";
7707cb7a5054 Corrected statement of filter_append; added filter_size
paulson
parents: 3342
diff changeset
   321
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   322
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   323
(** concat **)
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   324
3467
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   325
section "concat";
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   326
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   327
goal thy  "concat(xs@ys) = concat(xs)@concat(ys)";
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
   328
by (induct_tac "xs" 1);
1264
3eb91524b938 added local simpsets; removed IOA from 'make test'
clasohm
parents: 1202
diff changeset
   329
by (ALLGOALS Asm_simp_tac);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   330
qed"concat_append";
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   331
Addsimps [concat_append];
2512
0231e4f467f2 Got rid of Alls in List.
nipkow
parents: 1985
diff changeset
   332
3467
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   333
goal thy  "set(concat xs) = Union(set `` set xs)";
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   334
by (induct_tac "xs" 1);
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   335
by (ALLGOALS Asm_simp_tac);
3647
a64c8fbcd98f Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents: 3589
diff changeset
   336
qed"set_concat";
a64c8fbcd98f Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents: 3589
diff changeset
   337
Addsimps [set_concat];
3467
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   338
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   339
goal thy "map f (concat xs) = concat (map (map f) xs)"; 
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   340
by (induct_tac "xs" 1);
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   341
by (ALLGOALS Asm_simp_tac);
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   342
qed "map_concat";
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   343
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   344
goal thy "filter p (concat xs) = concat (map (filter p) xs)"; 
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   345
by (induct_tac "xs" 1);
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   346
by (ALLGOALS Asm_simp_tac);
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   347
qed"filter_concat"; 
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   348
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   349
goal thy "rev(concat xs) = concat (map rev (rev xs))";
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   350
by (induct_tac "xs" 1);
2512
0231e4f467f2 Got rid of Alls in List.
nipkow
parents: 1985
diff changeset
   351
by (ALLGOALS Asm_simp_tac);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   352
qed "rev_concat";
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   353
962
136308504cd9 Added a few thms to nat_ss and list_ss
nipkow
parents: 923
diff changeset
   354
(** length **)
136308504cd9 Added a few thms to nat_ss and list_ss
nipkow
parents: 923
diff changeset
   355
3467
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   356
section "length";
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   357
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   358
goal thy "length(xs@ys) = length(xs)+length(ys)";
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
   359
by (induct_tac "xs" 1);
1264
3eb91524b938 added local simpsets; removed IOA from 'make test'
clasohm
parents: 1202
diff changeset
   360
by (ALLGOALS Asm_simp_tac);
962
136308504cd9 Added a few thms to nat_ss and list_ss
nipkow
parents: 923
diff changeset
   361
qed"length_append";
1301
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   362
Addsimps [length_append];
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   363
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   364
goal thy "length (map f l) = length l";
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
   365
by (induct_tac "l" 1);
1301
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   366
by (ALLGOALS Simp_tac);
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   367
qed "length_map";
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   368
Addsimps [length_map];
962
136308504cd9 Added a few thms to nat_ss and list_ss
nipkow
parents: 923
diff changeset
   369
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   370
goal thy "length(rev xs) = length(xs)";
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
   371
by (induct_tac "xs" 1);
1301
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   372
by (ALLGOALS Asm_simp_tac);
1169
5873833cf37f Added function rev and its properties length_rev, etc.
lcp
parents: 995
diff changeset
   373
qed "length_rev";
1301
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   374
Addsimps [length_rev];
1169
5873833cf37f Added function rev and its properties length_rev, etc.
lcp
parents: 995
diff changeset
   375
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   376
goal thy "(length xs = 0) = (xs = [])";
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   377
by (induct_tac "xs" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   378
by (ALLGOALS Asm_simp_tac);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   379
qed "length_0_conv";
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   380
AddIffs [length_0_conv];
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   381
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   382
goal thy "(0 < length xs) = (xs ~= [])";
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   383
by (induct_tac "xs" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   384
by (ALLGOALS Asm_simp_tac);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   385
qed "length_greater_0_conv";
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   386
AddIffs [length_greater_0_conv];
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   387
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   388
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   389
(** nth **)
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   390
3467
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   391
section "nth";
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   392
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   393
goal thy
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   394
  "!xs. nth n (xs@ys) = \
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   395
\          (if n < length xs then nth n xs else nth (n - length xs) ys)";
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   396
by (nat_ind_tac "n" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   397
 by (Asm_simp_tac 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   398
 by (rtac allI 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   399
 by (exhaust_tac "xs" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   400
  by (ALLGOALS Asm_simp_tac);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   401
by (rtac allI 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   402
by (exhaust_tac "xs" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   403
 by (ALLGOALS Asm_simp_tac);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   404
qed_spec_mp "nth_append";
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   405
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   406
goal thy "!n. n < length xs --> nth n (map f xs) = f (nth n xs)";
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
   407
by (induct_tac "xs" 1);
1301
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   408
(* case [] *)
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   409
by (Asm_full_simp_tac 1);
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   410
(* case x#xl *)
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   411
by (rtac allI 1);
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   412
by (nat_ind_tac "n" 1);
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   413
by (ALLGOALS Asm_full_simp_tac);
1485
240cc98b94a7 Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents: 1465
diff changeset
   414
qed_spec_mp "nth_map";
1301
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   415
Addsimps [nth_map];
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   416
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   417
goal thy "!n. n < length xs --> list_all P xs --> P(nth n xs)";
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
   418
by (induct_tac "xs" 1);
1301
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   419
(* case [] *)
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   420
by (Simp_tac 1);
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   421
(* case x#xl *)
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   422
by (rtac allI 1);
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   423
by (nat_ind_tac "n" 1);
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   424
by (ALLGOALS Asm_full_simp_tac);
1485
240cc98b94a7 Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents: 1465
diff changeset
   425
qed_spec_mp "list_all_nth";
1301
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   426
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   427
goal thy "!n. n < length xs --> (nth n xs) mem xs";
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
   428
by (induct_tac "xs" 1);
1301
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   429
(* case [] *)
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   430
by (Simp_tac 1);
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   431
(* case x#xl *)
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   432
by (rtac allI 1);
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   433
by (nat_ind_tac "n" 1);
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   434
(* case 0 *)
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   435
by (Asm_full_simp_tac 1);
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   436
(* case Suc x *)
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   437
by (asm_full_simp_tac (!simpset setloop (split_tac [expand_if])) 1);
1485
240cc98b94a7 Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents: 1465
diff changeset
   438
qed_spec_mp "nth_mem";
1301
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   439
Addsimps [nth_mem];
42782316d510 Added various thms and tactics.
nipkow
parents: 1264
diff changeset
   440
1327
6c29cfab679c added new arithmetic lemmas and the functions take and drop.
nipkow
parents: 1301
diff changeset
   441
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   442
(** take  & drop **)
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   443
section "take & drop";
1327
6c29cfab679c added new arithmetic lemmas and the functions take and drop.
nipkow
parents: 1301
diff changeset
   444
1419
a6a034a47a71 defined take/drop by induction over list rather than nat.
nipkow
parents: 1327
diff changeset
   445
goal thy "take 0 xs = []";
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
   446
by (induct_tac "xs" 1);
1419
a6a034a47a71 defined take/drop by induction over list rather than nat.
nipkow
parents: 1327
diff changeset
   447
by (ALLGOALS Asm_simp_tac);
1327
6c29cfab679c added new arithmetic lemmas and the functions take and drop.
nipkow
parents: 1301
diff changeset
   448
qed "take_0";
6c29cfab679c added new arithmetic lemmas and the functions take and drop.
nipkow
parents: 1301
diff changeset
   449
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   450
goal thy "drop 0 xs = xs";
3040
7d48671753da Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents: 3011
diff changeset
   451
by (induct_tac "xs" 1);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   452
by (ALLGOALS Asm_simp_tac);
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   453
qed "drop_0";
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   454
1419
a6a034a47a71 defined take/drop by induction over list rather than nat.
nipkow
parents: 1327
diff changeset
   455
goal thy "take (Suc n) (x#xs) = x # take n xs";
1552
6f71b5d46700 Ran expandshort
paulson
parents: 1485
diff changeset
   456
by (Simp_tac 1);
1419
a6a034a47a71 defined take/drop by induction over list rather than nat.
nipkow
parents: 1327
diff changeset
   457
qed "take_Suc_Cons";
1327
6c29cfab679c added new arithmetic lemmas and the functions take and drop.
nipkow
parents: 1301
diff changeset
   458
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   459
goal thy "drop (Suc n) (x#xs) = drop n xs";
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   460
by (Simp_tac 1);
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   461
qed "drop_Suc_Cons";
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   462
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   463
Delsimps [take_Cons,drop_Cons];
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   464
Addsimps [take_0,take_Suc_Cons,drop_0,drop_Suc_Cons];
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   465
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   466
goal thy "!xs. length(take n xs) = min (length xs) n";
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   467
by (nat_ind_tac "n" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   468
 by (ALLGOALS Asm_simp_tac);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   469
by (rtac allI 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   470
by (exhaust_tac "xs" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   471
 by (ALLGOALS Asm_simp_tac);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   472
qed_spec_mp "length_take";
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   473
Addsimps [length_take];
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   474
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   475
goal thy "!xs. length(drop n xs) = (length xs - n)";
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   476
by (nat_ind_tac "n" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   477
 by (ALLGOALS Asm_simp_tac);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   478
by (rtac allI 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   479
by (exhaust_tac "xs" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   480
 by (ALLGOALS Asm_simp_tac);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   481
qed_spec_mp "length_drop";
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   482
Addsimps [length_drop];
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   483
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   484
goal thy "!xs. length xs <= n --> take n xs = xs";
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   485
by (nat_ind_tac "n" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   486
 by (ALLGOALS Asm_simp_tac);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   487
by (rtac allI 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   488
by (exhaust_tac "xs" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   489
 by (ALLGOALS Asm_simp_tac);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   490
qed_spec_mp "take_all";
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   491
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   492
goal thy "!xs. length xs <= n --> drop n xs = []";
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   493
by (nat_ind_tac "n" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   494
 by (ALLGOALS Asm_simp_tac);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   495
by (rtac allI 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   496
by (exhaust_tac "xs" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   497
 by (ALLGOALS Asm_simp_tac);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   498
qed_spec_mp "drop_all";
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   499
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   500
goal thy 
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   501
  "!xs. take n (xs @ ys) = (take n xs @ take (n - length xs) ys)";
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   502
by (nat_ind_tac "n" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   503
 by (ALLGOALS Asm_simp_tac);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   504
by (rtac allI 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   505
by (exhaust_tac "xs" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   506
 by (ALLGOALS Asm_simp_tac);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   507
qed_spec_mp "take_append";
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   508
Addsimps [take_append];
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   509
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   510
goal thy "!xs. drop n (xs@ys) = drop n xs @ drop (n - length xs) ys"; 
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   511
by (nat_ind_tac "n" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   512
 by (ALLGOALS Asm_simp_tac);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   513
by (rtac allI 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   514
by (exhaust_tac "xs" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   515
 by (ALLGOALS Asm_simp_tac);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   516
qed_spec_mp "drop_append";
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   517
Addsimps [drop_append];
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   518
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   519
goal thy "!xs n. take n (take m xs) = take (min n m) xs"; 
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   520
by (nat_ind_tac "m" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   521
 by (ALLGOALS Asm_simp_tac);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   522
by (rtac allI 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   523
by (exhaust_tac "xs" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   524
 by (ALLGOALS Asm_simp_tac);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   525
by (rtac allI 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   526
by (exhaust_tac "n" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   527
 by (ALLGOALS Asm_simp_tac);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   528
qed_spec_mp "take_take";
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   529
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   530
goal thy "!xs. drop n (drop m xs) = drop (n + m) xs"; 
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   531
by (nat_ind_tac "m" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   532
 by (ALLGOALS Asm_simp_tac);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   533
by (rtac allI 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   534
by (exhaust_tac "xs" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   535
 by (ALLGOALS Asm_simp_tac);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   536
qed_spec_mp "drop_drop";
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   537
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   538
goal thy "!xs n. take n (drop m xs) = drop m (take (n + m) xs)"; 
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   539
by (nat_ind_tac "m" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   540
 by (ALLGOALS Asm_simp_tac);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   541
by (rtac allI 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   542
by (exhaust_tac "xs" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   543
 by (ALLGOALS Asm_simp_tac);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   544
qed_spec_mp "take_drop";
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   545
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   546
goal thy "!xs. take n (map f xs) = map f (take n xs)"; 
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   547
by (nat_ind_tac "n" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   548
by (ALLGOALS Asm_simp_tac);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   549
by (rtac allI 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   550
by (exhaust_tac "xs" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   551
by (ALLGOALS Asm_simp_tac);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   552
qed_spec_mp "take_map"; 
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   553
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   554
goal thy "!xs. drop n (map f xs) = map f (drop n xs)"; 
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   555
by (nat_ind_tac "n" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   556
by (ALLGOALS Asm_simp_tac);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   557
by (rtac allI 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   558
by (exhaust_tac "xs" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   559
by (ALLGOALS Asm_simp_tac);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   560
qed_spec_mp "drop_map";
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   561
3283
0db086394024 Replaced res_inst-list_cases by generic exhaust_tac.
nipkow
parents: 3196
diff changeset
   562
goal thy "!n i. i < n --> nth i (take n xs) = nth i xs";
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   563
by (induct_tac "xs" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   564
 by (ALLGOALS Asm_simp_tac);
3708
56facaebf3e3 Changed some proofs to use Clarify_tac
paulson
parents: 3647
diff changeset
   565
by (Clarify_tac 1);
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   566
by (exhaust_tac "n" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   567
 by (Blast_tac 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   568
by (exhaust_tac "i" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   569
by (ALLGOALS Asm_full_simp_tac);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   570
qed_spec_mp "nth_take";
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   571
Addsimps [nth_take];
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   572
3585
5b2dcdc1829c Generalized nth_drop (Conny).
nipkow
parents: 3574
diff changeset
   573
goal thy  "!xs i. n + i <= length xs --> nth i (drop n xs) = nth (n + i) xs";
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   574
by (nat_ind_tac "n" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   575
 by (ALLGOALS Asm_simp_tac);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   576
by (rtac allI 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   577
by (exhaust_tac "xs" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   578
 by (ALLGOALS Asm_simp_tac);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   579
qed_spec_mp "nth_drop";
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   580
Addsimps [nth_drop];
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   581
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   582
(** takeWhile & dropWhile **)
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   583
3467
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   584
section "takeWhile & dropWhile";
a0797ba03dfe More concat lemmas.
nipkow
parents: 3465
diff changeset
   585
3586
2ee1ed79c802 Added a take/dropWhile lemma.
nipkow
parents: 3585
diff changeset
   586
goal thy "takeWhile P xs @ dropWhile P xs = xs";
2ee1ed79c802 Added a take/dropWhile lemma.
nipkow
parents: 3585
diff changeset
   587
by (induct_tac "xs" 1);
2ee1ed79c802 Added a take/dropWhile lemma.
nipkow
parents: 3585
diff changeset
   588
 by (Simp_tac 1);
2ee1ed79c802 Added a take/dropWhile lemma.
nipkow
parents: 3585
diff changeset
   589
by (asm_full_simp_tac (!simpset setloop (split_tac[expand_if])) 1);
2ee1ed79c802 Added a take/dropWhile lemma.
nipkow
parents: 3585
diff changeset
   590
qed "takeWhile_dropWhile_id";
2ee1ed79c802 Added a take/dropWhile lemma.
nipkow
parents: 3585
diff changeset
   591
Addsimps [takeWhile_dropWhile_id];
2ee1ed79c802 Added a take/dropWhile lemma.
nipkow
parents: 3585
diff changeset
   592
2ee1ed79c802 Added a take/dropWhile lemma.
nipkow
parents: 3585
diff changeset
   593
goal thy  "x:set xs & ~P(x) --> takeWhile P (xs @ ys) = takeWhile P xs";
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   594
by (induct_tac "xs" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   595
 by (Simp_tac 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   596
by (asm_full_simp_tac (!simpset setloop (split_tac[expand_if])) 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   597
by (Blast_tac 1);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   598
bind_thm("takeWhile_append1", conjI RS (result() RS mp));
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   599
Addsimps [takeWhile_append1];
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
   600
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   601
goal thy
3465
e85c24717cad set_of_list -> set
nipkow
parents: 3457
diff changeset
   602
  "(!x:set xs.P(x)) --> takeWhile P (xs @ ys) = xs @ takeWhile P ys";
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   603
by (induct_tac "xs" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   604
 by (Simp_tac 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   605
by (asm_full_simp_tac (!simpset setloop (split_tac[expand_if])) 1);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   606
bind_thm("takeWhile_append2", ballI RS (result() RS mp));
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   607
Addsimps [takeWhile_append2];
1169
5873833cf37f Added function rev and its properties length_rev, etc.
lcp
parents: 995
diff changeset
   608
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   609
goal thy
3465
e85c24717cad set_of_list -> set
nipkow
parents: 3457
diff changeset
   610
  "x:set xs & ~P(x) --> dropWhile P (xs @ ys) = (dropWhile P xs)@ys";
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   611
by (induct_tac "xs" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   612
 by (Simp_tac 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   613
by (asm_full_simp_tac (!simpset setloop (split_tac[expand_if])) 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   614
by (Blast_tac 1);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   615
bind_thm("dropWhile_append1", conjI RS (result() RS mp));
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   616
Addsimps [dropWhile_append1];
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   617
3011
a3b73ba44a11 Tidied up.
nipkow
parents: 2891
diff changeset
   618
goal thy
3465
e85c24717cad set_of_list -> set
nipkow
parents: 3457
diff changeset
   619
  "(!x:set xs.P(x)) --> dropWhile P (xs @ ys) = dropWhile P ys";
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   620
by (induct_tac "xs" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   621
 by (Simp_tac 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   622
by (asm_full_simp_tac (!simpset setloop (split_tac[expand_if])) 1);
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   623
bind_thm("dropWhile_append2", ballI RS (result() RS mp));
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   624
Addsimps [dropWhile_append2];
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   625
3465
e85c24717cad set_of_list -> set
nipkow
parents: 3457
diff changeset
   626
goal thy "x:set(takeWhile P xs) --> x:set xs & P x";
3457
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   627
by (induct_tac "xs" 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   628
 by (Simp_tac 1);
a8ab7c64817c Ran expandshort
paulson
parents: 3383
diff changeset
   629
by (asm_full_simp_tac (!simpset setloop (split_tac[expand_if])) 1);
3647
a64c8fbcd98f Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents: 3589
diff changeset
   630
qed_spec_mp"set_take_whileD";
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   631
3589
244daa75f890 Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents: 3586
diff changeset
   632
(** replicate **)
244daa75f890 Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents: 3586
diff changeset
   633
section "replicate";
244daa75f890 Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents: 3586
diff changeset
   634
244daa75f890 Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents: 3586
diff changeset
   635
goal thy "set(replicate (Suc n) x) = {x}";
244daa75f890 Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents: 3586
diff changeset
   636
by(induct_tac "n" 1);
244daa75f890 Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents: 3586
diff changeset
   637
by(ALLGOALS Asm_full_simp_tac);
244daa75f890 Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents: 3586
diff changeset
   638
val lemma = result();
244daa75f890 Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents: 3586
diff changeset
   639
244daa75f890 Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents: 3586
diff changeset
   640
goal thy "!!n. n ~= 0 ==> set(replicate n x) = {x}";
244daa75f890 Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents: 3586
diff changeset
   641
by(fast_tac (!claset addSDs [not0_implies_Suc] addSIs [lemma]) 1);
244daa75f890 Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents: 3586
diff changeset
   642
qed "set_replicate";
244daa75f890 Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents: 3586
diff changeset
   643
Addsimps [set_replicate];