src/HOL/Analysis/Borel_Space.thy
author traytel
Mon, 24 Feb 2020 21:46:45 +0100
changeset 71469 d7ef73df3d15
parent 71025 be8cec1abcbb
child 71472 c213d067e60f
permissions -rw-r--r--
lift BNF witnesses for quotients (unless better ones are specified by the user)
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
63627
6ddb43c6b711 rename HOL-Multivariate_Analysis to HOL-Analysis.
hoelzl
parents: 63626
diff changeset
     1
(*  Title:      HOL/Analysis/Borel_Space.thy
42067
66c8281349ec standardized headers
hoelzl
parents: 41981
diff changeset
     2
    Author:     Johannes Hölzl, TU München
66c8281349ec standardized headers
hoelzl
parents: 41981
diff changeset
     3
    Author:     Armin Heller, TU München
66c8281349ec standardized headers
hoelzl
parents: 41981
diff changeset
     4
*)
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
     5
69722
b5163b2132c5 minor tagging updates in 13 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
     6
section \<open>Borel Space\<close>
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
     7
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
     8
theory Borel_Space
50387
3d8863c41fe8 Move the measurability prover to its own file
hoelzl
parents: 50245
diff changeset
     9
imports
63626
44ce6b524ff3 move measure theory from HOL-Probability to HOL-Multivariate_Analysis
hoelzl
parents: 63566
diff changeset
    10
  Measurable Derivative Ordered_Euclidean_Space Extended_Real_Limits
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
    11
begin
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
    12
71025
be8cec1abcbb reduce dependencies of Ordered_Euclidean_Space; move more general material from Cartesian_Euclidean_Space
immler
parents: 70688
diff changeset
    13
lemma is_interval_real_ereal_oo: "is_interval (real_of_ereal ` {N<..<M::ereal})"
be8cec1abcbb reduce dependencies of Ordered_Euclidean_Space; move more general material from Cartesian_Euclidean_Space
immler
parents: 70688
diff changeset
    14
  by (auto simp: real_atLeastGreaterThan_eq)
be8cec1abcbb reduce dependencies of Ordered_Euclidean_Space; move more general material from Cartesian_Euclidean_Space
immler
parents: 70688
diff changeset
    15
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
    16
lemma sets_Collect_eventually_sequentially[measurable]:
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
    17
  "(\<And>i. {x\<in>space M. P x i} \<in> sets M) \<Longrightarrow> {x\<in>space M. eventually (P x) sequentially} \<in> sets M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
    18
  unfolding eventually_sequentially by simp
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
    19
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
    20
lemma topological_basis_trivial: "topological_basis {A. open A}"
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
    21
  by (auto simp: topological_basis_def)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
    22
69722
b5163b2132c5 minor tagging updates in 13 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
    23
proposition open_prod_generated: "open = generate_topology {A \<times> B | A B. open A \<and> open B}"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
    24
proof -
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
    25
  have "{A \<times> B :: ('a \<times> 'b) set | A B. open A \<and> open B} = ((\<lambda>(a, b). a \<times> b) ` ({A. open A} \<times> {A. open A}))"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
    26
    by auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
    27
  then show ?thesis
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
    28
    by (auto intro: topological_basis_prod topological_basis_trivial topological_basis_imp_subbasis)
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
    29
qed
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
    30
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69861
diff changeset
    31
definition\<^marker>\<open>tag important\<close> "mono_on f A \<equiv> \<forall>r s. r \<in> A \<and> s \<in> A \<and> r \<le> s \<longrightarrow> f r \<le> f s"
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    32
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
    33
lemma mono_onI:
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    34
  "(\<And>r s. r \<in> A \<Longrightarrow> s \<in> A \<Longrightarrow> r \<le> s \<Longrightarrow> f r \<le> f s) \<Longrightarrow> mono_on f A"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    35
  unfolding mono_on_def by simp
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    36
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
    37
lemma mono_onD:
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    38
  "\<lbrakk>mono_on f A; r \<in> A; s \<in> A; r \<le> s\<rbrakk> \<Longrightarrow> f r \<le> f s"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    39
  unfolding mono_on_def by simp
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    40
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
    41
lemma mono_imp_mono_on: "mono f \<Longrightarrow> mono_on f A"
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    42
  unfolding mono_def mono_on_def by auto
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    43
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
    44
lemma mono_on_subset: "mono_on f A \<Longrightarrow> B \<subseteq> A \<Longrightarrow> mono_on f B"
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    45
  unfolding mono_on_def by auto
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    46
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69861
diff changeset
    47
definition\<^marker>\<open>tag important\<close> "strict_mono_on f A \<equiv> \<forall>r s. r \<in> A \<and> s \<in> A \<and> r < s \<longrightarrow> f r < f s"
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    48
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
    49
lemma strict_mono_onI:
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    50
  "(\<And>r s. r \<in> A \<Longrightarrow> s \<in> A \<Longrightarrow> r < s \<Longrightarrow> f r < f s) \<Longrightarrow> strict_mono_on f A"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    51
  unfolding strict_mono_on_def by simp
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    52
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
    53
lemma strict_mono_onD:
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    54
  "\<lbrakk>strict_mono_on f A; r \<in> A; s \<in> A; r < s\<rbrakk> \<Longrightarrow> f r < f s"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    55
  unfolding strict_mono_on_def by simp
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    56
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
    57
lemma mono_on_greaterD:
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    58
  assumes "mono_on g A" "x \<in> A" "y \<in> A" "g x > (g (y::_::linorder) :: _ :: linorder)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    59
  shows "x > y"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    60
proof (rule ccontr)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    61
  assume "\<not>x > y"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    62
  hence "x \<le> y" by (simp add: not_less)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    63
  from assms(1-3) and this have "g x \<le> g y" by (rule mono_onD)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    64
  with assms(4) show False by simp
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    65
qed
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    66
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
    67
lemma strict_mono_inv:
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    68
  fixes f :: "('a::linorder) \<Rightarrow> ('b::linorder)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    69
  assumes "strict_mono f" and "surj f" and inv: "\<And>x. g (f x) = x"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    70
  shows "strict_mono g"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    71
proof
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    72
  fix x y :: 'b assume "x < y"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    73
  from \<open>surj f\<close> obtain x' y' where [simp]: "x = f x'" "y = f y'" by blast
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    74
  with \<open>x < y\<close> and \<open>strict_mono f\<close> have "x' < y'" by (simp add: strict_mono_less)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    75
  with inv show "g x < g y" by simp
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    76
qed
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    77
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
    78
lemma strict_mono_on_imp_inj_on:
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    79
  assumes "strict_mono_on (f :: (_ :: linorder) \<Rightarrow> (_ :: preorder)) A"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    80
  shows "inj_on f A"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    81
proof (rule inj_onI)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    82
  fix x y assume "x \<in> A" "y \<in> A" "f x = f y"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    83
  thus "x = y"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    84
    by (cases x y rule: linorder_cases)
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
    85
       (auto dest: strict_mono_onD[OF assms, of x y] strict_mono_onD[OF assms, of y x])
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    86
qed
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    87
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
    88
lemma strict_mono_on_leD:
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    89
  assumes "strict_mono_on (f :: (_ :: linorder) \<Rightarrow> _ :: preorder) A" "x \<in> A" "y \<in> A" "x \<le> y"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    90
  shows "f x \<le> f y"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    91
proof (insert le_less_linear[of y x], elim disjE)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    92
  assume "x < y"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    93
  with assms have "f x < f y" by (rule_tac strict_mono_onD[OF assms(1)]) simp_all
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    94
  thus ?thesis by (rule less_imp_le)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    95
qed (insert assms, simp)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    96
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
    97
lemma strict_mono_on_eqD:
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    98
  fixes f :: "(_ :: linorder) \<Rightarrow> (_ :: preorder)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
    99
  assumes "strict_mono_on f A" "f x = f y" "x \<in> A" "y \<in> A"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   100
  shows "y = x"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   101
  using assms by (rule_tac linorder_cases[of x y]) (auto dest: strict_mono_onD)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   102
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   103
proposition mono_on_imp_deriv_nonneg:
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   104
  assumes mono: "mono_on f A" and deriv: "(f has_real_derivative D) (at x)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   105
  assumes "x \<in> interior A"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   106
  shows "D \<ge> 0"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   107
proof (rule tendsto_lowerbound)
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   108
  let ?A' = "(\<lambda>y. y - x) ` interior A"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   109
  from deriv show "((\<lambda>h. (f (x + h) - f x) / h) \<longlongrightarrow> D) (at 0)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   110
      by (simp add: field_has_derivative_at has_field_derivative_def)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   111
  from mono have mono': "mono_on f (interior A)" by (rule mono_on_subset) (rule interior_subset)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   112
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   113
  show "eventually (\<lambda>h. (f (x + h) - f x) / h \<ge> 0) (at 0)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   114
  proof (subst eventually_at_topological, intro exI conjI ballI impI)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   115
    have "open (interior A)" by simp
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67278
diff changeset
   116
    hence "open ((+) (-x) ` interior A)" by (rule open_translation)
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67278
diff changeset
   117
    also have "((+) (-x) ` interior A) = ?A'" by auto
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   118
    finally show "open ?A'" .
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   119
  next
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   120
    from \<open>x \<in> interior A\<close> show "0 \<in> ?A'" by auto
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   121
  next
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   122
    fix h assume "h \<in> ?A'"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   123
    hence "x + h \<in> interior A" by auto
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   124
    with mono' and \<open>x \<in> interior A\<close> show "(f (x + h) - f x) / h \<ge> 0"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   125
      by (cases h rule: linorder_cases[of _ 0])
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   126
         (simp_all add: divide_nonpos_neg divide_nonneg_pos mono_onD field_simps)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   127
  qed
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   128
qed simp
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   129
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   130
lemma strict_mono_on_imp_mono_on:
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   131
  "strict_mono_on (f :: (_ :: linorder) \<Rightarrow> _ :: preorder) A \<Longrightarrow> mono_on f A"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   132
  by (rule mono_onI, rule strict_mono_on_leD)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   133
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   134
proposition mono_on_ctble_discont:
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   135
  fixes f :: "real \<Rightarrow> real"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   136
  fixes A :: "real set"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   137
  assumes "mono_on f A"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   138
  shows "countable {a\<in>A. \<not> continuous (at a within A) f}"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   139
proof -
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   140
  have mono: "\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y"
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 63040
diff changeset
   141
    using \<open>mono_on f A\<close> by (simp add: mono_on_def)
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   142
  have "\<forall>a \<in> {a\<in>A. \<not> continuous (at a within A) f}. \<exists>q :: nat \<times> rat.
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   143
      (fst q = 0 \<and> of_rat (snd q) < f a \<and> (\<forall>x \<in> A. x < a \<longrightarrow> f x < of_rat (snd q))) \<or>
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   144
      (fst q = 1 \<and> of_rat (snd q) > f a \<and> (\<forall>x \<in> A. x > a \<longrightarrow> f x > of_rat (snd q)))"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   145
  proof (clarsimp simp del: One_nat_def)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   146
    fix a assume "a \<in> A" assume "\<not> continuous (at a within A) f"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   147
    thus "\<exists>q1 q2.
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   148
            q1 = 0 \<and> real_of_rat q2 < f a \<and> (\<forall>x\<in>A. x < a \<longrightarrow> f x < real_of_rat q2) \<or>
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   149
            q1 = 1 \<and> f a < real_of_rat q2 \<and> (\<forall>x\<in>A. a < x \<longrightarrow> real_of_rat q2 < f x)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   150
    proof (auto simp add: continuous_within order_tendsto_iff eventually_at)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   151
      fix l assume "l < f a"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   152
      then obtain q2 where q2: "l < of_rat q2" "of_rat q2 < f a"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   153
        using of_rat_dense by blast
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   154
      assume * [rule_format]: "\<forall>d>0. \<exists>x\<in>A. x \<noteq> a \<and> dist x a < d \<and> \<not> l < f x"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   155
      from q2 have "real_of_rat q2 < f a \<and> (\<forall>x\<in>A. x < a \<longrightarrow> f x < real_of_rat q2)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   156
      proof auto
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   157
        fix x assume "x \<in> A" "x < a"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   158
        with q2 *[of "a - x"] show "f x < real_of_rat q2"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   159
          apply (auto simp add: dist_real_def not_less)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   160
          apply (subgoal_tac "f x \<le> f xa")
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   161
          by (auto intro: mono)
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
   162
      qed
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   163
      thus ?thesis by auto
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   164
    next
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   165
      fix u assume "u > f a"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   166
      then obtain q2 where q2: "f a < of_rat q2" "of_rat q2 < u"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   167
        using of_rat_dense by blast
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   168
      assume *[rule_format]: "\<forall>d>0. \<exists>x\<in>A. x \<noteq> a \<and> dist x a < d \<and> \<not> u > f x"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   169
      from q2 have "real_of_rat q2 > f a \<and> (\<forall>x\<in>A. x > a \<longrightarrow> f x > real_of_rat q2)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   170
      proof auto
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   171
        fix x assume "x \<in> A" "x > a"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   172
        with q2 *[of "x - a"] show "f x > real_of_rat q2"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   173
          apply (auto simp add: dist_real_def)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   174
          apply (subgoal_tac "f x \<ge> f xa")
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   175
          by (auto intro: mono)
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
   176
      qed
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   177
      thus ?thesis by auto
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   178
    qed
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   179
  qed
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
   180
  hence "\<exists>g :: real \<Rightarrow> nat \<times> rat . \<forall>a \<in> {a\<in>A. \<not> continuous (at a within A) f}.
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   181
      (fst (g a) = 0 \<and> of_rat (snd (g a)) < f a \<and> (\<forall>x \<in> A. x < a \<longrightarrow> f x < of_rat (snd (g a)))) |
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   182
      (fst (g a) = 1 \<and> of_rat (snd (g a)) > f a \<and> (\<forall>x \<in> A. x > a \<longrightarrow> f x > of_rat (snd (g a))))"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   183
    by (rule bchoice)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   184
  then guess g ..
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   185
  hence g: "\<And>a x. a \<in> A \<Longrightarrow> \<not> continuous (at a within A) f \<Longrightarrow> x \<in> A \<Longrightarrow>
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   186
      (fst (g a) = 0 \<and> of_rat (snd (g a)) < f a \<and> (x < a \<longrightarrow> f x < of_rat (snd (g a)))) |
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   187
      (fst (g a) = 1 \<and> of_rat (snd (g a)) > f a \<and> (x > a \<longrightarrow> f x > of_rat (snd (g a))))"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   188
    by auto
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   189
  have "inj_on g {a\<in>A. \<not> continuous (at a within A) f}"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   190
  proof (auto simp add: inj_on_def)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   191
    fix w z
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   192
    assume 1: "w \<in> A" and 2: "\<not> continuous (at w within A) f" and
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   193
           3: "z \<in> A" and 4: "\<not> continuous (at z within A) f" and
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   194
           5: "g w = g z"
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
   195
    from g [OF 1 2 3] g [OF 3 4 1] 5
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   196
    show "w = z" by auto
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   197
  qed
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
   198
  thus ?thesis
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
   199
    by (rule countableI')
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   200
qed
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   201
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   202
lemma mono_on_ctble_discont_open:
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   203
  fixes f :: "real \<Rightarrow> real"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   204
  fixes A :: "real set"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   205
  assumes "open A" "mono_on f A"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   206
  shows "countable {a\<in>A. \<not>isCont f a}"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   207
proof -
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   208
  have "{a\<in>A. \<not>isCont f a} = {a\<in>A. \<not>(continuous (at a within A) f)}"
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 63040
diff changeset
   209
    by (auto simp add: continuous_within_open [OF _ \<open>open A\<close>])
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   210
  thus ?thesis
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   211
    apply (elim ssubst)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   212
    by (rule mono_on_ctble_discont, rule assms)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   213
qed
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   214
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   215
lemma mono_ctble_discont:
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   216
  fixes f :: "real \<Rightarrow> real"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   217
  assumes "mono f"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   218
  shows "countable {a. \<not> isCont f a}"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   219
  using assms mono_on_ctble_discont [of f UNIV] unfolding mono_on_def mono_def by auto
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   220
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   221
lemma has_real_derivative_imp_continuous_on:
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   222
  assumes "\<And>x. x \<in> A \<Longrightarrow> (f has_real_derivative f' x) (at x)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   223
  shows "continuous_on A f"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   224
  apply (intro differentiable_imp_continuous_on, unfold differentiable_on_def)
69022
e2858770997a removal of more redundancies, and fixes
paulson <lp15@cam.ac.uk>
parents: 68833
diff changeset
   225
  using assms differentiable_at_withinI real_differentiable_def by blast
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   226
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   227
lemma continuous_interval_vimage_Int:
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   228
  assumes "continuous_on {a::real..b} g" and mono: "\<And>x y. a \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> y \<le> b \<Longrightarrow> g x \<le> g y"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   229
  assumes "a \<le> b" "(c::real) \<le> d" "{c..d} \<subseteq> {g a..g b}"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   230
  obtains c' d' where "{a..b} \<inter> g -` {c..d} = {c'..d'}" "c' \<le> d'" "g c' = c" "g d' = d"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   231
proof-
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
   232
  let ?A = "{a..b} \<inter> g -` {c..d}"
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
   233
  from IVT'[of g a c b, OF _ _ \<open>a \<le> b\<close> assms(1)] assms(4,5)
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
   234
  obtain c'' where c'': "c'' \<in> ?A" "g c'' = c" by auto
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
   235
  from IVT'[of g a d b, OF _ _ \<open>a \<le> b\<close> assms(1)] assms(4,5)
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
   236
  obtain d'' where d'': "d'' \<in> ?A" "g d'' = d" by auto
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
   237
  hence [simp]: "?A \<noteq> {}" by blast
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   238
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
   239
  define c' where "c' = Inf ?A"
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
   240
  define d' where "d' = Sup ?A"
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
   241
  have "?A \<subseteq> {c'..d'}" unfolding c'_def d'_def
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
   242
    by (intro subsetI) (auto intro: cInf_lower cSup_upper)
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
   243
  moreover from assms have "closed ?A"
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
   244
    using continuous_on_closed_vimage[of "{a..b}" g] by (subst Int_commute) simp
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
   245
  hence c'd'_in_set: "c' \<in> ?A" "d' \<in> ?A" unfolding c'_def d'_def
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
   246
    by ((intro closed_contains_Inf closed_contains_Sup, simp_all)[])+
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
   247
  hence "{c'..d'} \<subseteq> ?A" using assms
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
   248
    by (intro subsetI)
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
   249
       (auto intro!: order_trans[of c "g c'" "g x" for x] order_trans[of "g x" "g d'" d for x]
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
   250
             intro!: mono)
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
   251
  moreover have "c' \<le> d'" using c'd'_in_set(2) unfolding c'_def by (intro cInf_lower) auto
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
   252
  moreover have "g c' \<le> c" "g d' \<ge> d"
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
   253
    apply (insert c'' d'' c'd'_in_set)
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
   254
    apply (subst c''(2)[symmetric])
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
   255
    apply (auto simp: c'_def intro!: mono cInf_lower c'') []
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
   256
    apply (subst d''(2)[symmetric])
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
   257
    apply (auto simp: d'_def intro!: mono cSup_upper d'') []
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
   258
    done
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
   259
  with c'd'_in_set have "g c' = c" "g d' = d" by auto
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
   260
  ultimately show ?thesis using that by blast
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   261
qed
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   262
69683
8b3458ca0762 subsection is always %important
immler
parents: 69652
diff changeset
   263
subsection \<open>Generic Borel spaces\<close>
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   264
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69861
diff changeset
   265
definition\<^marker>\<open>tag important\<close> (in topological_space) borel :: "'a measure" where
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
   266
  "borel = sigma UNIV {S. open S}"
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   267
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
   268
abbreviation "borel_measurable M \<equiv> measurable M borel"
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   269
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   270
lemma in_borel_measurable:
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   271
   "f \<in> borel_measurable M \<longleftrightarrow>
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
   272
    (\<forall>S \<in> sigma_sets UNIV {S. open S}. f -` S \<inter> space M \<in> sets M)"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   273
  by (auto simp add: measurable_def borel_def)
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   274
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   275
lemma in_borel_measurable_borel:
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   276
   "f \<in> borel_measurable M \<longleftrightarrow>
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   277
    (\<forall>S \<in> sets borel.
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   278
      f -` S \<inter> space M \<in> sets M)"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   279
  by (auto simp add: measurable_def borel_def)
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   280
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   281
lemma space_borel[simp]: "space borel = UNIV"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   282
  unfolding borel_def by auto
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   283
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   284
lemma space_in_borel[measurable]: "UNIV \<in> sets borel"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   285
  unfolding borel_def by auto
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   286
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   287
lemma sets_borel: "sets borel = sigma_sets UNIV {S. open S}"
57235
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
   288
  unfolding borel_def by (rule sets_measure_of) simp
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
   289
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   290
lemma measurable_sets_borel:
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   291
    "\<lbrakk>f \<in> measurable borel M; A \<in> sets M\<rbrakk> \<Longrightarrow> f -` A \<in> sets borel"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   292
  by (drule (1) measurable_sets) simp
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
   293
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   294
lemma pred_Collect_borel[measurable (raw)]: "Measurable.pred borel P \<Longrightarrow> {x. P x} \<in> sets borel"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   295
  unfolding borel_def pred_def by auto
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   296
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   297
lemma borel_open[measurable (raw generic)]:
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   298
  assumes "open A" shows "A \<in> sets borel"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   299
proof -
44537
c10485a6a7af make HOL-Probability respect set/pred distinction
huffman
parents: 44282
diff changeset
   300
  have "A \<in> {S. open S}" unfolding mem_Collect_eq using assms .
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
   301
  thus ?thesis unfolding borel_def by auto
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   302
qed
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   303
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   304
lemma borel_closed[measurable (raw generic)]:
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   305
  assumes "closed A" shows "A \<in> sets borel"
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   306
proof -
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   307
  have "space borel - (- A) \<in> sets borel"
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   308
    using assms unfolding closed_def by (blast intro: borel_open)
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   309
  thus ?thesis by simp
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   310
qed
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   311
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   312
lemma borel_singleton[measurable]:
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
   313
  "A \<in> sets borel \<Longrightarrow> insert x A \<in> sets (borel :: 'a::t1_space measure)"
50244
de72bbe42190 qualified interpretation of sigma_algebra, to avoid name clashes
immler
parents: 50104
diff changeset
   314
  unfolding insert_def by (rule sets.Un) auto
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   315
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   316
lemma sets_borel_eq_count_space: "sets (borel :: 'a::{countable, t2_space} measure) = count_space UNIV"
64320
ba194424b895 HOL-Probability: move stopping time from AFP/Markov_Models
hoelzl
parents: 64287
diff changeset
   317
proof -
ba194424b895 HOL-Probability: move stopping time from AFP/Markov_Models
hoelzl
parents: 64287
diff changeset
   318
  have "(\<Union>a\<in>A. {a}) \<in> sets borel" for A :: "'a set"
ba194424b895 HOL-Probability: move stopping time from AFP/Markov_Models
hoelzl
parents: 64287
diff changeset
   319
    by (intro sets.countable_UN') auto
ba194424b895 HOL-Probability: move stopping time from AFP/Markov_Models
hoelzl
parents: 64287
diff changeset
   320
  then show ?thesis
ba194424b895 HOL-Probability: move stopping time from AFP/Markov_Models
hoelzl
parents: 64287
diff changeset
   321
    by auto
ba194424b895 HOL-Probability: move stopping time from AFP/Markov_Models
hoelzl
parents: 64287
diff changeset
   322
qed
ba194424b895 HOL-Probability: move stopping time from AFP/Markov_Models
hoelzl
parents: 64287
diff changeset
   323
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   324
lemma borel_comp[measurable]: "A \<in> sets borel \<Longrightarrow> - A \<in> sets borel"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   325
  unfolding Compl_eq_Diff_UNIV by simp
41830
719b0a517c33 log is borel measurable
hoelzl
parents: 41545
diff changeset
   326
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   327
lemma borel_measurable_vimage:
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   328
  fixes f :: "'a \<Rightarrow> 'x::t2_space"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   329
  assumes borel[measurable]: "f \<in> borel_measurable M"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   330
  shows "f -` {x} \<inter> space M \<in> sets M"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   331
  by simp
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   332
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   333
lemma borel_measurableI:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
   334
  fixes f :: "'a \<Rightarrow> 'x::topological_space"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   335
  assumes "\<And>S. open S \<Longrightarrow> f -` S \<inter> space M \<in> sets M"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   336
  shows "f \<in> borel_measurable M"
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   337
  unfolding borel_def
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
   338
proof (rule measurable_measure_of, simp_all)
44537
c10485a6a7af make HOL-Probability respect set/pred distinction
huffman
parents: 44282
diff changeset
   339
  fix S :: "'x set" assume "open S" thus "f -` S \<inter> space M \<in> sets M"
c10485a6a7af make HOL-Probability respect set/pred distinction
huffman
parents: 44282
diff changeset
   340
    using assms[of S] by simp
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   341
qed
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   342
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   343
lemma borel_measurable_const:
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   344
  "(\<lambda>x. c) \<in> borel_measurable M"
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
   345
  by auto
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   346
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   347
lemma borel_measurable_indicator:
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   348
  assumes A: "A \<in> sets M"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   349
  shows "indicator A \<in> borel_measurable M"
46905
6b1c0a80a57a prefer abs_def over def_raw;
wenzelm
parents: 46884
diff changeset
   350
  unfolding indicator_def [abs_def] using A
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
   351
  by (auto intro!: measurable_If_set)
33533
40b44cb20c8c New theory Probability/Borel.thy, and some associated lemmas
paulson
parents:
diff changeset
   352
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   353
lemma borel_measurable_count_space[measurable (raw)]:
50096
7c9c5b1b6cd7 more measurability rules
hoelzl
parents: 50094
diff changeset
   354
  "f \<in> borel_measurable (count_space S)"
7c9c5b1b6cd7 more measurability rules
hoelzl
parents: 50094
diff changeset
   355
  unfolding measurable_def by auto
7c9c5b1b6cd7 more measurability rules
hoelzl
parents: 50094
diff changeset
   356
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   357
lemma borel_measurable_indicator'[measurable (raw)]:
50096
7c9c5b1b6cd7 more measurability rules
hoelzl
parents: 50094
diff changeset
   358
  assumes [measurable]: "{x\<in>space M. f x \<in> A x} \<in> sets M"
7c9c5b1b6cd7 more measurability rules
hoelzl
parents: 50094
diff changeset
   359
  shows "(\<lambda>x. indicator (A x) (f x)) \<in> borel_measurable M"
50001
382bd3173584 add syntax and a.e.-rules for (conditional) probability on predicates
hoelzl
parents: 49774
diff changeset
   360
  unfolding indicator_def[abs_def]
382bd3173584 add syntax and a.e.-rules for (conditional) probability on predicates
hoelzl
parents: 49774
diff changeset
   361
  by (auto intro!: measurable_If)
382bd3173584 add syntax and a.e.-rules for (conditional) probability on predicates
hoelzl
parents: 49774
diff changeset
   362
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   363
lemma borel_measurable_indicator_iff:
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   364
  "(indicator A :: 'a \<Rightarrow> 'x::{t1_space, zero_neq_one}) \<in> borel_measurable M \<longleftrightarrow> A \<inter> space M \<in> sets M"
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   365
    (is "?I \<in> borel_measurable M \<longleftrightarrow> _")
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   366
proof
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   367
  assume "?I \<in> borel_measurable M"
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   368
  then have "?I -` {1} \<inter> space M \<in> sets M"
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   369
    unfolding measurable_def by auto
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   370
  also have "?I -` {1} \<inter> space M = A \<inter> space M"
46905
6b1c0a80a57a prefer abs_def over def_raw;
wenzelm
parents: 46884
diff changeset
   371
    unfolding indicator_def [abs_def] by auto
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   372
  finally show "A \<inter> space M \<in> sets M" .
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   373
next
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   374
  assume "A \<inter> space M \<in> sets M"
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   375
  moreover have "?I \<in> borel_measurable M \<longleftrightarrow>
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   376
    (indicator (A \<inter> space M) :: 'a \<Rightarrow> 'x) \<in> borel_measurable M"
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   377
    by (intro measurable_cong) (auto simp: indicator_def)
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   378
  ultimately show "?I \<in> borel_measurable M" by auto
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   379
qed
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
   380
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   381
lemma borel_measurable_subalgebra:
41545
9c869baf1c66 tuned formalization of subalgebra
hoelzl
parents: 41097
diff changeset
   382
  assumes "sets N \<subseteq> sets M" "space N = space M" "f \<in> borel_measurable N"
39092
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
   383
  shows "f \<in> borel_measurable M"
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
   384
  using assms unfolding measurable_def by auto
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
   385
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   386
lemma borel_measurable_restrict_space_iff_ereal:
57137
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   387
  fixes f :: "'a \<Rightarrow> ereal"
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   388
  assumes \<Omega>[measurable, simp]: "\<Omega> \<inter> space M \<in> sets M"
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   389
  shows "f \<in> borel_measurable (restrict_space M \<Omega>) \<longleftrightarrow>
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   390
    (\<lambda>x. f x * indicator \<Omega> x) \<in> borel_measurable M"
57138
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   391
  by (subst measurable_restrict_space_iff)
63566
e5abbdee461a more accurate cong del;
wenzelm
parents: 63389
diff changeset
   392
     (auto simp: indicator_def if_distrib[where f="\<lambda>x. a * x" for a] cong del: if_weak_cong)
57137
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   393
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   394
lemma borel_measurable_restrict_space_iff_ennreal:
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62625
diff changeset
   395
  fixes f :: "'a \<Rightarrow> ennreal"
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62625
diff changeset
   396
  assumes \<Omega>[measurable, simp]: "\<Omega> \<inter> space M \<in> sets M"
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62625
diff changeset
   397
  shows "f \<in> borel_measurable (restrict_space M \<Omega>) \<longleftrightarrow>
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62625
diff changeset
   398
    (\<lambda>x. f x * indicator \<Omega> x) \<in> borel_measurable M"
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62625
diff changeset
   399
  by (subst measurable_restrict_space_iff)
63566
e5abbdee461a more accurate cong del;
wenzelm
parents: 63389
diff changeset
   400
     (auto simp: indicator_def if_distrib[where f="\<lambda>x. a * x" for a] cong del: if_weak_cong)
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62625
diff changeset
   401
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   402
lemma borel_measurable_restrict_space_iff:
57137
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   403
  fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   404
  assumes \<Omega>[measurable, simp]: "\<Omega> \<inter> space M \<in> sets M"
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   405
  shows "f \<in> borel_measurable (restrict_space M \<Omega>) \<longleftrightarrow>
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   406
    (\<lambda>x. indicator \<Omega> x *\<^sub>R f x) \<in> borel_measurable M"
57138
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   407
  by (subst measurable_restrict_space_iff)
63566
e5abbdee461a more accurate cong del;
wenzelm
parents: 63389
diff changeset
   408
     (auto simp: indicator_def if_distrib[where f="\<lambda>x. x *\<^sub>R a" for a] ac_simps
e5abbdee461a more accurate cong del;
wenzelm
parents: 63389
diff changeset
   409
       cong del: if_weak_cong)
57138
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   410
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   411
lemma cbox_borel[measurable]: "cbox a b \<in> sets borel"
57138
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   412
  by (auto intro: borel_closed)
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   413
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   414
lemma box_borel[measurable]: "box a b \<in> sets borel"
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
   415
  by (auto intro: borel_open)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
   416
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   417
lemma borel_compact: "compact (A::'a::t2_space set) \<Longrightarrow> A \<in> sets borel"
57138
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   418
  by (auto intro: borel_closed dest!: compact_imp_closed)
57137
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   419
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   420
lemma borel_sigma_sets_subset:
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   421
  "A \<subseteq> sets borel \<Longrightarrow> sigma_sets UNIV A \<subseteq> sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   422
  using sets.sigma_sets_subset[of A borel] by simp
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   423
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   424
lemma borel_eq_sigmaI1:
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   425
  fixes F :: "'i \<Rightarrow> 'a::topological_space set" and X :: "'a::topological_space set set"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   426
  assumes borel_eq: "borel = sigma UNIV X"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   427
  assumes X: "\<And>x. x \<in> X \<Longrightarrow> x \<in> sets (sigma UNIV (F ` A))"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   428
  assumes F: "\<And>i. i \<in> A \<Longrightarrow> F i \<in> sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   429
  shows "borel = sigma UNIV (F ` A)"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   430
  unfolding borel_def
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   431
proof (intro sigma_eqI antisym)
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   432
  have borel_rev_eq: "sigma_sets UNIV {S::'a set. open S} = sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   433
    unfolding borel_def by simp
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   434
  also have "\<dots> = sigma_sets UNIV X"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   435
    unfolding borel_eq by simp
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   436
  also have "\<dots> \<subseteq> sigma_sets UNIV (F`A)"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   437
    using X by (intro sigma_algebra.sigma_sets_subset[OF sigma_algebra_sigma_sets]) auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   438
  finally show "sigma_sets UNIV {S. open S} \<subseteq> sigma_sets UNIV (F`A)" .
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   439
  show "sigma_sets UNIV (F`A) \<subseteq> sigma_sets UNIV {S. open S}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   440
    unfolding borel_rev_eq using F by (intro borel_sigma_sets_subset) auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   441
qed auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   442
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   443
lemma borel_eq_sigmaI2:
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   444
  fixes F :: "'i \<Rightarrow> 'j \<Rightarrow> 'a::topological_space set"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   445
    and G :: "'l \<Rightarrow> 'k \<Rightarrow> 'a::topological_space set"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   446
  assumes borel_eq: "borel = sigma UNIV ((\<lambda>(i, j). G i j)`B)"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   447
  assumes X: "\<And>i j. (i, j) \<in> B \<Longrightarrow> G i j \<in> sets (sigma UNIV ((\<lambda>(i, j). F i j) ` A))"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   448
  assumes F: "\<And>i j. (i, j) \<in> A \<Longrightarrow> F i j \<in> sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   449
  shows "borel = sigma UNIV ((\<lambda>(i, j). F i j) ` A)"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   450
  using assms
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   451
  by (intro borel_eq_sigmaI1[where X="(\<lambda>(i, j). G i j) ` B" and F="(\<lambda>(i, j). F i j)"]) auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   452
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   453
lemma borel_eq_sigmaI3:
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   454
  fixes F :: "'i \<Rightarrow> 'j \<Rightarrow> 'a::topological_space set" and X :: "'a::topological_space set set"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   455
  assumes borel_eq: "borel = sigma UNIV X"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   456
  assumes X: "\<And>x. x \<in> X \<Longrightarrow> x \<in> sets (sigma UNIV ((\<lambda>(i, j). F i j) ` A))"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   457
  assumes F: "\<And>i j. (i, j) \<in> A \<Longrightarrow> F i j \<in> sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   458
  shows "borel = sigma UNIV ((\<lambda>(i, j). F i j) ` A)"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   459
  using assms by (intro borel_eq_sigmaI1[where X=X and F="(\<lambda>(i, j). F i j)"]) auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   460
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   461
lemma borel_eq_sigmaI4:
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   462
  fixes F :: "'i \<Rightarrow> 'a::topological_space set"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   463
    and G :: "'l \<Rightarrow> 'k \<Rightarrow> 'a::topological_space set"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   464
  assumes borel_eq: "borel = sigma UNIV ((\<lambda>(i, j). G i j)`A)"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   465
  assumes X: "\<And>i j. (i, j) \<in> A \<Longrightarrow> G i j \<in> sets (sigma UNIV (range F))"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   466
  assumes F: "\<And>i. F i \<in> sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   467
  shows "borel = sigma UNIV (range F)"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   468
  using assms by (intro borel_eq_sigmaI1[where X="(\<lambda>(i, j). G i j) ` A" and F=F]) auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   469
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   470
lemma borel_eq_sigmaI5:
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   471
  fixes F :: "'i \<Rightarrow> 'j \<Rightarrow> 'a::topological_space set" and G :: "'l \<Rightarrow> 'a::topological_space set"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   472
  assumes borel_eq: "borel = sigma UNIV (range G)"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   473
  assumes X: "\<And>i. G i \<in> sets (sigma UNIV (range (\<lambda>(i, j). F i j)))"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   474
  assumes F: "\<And>i j. F i j \<in> sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   475
  shows "borel = sigma UNIV (range (\<lambda>(i, j). F i j))"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   476
  using assms by (intro borel_eq_sigmaI1[where X="range G" and F="(\<lambda>(i, j). F i j)"]) auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   477
69722
b5163b2132c5 minor tagging updates in 13 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   478
theorem second_countable_borel_measurable:
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   479
  fixes X :: "'a::second_countable_topology set set"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   480
  assumes eq: "open = generate_topology X"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   481
  shows "borel = sigma UNIV X"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   482
  unfolding borel_def
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   483
proof (intro sigma_eqI sigma_sets_eqI)
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   484
  interpret X: sigma_algebra UNIV "sigma_sets UNIV X"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   485
    by (rule sigma_algebra_sigma_sets) simp
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   486
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   487
  fix S :: "'a set" assume "S \<in> Collect open"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   488
  then have "generate_topology X S"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   489
    by (auto simp: eq)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   490
  then show "S \<in> sigma_sets UNIV X"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   491
  proof induction
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   492
    case (UN K)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   493
    then have K: "\<And>k. k \<in> K \<Longrightarrow> open k"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   494
      unfolding eq by auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   495
    from ex_countable_basis obtain B :: "'a set set" where
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   496
      B:  "\<And>b. b \<in> B \<Longrightarrow> open b" "\<And>X. open X \<Longrightarrow> \<exists>b\<subseteq>B. (\<Union>b) = X" and "countable B"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   497
      by (auto simp: topological_basis_def)
69745
aec42cee2521 more canonical and less specialized syntax
nipkow
parents: 69739
diff changeset
   498
    from B(2)[OF K] obtain m where m: "\<And>k. k \<in> K \<Longrightarrow> m k \<subseteq> B" "\<And>k. k \<in> K \<Longrightarrow> \<Union>(m k) = k"
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   499
      by metis
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
   500
    define U where "U = (\<Union>k\<in>K. m k)"
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   501
    with m have "countable U"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   502
      by (intro countable_subset[OF _ \<open>countable B\<close>]) auto
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   503
    have "\<Union>U = (\<Union>A\<in>U. A)" by simp
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   504
    also have "\<dots> = \<Union>K"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   505
      unfolding U_def UN_simps by (simp add: m)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   506
    finally have "\<Union>U = \<Union>K" .
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   507
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   508
    have "\<forall>b\<in>U. \<exists>k\<in>K. b \<subseteq> k"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   509
      using m by (auto simp: U_def)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   510
    then obtain u where u: "\<And>b. b \<in> U \<Longrightarrow> u b \<in> K" and "\<And>b. b \<in> U \<Longrightarrow> b \<subseteq> u b"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   511
      by metis
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   512
    then have "(\<Union>b\<in>U. u b) \<subseteq> \<Union>K" "\<Union>U \<subseteq> (\<Union>b\<in>U. u b)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   513
      by auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   514
    then have "\<Union>K = (\<Union>b\<in>U. u b)"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   515
      unfolding \<open>\<Union>U = \<Union>K\<close> by auto
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   516
    also have "\<dots> \<in> sigma_sets UNIV X"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
   517
      using u UN by (intro X.countable_UN' \<open>countable U\<close>) auto
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   518
    finally show "\<Union>K \<in> sigma_sets UNIV X" .
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   519
  qed auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   520
qed (auto simp: eq intro: generate_topology.Basis)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   521
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   522
lemma borel_eq_closed: "borel = sigma UNIV (Collect closed)"
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   523
  unfolding borel_def
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   524
proof (intro sigma_eqI sigma_sets_eqI, safe)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   525
  fix x :: "'a set" assume "open x"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   526
  hence "x = UNIV - (UNIV - x)" by auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   527
  also have "\<dots> \<in> sigma_sets UNIV (Collect closed)"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   528
    by (force intro: sigma_sets.Compl simp: \<open>open x\<close>)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   529
  finally show "x \<in> sigma_sets UNIV (Collect closed)" by simp
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   530
next
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   531
  fix x :: "'a set" assume "closed x"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   532
  hence "x = UNIV - (UNIV - x)" by auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   533
  also have "\<dots> \<in> sigma_sets UNIV (Collect open)"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   534
    by (force intro: sigma_sets.Compl simp: \<open>closed x\<close>)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   535
  finally show "x \<in> sigma_sets UNIV (Collect open)" by simp
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   536
qed simp_all
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   537
69722
b5163b2132c5 minor tagging updates in 13 theories
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69683
diff changeset
   538
proposition borel_eq_countable_basis:
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   539
  fixes B::"'a::topological_space set set"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   540
  assumes "countable B"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   541
  assumes "topological_basis B"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   542
  shows "borel = sigma UNIV B"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   543
  unfolding borel_def
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   544
proof (intro sigma_eqI sigma_sets_eqI, safe)
69748
7aafd0472661 less odd class.second_countable_topology_def
immler
parents: 69745
diff changeset
   545
  interpret countable_basis "open" B using assms by (rule countable_basis_openI)
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   546
  fix X::"'a set" assume "open X"
69748
7aafd0472661 less odd class.second_countable_topology_def
immler
parents: 69745
diff changeset
   547
  from open_countable_basisE[OF this] obtain B' where B': "B' \<subseteq> B" "X = \<Union> B'" .
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   548
  then show "X \<in> sigma_sets UNIV B"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   549
    by (blast intro: sigma_sets_UNION \<open>countable B\<close> countable_subset)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   550
next
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   551
  fix b assume "b \<in> B"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   552
  hence "open b" by (rule topological_basis_open[OF assms(2)])
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   553
  thus "b \<in> sigma_sets UNIV (Collect open)" by auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   554
qed simp_all
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   555
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   556
lemma borel_measurable_continuous_on_restrict:
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   557
  fixes f :: "'a::topological_space \<Rightarrow> 'b::topological_space"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   558
  assumes f: "continuous_on A f"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   559
  shows "f \<in> borel_measurable (restrict_space borel A)"
57138
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   560
proof (rule borel_measurableI)
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   561
  fix S :: "'b set" assume "open S"
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   562
  with f obtain T where "f -` S \<inter> A = T \<inter> A" "open T"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   563
    by (metis continuous_on_open_invariant)
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   564
  then show "f -` S \<inter> space (restrict_space borel A) \<in> sets (restrict_space borel A)"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   565
    by (force simp add: sets_restrict_space space_restrict_space)
57137
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   566
qed
f174712d0a84 better support for restrict_space
hoelzl
parents: 57036
diff changeset
   567
70365
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
   568
lemma borel_measurable_continuous_onI: "continuous_on UNIV f \<Longrightarrow> f \<in> borel_measurable borel"
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   569
  by (drule borel_measurable_continuous_on_restrict) simp
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   570
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   571
lemma borel_measurable_continuous_on_if:
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
   572
  "A \<in> sets borel \<Longrightarrow> continuous_on A f \<Longrightarrow> continuous_on (- A) g \<Longrightarrow>
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
   573
    (\<lambda>x. if x \<in> A then f x else g x) \<in> borel_measurable borel"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
   574
  by (auto simp add: measurable_If_restrict_space_iff Collect_neg_eq
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
   575
           intro!: borel_measurable_continuous_on_restrict)
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
   576
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   577
lemma borel_measurable_continuous_countable_exceptions:
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   578
  fixes f :: "'a::t1_space \<Rightarrow> 'b::topological_space"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   579
  assumes X: "countable X"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   580
  assumes "continuous_on (- X) f"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   581
  shows "f \<in> borel_measurable borel"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   582
proof (rule measurable_discrete_difference[OF _ X])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   583
  have "X \<in> sets borel"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   584
    by (rule sets.countable[OF _ X]) auto
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   585
  then show "(\<lambda>x. if x \<in> X then undefined else f x) \<in> borel_measurable borel"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   586
    by (intro borel_measurable_continuous_on_if assms continuous_intros)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   587
qed auto
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
   588
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   589
lemma borel_measurable_continuous_on:
57138
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   590
  assumes f: "continuous_on UNIV f" and g: "g \<in> borel_measurable M"
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   591
  shows "(\<lambda>x. f (g x)) \<in> borel_measurable M"
70365
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
   592
  using measurable_comp[OF g borel_measurable_continuous_onI[OF f]] by (simp add: comp_def)
57138
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   593
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   594
lemma borel_measurable_continuous_on_indicator:
57138
7b3146180291 generalizd measurability on restricted space; rule for integrability on compact sets
hoelzl
parents: 57137
diff changeset
   595
  fixes f g :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector"
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
   596
  shows "A \<in> sets borel \<Longrightarrow> continuous_on A f \<Longrightarrow> (\<lambda>x. indicator A x *\<^sub>R f x) \<in> borel_measurable borel"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
   597
  by (subst borel_measurable_restrict_space_iff[symmetric])
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
   598
     (auto intro: borel_measurable_continuous_on_restrict)
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
   599
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   600
lemma borel_measurable_Pair[measurable (raw)]:
50881
ae630bab13da renamed countable_basis_space to second_countable_topology
hoelzl
parents: 50526
diff changeset
   601
  fixes f :: "'a \<Rightarrow> 'b::second_countable_topology" and g :: "'a \<Rightarrow> 'c::second_countable_topology"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   602
  assumes f[measurable]: "f \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   603
  assumes g[measurable]: "g \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   604
  shows "(\<lambda>x. (f x, g x)) \<in> borel_measurable M"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   605
proof (subst borel_eq_countable_basis)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   606
  let ?B = "SOME B::'b set set. countable B \<and> topological_basis B"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   607
  let ?C = "SOME B::'c set set. countable B \<and> topological_basis B"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   608
  let ?P = "(\<lambda>(b, c). b \<times> c) ` (?B \<times> ?C)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   609
  show "countable ?P" "topological_basis ?P"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   610
    by (auto intro!: countable_basis topological_basis_prod is_basis)
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
   611
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   612
  show "(\<lambda>x. (f x, g x)) \<in> measurable M (sigma UNIV ?P)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   613
  proof (rule measurable_measure_of)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   614
    fix S assume "S \<in> ?P"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   615
    then obtain b c where "b \<in> ?B" "c \<in> ?C" and S: "S = b \<times> c" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   616
    then have borel: "open b" "open c"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   617
      by (auto intro: is_basis topological_basis_open)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   618
    have "(\<lambda>x. (f x, g x)) -` S \<inter> space M = (f -` b \<inter> space M) \<inter> (g -` c \<inter> space M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   619
      unfolding S by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   620
    also have "\<dots> \<in> sets M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   621
      using borel by simp
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   622
    finally show "(\<lambda>x. (f x, g x)) -` S \<inter> space M \<in> sets M" .
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   623
  qed auto
39087
96984bf6fa5b Measurable on euclidean space is equiv. to measurable components
hoelzl
parents: 39083
diff changeset
   624
qed
96984bf6fa5b Measurable on euclidean space is equiv. to measurable components
hoelzl
parents: 39083
diff changeset
   625
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   626
lemma borel_measurable_continuous_Pair:
50881
ae630bab13da renamed countable_basis_space to second_countable_topology
hoelzl
parents: 50526
diff changeset
   627
  fixes f :: "'a \<Rightarrow> 'b::second_countable_topology" and g :: "'a \<Rightarrow> 'c::second_countable_topology"
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
   628
  assumes [measurable]: "f \<in> borel_measurable M"
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
   629
  assumes [measurable]: "g \<in> borel_measurable M"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   630
  assumes H: "continuous_on UNIV (\<lambda>x. H (fst x) (snd x))"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   631
  shows "(\<lambda>x. H (f x) (g x)) \<in> borel_measurable M"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   632
proof -
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   633
  have eq: "(\<lambda>x. H (f x) (g x)) = (\<lambda>x. (\<lambda>x. H (fst x) (snd x)) (f x, g x))" by auto
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   634
  show ?thesis
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   635
    unfolding eq by (rule borel_measurable_continuous_on[OF H]) auto
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   636
qed
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
   637
69683
8b3458ca0762 subsection is always %important
immler
parents: 69652
diff changeset
   638
subsection \<open>Borel spaces on order topologies\<close>
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   639
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   640
lemma [measurable]:
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   641
  fixes a b :: "'a::linorder_topology"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   642
  shows lessThan_borel: "{..< a} \<in> sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   643
    and greaterThan_borel: "{a <..} \<in> sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   644
    and greaterThanLessThan_borel: "{a<..<b} \<in> sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   645
    and atMost_borel: "{..a} \<in> sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   646
    and atLeast_borel: "{a..} \<in> sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   647
    and atLeastAtMost_borel: "{a..b} \<in> sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   648
    and greaterThanAtMost_borel: "{a<..b} \<in> sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   649
    and atLeastLessThan_borel: "{a..<b} \<in> sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   650
  unfolding greaterThanAtMost_def atLeastLessThan_def
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   651
  by (blast intro: borel_open borel_closed open_lessThan open_greaterThan open_greaterThanLessThan
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   652
                   closed_atMost closed_atLeast closed_atLeastAtMost)+
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   653
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   654
lemma borel_Iio:
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   655
  "borel = sigma UNIV (range lessThan :: 'a::{linorder_topology, second_countable_topology} set set)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   656
  unfolding second_countable_borel_measurable[OF open_generated_order]
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   657
proof (intro sigma_eqI sigma_sets_eqI)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   658
  from countable_dense_setE guess D :: "'a set" . note D = this
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   659
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   660
  interpret L: sigma_algebra UNIV "sigma_sets UNIV (range lessThan)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   661
    by (rule sigma_algebra_sigma_sets) simp
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   662
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   663
  fix A :: "'a set" assume "A \<in> range lessThan \<union> range greaterThan"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   664
  then obtain y where "A = {y <..} \<or> A = {..< y}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   665
    by blast
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   666
  then show "A \<in> sigma_sets UNIV (range lessThan)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   667
  proof
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   668
    assume A: "A = {y <..}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   669
    show ?thesis
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   670
    proof cases
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   671
      assume "\<forall>x>y. \<exists>d. y < d \<and> d < x"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   672
      with D(2)[of "{y <..< x}" for x] have "\<forall>x>y. \<exists>d\<in>D. y < d \<and> d < x"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   673
        by (auto simp: set_eq_iff)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   674
      then have "A = UNIV - (\<Inter>d\<in>{d\<in>D. y < d}. {..< d})"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   675
        by (auto simp: A) (metis less_asym)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   676
      also have "\<dots> \<in> sigma_sets UNIV (range lessThan)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   677
        using D(1) by (intro L.Diff L.top L.countable_INT'') auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   678
      finally show ?thesis .
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   679
    next
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   680
      assume "\<not> (\<forall>x>y. \<exists>d. y < d \<and> d < x)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   681
      then obtain x where "y < x"  "\<And>d. y < d \<Longrightarrow> \<not> d < x"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   682
        by auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   683
      then have "A = UNIV - {..< x}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   684
        unfolding A by (auto simp: not_less[symmetric])
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   685
      also have "\<dots> \<in> sigma_sets UNIV (range lessThan)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   686
        by auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   687
      finally show ?thesis .
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   688
    qed
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   689
  qed auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   690
qed auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   691
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   692
lemma borel_Ioi:
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   693
  "borel = sigma UNIV (range greaterThan :: 'a::{linorder_topology, second_countable_topology} set set)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   694
  unfolding second_countable_borel_measurable[OF open_generated_order]
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   695
proof (intro sigma_eqI sigma_sets_eqI)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   696
  from countable_dense_setE guess D :: "'a set" . note D = this
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   697
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   698
  interpret L: sigma_algebra UNIV "sigma_sets UNIV (range greaterThan)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   699
    by (rule sigma_algebra_sigma_sets) simp
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   700
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   701
  fix A :: "'a set" assume "A \<in> range lessThan \<union> range greaterThan"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   702
  then obtain y where "A = {y <..} \<or> A = {..< y}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   703
    by blast
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   704
  then show "A \<in> sigma_sets UNIV (range greaterThan)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   705
  proof
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   706
    assume A: "A = {..< y}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   707
    show ?thesis
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   708
    proof cases
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   709
      assume "\<forall>x<y. \<exists>d. x < d \<and> d < y"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   710
      with D(2)[of "{x <..< y}" for x] have "\<forall>x<y. \<exists>d\<in>D. x < d \<and> d < y"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   711
        by (auto simp: set_eq_iff)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   712
      then have "A = UNIV - (\<Inter>d\<in>{d\<in>D. d < y}. {d <..})"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   713
        by (auto simp: A) (metis less_asym)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   714
      also have "\<dots> \<in> sigma_sets UNIV (range greaterThan)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   715
        using D(1) by (intro L.Diff L.top L.countable_INT'') auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   716
      finally show ?thesis .
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   717
    next
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   718
      assume "\<not> (\<forall>x<y. \<exists>d. x < d \<and> d < y)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   719
      then obtain x where "x < y"  "\<And>d. y > d \<Longrightarrow> x \<ge> d"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   720
        by (auto simp: not_less[symmetric])
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   721
      then have "A = UNIV - {x <..}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   722
        unfolding A Compl_eq_Diff_UNIV[symmetric] by auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   723
      also have "\<dots> \<in> sigma_sets UNIV (range greaterThan)"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   724
        by auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   725
      finally show ?thesis .
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   726
    qed
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   727
  qed auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   728
qed auto
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   729
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   730
lemma borel_measurableI_less:
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   731
  fixes f :: "'a \<Rightarrow> 'b::{linorder_topology, second_countable_topology}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   732
  shows "(\<And>y. {x\<in>space M. f x < y} \<in> sets M) \<Longrightarrow> f \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   733
  unfolding borel_Iio
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   734
  by (rule measurable_measure_of) (auto simp: Int_def conj_commute)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   735
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   736
lemma borel_measurableI_greater:
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   737
  fixes f :: "'a \<Rightarrow> 'b::{linorder_topology, second_countable_topology}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   738
  shows "(\<And>y. {x\<in>space M. y < f x} \<in> sets M) \<Longrightarrow> f \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   739
  unfolding borel_Ioi
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   740
  by (rule measurable_measure_of) (auto simp: Int_def conj_commute)
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   741
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   742
lemma borel_measurableI_le:
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   743
  fixes f :: "'a \<Rightarrow> 'b::{linorder_topology, second_countable_topology}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   744
  shows "(\<And>y. {x\<in>space M. f x \<le> y} \<in> sets M) \<Longrightarrow> f \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   745
  by (rule borel_measurableI_greater) (auto simp: not_le[symmetric])
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   746
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   747
lemma borel_measurableI_ge:
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   748
  fixes f :: "'a \<Rightarrow> 'b::{linorder_topology, second_countable_topology}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   749
  shows "(\<And>y. {x\<in>space M. y \<le> f x} \<in> sets M) \<Longrightarrow> f \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   750
  by (rule borel_measurableI_less) (auto simp: not_le[symmetric])
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   751
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   752
lemma borel_measurable_less[measurable]:
63332
f164526d8727 move open_Collect_eq/less to HOL
hoelzl
parents: 63167
diff changeset
   753
  fixes f :: "'a \<Rightarrow> 'b::{second_countable_topology, linorder_topology}"
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   754
  assumes "f \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   755
  assumes "g \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   756
  shows "{w \<in> space M. f w < g w} \<in> sets M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   757
proof -
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   758
  have "{w \<in> space M. f w < g w} = (\<lambda>x. (f x, g x)) -` {x. fst x < snd x} \<inter> space M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   759
    by auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   760
  also have "\<dots> \<in> sets M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   761
    by (intro measurable_sets[OF borel_measurable_Pair borel_open, OF assms open_Collect_less]
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   762
              continuous_intros)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   763
  finally show ?thesis .
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   764
qed
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   765
69739
nipkow
parents: 69722
diff changeset
   766
lemma
63332
f164526d8727 move open_Collect_eq/less to HOL
hoelzl
parents: 63167
diff changeset
   767
  fixes f :: "'a \<Rightarrow> 'b::{second_countable_topology, linorder_topology}"
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   768
  assumes f[measurable]: "f \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   769
  assumes g[measurable]: "g \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   770
  shows borel_measurable_le[measurable]: "{w \<in> space M. f w \<le> g w} \<in> sets M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   771
    and borel_measurable_eq[measurable]: "{w \<in> space M. f w = g w} \<in> sets M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   772
    and borel_measurable_neq: "{w \<in> space M. f w \<noteq> g w} \<in> sets M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   773
  unfolding eq_iff not_less[symmetric]
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   774
  by measurable
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   775
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   776
lemma borel_measurable_SUP[measurable (raw)]:
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   777
  fixes F :: "_ \<Rightarrow> _ \<Rightarrow> _::{complete_linorder, linorder_topology, second_countable_topology}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   778
  assumes [simp]: "countable I"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   779
  assumes [measurable]: "\<And>i. i \<in> I \<Longrightarrow> F i \<in> borel_measurable M"
69260
0a9688695a1b removed relics of ASCII syntax for indexed big operators
haftmann
parents: 69022
diff changeset
   780
  shows "(\<lambda>x. SUP i\<in>I. F i x) \<in> borel_measurable M"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   781
  by (rule borel_measurableI_greater) (simp add: less_SUP_iff)
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   782
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   783
lemma borel_measurable_INF[measurable (raw)]:
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   784
  fixes F :: "_ \<Rightarrow> _ \<Rightarrow> _::{complete_linorder, linorder_topology, second_countable_topology}"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   785
  assumes [simp]: "countable I"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   786
  assumes [measurable]: "\<And>i. i \<in> I \<Longrightarrow> F i \<in> borel_measurable M"
69260
0a9688695a1b removed relics of ASCII syntax for indexed big operators
haftmann
parents: 69022
diff changeset
   787
  shows "(\<lambda>x. INF i\<in>I. F i x) \<in> borel_measurable M"
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   788
  by (rule borel_measurableI_less) (simp add: INF_less_iff)
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   789
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   790
lemma borel_measurable_cSUP[measurable (raw)]:
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   791
  fixes F :: "_ \<Rightarrow> _ \<Rightarrow> 'a::{conditionally_complete_linorder, linorder_topology, second_countable_topology}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   792
  assumes [simp]: "countable I"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   793
  assumes [measurable]: "\<And>i. i \<in> I \<Longrightarrow> F i \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   794
  assumes bdd: "\<And>x. x \<in> space M \<Longrightarrow> bdd_above ((\<lambda>i. F i x) ` I)"
69260
0a9688695a1b removed relics of ASCII syntax for indexed big operators
haftmann
parents: 69022
diff changeset
   795
  shows "(\<lambda>x. SUP i\<in>I. F i x) \<in> borel_measurable M"
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   796
proof cases
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   797
  assume "I = {}" then show ?thesis
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   798
    unfolding \<open>I = {}\<close> image_empty by simp
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   799
next
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   800
  assume "I \<noteq> {}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   801
  show ?thesis
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   802
  proof (rule borel_measurableI_le)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   803
    fix y
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   804
    have "{x \<in> space M. \<forall>i\<in>I. F i x \<le> y} \<in> sets M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   805
      by measurable
69260
0a9688695a1b removed relics of ASCII syntax for indexed big operators
haftmann
parents: 69022
diff changeset
   806
    also have "{x \<in> space M. \<forall>i\<in>I. F i x \<le> y} = {x \<in> space M. (SUP i\<in>I. F i x) \<le> y}"
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   807
      by (simp add: cSUP_le_iff \<open>I \<noteq> {}\<close> bdd cong: conj_cong)
69260
0a9688695a1b removed relics of ASCII syntax for indexed big operators
haftmann
parents: 69022
diff changeset
   808
    finally show "{x \<in> space M. (SUP i\<in>I. F i x) \<le>  y} \<in> sets M"  .
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   809
  qed
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   810
qed
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   811
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   812
lemma borel_measurable_cINF[measurable (raw)]:
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   813
  fixes F :: "_ \<Rightarrow> _ \<Rightarrow> 'a::{conditionally_complete_linorder, linorder_topology, second_countable_topology}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   814
  assumes [simp]: "countable I"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   815
  assumes [measurable]: "\<And>i. i \<in> I \<Longrightarrow> F i \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   816
  assumes bdd: "\<And>x. x \<in> space M \<Longrightarrow> bdd_below ((\<lambda>i. F i x) ` I)"
69260
0a9688695a1b removed relics of ASCII syntax for indexed big operators
haftmann
parents: 69022
diff changeset
   817
  shows "(\<lambda>x. INF i\<in>I. F i x) \<in> borel_measurable M"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   818
proof cases
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   819
  assume "I = {}" then show ?thesis
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   820
    unfolding \<open>I = {}\<close> image_empty by simp
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   821
next
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   822
  assume "I \<noteq> {}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   823
  show ?thesis
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   824
  proof (rule borel_measurableI_ge)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   825
    fix y
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   826
    have "{x \<in> space M. \<forall>i\<in>I. y \<le> F i x} \<in> sets M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   827
      by measurable
69260
0a9688695a1b removed relics of ASCII syntax for indexed big operators
haftmann
parents: 69022
diff changeset
   828
    also have "{x \<in> space M. \<forall>i\<in>I. y \<le> F i x} = {x \<in> space M. y \<le> (INF i\<in>I. F i x)}"
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   829
      by (simp add: le_cINF_iff \<open>I \<noteq> {}\<close> bdd cong: conj_cong)
69260
0a9688695a1b removed relics of ASCII syntax for indexed big operators
haftmann
parents: 69022
diff changeset
   830
    finally show "{x \<in> space M. y \<le> (INF i\<in>I. F i x)} \<in> sets M"  .
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   831
  qed
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   832
qed
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   833
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   834
lemma borel_measurable_lfp[consumes 1, case_names continuity step]:
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   835
  fixes F :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b::{complete_linorder, linorder_topology, second_countable_topology})"
60172
423273355b55 rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
hoelzl
parents: 60150
diff changeset
   836
  assumes "sup_continuous F"
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   837
  assumes *: "\<And>f. f \<in> borel_measurable M \<Longrightarrow> F f \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   838
  shows "lfp F \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   839
proof -
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   840
  { fix i have "((F ^^ i) bot) \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   841
      by (induct i) (auto intro!: *) }
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   842
  then have "(\<lambda>x. SUP i. (F ^^ i) bot x) \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   843
    by measurable
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   844
  also have "(\<lambda>x. SUP i. (F ^^ i) bot x) = (SUP i. (F ^^ i) bot)"
69861
62e47f06d22c avoid context-sensitive simp rules whose context-free form (image_comp) is not simp by default
haftmann
parents: 69748
diff changeset
   845
    by (auto simp add: image_comp)
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   846
  also have "(SUP i. (F ^^ i) bot) = lfp F"
60172
423273355b55 rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
hoelzl
parents: 60150
diff changeset
   847
    by (rule sup_continuous_lfp[symmetric]) fact
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   848
  finally show ?thesis .
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   849
qed
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   850
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   851
lemma borel_measurable_gfp[consumes 1, case_names continuity step]:
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   852
  fixes F :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b::{complete_linorder, linorder_topology, second_countable_topology})"
60172
423273355b55 rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
hoelzl
parents: 60150
diff changeset
   853
  assumes "inf_continuous F"
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   854
  assumes *: "\<And>f. f \<in> borel_measurable M \<Longrightarrow> F f \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   855
  shows "gfp F \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   856
proof -
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   857
  { fix i have "((F ^^ i) top) \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   858
      by (induct i) (auto intro!: * simp: bot_fun_def) }
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   859
  then have "(\<lambda>x. INF i. (F ^^ i) top x) \<in> borel_measurable M"
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   860
    by measurable
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   861
  also have "(\<lambda>x. INF i. (F ^^ i) top x) = (INF i. (F ^^ i) top)"
69861
62e47f06d22c avoid context-sensitive simp rules whose context-free form (image_comp) is not simp by default
haftmann
parents: 69748
diff changeset
   862
    by (auto simp add: image_comp)
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   863
  also have "\<dots> = gfp F"
60172
423273355b55 rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
hoelzl
parents: 60150
diff changeset
   864
    by (rule inf_continuous_gfp[symmetric]) fact
59088
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   865
  finally show ?thesis .
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   866
qed
ff2bd4a14ddb generalized (borel_)measurable_SUP/INF/lfp/gfp; tuned proofs for sigma-closure of product spaces
hoelzl
parents: 59000
diff changeset
   867
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   868
lemma borel_measurable_max[measurable (raw)]:
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   869
  "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow> (\<lambda>x. max (g x) (f x) :: 'b::{second_countable_topology, linorder_topology}) \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   870
  by (rule borel_measurableI_less) simp
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   871
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   872
lemma borel_measurable_min[measurable (raw)]:
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   873
  "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow> (\<lambda>x. min (g x) (f x) :: 'b::{second_countable_topology, linorder_topology}) \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   874
  by (rule borel_measurableI_greater) simp
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   875
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   876
lemma borel_measurable_Min[measurable (raw)]:
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   877
  "finite I \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i \<in> borel_measurable M) \<Longrightarrow> (\<lambda>x. Min ((\<lambda>i. f i x)`I) :: 'b::{second_countable_topology, linorder_topology}) \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   878
proof (induct I rule: finite_induct)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   879
  case (insert i I) then show ?case
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   880
    by (cases "I = {}") auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   881
qed auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   882
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   883
lemma borel_measurable_Max[measurable (raw)]:
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   884
  "finite I \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> f i \<in> borel_measurable M) \<Longrightarrow> (\<lambda>x. Max ((\<lambda>i. f i x)`I) :: 'b::{second_countable_topology, linorder_topology}) \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   885
proof (induct I rule: finite_induct)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   886
  case (insert i I) then show ?case
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   887
    by (cases "I = {}") auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   888
qed auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   889
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   890
lemma borel_measurable_sup[measurable (raw)]:
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   891
  "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow> (\<lambda>x. sup (g x) (f x) :: 'b::{lattice, second_countable_topology, linorder_topology}) \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   892
  unfolding sup_max by measurable
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   893
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   894
lemma borel_measurable_inf[measurable (raw)]:
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   895
  "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow> (\<lambda>x. inf (g x) (f x) :: 'b::{lattice, second_countable_topology, linorder_topology}) \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   896
  unfolding inf_min by measurable
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   897
69739
nipkow
parents: 69722
diff changeset
   898
lemma [measurable (raw)]:
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   899
  fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> 'b::{complete_linorder, second_countable_topology, linorder_topology}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   900
  assumes "\<And>i. f i \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   901
  shows borel_measurable_liminf: "(\<lambda>x. liminf (\<lambda>i. f i x)) \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   902
    and borel_measurable_limsup: "(\<lambda>x. limsup (\<lambda>i. f i x)) \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   903
  unfolding liminf_SUP_INF limsup_INF_SUP using assms by auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   904
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   905
lemma measurable_convergent[measurable (raw)]:
63332
f164526d8727 move open_Collect_eq/less to HOL
hoelzl
parents: 63167
diff changeset
   906
  fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> 'b::{complete_linorder, second_countable_topology, linorder_topology}"
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   907
  assumes [measurable]: "\<And>i. f i \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   908
  shows "Measurable.pred M (\<lambda>x. convergent (\<lambda>i. f i x))"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   909
  unfolding convergent_ereal by measurable
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   910
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   911
lemma sets_Collect_convergent[measurable]:
63332
f164526d8727 move open_Collect_eq/less to HOL
hoelzl
parents: 63167
diff changeset
   912
  fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> 'b::{complete_linorder, second_countable_topology, linorder_topology}"
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   913
  assumes f[measurable]: "\<And>i. f i \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   914
  shows "{x\<in>space M. convergent (\<lambda>i. f i x)} \<in> sets M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   915
  by measurable
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   916
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   917
lemma borel_measurable_lim[measurable (raw)]:
63332
f164526d8727 move open_Collect_eq/less to HOL
hoelzl
parents: 63167
diff changeset
   918
  fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> 'b::{complete_linorder, second_countable_topology, linorder_topology}"
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   919
  assumes [measurable]: "\<And>i. f i \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   920
  shows "(\<lambda>x. lim (\<lambda>i. f i x)) \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   921
proof -
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   922
  have "\<And>x. lim (\<lambda>i. f i x) = (if convergent (\<lambda>i. f i x) then limsup (\<lambda>i. f i x) else (THE i. False))"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   923
    by (simp add: lim_def convergent_def convergent_limsup_cl)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   924
  then show ?thesis
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   925
    by simp
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   926
qed
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   927
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   928
lemma borel_measurable_LIMSEQ_order:
63332
f164526d8727 move open_Collect_eq/less to HOL
hoelzl
parents: 63167
diff changeset
   929
  fixes u :: "nat \<Rightarrow> 'a \<Rightarrow> 'b::{complete_linorder, second_countable_topology, linorder_topology}"
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   930
  assumes u': "\<And>x. x \<in> space M \<Longrightarrow> (\<lambda>i. u i x) \<longlonglongrightarrow> u' x"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   931
  and u: "\<And>i. u i \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   932
  shows "u' \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   933
proof -
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   934
  have "\<And>x. x \<in> space M \<Longrightarrow> u' x = liminf (\<lambda>n. u n x)"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   935
    using u' by (simp add: lim_imp_Liminf[symmetric])
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   936
  with u show ?thesis by (simp cong: measurable_cong)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   937
qed
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   938
69683
8b3458ca0762 subsection is always %important
immler
parents: 69652
diff changeset
   939
subsection \<open>Borel spaces on topological monoids\<close>
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   940
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   941
lemma borel_measurable_add[measurable (raw)]:
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   942
  fixes f g :: "'a \<Rightarrow> 'b::{second_countable_topology, topological_monoid_add}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   943
  assumes f: "f \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   944
  assumes g: "g \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   945
  shows "(\<lambda>x. f x + g x) \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   946
  using f g by (rule borel_measurable_continuous_Pair) (intro continuous_intros)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   947
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   948
lemma borel_measurable_sum[measurable (raw)]:
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   949
  fixes f :: "'c \<Rightarrow> 'a \<Rightarrow> 'b::{second_countable_topology, topological_comm_monoid_add}"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   950
  assumes "\<And>i. i \<in> S \<Longrightarrow> f i \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   951
  shows "(\<lambda>x. \<Sum>i\<in>S. f i x) \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   952
proof cases
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   953
  assume "finite S"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   954
  thus ?thesis using assms by induct auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   955
qed simp
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   956
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   957
lemma borel_measurable_suminf_order[measurable (raw)]:
63332
f164526d8727 move open_Collect_eq/less to HOL
hoelzl
parents: 63167
diff changeset
   958
  fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> 'b::{complete_linorder, second_countable_topology, linorder_topology, topological_comm_monoid_add}"
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   959
  assumes f[measurable]: "\<And>i. f i \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   960
  shows "(\<lambda>x. suminf (\<lambda>i. f i x)) \<in> borel_measurable M"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   961
  unfolding suminf_def sums_def[abs_def] lim_def[symmetric] by simp
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
   962
69683
8b3458ca0762 subsection is always %important
immler
parents: 69652
diff changeset
   963
subsection \<open>Borel spaces on Euclidean spaces\<close>
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   964
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   965
lemma borel_measurable_inner[measurable (raw)]:
50881
ae630bab13da renamed countable_basis_space to second_countable_topology
hoelzl
parents: 50526
diff changeset
   966
  fixes f g :: "'a \<Rightarrow> 'b::{second_countable_topology, real_inner}"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   967
  assumes "f \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   968
  assumes "g \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   969
  shows "(\<lambda>x. f x \<bullet> g x) \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   970
  using assms
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   971
  by (rule borel_measurable_continuous_Pair) (intro continuous_intros)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   972
54775
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   973
notation
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   974
  eucl_less (infix "<e" 50)
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   975
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   976
lemma box_oc: "{x. a <e x \<and> x \<le> b} = {x. a <e x} \<inter> {..b}"
54775
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   977
  and box_co: "{x. a \<le> x \<and> x <e b} = {a..} \<inter> {x. x <e b}"
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   978
  by auto
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   979
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
   980
lemma eucl_ivals[measurable]:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
   981
  fixes a b :: "'a::ordered_euclidean_space"
54775
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   982
  shows "{x. x <e a} \<in> sets borel"
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   983
    and "{x. a <e x} \<in> sets borel"
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   984
    and "{..a} \<in> sets borel"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   985
    and "{a..} \<in> sets borel"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   986
    and "{a..b} \<in> sets borel"
54775
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   987
    and  "{x. a <e x \<and> x \<le> b} \<in> sets borel"
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   988
    and "{x. a \<le> x \<and>  x <e b} \<in> sets borel"
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   989
  unfolding box_oc box_co
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
   990
  by (auto intro: borel_open borel_closed)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   991
69739
nipkow
parents: 69722
diff changeset
   992
lemma
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   993
  fixes i :: "'a::{second_countable_topology, real_inner}"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   994
  shows hafspace_less_borel: "{x. a < x \<bullet> i} \<in> sets borel"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   995
    and hafspace_greater_borel: "{x. x \<bullet> i < a} \<in> sets borel"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   996
    and hafspace_less_eq_borel: "{x. a \<le> x \<bullet> i} \<in> sets borel"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
   997
    and hafspace_greater_eq_borel: "{x. x \<bullet> i \<le> a} \<in> sets borel"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   998
  by simp_all
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
   999
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1000
lemma borel_eq_box:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
  1001
  "borel = sigma UNIV (range (\<lambda> (a, b). box a b :: 'a :: euclidean_space set))"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1002
    (is "_ = ?SIGMA")
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1003
proof (rule borel_eq_sigmaI1[OF borel_def])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1004
  fix M :: "'a set" assume "M \<in> {S. open S}"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1005
  then have "open M" by simp
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1006
  show "M \<in> ?SIGMA"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
  1007
    apply (subst open_UNION_box[OF \<open>open M\<close>])
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1008
    apply (safe intro!: sets.countable_UN' countable_PiE countable_Collect)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1009
    apply (auto intro: countable_rat)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1010
    done
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1011
qed (auto simp: box_def)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1012
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1013
lemma halfspace_gt_in_halfspace:
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1014
  assumes i: "i \<in> A"
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
  1015
  shows "{x::'a. a < x \<bullet> i} \<in>
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
  1016
    sigma_sets UNIV ((\<lambda> (a, i). {x::'a::euclidean_space. x \<bullet> i < a}) ` (UNIV \<times> A))"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1017
  (is "?set \<in> ?SIGMA")
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1018
proof -
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1019
  interpret sigma_algebra UNIV ?SIGMA
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1020
    by (intro sigma_algebra_sigma_sets) simp_all
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
  1021
  have *: "?set = (\<Union>n. UNIV - {x::'a. x \<bullet> i < a + 1 / real (Suc n)})"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1022
  proof (safe, simp_all add: not_less del: of_nat_Suc)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1023
    fix x :: 'a assume "a < x \<bullet> i"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1024
    with reals_Archimedean[of "x \<bullet> i - a"]
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1025
    obtain n where "a + 1 / real (Suc n) < x \<bullet> i"
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1026
      by (auto simp: field_simps)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1027
    then show "\<exists>n. a + 1 / real (Suc n) \<le> x \<bullet> i"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1028
      by (blast intro: less_imp_le)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1029
  next
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1030
    fix x n
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1031
    have "a < a + 1 / real (Suc n)" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1032
    also assume "\<dots> \<le> x"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1033
    finally show "a < x" .
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1034
  qed
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1035
  show "?set \<in> ?SIGMA" unfolding *
61424
c3658c18b7bc prod_case as canonical name for product type eliminator
haftmann
parents: 61284
diff changeset
  1036
    by (auto intro!: Diff sigma_sets_Inter i)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1037
qed
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1038
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1039
lemma borel_eq_halfspace_less:
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1040
  "borel = sigma UNIV ((\<lambda>(a, i). {x::'a::euclidean_space. x \<bullet> i < a}) ` (UNIV \<times> Basis))"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1041
  (is "_ = ?SIGMA")
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1042
proof (rule borel_eq_sigmaI2[OF borel_eq_box])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1043
  fix a b :: 'a
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1044
  have "box a b = {x\<in>space ?SIGMA. \<forall>i\<in>Basis. a \<bullet> i < x \<bullet> i \<and> x \<bullet> i < b \<bullet> i}"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1045
    by (auto simp: box_def)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1046
  also have "\<dots> \<in> sets ?SIGMA"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1047
    by (intro sets.sets_Collect_conj sets.sets_Collect_finite_All sets.sets_Collect_const)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1048
       (auto intro!: halfspace_gt_in_halfspace countable_PiE countable_rat)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1049
  finally show "box a b \<in> sets ?SIGMA" .
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1050
qed auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1051
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1052
lemma borel_eq_halfspace_le:
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1053
  "borel = sigma UNIV ((\<lambda> (a, i). {x::'a::euclidean_space. x \<bullet> i \<le> a}) ` (UNIV \<times> Basis))"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1054
  (is "_ = ?SIGMA")
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1055
proof (rule borel_eq_sigmaI2[OF borel_eq_halfspace_less])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1056
  fix a :: real and i :: 'a assume "(a, i) \<in> UNIV \<times> Basis"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1057
  then have i: "i \<in> Basis" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1058
  have *: "{x::'a. x\<bullet>i < a} = (\<Union>n. {x. x\<bullet>i \<le> a - 1/real (Suc n)})"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1059
  proof (safe, simp_all del: of_nat_Suc)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1060
    fix x::'a assume *: "x\<bullet>i < a"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1061
    with reals_Archimedean[of "a - x\<bullet>i"]
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1062
    obtain n where "x \<bullet> i < a - 1 / (real (Suc n))"
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1063
      by (auto simp: field_simps)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1064
    then show "\<exists>n. x \<bullet> i \<le> a - 1 / (real (Suc n))"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1065
      by (blast intro: less_imp_le)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1066
  next
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1067
    fix x::'a and n
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1068
    assume "x\<bullet>i \<le> a - 1 / real (Suc n)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1069
    also have "\<dots> < a" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1070
    finally show "x\<bullet>i < a" .
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1071
  qed
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1072
  show "{x. x\<bullet>i < a} \<in> ?SIGMA" unfolding *
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1073
    by (intro sets.countable_UN) (auto intro: i)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1074
qed auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1075
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1076
lemma borel_eq_halfspace_ge:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
  1077
  "borel = sigma UNIV ((\<lambda> (a, i). {x::'a::euclidean_space. a \<le> x \<bullet> i}) ` (UNIV \<times> Basis))"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1078
  (is "_ = ?SIGMA")
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1079
proof (rule borel_eq_sigmaI2[OF borel_eq_halfspace_less])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1080
  fix a :: real and i :: 'a assume i: "(a, i) \<in> UNIV \<times> Basis"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1081
  have *: "{x::'a. x\<bullet>i < a} = space ?SIGMA - {x::'a. a \<le> x\<bullet>i}" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1082
  show "{x. x\<bullet>i < a} \<in> ?SIGMA" unfolding *
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1083
    using i by (intro sets.compl_sets) auto
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1084
qed auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1085
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1086
lemma borel_eq_halfspace_greater:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
  1087
  "borel = sigma UNIV ((\<lambda> (a, i). {x::'a::euclidean_space. a < x \<bullet> i}) ` (UNIV \<times> Basis))"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1088
  (is "_ = ?SIGMA")
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1089
proof (rule borel_eq_sigmaI2[OF borel_eq_halfspace_le])
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1090
  fix a :: real and i :: 'a assume "(a, i) \<in> (UNIV \<times> Basis)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1091
  then have i: "i \<in> Basis" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1092
  have *: "{x::'a. x\<bullet>i \<le> a} = space ?SIGMA - {x::'a. a < x\<bullet>i}" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1093
  show "{x. x\<bullet>i \<le> a} \<in> ?SIGMA" unfolding *
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1094
    by (intro sets.compl_sets) (auto intro: i)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1095
qed auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1096
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1097
lemma borel_eq_atMost:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
  1098
  "borel = sigma UNIV (range (\<lambda>a. {..a::'a::ordered_euclidean_space}))"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1099
  (is "_ = ?SIGMA")
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1100
proof (rule borel_eq_sigmaI4[OF borel_eq_halfspace_le])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1101
  fix a :: real and i :: 'a assume "(a, i) \<in> UNIV \<times> Basis"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1102
  then have "i \<in> Basis" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1103
  then have *: "{x::'a. x\<bullet>i \<le> a} = (\<Union>k::nat. {.. (\<Sum>n\<in>Basis. (if n = i then a else real k)*\<^sub>R n)})"
62390
842917225d56 more canonical names
nipkow
parents: 62372
diff changeset
  1104
  proof (safe, simp_all add: eucl_le[where 'a='a] split: if_split_asm)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1105
    fix x :: 'a
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1106
    from real_arch_simple[of "Max ((\<lambda>i. x\<bullet>i)`Basis)"] guess k::nat ..
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1107
    then have "\<And>i. i \<in> Basis \<Longrightarrow> x\<bullet>i \<le> real k"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1108
      by (subst (asm) Max_le_iff) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1109
    then show "\<exists>k::nat. \<forall>ia\<in>Basis. ia \<noteq> i \<longrightarrow> x \<bullet> ia \<le> real k"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1110
      by (auto intro!: exI[of _ k])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1111
  qed
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1112
  show "{x. x\<bullet>i \<le> a} \<in> ?SIGMA" unfolding *
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1113
    by (intro sets.countable_UN) auto
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1114
qed auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1115
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1116
lemma borel_eq_greaterThan:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
  1117
  "borel = sigma UNIV (range (\<lambda>a::'a::ordered_euclidean_space. {x. a <e x}))"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1118
  (is "_ = ?SIGMA")
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1119
proof (rule borel_eq_sigmaI4[OF borel_eq_halfspace_le])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1120
  fix a :: real and i :: 'a assume "(a, i) \<in> UNIV \<times> Basis"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1121
  then have i: "i \<in> Basis" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1122
  have "{x::'a. x\<bullet>i \<le> a} = UNIV - {x::'a. a < x\<bullet>i}" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1123
  also have *: "{x::'a. a < x\<bullet>i} =
54775
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1124
      (\<Union>k::nat. {x. (\<Sum>n\<in>Basis. (if n = i then a else -real k) *\<^sub>R n) <e x})" using i
62390
842917225d56 more canonical names
nipkow
parents: 62372
diff changeset
  1125
  proof (safe, simp_all add: eucl_less_def split: if_split_asm)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1126
    fix x :: 'a
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1127
    from reals_Archimedean2[of "Max ((\<lambda>i. -x\<bullet>i)`Basis)"]
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1128
    guess k::nat .. note k = this
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1129
    { fix i :: 'a assume "i \<in> Basis"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1130
      then have "-x\<bullet>i < real k"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1131
        using k by (subst (asm) Max_less_iff) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1132
      then have "- real k < x\<bullet>i" by simp }
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1133
    then show "\<exists>k::nat. \<forall>ia\<in>Basis. ia \<noteq> i \<longrightarrow> -real k < x \<bullet> ia"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1134
      by (auto intro!: exI[of _ k])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1135
  qed
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1136
  finally show "{x. x\<bullet>i \<le> a} \<in> ?SIGMA"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1137
    apply (simp only:)
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1138
    apply (intro sets.countable_UN sets.Diff)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1139
    apply (auto intro: sigma_sets_top)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1140
    done
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1141
qed auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1142
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1143
lemma borel_eq_lessThan:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
  1144
  "borel = sigma UNIV (range (\<lambda>a::'a::ordered_euclidean_space. {x. x <e a}))"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1145
  (is "_ = ?SIGMA")
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1146
proof (rule borel_eq_sigmaI4[OF borel_eq_halfspace_ge])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1147
  fix a :: real and i :: 'a assume "(a, i) \<in> UNIV \<times> Basis"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1148
  then have i: "i \<in> Basis" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1149
  have "{x::'a. a \<le> x\<bullet>i} = UNIV - {x::'a. x\<bullet>i < a}" by auto
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
  1150
  also have *: "{x::'a. x\<bullet>i < a} = (\<Union>k::nat. {x. x <e (\<Sum>n\<in>Basis. (if n = i then a else real k) *\<^sub>R n)})" using \<open>i\<in> Basis\<close>
62390
842917225d56 more canonical names
nipkow
parents: 62372
diff changeset
  1151
  proof (safe, simp_all add: eucl_less_def split: if_split_asm)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1152
    fix x :: 'a
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1153
    from reals_Archimedean2[of "Max ((\<lambda>i. x\<bullet>i)`Basis)"]
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1154
    guess k::nat .. note k = this
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1155
    { fix i :: 'a assume "i \<in> Basis"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1156
      then have "x\<bullet>i < real k"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1157
        using k by (subst (asm) Max_less_iff) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1158
      then have "x\<bullet>i < real k" by simp }
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1159
    then show "\<exists>k::nat. \<forall>ia\<in>Basis. ia \<noteq> i \<longrightarrow> x \<bullet> ia < real k"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1160
      by (auto intro!: exI[of _ k])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1161
  qed
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1162
  finally show "{x. a \<le> x\<bullet>i} \<in> ?SIGMA"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1163
    apply (simp only:)
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1164
    apply (intro sets.countable_UN sets.Diff)
54775
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1165
    apply (auto intro: sigma_sets_top )
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1166
    done
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1167
qed auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1168
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1169
lemma borel_eq_atLeastAtMost:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
  1170
  "borel = sigma UNIV (range (\<lambda>(a,b). {a..b} ::'a::ordered_euclidean_space set))"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1171
  (is "_ = ?SIGMA")
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1172
proof (rule borel_eq_sigmaI5[OF borel_eq_atMost])
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1173
  fix a::'a
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1174
  have *: "{..a} = (\<Union>n::nat. {- real n *\<^sub>R One .. a})"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1175
  proof (safe, simp_all add: eucl_le[where 'a='a])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1176
    fix x :: 'a
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1177
    from real_arch_simple[of "Max ((\<lambda>i. - x\<bullet>i)`Basis)"]
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1178
    guess k::nat .. note k = this
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1179
    { fix i :: 'a assume "i \<in> Basis"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1180
      with k have "- x\<bullet>i \<le> real k"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1181
        by (subst (asm) Max_le_iff) (auto simp: field_simps)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1182
      then have "- real k \<le> x\<bullet>i" by simp }
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1183
    then show "\<exists>n::nat. \<forall>i\<in>Basis. - real n \<le> x \<bullet> i"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1184
      by (auto intro!: exI[of _ k])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1185
  qed
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1186
  show "{..a} \<in> ?SIGMA" unfolding *
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1187
    by (intro sets.countable_UN)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1188
       (auto intro!: sigma_sets_top)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1189
qed auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1190
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1191
lemma borel_set_induct[consumes 1, case_names empty interval compl union]:
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1192
  assumes "A \<in> sets borel"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1193
  assumes empty: "P {}" and int: "\<And>a b. a \<le> b \<Longrightarrow> P {a..b}" and compl: "\<And>A. A \<in> sets borel \<Longrightarrow> P A \<Longrightarrow> P (-A)" and
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1194
          un: "\<And>f. disjoint_family f \<Longrightarrow> (\<And>i. f i \<in> sets borel) \<Longrightarrow>  (\<And>i. P (f i)) \<Longrightarrow> P (\<Union>i::nat. f i)"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1195
  shows "P (A::real set)"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1196
proof -
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1197
  let ?G = "range (\<lambda>(a,b). {a..b::real})"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1198
  have "Int_stable ?G" "?G \<subseteq> Pow UNIV" "A \<in> sigma_sets UNIV ?G"
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1199
      using assms(1) by (auto simp add: borel_eq_atLeastAtMost Int_stable_def)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1200
  thus ?thesis
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1201
  proof (induction rule: sigma_sets_induct_disjoint)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1202
    case (union f)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1203
      from union.hyps(2) have "\<And>i. f i \<in> sets borel" by (auto simp: borel_eq_atLeastAtMost)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1204
      with union show ?case by (auto intro: un)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1205
  next
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1206
    case (basic A)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1207
    then obtain a b where "A = {a .. b}" by auto
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1208
    then show ?case
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1209
      by (cases "a \<le> b") (auto intro: int empty)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1210
  qed (auto intro: empty compl simp: Compl_eq_Diff_UNIV[symmetric] borel_eq_atLeastAtMost)
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1211
qed
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1212
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1213
lemma borel_sigma_sets_Ioc: "borel = sigma UNIV (range (\<lambda>(a, b). {a <.. b::real}))"
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1214
proof (rule borel_eq_sigmaI5[OF borel_eq_atMost])
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1215
  fix i :: real
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1216
  have "{..i} = (\<Union>j::nat. {-j <.. i})"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1217
    by (auto simp: minus_less_iff reals_Archimedean2)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1218
  also have "\<dots> \<in> sets (sigma UNIV (range (\<lambda>(i, j). {i<..j})))"
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
  1219
    by (intro sets.countable_nat_UN) auto
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1220
  finally show "{..i} \<in> sets (sigma UNIV (range (\<lambda>(i, j). {i<..j})))" .
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1221
qed simp
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1222
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1223
lemma eucl_lessThan: "{x::real. x <e a} = lessThan a"
54775
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1224
  by (simp add: eucl_less_def lessThan_def)
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1225
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1226
lemma borel_eq_atLeastLessThan:
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1227
  "borel = sigma UNIV (range (\<lambda>(a, b). {a ..< b :: real}))" (is "_ = ?SIGMA")
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1228
proof (rule borel_eq_sigmaI5[OF borel_eq_lessThan])
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1229
  have move_uminus: "\<And>x y::real. -x \<le> y \<longleftrightarrow> -y \<le> x" by auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1230
  fix x :: real
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1231
  have "{..<x} = (\<Union>i::nat. {-real i ..< x})"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1232
    by (auto simp: move_uminus real_arch_simple)
54775
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1233
  then show "{y. y <e x} \<in> ?SIGMA"
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1234
    by (auto intro: sigma_sets.intros(2-) simp: eucl_lessThan)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1235
qed auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1236
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1237
lemma borel_measurable_halfspacesI:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
  1238
  fixes f :: "'a \<Rightarrow> 'c::euclidean_space"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1239
  assumes F: "borel = sigma UNIV (F ` (UNIV \<times> Basis))"
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
  1240
  and S_eq: "\<And>a i. S a i = f -` F (a,i) \<inter> space M"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1241
  shows "f \<in> borel_measurable M = (\<forall>i\<in>Basis. \<forall>a::real. S a i \<in> sets M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1242
proof safe
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1243
  fix a :: real and i :: 'b assume i: "i \<in> Basis" and f: "f \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1244
  then show "S a i \<in> sets M" unfolding assms
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1245
    by (auto intro!: measurable_sets simp: assms(1))
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1246
next
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1247
  assume a: "\<forall>i\<in>Basis. \<forall>a. S a i \<in> sets M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1248
  then show "f \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1249
    by (auto intro!: measurable_measure_of simp: S_eq F)
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1250
qed
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1251
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1252
lemma borel_measurable_iff_halfspace_le:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
  1253
  fixes f :: "'a \<Rightarrow> 'c::euclidean_space"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1254
  shows "f \<in> borel_measurable M = (\<forall>i\<in>Basis. \<forall>a. {w \<in> space M. f w \<bullet> i \<le> a} \<in> sets M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1255
  by (rule borel_measurable_halfspacesI[OF borel_eq_halfspace_le]) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1256
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1257
lemma borel_measurable_iff_halfspace_less:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
  1258
  fixes f :: "'a \<Rightarrow> 'c::euclidean_space"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1259
  shows "f \<in> borel_measurable M \<longleftrightarrow> (\<forall>i\<in>Basis. \<forall>a. {w \<in> space M. f w \<bullet> i < a} \<in> sets M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1260
  by (rule borel_measurable_halfspacesI[OF borel_eq_halfspace_less]) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1261
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1262
lemma borel_measurable_iff_halfspace_ge:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
  1263
  fixes f :: "'a \<Rightarrow> 'c::euclidean_space"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1264
  shows "f \<in> borel_measurable M = (\<forall>i\<in>Basis. \<forall>a. {w \<in> space M. a \<le> f w \<bullet> i} \<in> sets M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1265
  by (rule borel_measurable_halfspacesI[OF borel_eq_halfspace_ge]) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1266
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1267
lemma borel_measurable_iff_halfspace_greater:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60771
diff changeset
  1268
  fixes f :: "'a \<Rightarrow> 'c::euclidean_space"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1269
  shows "f \<in> borel_measurable M \<longleftrightarrow> (\<forall>i\<in>Basis. \<forall>a. {w \<in> space M. a < f w \<bullet> i} \<in> sets M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1270
  by (rule borel_measurable_halfspacesI[OF borel_eq_halfspace_greater]) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1271
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1272
lemma borel_measurable_iff_le:
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1273
  "(f::'a \<Rightarrow> real) \<in> borel_measurable M = (\<forall>a. {w \<in> space M. f w \<le> a} \<in> sets M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1274
  using borel_measurable_iff_halfspace_le[where 'c=real] by simp
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1275
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1276
lemma borel_measurable_iff_less:
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1277
  "(f::'a \<Rightarrow> real) \<in> borel_measurable M = (\<forall>a. {w \<in> space M. f w < a} \<in> sets M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1278
  using borel_measurable_iff_halfspace_less[where 'c=real] by simp
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1279
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1280
lemma borel_measurable_iff_ge:
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1281
  "(f::'a \<Rightarrow> real) \<in> borel_measurable M = (\<forall>a. {w \<in> space M. a \<le> f w} \<in> sets M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1282
  using borel_measurable_iff_halfspace_ge[where 'c=real]
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1283
  by simp
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1284
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1285
lemma borel_measurable_iff_greater:
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1286
  "(f::'a \<Rightarrow> real) \<in> borel_measurable M = (\<forall>a. {w \<in> space M. a < f w} \<in> sets M)"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1287
  using borel_measurable_iff_halfspace_greater[where 'c=real] by simp
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1288
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1289
lemma borel_measurable_euclidean_space:
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1290
  fixes f :: "'a \<Rightarrow> 'c::euclidean_space"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1291
  shows "f \<in> borel_measurable M \<longleftrightarrow> (\<forall>i\<in>Basis. (\<lambda>x. f x \<bullet> i) \<in> borel_measurable M)"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1292
proof safe
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1293
  assume f: "\<forall>i\<in>Basis. (\<lambda>x. f x \<bullet> i) \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1294
  then show "f \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1295
    by (subst borel_measurable_iff_halfspace_le) auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1296
qed auto
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1297
69683
8b3458ca0762 subsection is always %important
immler
parents: 69652
diff changeset
  1298
subsection "Borel measurable operators"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1299
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1300
lemma borel_measurable_norm[measurable]: "norm \<in> borel_measurable borel"
70365
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1301
  by (intro borel_measurable_continuous_onI continuous_intros)
56993
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1302
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1303
lemma borel_measurable_sgn [measurable]: "(sgn::'a::real_normed_vector \<Rightarrow> 'a) \<in> borel_measurable borel"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1304
  by (rule borel_measurable_continuous_countable_exceptions[where X="{0}"])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1305
     (auto intro!: continuous_on_sgn continuous_on_id)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1306
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1307
lemma borel_measurable_uminus[measurable (raw)]:
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1308
  fixes g :: "'a \<Rightarrow> 'b::{second_countable_topology, real_normed_vector}"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1309
  assumes g: "g \<in> borel_measurable M"
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1310
  shows "(\<lambda>x. - g x) \<in> borel_measurable M"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1311
  by (rule borel_measurable_continuous_on[OF _ g]) (intro continuous_intros)
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1312
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1313
lemma borel_measurable_diff[measurable (raw)]:
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1314
  fixes f :: "'a \<Rightarrow> 'b::{second_countable_topology, real_normed_vector}"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1315
  assumes f: "f \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1316
  assumes g: "g \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1317
  shows "(\<lambda>x. f x - g x) \<in> borel_measurable M"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1318
  using borel_measurable_add [of f M "- g"] assms by (simp add: fun_Compl_def)
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1319
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1320
lemma borel_measurable_times[measurable (raw)]:
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1321
  fixes f :: "'a \<Rightarrow> 'b::{second_countable_topology, real_normed_algebra}"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1322
  assumes f: "f \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1323
  assumes g: "g \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1324
  shows "(\<lambda>x. f x * g x) \<in> borel_measurable M"
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56212
diff changeset
  1325
  using f g by (rule borel_measurable_continuous_Pair) (intro continuous_intros)
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1326
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1327
lemma borel_measurable_prod[measurable (raw)]:
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1328
  fixes f :: "'c \<Rightarrow> 'a \<Rightarrow> 'b::{second_countable_topology, real_normed_field}"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1329
  assumes "\<And>i. i \<in> S \<Longrightarrow> f i \<in> borel_measurable M"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1330
  shows "(\<lambda>x. \<Prod>i\<in>S. f i x) \<in> borel_measurable M"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1331
proof cases
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1332
  assume "finite S"
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1333
  thus ?thesis using assms by induct auto
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1334
qed simp
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1335
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1336
lemma borel_measurable_dist[measurable (raw)]:
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1337
  fixes g f :: "'a \<Rightarrow> 'b::{second_countable_topology, metric_space}"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1338
  assumes f: "f \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1339
  assumes g: "g \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1340
  shows "(\<lambda>x. dist (f x) (g x)) \<in> borel_measurable M"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1341
  using f g by (rule borel_measurable_continuous_Pair) (intro continuous_intros)
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
  1342
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1343
lemma borel_measurable_scaleR[measurable (raw)]:
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1344
  fixes g :: "'a \<Rightarrow> 'b::{second_countable_topology, real_normed_vector}"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1345
  assumes f: "f \<in> borel_measurable M"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1346
  assumes g: "g \<in> borel_measurable M"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1347
  shows "(\<lambda>x. f x *\<^sub>R g x) \<in> borel_measurable M"
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56212
diff changeset
  1348
  using f g by (rule borel_measurable_continuous_Pair) (intro continuous_intros)
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1349
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1350
lemma borel_measurable_uminus_eq [simp]:
66164
2d79288b042c New theorems and much tidying up of the old ones
paulson <lp15@cam.ac.uk>
parents: 64911
diff changeset
  1351
  fixes f :: "'a \<Rightarrow> 'b::{second_countable_topology, real_normed_vector}"
2d79288b042c New theorems and much tidying up of the old ones
paulson <lp15@cam.ac.uk>
parents: 64911
diff changeset
  1352
  shows "(\<lambda>x. - f x) \<in> borel_measurable M \<longleftrightarrow> f \<in> borel_measurable M" (is "?l = ?r")
2d79288b042c New theorems and much tidying up of the old ones
paulson <lp15@cam.ac.uk>
parents: 64911
diff changeset
  1353
proof
2d79288b042c New theorems and much tidying up of the old ones
paulson <lp15@cam.ac.uk>
parents: 64911
diff changeset
  1354
  assume ?l from borel_measurable_uminus[OF this] show ?r by simp
2d79288b042c New theorems and much tidying up of the old ones
paulson <lp15@cam.ac.uk>
parents: 64911
diff changeset
  1355
qed auto
2d79288b042c New theorems and much tidying up of the old ones
paulson <lp15@cam.ac.uk>
parents: 64911
diff changeset
  1356
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1357
lemma affine_borel_measurable_vector:
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1358
  fixes f :: "'a \<Rightarrow> 'x::real_normed_vector"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1359
  assumes "f \<in> borel_measurable M"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1360
  shows "(\<lambda>x. a + b *\<^sub>R f x) \<in> borel_measurable M"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1361
proof (rule borel_measurableI)
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1362
  fix S :: "'x set" assume "open S"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1363
  show "(\<lambda>x. a + b *\<^sub>R f x) -` S \<inter> space M \<in> sets M"
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1364
  proof cases
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1365
    assume "b \<noteq> 0"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
  1366
    with \<open>open S\<close> have "open ((\<lambda>x. (- a + x) /\<^sub>R b) ` S)" (is "open ?S")
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53216
diff changeset
  1367
      using open_affinity [of S "inverse b" "- a /\<^sub>R b"]
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53216
diff changeset
  1368
      by (auto simp: algebra_simps)
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
  1369
    hence "?S \<in> sets borel" by auto
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1370
    moreover
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
  1371
    from \<open>b \<noteq> 0\<close> have "(\<lambda>x. a + b *\<^sub>R f x) -` S = f -` ?S"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1372
      apply auto by (rule_tac x="a + b *\<^sub>R f x" in image_eqI, simp_all)
40859
de0b30e6c2d2 Support product spaces on sigma finite measures.
hoelzl
parents: 39302
diff changeset
  1373
    ultimately show ?thesis using assms unfolding in_borel_measurable_borel
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1374
      by auto
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1375
  qed simp
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1376
qed
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1377
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1378
lemma borel_measurable_const_scaleR[measurable (raw)]:
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1379
  "f \<in> borel_measurable M \<Longrightarrow> (\<lambda>x. b *\<^sub>R f x ::'a::real_normed_vector) \<in> borel_measurable M"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1380
  using affine_borel_measurable_vector[of f M 0 b] by simp
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1381
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1382
lemma borel_measurable_const_add[measurable (raw)]:
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1383
  "f \<in> borel_measurable M \<Longrightarrow> (\<lambda>x. a + f x ::'a::real_normed_vector) \<in> borel_measurable M"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1384
  using affine_borel_measurable_vector[of f M a 1] by simp
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1385
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1386
lemma borel_measurable_inverse[measurable (raw)]:
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1387
  fixes f :: "'a \<Rightarrow> 'b::real_normed_div_algebra"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1388
  assumes f: "f \<in> borel_measurable M"
35692
f1315bbf1bc9 Moved theorems in Lebesgue to the right places
hoelzl
parents: 35582
diff changeset
  1389
  shows "(\<lambda>x. inverse (f x)) \<in> borel_measurable M"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1390
  apply (rule measurable_compose[OF f])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1391
  apply (rule borel_measurable_continuous_countable_exceptions[of "{0}"])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1392
  apply (auto intro!: continuous_on_inverse continuous_on_id)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1393
  done
35692
f1315bbf1bc9 Moved theorems in Lebesgue to the right places
hoelzl
parents: 35582
diff changeset
  1394
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1395
lemma borel_measurable_divide[measurable (raw)]:
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  1396
  "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow>
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1397
    (\<lambda>x. f x / g x::'b::{second_countable_topology, real_normed_div_algebra}) \<in> borel_measurable M"
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1398
  by (simp add: divide_inverse)
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1399
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1400
lemma borel_measurable_abs[measurable (raw)]:
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1401
  "f \<in> borel_measurable M \<Longrightarrow> (\<lambda>x. \<bar>f x :: real\<bar>) \<in> borel_measurable M"
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1402
  unfolding abs_real_def by simp
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1403
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1404
lemma borel_measurable_nth[measurable (raw)]:
41026
bea75746dc9d folding on arbitrary Lebesgue integrable functions
hoelzl
parents: 41025
diff changeset
  1405
  "(\<lambda>x::real^'n. x $ i) \<in> borel_measurable borel"
50526
899c9c4e4a4c Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents: 50419
diff changeset
  1406
  by (simp add: cart_eq_inner_axis)
41026
bea75746dc9d folding on arbitrary Lebesgue integrable functions
hoelzl
parents: 41025
diff changeset
  1407
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1408
lemma convex_measurable:
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1409
  fixes A :: "'a :: euclidean_space set"
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
  1410
  shows "X \<in> borel_measurable M \<Longrightarrow> X ` space M \<subseteq> A \<Longrightarrow> open A \<Longrightarrow> convex_on A q \<Longrightarrow>
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1411
    (\<lambda>x. q (X x)) \<in> borel_measurable M"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1412
  by (rule measurable_compose[where f=X and N="restrict_space borel A"])
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1413
     (auto intro!: borel_measurable_continuous_on_restrict convex_on_continuous measurable_restrict_space2)
41830
719b0a517c33 log is borel measurable
hoelzl
parents: 41545
diff changeset
  1414
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1415
lemma borel_measurable_ln[measurable (raw)]:
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1416
  assumes f: "f \<in> borel_measurable M"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59658
diff changeset
  1417
  shows "(\<lambda>x. ln (f x :: real)) \<in> borel_measurable M"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1418
  apply (rule measurable_compose[OF f])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1419
  apply (rule borel_measurable_continuous_countable_exceptions[of "{0}"])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1420
  apply (auto intro!: continuous_on_ln continuous_on_id)
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 57259
diff changeset
  1421
  done
41830
719b0a517c33 log is borel measurable
hoelzl
parents: 41545
diff changeset
  1422
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1423
lemma borel_measurable_log[measurable (raw)]:
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1424
  "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow> (\<lambda>x. log (g x) (f x)) \<in> borel_measurable M"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1425
  unfolding log_def by auto
41830
719b0a517c33 log is borel measurable
hoelzl
parents: 41545
diff changeset
  1426
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1427
lemma borel_measurable_exp[measurable]:
58656
7f14d5d9b933 relaxed class constraints for exp
immler
parents: 57514
diff changeset
  1428
  "(exp::'a::{real_normed_field,banach}\<Rightarrow>'a) \<in> borel_measurable borel"
70365
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1429
  by (intro borel_measurable_continuous_onI continuous_at_imp_continuous_on ballI isCont_exp)
50419
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50387
diff changeset
  1430
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1431
lemma measurable_real_floor[measurable]:
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1432
  "(floor :: real \<Rightarrow> int) \<in> measurable borel (count_space UNIV)"
47761
dfe747e72fa8 moved lemmas to appropriate places
hoelzl
parents: 47694
diff changeset
  1433
proof -
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1434
  have "\<And>a x. \<lfloor>x\<rfloor> = a \<longleftrightarrow> (real_of_int a \<le> x \<and> x < real_of_int (a + 1))"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1435
    by (auto intro: floor_eq2)
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1436
  then show ?thesis
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1437
    by (auto simp: vimage_def measurable_count_space_eq2_countable)
47761
dfe747e72fa8 moved lemmas to appropriate places
hoelzl
parents: 47694
diff changeset
  1438
qed
dfe747e72fa8 moved lemmas to appropriate places
hoelzl
parents: 47694
diff changeset
  1439
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1440
lemma measurable_real_ceiling[measurable]:
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1441
  "(ceiling :: real \<Rightarrow> int) \<in> measurable borel (count_space UNIV)"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1442
  unfolding ceiling_def[abs_def] by simp
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1443
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1444
lemma borel_measurable_real_floor: "(\<lambda>x::real. real_of_int \<lfloor>x\<rfloor>) \<in> borel_measurable borel"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1445
  by simp
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1446
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1447
lemma borel_measurable_root [measurable]: "root n \<in> borel_measurable borel"
70365
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1448
  by (intro borel_measurable_continuous_onI continuous_intros)
57235
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1449
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1450
lemma borel_measurable_sqrt [measurable]: "sqrt \<in> borel_measurable borel"
70365
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1451
  by (intro borel_measurable_continuous_onI continuous_intros)
57235
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1452
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1453
lemma borel_measurable_power [measurable (raw)]:
59415
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1454
  fixes f :: "_ \<Rightarrow> 'b::{power,real_normed_algebra}"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1455
  assumes f: "f \<in> borel_measurable M"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1456
  shows "(\<lambda>x. (f x) ^ n) \<in> borel_measurable M"
854fe701c984 tuned measurability proofs
hoelzl
parents: 59361
diff changeset
  1457
  by (intro borel_measurable_continuous_on [OF _ f] continuous_intros)
57235
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1458
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1459
lemma borel_measurable_Re [measurable]: "Re \<in> borel_measurable borel"
70365
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1460
  by (intro borel_measurable_continuous_onI continuous_intros)
57235
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1461
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1462
lemma borel_measurable_Im [measurable]: "Im \<in> borel_measurable borel"
70365
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1463
  by (intro borel_measurable_continuous_onI continuous_intros)
57235
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1464
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1465
lemma borel_measurable_of_real [measurable]: "(of_real :: _ \<Rightarrow> (_::real_normed_algebra)) \<in> borel_measurable borel"
70365
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1466
  by (intro borel_measurable_continuous_onI continuous_intros)
57235
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1467
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1468
lemma borel_measurable_sin [measurable]: "(sin :: _ \<Rightarrow> (_::{real_normed_field,banach})) \<in> borel_measurable borel"
70365
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1469
  by (intro borel_measurable_continuous_onI continuous_intros)
57235
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1470
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1471
lemma borel_measurable_cos [measurable]: "(cos :: _ \<Rightarrow> (_::{real_normed_field,banach})) \<in> borel_measurable borel"
70365
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1472
  by (intro borel_measurable_continuous_onI continuous_intros)
57235
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1473
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1474
lemma borel_measurable_arctan [measurable]: "arctan \<in> borel_measurable borel"
70365
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1475
  by (intro borel_measurable_continuous_onI continuous_intros)
57235
b0b9a10e4bf4 properties of Erlang and exponentially distributed random variables (by Sudeep Kanav)
hoelzl
parents: 57138
diff changeset
  1476
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69861
diff changeset
  1477
lemma\<^marker>\<open>tag important\<close> borel_measurable_complex_iff:
57259
3a448982a74a add more derivative and continuity rules for complex-values functions
hoelzl
parents: 57235
diff changeset
  1478
  "f \<in> borel_measurable M \<longleftrightarrow>
3a448982a74a add more derivative and continuity rules for complex-values functions
hoelzl
parents: 57235
diff changeset
  1479
    (\<lambda>x. Re (f x)) \<in> borel_measurable M \<and> (\<lambda>x. Im (f x)) \<in> borel_measurable M"
3a448982a74a add more derivative and continuity rules for complex-values functions
hoelzl
parents: 57235
diff changeset
  1480
  apply auto
3a448982a74a add more derivative and continuity rules for complex-values functions
hoelzl
parents: 57235
diff changeset
  1481
  apply (subst fun_complex_eq)
3a448982a74a add more derivative and continuity rules for complex-values functions
hoelzl
parents: 57235
diff changeset
  1482
  apply (intro borel_measurable_add)
3a448982a74a add more derivative and continuity rules for complex-values functions
hoelzl
parents: 57235
diff changeset
  1483
  apply auto
3a448982a74a add more derivative and continuity rules for complex-values functions
hoelzl
parents: 57235
diff changeset
  1484
  done
3a448982a74a add more derivative and continuity rules for complex-values functions
hoelzl
parents: 57235
diff changeset
  1485
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1486
lemma powr_real_measurable [measurable]:
67278
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66164
diff changeset
  1487
  assumes "f \<in> measurable M borel" "g \<in> measurable M borel"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66164
diff changeset
  1488
  shows   "(\<lambda>x. f x powr g x :: real) \<in> measurable M borel"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1489
  using assms by (simp_all add: powr_def)
67278
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 66164
diff changeset
  1490
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1491
lemma measurable_of_bool[measurable]: "of_bool \<in> count_space UNIV \<rightarrow>\<^sub>M borel"
64008
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1492
  by simp
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1493
69683
8b3458ca0762 subsection is always %important
immler
parents: 69652
diff changeset
  1494
subsection "Borel space on the extended reals"
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1495
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1496
lemma borel_measurable_ereal[measurable (raw)]:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1497
  assumes f: "f \<in> borel_measurable M" shows "(\<lambda>x. ereal (f x)) \<in> borel_measurable M"
60771
8558e4a37b48 reorganized Extended_Real
hoelzl
parents: 60172
diff changeset
  1498
  using continuous_on_ereal f by (rule borel_measurable_continuous_on) (rule continuous_on_id)
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1499
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1500
lemma borel_measurable_real_of_ereal[measurable (raw)]:
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
  1501
  fixes f :: "'a \<Rightarrow> ereal"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1502
  assumes f: "f \<in> borel_measurable M"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1503
  shows "(\<lambda>x. real_of_ereal (f x)) \<in> borel_measurable M"
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1504
  apply (rule measurable_compose[OF f])
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1505
  apply (rule borel_measurable_continuous_countable_exceptions[of "{\<infinity>, -\<infinity> }"])
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1506
  apply (auto intro: continuous_on_real simp: Compl_eq_Diff_UNIV)
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1507
  done
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1508
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1509
lemma borel_measurable_ereal_cases:
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
  1510
  fixes f :: "'a \<Rightarrow> ereal"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1511
  assumes f: "f \<in> borel_measurable M"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1512
  assumes H: "(\<lambda>x. H (ereal (real_of_ereal (f x)))) \<in> borel_measurable M"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1513
  shows "(\<lambda>x. H (f x)) \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1514
proof -
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1515
  let ?F = "\<lambda>x. if f x = \<infinity> then H \<infinity> else if f x = - \<infinity> then H (-\<infinity>) else H (ereal (real_of_ereal (f x)))"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1516
  { fix x have "H (f x) = ?F x" by (cases "f x") auto }
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1517
  with f H show ?thesis by simp
47694
05663f75964c reworked Probability theory
hoelzl
parents: 46905
diff changeset
  1518
qed
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1519
69739
nipkow
parents: 69722
diff changeset
  1520
lemma
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1521
  fixes f :: "'a \<Rightarrow> ereal" assumes f[measurable]: "f \<in> borel_measurable M"
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1522
  shows borel_measurable_ereal_abs[measurable(raw)]: "(\<lambda>x. \<bar>f x\<bar>) \<in> borel_measurable M"
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1523
    and borel_measurable_ereal_inverse[measurable(raw)]: "(\<lambda>x. inverse (f x) :: ereal) \<in> borel_measurable M"
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1524
    and borel_measurable_uminus_ereal[measurable(raw)]: "(\<lambda>x. - f x :: ereal) \<in> borel_measurable M"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1525
  by (auto simp del: abs_real_of_ereal simp: borel_measurable_ereal_cases[OF f] measurable_If)
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1526
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1527
lemma borel_measurable_uminus_eq_ereal[simp]:
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1528
  "(\<lambda>x. - f x :: ereal) \<in> borel_measurable M \<longleftrightarrow> f \<in> borel_measurable M" (is "?l = ?r")
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1529
proof
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1530
  assume ?l from borel_measurable_uminus_ereal[OF this] show ?r by simp
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1531
qed auto
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1532
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1533
lemma set_Collect_ereal2:
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
  1534
  fixes f g :: "'a \<Rightarrow> ereal"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1535
  assumes f: "f \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1536
  assumes g: "g \<in> borel_measurable M"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1537
  assumes H: "{x \<in> space M. H (ereal (real_of_ereal (f x))) (ereal (real_of_ereal (g x)))} \<in> sets M"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1538
    "{x \<in> space borel. H (-\<infinity>) (ereal x)} \<in> sets borel"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1539
    "{x \<in> space borel. H (\<infinity>) (ereal x)} \<in> sets borel"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1540
    "{x \<in> space borel. H (ereal x) (-\<infinity>)} \<in> sets borel"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1541
    "{x \<in> space borel. H (ereal x) (\<infinity>)} \<in> sets borel"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1542
  shows "{x \<in> space M. H (f x) (g x)} \<in> sets M"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1543
proof -
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1544
  let ?G = "\<lambda>y x. if g x = \<infinity> then H y \<infinity> else if g x = -\<infinity> then H y (-\<infinity>) else H y (ereal (real_of_ereal (g x)))"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1545
  let ?F = "\<lambda>x. if f x = \<infinity> then ?G \<infinity> x else if f x = -\<infinity> then ?G (-\<infinity>) x else ?G (ereal (real_of_ereal (f x))) x"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1546
  { fix x have "H (f x) (g x) = ?F x" by (cases "f x" "g x" rule: ereal2_cases) auto }
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1547
  note * = this
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1548
  from assms show ?thesis
62390
842917225d56 more canonical names
nipkow
parents: 62372
diff changeset
  1549
    by (subst *) (simp del: space_borel split del: if_split)
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1550
qed
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1551
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1552
lemma borel_measurable_ereal_iff:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1553
  shows "(\<lambda>x. ereal (f x)) \<in> borel_measurable M \<longleftrightarrow> f \<in> borel_measurable M"
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1554
proof
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1555
  assume "(\<lambda>x. ereal (f x)) \<in> borel_measurable M"
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1556
  from borel_measurable_real_of_ereal[OF this]
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1557
  show "f \<in> borel_measurable M" by auto
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1558
qed auto
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1559
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1560
lemma borel_measurable_erealD[measurable_dest]:
59353
f0707dc3d9aa measurability prover: removed app splitting, replaced by more powerful destruction rules
hoelzl
parents: 59088
diff changeset
  1561
  "(\<lambda>x. ereal (f x)) \<in> borel_measurable M \<Longrightarrow> g \<in> measurable N M \<Longrightarrow> (\<lambda>x. f (g x)) \<in> borel_measurable N"
f0707dc3d9aa measurability prover: removed app splitting, replaced by more powerful destruction rules
hoelzl
parents: 59088
diff changeset
  1562
  unfolding borel_measurable_ereal_iff by simp
f0707dc3d9aa measurability prover: removed app splitting, replaced by more powerful destruction rules
hoelzl
parents: 59088
diff changeset
  1563
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1564
theorem borel_measurable_ereal_iff_real:
43923
ab93d0190a5d add ereal to typeclass infinity
hoelzl
parents: 43920
diff changeset
  1565
  fixes f :: "'a \<Rightarrow> ereal"
ab93d0190a5d add ereal to typeclass infinity
hoelzl
parents: 43920
diff changeset
  1566
  shows "f \<in> borel_measurable M \<longleftrightarrow>
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1567
    ((\<lambda>x. real_of_ereal (f x)) \<in> borel_measurable M \<and> f -` {\<infinity>} \<inter> space M \<in> sets M \<and> f -` {-\<infinity>} \<inter> space M \<in> sets M)"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1568
proof safe
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1569
  assume *: "(\<lambda>x. real_of_ereal (f x)) \<in> borel_measurable M" "f -` {\<infinity>} \<inter> space M \<in> sets M" "f -` {-\<infinity>} \<inter> space M \<in> sets M"
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1570
  have "f -` {\<infinity>} \<inter> space M = {x\<in>space M. f x = \<infinity>}" "f -` {-\<infinity>} \<inter> space M = {x\<in>space M. f x = -\<infinity>}" by auto
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1571
  with * have **: "{x\<in>space M. f x = \<infinity>} \<in> sets M" "{x\<in>space M. f x = -\<infinity>} \<in> sets M" by simp_all
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1572
  let ?f = "\<lambda>x. if f x = \<infinity> then \<infinity> else if f x = -\<infinity> then -\<infinity> else ereal (real_of_ereal (f x))"
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1573
  have "?f \<in> borel_measurable M" using * ** by (intro measurable_If) auto
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1574
  also have "?f = f" by (auto simp: fun_eq_iff ereal_real)
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1575
  finally show "f \<in> borel_measurable M" .
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1576
qed simp_all
41830
719b0a517c33 log is borel measurable
hoelzl
parents: 41545
diff changeset
  1577
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1578
lemma borel_measurable_ereal_iff_Iio:
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1579
  "(f::'a \<Rightarrow> ereal) \<in> borel_measurable M \<longleftrightarrow> (\<forall>a. f -` {..< a} \<inter> space M \<in> sets M)"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1580
  by (auto simp: borel_Iio measurable_iff_measure_of)
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1581
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1582
lemma borel_measurable_ereal_iff_Ioi:
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1583
  "(f::'a \<Rightarrow> ereal) \<in> borel_measurable M \<longleftrightarrow> (\<forall>a. f -` {a <..} \<inter> space M \<in> sets M)"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1584
  by (auto simp: borel_Ioi measurable_iff_measure_of)
35582
b16d99a72dc9 Add Lebesgue integral and probability space.
hoelzl
parents: 35347
diff changeset
  1585
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1586
lemma vimage_sets_compl_iff:
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1587
  "f -` A \<inter> space M \<in> sets M \<longleftrightarrow> f -` (- A) \<inter> space M \<in> sets M"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1588
proof -
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1589
  { fix A assume "f -` A \<inter> space M \<in> sets M"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1590
    moreover have "f -` (- A) \<inter> space M = space M - f -` A \<inter> space M" by auto
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1591
    ultimately have "f -` (- A) \<inter> space M \<in> sets M" by auto }
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1592
  from this[of A] this[of "-A"] show ?thesis
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1593
    by (metis double_complement)
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1594
qed
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1595
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1596
lemma borel_measurable_iff_Iic_ereal:
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1597
  "(f::'a\<Rightarrow>ereal) \<in> borel_measurable M \<longleftrightarrow> (\<forall>a. f -` {..a} \<inter> space M \<in> sets M)"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1598
  unfolding borel_measurable_ereal_iff_Ioi vimage_sets_compl_iff[where A="{a <..}" for a] by simp
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1599
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1600
lemma borel_measurable_iff_Ici_ereal:
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1601
  "(f::'a \<Rightarrow> ereal) \<in> borel_measurable M \<longleftrightarrow> (\<forall>a. f -` {a..} \<inter> space M \<in> sets M)"
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1602
  unfolding borel_measurable_ereal_iff_Iio vimage_sets_compl_iff[where A="{..< a}" for a] by simp
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1603
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1604
lemma borel_measurable_ereal2:
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
  1605
  fixes f g :: "'a \<Rightarrow> ereal"
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1606
  assumes f: "f \<in> borel_measurable M"
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1607
  assumes g: "g \<in> borel_measurable M"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1608
  assumes H: "(\<lambda>x. H (ereal (real_of_ereal (f x))) (ereal (real_of_ereal (g x)))) \<in> borel_measurable M"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1609
    "(\<lambda>x. H (-\<infinity>) (ereal (real_of_ereal (g x)))) \<in> borel_measurable M"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1610
    "(\<lambda>x. H (\<infinity>) (ereal (real_of_ereal (g x)))) \<in> borel_measurable M"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1611
    "(\<lambda>x. H (ereal (real_of_ereal (f x))) (-\<infinity>)) \<in> borel_measurable M"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1612
    "(\<lambda>x. H (ereal (real_of_ereal (f x))) (\<infinity>)) \<in> borel_measurable M"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1613
  shows "(\<lambda>x. H (f x) (g x)) \<in> borel_measurable M"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1614
proof -
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1615
  let ?G = "\<lambda>y x. if g x = \<infinity> then H y \<infinity> else if g x = - \<infinity> then H y (-\<infinity>) else H y (ereal (real_of_ereal (g x)))"
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61424
diff changeset
  1616
  let ?F = "\<lambda>x. if f x = \<infinity> then ?G \<infinity> x else if f x = - \<infinity> then ?G (-\<infinity>) x else ?G (ereal (real_of_ereal (f x))) x"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1617
  { fix x have "H (f x) (g x) = ?F x" by (cases "f x" "g x" rule: ereal2_cases) auto }
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1618
  note * = this
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1619
  from assms show ?thesis unfolding * by simp
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1620
qed
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1621
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1622
lemma [measurable(raw)]:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1623
  fixes f :: "'a \<Rightarrow> ereal"
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1624
  assumes [measurable]: "f \<in> borel_measurable M" "g \<in> borel_measurable M"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1625
  shows borel_measurable_ereal_add: "(\<lambda>x. f x + g x) \<in> borel_measurable M"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1626
    and borel_measurable_ereal_times: "(\<lambda>x. f x * g x) \<in> borel_measurable M"
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1627
  by (simp_all add: borel_measurable_ereal2)
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1628
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1629
lemma [measurable(raw)]:
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1630
  fixes f g :: "'a \<Rightarrow> ereal"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1631
  assumes "f \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1632
  assumes "g \<in> borel_measurable M"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1633
  shows borel_measurable_ereal_diff: "(\<lambda>x. f x - g x) \<in> borel_measurable M"
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1634
    and borel_measurable_ereal_divide: "(\<lambda>x. f x / g x) \<in> borel_measurable M"
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1635
  using assms by (simp_all add: minus_ereal_def divide_ereal_def)
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1636
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1637
lemma borel_measurable_ereal_sum[measurable (raw)]:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1638
  fixes f :: "'c \<Rightarrow> 'a \<Rightarrow> ereal"
41096
843c40bbc379 integral over setprod
hoelzl
parents: 41083
diff changeset
  1639
  assumes "\<And>i. i \<in> S \<Longrightarrow> f i \<in> borel_measurable M"
843c40bbc379 integral over setprod
hoelzl
parents: 41083
diff changeset
  1640
  shows "(\<lambda>x. \<Sum>i\<in>S. f i x) \<in> borel_measurable M"
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1641
  using assms by (induction S rule: infinite_finite_induct) auto
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1642
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1643
lemma borel_measurable_ereal_prod[measurable (raw)]:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1644
  fixes f :: "'c \<Rightarrow> 'a \<Rightarrow> ereal"
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1645
  assumes "\<And>i. i \<in> S \<Longrightarrow> f i \<in> borel_measurable M"
41096
843c40bbc379 integral over setprod
hoelzl
parents: 41083
diff changeset
  1646
  shows "(\<lambda>x. \<Prod>i\<in>S. f i x) \<in> borel_measurable M"
59361
fd5da2434be4 piecewise measurability using restrict_space; cleanup Borel_Space
hoelzl
parents: 59353
diff changeset
  1647
  using assms by (induction S rule: infinite_finite_induct) auto
38656
d5d342611edb Rewrite the Probability theory.
hoelzl
parents: 37887
diff changeset
  1648
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1649
lemma borel_measurable_extreal_suminf[measurable (raw)]:
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1650
  fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> ereal"
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1651
  assumes [measurable]: "\<And>i. f i \<in> borel_measurable M"
41981
cdf7693bbe08 reworked Probability theory: measures are not type restricted to positive extended reals
hoelzl
parents: 41969
diff changeset
  1652
  shows "(\<lambda>x. (\<Sum>i. f i x)) \<in> borel_measurable M"
50003
8c213922ed49 use measurability prover
hoelzl
parents: 50002
diff changeset
  1653
  unfolding suminf_def sums_def[abs_def] lim_def[symmetric] by simp
39092
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
  1654
69683
8b3458ca0762 subsection is always %important
immler
parents: 69652
diff changeset
  1655
subsection "Borel space on the extended non-negative reals"
62625
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1656
69597
ff784d5a5bfb isabelle update -u control_cartouches;
wenzelm
parents: 69566
diff changeset
  1657
text \<open> \<^type>\<open>ennreal\<close> is a topological monoid, so no rules for plus are required, also all order
62625
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1658
  statements are usually done on type classes. \<close>
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1659
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1660
lemma measurable_enn2ereal[measurable]: "enn2ereal \<in> borel \<rightarrow>\<^sub>M borel"
70365
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1661
  by (intro borel_measurable_continuous_onI continuous_on_enn2ereal)
62625
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1662
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1663
lemma measurable_e2ennreal[measurable]: "e2ennreal \<in> borel \<rightarrow>\<^sub>M borel"
70365
4df0628e8545 a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents: 70136
diff changeset
  1664
  by (intro borel_measurable_continuous_onI continuous_on_e2ennreal)
62625
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1665
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1666
lemma borel_measurable_enn2real[measurable (raw)]:
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62625
diff changeset
  1667
  "f \<in> M \<rightarrow>\<^sub>M borel \<Longrightarrow> (\<lambda>x. enn2real (f x)) \<in> M \<rightarrow>\<^sub>M borel"
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62625
diff changeset
  1668
  unfolding enn2real_def[abs_def] by measurable
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62625
diff changeset
  1669
70136
f03a01a18c6e modernized tags: default scope excludes proof;
wenzelm
parents: 69861
diff changeset
  1670
definition\<^marker>\<open>tag important\<close> [simp]: "is_borel f M \<longleftrightarrow> f \<in> borel_measurable M"
62625
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1671
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1672
lemma is_borel_transfer[transfer_rule]: "rel_fun (rel_fun (=) pcr_ennreal) (=) is_borel is_borel"
62625
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1673
  unfolding is_borel_def[abs_def]
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1674
proof (safe intro!: rel_funI ext dest!: rel_fun_eq_pcr_ennreal[THEN iffD1])
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1675
  fix f and M :: "'a measure"
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1676
  show "f \<in> borel_measurable M" if f: "enn2ereal \<circ> f \<in> borel_measurable M"
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1677
    using measurable_compose[OF f measurable_e2ennreal] by simp
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1678
qed simp
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1679
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62625
diff changeset
  1680
context
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62625
diff changeset
  1681
  includes ennreal.lifting
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62625
diff changeset
  1682
begin
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62625
diff changeset
  1683
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1684
lemma measurable_ennreal[measurable]: "ennreal \<in> borel \<rightarrow>\<^sub>M borel"
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62625
diff changeset
  1685
  unfolding is_borel_def[symmetric]
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62625
diff changeset
  1686
  by transfer simp
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62625
diff changeset
  1687
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1688
lemma borel_measurable_ennreal_iff[simp]:
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62625
diff changeset
  1689
  assumes [simp]: "\<And>x. x \<in> space M \<Longrightarrow> 0 \<le> f x"
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62625
diff changeset
  1690
  shows "(\<lambda>x. ennreal (f x)) \<in> M \<rightarrow>\<^sub>M borel \<longleftrightarrow> f \<in> M \<rightarrow>\<^sub>M borel"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1691
proof safe
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62625
diff changeset
  1692
  assume "(\<lambda>x. ennreal (f x)) \<in> M \<rightarrow>\<^sub>M borel"
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62625
diff changeset
  1693
  then have "(\<lambda>x. enn2real (ennreal (f x))) \<in> M \<rightarrow>\<^sub>M borel"
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62625
diff changeset
  1694
    by measurable
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62625
diff changeset
  1695
  then show "f \<in> M \<rightarrow>\<^sub>M borel"
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62625
diff changeset
  1696
    by (rule measurable_cong[THEN iffD1, rotated]) auto
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62625
diff changeset
  1697
qed measurable
62625
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1698
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1699
lemma borel_measurable_times_ennreal[measurable (raw)]:
62625
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1700
  fixes f g :: "'a \<Rightarrow> ennreal"
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1701
  shows "f \<in> M \<rightarrow>\<^sub>M borel \<Longrightarrow> g \<in> M \<rightarrow>\<^sub>M borel \<Longrightarrow> (\<lambda>x. f x * g x) \<in> M \<rightarrow>\<^sub>M borel"
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1702
  unfolding is_borel_def[symmetric] by transfer simp
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1703
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1704
lemma borel_measurable_inverse_ennreal[measurable (raw)]:
62625
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1705
  fixes f :: "'a \<Rightarrow> ennreal"
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1706
  shows "f \<in> M \<rightarrow>\<^sub>M borel \<Longrightarrow> (\<lambda>x. inverse (f x)) \<in> M \<rightarrow>\<^sub>M borel"
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1707
  unfolding is_borel_def[symmetric] by transfer simp
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1708
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1709
lemma borel_measurable_divide_ennreal[measurable (raw)]:
62625
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1710
  fixes f :: "'a \<Rightarrow> ennreal"
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1711
  shows "f \<in> M \<rightarrow>\<^sub>M borel \<Longrightarrow> g \<in> M \<rightarrow>\<^sub>M borel \<Longrightarrow> (\<lambda>x. f x / g x) \<in> M \<rightarrow>\<^sub>M borel"
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1712
  unfolding divide_ennreal_def by simp
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1713
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1714
lemma borel_measurable_minus_ennreal[measurable (raw)]:
62625
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1715
  fixes f :: "'a \<Rightarrow> ennreal"
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1716
  shows "f \<in> M \<rightarrow>\<^sub>M borel \<Longrightarrow> g \<in> M \<rightarrow>\<^sub>M borel \<Longrightarrow> (\<lambda>x. f x - g x) \<in> M \<rightarrow>\<^sub>M borel"
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1717
  unfolding is_borel_def[symmetric] by transfer simp
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1718
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1719
lemma borel_measurable_prod_ennreal[measurable (raw)]:
62625
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1720
  fixes f :: "'c \<Rightarrow> 'a \<Rightarrow> ennreal"
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1721
  assumes "\<And>i. i \<in> S \<Longrightarrow> f i \<in> borel_measurable M"
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1722
  shows "(\<lambda>x. \<Prod>i\<in>S. f i x) \<in> borel_measurable M"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1723
  using assms by (induction S rule: infinite_finite_induct) auto
62625
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1724
62975
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62625
diff changeset
  1725
end
1d066f6ab25d Probability: move emeasure and nn_integral from ereal to ennreal
hoelzl
parents: 62625
diff changeset
  1726
62625
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1727
hide_const (open) is_borel
2d73385aa5f3 add measurability rules for ennreal
hoelzl
parents: 62624
diff changeset
  1728
69683
8b3458ca0762 subsection is always %important
immler
parents: 69652
diff changeset
  1729
subsection \<open>LIMSEQ is borel measurable\<close>
39092
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
  1730
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1731
lemma borel_measurable_LIMSEQ_real:
39092
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
  1732
  fixes u :: "nat \<Rightarrow> 'a \<Rightarrow> real"
61969
e01015e49041 more symbols;
wenzelm
parents: 61880
diff changeset
  1733
  assumes u': "\<And>x. x \<in> space M \<Longrightarrow> (\<lambda>i. u i x) \<longlonglongrightarrow> u' x"
39092
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
  1734
  and u: "\<And>i. u i \<in> borel_measurable M"
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
  1735
  shows "u' \<in> borel_measurable M"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1736
proof -
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1737
  have "\<And>x. x \<in> space M \<Longrightarrow> liminf (\<lambda>n. ereal (u n x)) = ereal (u' x)"
46731
5302e932d1e5 avoid undeclared variables in let bindings;
wenzelm
parents: 45288
diff changeset
  1738
    using u' by (simp add: lim_imp_Liminf)
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1739
  moreover from u have "(\<lambda>x. liminf (\<lambda>n. ereal (u n x))) \<in> borel_measurable M"
39092
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
  1740
    by auto
43920
cedb5cb948fd Rename extreal => ereal
hoelzl
parents: 42990
diff changeset
  1741
  ultimately show ?thesis by (simp cong: measurable_cong add: borel_measurable_ereal_iff)
39092
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
  1742
qed
98de40859858 move lemmas to correct theory files
hoelzl
parents: 39087
diff changeset
  1743
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1744
lemma borel_measurable_LIMSEQ_metric:
56993
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1745
  fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> 'b :: metric_space"
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1746
  assumes [measurable]: "\<And>i. f i \<in> borel_measurable M"
61969
e01015e49041 more symbols;
wenzelm
parents: 61880
diff changeset
  1747
  assumes lim: "\<And>x. x \<in> space M \<Longrightarrow> (\<lambda>i. f i x) \<longlonglongrightarrow> g x"
56993
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1748
  shows "g \<in> borel_measurable M"
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1749
  unfolding borel_eq_closed
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1750
proof (safe intro!: measurable_measure_of)
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
  1751
  fix A :: "'b set" assume "closed A"
56993
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1752
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1753
  have [measurable]: "(\<lambda>x. infdist (g x) A) \<in> borel_measurable M"
62624
59ceeb6f3079 generalized some Borel measurable statements to support ennreal
hoelzl
parents: 62390
diff changeset
  1754
  proof (rule borel_measurable_LIMSEQ_real)
61969
e01015e49041 more symbols;
wenzelm
parents: 61880
diff changeset
  1755
    show "\<And>x. x \<in> space M \<Longrightarrow> (\<lambda>i. infdist (f i x) A) \<longlonglongrightarrow> infdist (g x) A"
56993
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1756
      by (intro tendsto_infdist lim)
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1757
    show "\<And>i. (\<lambda>x. infdist (f i x) A) \<in> borel_measurable M"
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1758
      by (intro borel_measurable_continuous_on[where f="\<lambda>x. infdist x A"]
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1759
        continuous_at_imp_continuous_on ballI continuous_infdist continuous_ident) auto
56993
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1760
  qed
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1761
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1762
  show "g -` A \<inter> space M \<in> sets M"
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1763
  proof cases
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1764
    assume "A \<noteq> {}"
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1765
    then have "\<And>x. infdist x A = 0 \<longleftrightarrow> x \<in> A"
61808
fc1556774cfe isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
  1766
      using \<open>closed A\<close> by (simp add: in_closed_iff_infdist_zero)
56993
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1767
    then have "g -` A \<inter> space M = {x\<in>space M. infdist (g x) A = 0}"
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1768
      by auto
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1769
    also have "\<dots> \<in> sets M"
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1770
      by measurable
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1771
    finally show ?thesis .
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1772
  qed simp
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1773
qed auto
e5366291d6aa introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
hoelzl
parents: 56371
diff changeset
  1774
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1775
lemma sets_Collect_Cauchy[measurable]:
57036
22568fb89165 generalized Bochner integral over infinite sums
hoelzl
parents: 56994
diff changeset
  1776
  fixes f :: "nat \<Rightarrow> 'a => 'b::{metric_space, second_countable_topology}"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1777
  assumes f[measurable]: "\<And>i. f i \<in> borel_measurable M"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1778
  shows "{x\<in>space M. Cauchy (\<lambda>i. f i x)} \<in> sets M"
57036
22568fb89165 generalized Bochner integral over infinite sums
hoelzl
parents: 56994
diff changeset
  1779
  unfolding metric_Cauchy_iff2 using f by auto
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1780
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1781
lemma borel_measurable_lim_metric[measurable (raw)]:
57036
22568fb89165 generalized Bochner integral over infinite sums
hoelzl
parents: 56994
diff changeset
  1782
  fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> 'b::{banach, second_countable_topology}"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1783
  assumes f[measurable]: "\<And>i. f i \<in> borel_measurable M"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1784
  shows "(\<lambda>x. lim (\<lambda>i. f i x)) \<in> borel_measurable M"
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1785
proof -
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62975
diff changeset
  1786
  define u' where "u' x = lim (\<lambda>i. if Cauchy (\<lambda>i. f i x) then f i x else 0)" for x
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1787
  then have *: "\<And>x. lim (\<lambda>i. f i x) = (if Cauchy (\<lambda>i. f i x) then u' x else (THE x. False))"
64287
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64284
diff changeset
  1788
    by (auto simp: lim_def convergent_eq_Cauchy[symmetric])
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1789
  have "u' \<in> borel_measurable M"
57036
22568fb89165 generalized Bochner integral over infinite sums
hoelzl
parents: 56994
diff changeset
  1790
  proof (rule borel_measurable_LIMSEQ_metric)
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1791
    fix x
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1792
    have "convergent (\<lambda>i. if Cauchy (\<lambda>i. f i x) then f i x else 0)"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1793
      by (cases "Cauchy (\<lambda>i. f i x)")
64287
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64284
diff changeset
  1794
         (auto simp add: convergent_eq_Cauchy[symmetric] convergent_def)
61969
e01015e49041 more symbols;
wenzelm
parents: 61880
diff changeset
  1795
    then show "(\<lambda>i. if Cauchy (\<lambda>i. f i x) then f i x else 0) \<longlonglongrightarrow> u' x"
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
  1796
      unfolding u'_def
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1797
      by (rule convergent_LIMSEQ_iff[THEN iffD1])
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1798
  qed measurable
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1799
  then show ?thesis
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1800
    unfolding * by measurable
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1801
qed
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1802
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1803
lemma borel_measurable_suminf[measurable (raw)]:
57036
22568fb89165 generalized Bochner integral over infinite sums
hoelzl
parents: 56994
diff changeset
  1804
  fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> 'b::{banach, second_countable_topology}"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1805
  assumes f[measurable]: "\<And>i. f i \<in> borel_measurable M"
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1806
  shows "(\<lambda>x. suminf (\<lambda>i. f i x)) \<in> borel_measurable M"
50002
ce0d316b5b44 add measurability prover; add support for Borel sets
hoelzl
parents: 50001
diff changeset
  1807
  unfolding suminf_def sums_def[abs_def] lim_def[symmetric] by simp
49774
dfa8ddb874ce use continuity to show Borel-measurability
hoelzl
parents: 47761
diff changeset
  1808
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1809
lemma Collect_closed_imp_pred_borel: "closed {x. P x} \<Longrightarrow> Measurable.pred borel P"
63389
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1810
  by (simp add: pred_def)
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1811
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1812
(* Proof by Jeremy Avigad and Luke Serafin *)
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1813
lemma isCont_borel_pred[measurable]:
63389
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1814
  fixes f :: "'b::metric_space \<Rightarrow> 'a::metric_space"
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1815
  shows "Measurable.pred borel (isCont f)"
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1816
proof (subst measurable_cong)
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1817
  let ?I = "\<lambda>j. inverse(real (Suc j))"
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1818
  show "isCont f x = (\<forall>i. \<exists>j. \<forall>y z. dist x y < ?I j \<and> dist x z < ?I j \<longrightarrow> dist (f y) (f z) \<le> ?I i)" for x
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1819
    unfolding continuous_at_eps_delta
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1820
  proof safe
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1821
    fix i assume "\<forall>e>0. \<exists>d>0. \<forall>y. dist y x < d \<longrightarrow> dist (f y) (f x) < e"
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1822
    moreover have "0 < ?I i / 2"
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1823
      by simp
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1824
    ultimately obtain d where d: "0 < d" "\<And>y. dist x y < d \<Longrightarrow> dist (f y) (f x) < ?I i / 2"
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1825
      by (metis dist_commute)
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1826
    then obtain j where j: "?I j < d"
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1827
      by (metis reals_Archimedean)
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1828
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1829
    show "\<exists>j. \<forall>y z. dist x y < ?I j \<and> dist x z < ?I j \<longrightarrow> dist (f y) (f z) \<le> ?I i"
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1830
    proof (safe intro!: exI[where x=j])
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1831
      fix y z assume *: "dist x y < ?I j" "dist x z < ?I j"
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1832
      have "dist (f y) (f z) \<le> dist (f y) (f x) + dist (f z) (f x)"
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1833
        by (rule dist_triangle2)
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1834
      also have "\<dots> < ?I i / 2 + ?I i / 2"
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1835
        by (intro add_strict_mono d less_trans[OF _ j] *)
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1836
      also have "\<dots> \<le> ?I i"
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1837
        by (simp add: field_simps of_nat_Suc)
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1838
      finally show "dist (f y) (f z) \<le> ?I i"
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1839
        by simp
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1840
    qed
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1841
  next
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1842
    fix e::real assume "0 < e"
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1843
    then obtain n where n: "?I n < e"
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1844
      by (metis reals_Archimedean)
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1845
    assume "\<forall>i. \<exists>j. \<forall>y z. dist x y < ?I j \<and> dist x z < ?I j \<longrightarrow> dist (f y) (f z) \<le> ?I i"
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1846
    from this[THEN spec, of "Suc n"]
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1847
    obtain j where j: "\<And>y z. dist x y < ?I j \<Longrightarrow> dist x z < ?I j \<Longrightarrow> dist (f y) (f z) \<le> ?I (Suc n)"
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1848
      by auto
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1849
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1850
    show "\<exists>d>0. \<forall>y. dist y x < d \<longrightarrow> dist (f y) (f x) < e"
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1851
    proof (safe intro!: exI[of _ "?I j"])
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1852
      fix y assume "dist y x < ?I j"
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1853
      then have "dist (f y) (f x) \<le> ?I (Suc n)"
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1854
        by (intro j) (auto simp: dist_commute)
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1855
      also have "?I (Suc n) < ?I n"
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1856
        by simp
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1857
      also note n
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1858
      finally show "dist (f y) (f x) < e" .
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1859
    qed simp
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1860
  qed
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1861
qed (intro pred_intros_countable closed_Collect_all closed_Collect_le open_Collect_less
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1862
           Collect_closed_imp_pred_borel closed_Collect_imp open_Collect_conj continuous_intros)
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1863
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1864
lemma isCont_borel:
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1865
  fixes f :: "'b::metric_space \<Rightarrow> 'a::metric_space"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57275
diff changeset
  1866
  shows "{x. isCont f x} \<in> sets borel"
63389
5d8607370faf simplified proof for measurability of isCont
hoelzl
parents: 63332
diff changeset
  1867
  by simp
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
  1868
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1869
lemma is_real_interval:
61880
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1870
  assumes S: "is_interval S"
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1871
  shows "\<exists>a b::real. S = {} \<or> S = UNIV \<or> S = {..<b} \<or> S = {..b} \<or> S = {a<..} \<or> S = {a..} \<or>
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1872
    S = {a<..<b} \<or> S = {a<..b} \<or> S = {a..<b} \<or> S = {a..b}"
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1873
  using S unfolding is_interval_1 by (blast intro: interval_cases)
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1874
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1875
lemma real_interval_borel_measurable:
61880
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1876
  assumes "is_interval (S::real set)"
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1877
  shows "S \<in> sets borel"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1878
proof -
61880
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1879
  from assms is_real_interval have "\<exists>a b::real. S = {} \<or> S = UNIV \<or> S = {..<b} \<or> S = {..b} \<or>
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1880
    S = {a<..} \<or> S = {a..} \<or> S = {a<..<b} \<or> S = {a<..b} \<or> S = {a..<b} \<or> S = {a..b}" by auto
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1881
  then guess a ..
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1882
  then guess b ..
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1883
  thus ?thesis
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1884
    by auto
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1885
qed
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1886
64283
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 64272
diff changeset
  1887
text \<open>The next lemmas hold in any second countable linorder (including ennreal or ereal for instance),
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 64272
diff changeset
  1888
but in the current state they are restricted to reals.\<close>
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 64272
diff changeset
  1889
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1890
lemma borel_measurable_mono_on_fnc:
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
  1891
  fixes f :: "real \<Rightarrow> real" and A :: "real set"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
  1892
  assumes "mono_on f A"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
  1893
  shows "f \<in> borel_measurable (restrict_space borel A)"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
  1894
  apply (rule measurable_restrict_countable[OF mono_on_ctble_discont[OF assms]])
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
  1895
  apply (auto intro!: image_eqI[where x="{x}" for x] simp: sets_restrict_space)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
  1896
  apply (auto simp add: sets_restrict_restrict_space continuous_on_eq_continuous_within
62372
4fe872ff91bf Borel_Space.borel is now in the type class locale
hoelzl
parents: 62083
diff changeset
  1897
              cong: measurable_cong_sets
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
  1898
              intro!: borel_measurable_continuous_on_restrict intro: continuous_within_subset)
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
  1899
  done
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
  1900
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1901
lemma borel_measurable_piecewise_mono:
64283
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 64272
diff changeset
  1902
  fixes f::"real \<Rightarrow> real" and C::"real set set"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 64272
diff changeset
  1903
  assumes "countable C" "\<And>c. c \<in> C \<Longrightarrow> c \<in> sets borel" "\<And>c. c \<in> C \<Longrightarrow> mono_on f c" "(\<Union>C) = UNIV"
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 64272
diff changeset
  1904
  shows "f \<in> borel_measurable borel"
68833
fde093888c16 tagged 21 theories in the Analysis library for the manual
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 68635
diff changeset
  1905
  by (rule measurable_piecewise_restrict[of C], auto intro: borel_measurable_mono_on_fnc simp: assms)
64283
979cdfdf7a79 HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
hoelzl
parents: 64272
diff changeset
  1906
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1907
lemma borel_measurable_mono:
61880
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1908
  fixes f :: "real \<Rightarrow> real"
62083
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
  1909
  shows "mono f \<Longrightarrow> f \<in> borel_measurable borel"
7582b39f51ed add the proof of the central limit theorem
hoelzl
parents: 61969
diff changeset
  1910
  using borel_measurable_mono_on_fnc[of f UNIV] by (simp add: mono_def mono_on_def)
61880
ff4d33058566 moved some theorems from the CLT proof; reordered some theorems / notation
hoelzl
parents: 61808
diff changeset
  1911
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1912
lemma measurable_bdd_below_real[measurable (raw)]:
64008
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1913
  fixes F :: "'a \<Rightarrow> 'i \<Rightarrow> real"
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1914
  assumes [simp]: "countable I" and [measurable]: "\<And>i. i \<in> I \<Longrightarrow> F i \<in> M \<rightarrow>\<^sub>M borel"
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1915
  shows "Measurable.pred M (\<lambda>x. bdd_below ((\<lambda>i. F i x)`I))"
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1916
proof (subst measurable_cong)
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1917
  show "bdd_below ((\<lambda>i. F i x)`I) \<longleftrightarrow> (\<exists>q\<in>\<int>. \<forall>i\<in>I. q \<le> F i x)" for x
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1918
    by (auto simp: bdd_below_def intro!: bexI[of _ "of_int (floor _)"] intro: order_trans of_int_floor_le)
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1919
  show "Measurable.pred M (\<lambda>w. \<exists>q\<in>\<int>. \<forall>i\<in>I. q \<le> F i w)"
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1920
    using countable_int by measurable
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1921
qed
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1922
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1923
lemma borel_measurable_cINF_real[measurable (raw)]:
64008
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1924
  fixes F :: "_ \<Rightarrow> _ \<Rightarrow> real"
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1925
  assumes [simp]: "countable I"
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1926
  assumes F[measurable]: "\<And>i. i \<in> I \<Longrightarrow> F i \<in> borel_measurable M"
69260
0a9688695a1b removed relics of ASCII syntax for indexed big operators
haftmann
parents: 69022
diff changeset
  1927
  shows "(\<lambda>x. INF i\<in>I. F i x) \<in> borel_measurable M"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1928
proof (rule measurable_piecewise_restrict)
64008
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1929
  let ?\<Omega> = "{x\<in>space M. bdd_below ((\<lambda>i. F i x)`I)}"
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1930
  show "countable {?\<Omega>, - ?\<Omega>}" "space M \<subseteq> \<Union>{?\<Omega>, - ?\<Omega>}" "\<And>X. X \<in> {?\<Omega>, - ?\<Omega>} \<Longrightarrow> X \<inter> space M \<in> sets M"
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1931
    by auto
69260
0a9688695a1b removed relics of ASCII syntax for indexed big operators
haftmann
parents: 69022
diff changeset
  1932
  fix X assume "X \<in> {?\<Omega>, - ?\<Omega>}" then show "(\<lambda>x. INF i\<in>I. F i x) \<in> borel_measurable (restrict_space M X)"
64008
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1933
  proof safe
69260
0a9688695a1b removed relics of ASCII syntax for indexed big operators
haftmann
parents: 69022
diff changeset
  1934
    show "(\<lambda>x. INF i\<in>I. F i x) \<in> borel_measurable (restrict_space M ?\<Omega>)"
64008
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1935
      by (intro borel_measurable_cINF measurable_restrict_space1 F)
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1936
         (auto simp: space_restrict_space)
69260
0a9688695a1b removed relics of ASCII syntax for indexed big operators
haftmann
parents: 69022
diff changeset
  1937
    show "(\<lambda>x. INF i\<in>I. F i x) \<in> borel_measurable (restrict_space M (-?\<Omega>))"
64008
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1938
    proof (subst measurable_cong)
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1939
      fix x assume "x \<in> space (restrict_space M (-?\<Omega>))"
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1940
      then have "\<not> (\<forall>i\<in>I. - F i x \<le> y)" for y
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1941
        by (auto simp: space_restrict_space bdd_above_def bdd_above_uminus[symmetric])
69260
0a9688695a1b removed relics of ASCII syntax for indexed big operators
haftmann
parents: 69022
diff changeset
  1942
      then show "(INF i\<in>I. F i x) = - (THE x. False)"
64008
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1943
        by (auto simp: space_restrict_space Inf_real_def Sup_real_def Least_def simp del: Set.ball_simps(10))
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1944
    qed simp
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1945
  qed
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1946
qed
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1947
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1948
lemma borel_Ici: "borel = sigma UNIV (range (\<lambda>x::real. {x ..}))"
64008
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1949
proof (safe intro!: borel_eq_sigmaI1[OF borel_Iio])
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1950
  fix x :: real
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1951
  have eq: "{..<x} = space (sigma UNIV (range atLeast)) - {x ..}"
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1952
    by auto
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1953
  show "{..<x} \<in> sets (sigma UNIV (range atLeast))"
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1954
    unfolding eq by (intro sets.compl_sets) auto
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1955
qed auto
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1956
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1957
lemma borel_measurable_pred_less[measurable (raw)]:
64008
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1958
  fixes f :: "'a \<Rightarrow> 'b::{second_countable_topology, linorder_topology}"
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1959
  shows "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow> Measurable.pred M (\<lambda>w. f w < g w)"
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1960
  unfolding Measurable.pred_def by (rule borel_measurable_less)
17a20ca86d62 HOL-Probability: more about probability, prepare for Markov processes in the AFP
hoelzl
parents: 63952
diff changeset
  1961
54775
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1962
no_notation
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1963
  eucl_less (infix "<e" 50)
2d3df8633dad prefer box over greaterThanLessThan on euclidean_space
immler
parents: 54230
diff changeset
  1964
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1965
lemma borel_measurable_Max2[measurable (raw)]:
64284
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  1966
  fixes f::"_ \<Rightarrow> _ \<Rightarrow> 'a::{second_countable_topology, dense_linorder, linorder_topology}"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  1967
  assumes "finite I"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  1968
    and [measurable]: "\<And>i. f i \<in> borel_measurable M"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  1969
  shows "(\<lambda>x. Max{f i x |i. i \<in> I}) \<in> borel_measurable M"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1970
  by (simp add: borel_measurable_Max[OF assms(1), where ?f=f and ?M=M] Setcompr_eq_image)
64284
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  1971
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1972
lemma measurable_compose_n [measurable (raw)]:
64284
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  1973
  assumes "T \<in> measurable M M"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  1974
  shows "(T^^n) \<in> measurable M M"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  1975
by (induction n, auto simp add: measurable_compose[OF _ assms])
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  1976
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1977
lemma measurable_real_imp_nat:
64284
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  1978
  fixes f::"'a \<Rightarrow> nat"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  1979
  assumes [measurable]: "(\<lambda>x. real(f x)) \<in> borel_measurable M"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  1980
  shows "f \<in> measurable M (count_space UNIV)"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  1981
proof -
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  1982
  let ?g = "(\<lambda>x. real(f x))"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  1983
  have "\<And>(n::nat). ?g-`({real n}) \<inter> space M = f-`{n} \<inter> space M" by auto
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  1984
  moreover have "\<And>(n::nat). ?g-`({real n}) \<inter> space M \<in> sets M" using assms by measurable
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  1985
  ultimately have "\<And>(n::nat). f-`{n} \<inter> space M \<in> sets M" by simp
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  1986
  then show ?thesis using measurable_count_space_eq2_countable by blast
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  1987
qed
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  1988
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  1989
lemma measurable_equality_set [measurable]:
64284
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  1990
  fixes f g::"_\<Rightarrow> 'a::{second_countable_topology, t2_space}"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  1991
  assumes [measurable]: "f \<in> borel_measurable M" "g \<in> borel_measurable M"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  1992
  shows "{x \<in> space M. f x = g x} \<in> sets M"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  1993
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  1994
proof -
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  1995
  define A where "A = {x \<in> space M. f x = g x}"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  1996
  define B where "B = {y. \<exists>x::'a. y = (x,x)}"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  1997
  have "A = (\<lambda>x. (f x, g x))-`B \<inter> space M" unfolding A_def B_def by auto
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  1998
  moreover have "(\<lambda>x. (f x, g x)) \<in> borel_measurable M" by simp
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  1999
  moreover have "B \<in> sets borel" unfolding B_def by (simp add: closed_diagonal)
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2000
  ultimately have "A \<in> sets M" by simp
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2001
  then show ?thesis unfolding A_def by simp
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2002
qed
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2003
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  2004
lemma measurable_inequality_set [measurable]:
64284
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2005
  fixes f g::"_ \<Rightarrow> 'a::{second_countable_topology, linorder_topology}"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2006
  assumes [measurable]: "f \<in> borel_measurable M" "g \<in> borel_measurable M"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2007
  shows "{x \<in> space M. f x \<le> g x} \<in> sets M"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2008
        "{x \<in> space M. f x < g x} \<in> sets M"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2009
        "{x \<in> space M. f x \<ge> g x} \<in> sets M"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2010
        "{x \<in> space M. f x > g x} \<in> sets M"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2011
proof -
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2012
  define F where "F = (\<lambda>x. (f x, g x))"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2013
  have * [measurable]: "F \<in> borel_measurable M" unfolding F_def by simp
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2014
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2015
  have "{x \<in> space M. f x \<le> g x} = F-`{(x, y) | x y. x \<le> y} \<inter> space M" unfolding F_def by auto
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2016
  moreover have "{(x, y) | x y. x \<le> (y::'a)} \<in> sets borel" using closed_subdiagonal borel_closed by blast
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2017
  ultimately show "{x \<in> space M. f x \<le> g x} \<in> sets M" using * by (metis (mono_tags, lifting) measurable_sets)
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2018
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2019
  have "{x \<in> space M. f x < g x} = F-`{(x, y) | x y. x < y} \<inter> space M" unfolding F_def by auto
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2020
  moreover have "{(x, y) | x y. x < (y::'a)} \<in> sets borel" using open_subdiagonal borel_open by blast
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2021
  ultimately show "{x \<in> space M. f x < g x} \<in> sets M" using * by (metis (mono_tags, lifting) measurable_sets)
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2022
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2023
  have "{x \<in> space M. f x \<ge> g x} = F-`{(x, y) | x y. x \<ge> y} \<inter> space M" unfolding F_def by auto
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2024
  moreover have "{(x, y) | x y. x \<ge> (y::'a)} \<in> sets borel" using closed_superdiagonal borel_closed by blast
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2025
  ultimately show "{x \<in> space M. f x \<ge> g x} \<in> sets M" using * by (metis (mono_tags, lifting) measurable_sets)
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2026
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2027
  have "{x \<in> space M. f x > g x} = F-`{(x, y) | x y. x > y} \<inter> space M" unfolding F_def by auto
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2028
  moreover have "{(x, y) | x y. x > (y::'a)} \<in> sets borel" using open_superdiagonal borel_open by blast
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2029
  ultimately show "{x \<in> space M. f x > g x} \<in> sets M" using * by (metis (mono_tags, lifting) measurable_sets)
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2030
qed
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2031
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  2032
proposition measurable_limit [measurable]:
64284
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2033
  fixes f::"nat \<Rightarrow> 'a \<Rightarrow> 'b::first_countable_topology"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2034
  assumes [measurable]: "\<And>n::nat. f n \<in> borel_measurable M"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2035
  shows "Measurable.pred M (\<lambda>x. (\<lambda>n. f n x) \<longlonglongrightarrow> c)"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2036
proof -
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2037
  obtain A :: "nat \<Rightarrow> 'b set" where A:
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2038
    "\<And>i. open (A i)"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2039
    "\<And>i. c \<in> A i"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2040
    "\<And>S. open S \<Longrightarrow> c \<in> S \<Longrightarrow> eventually (\<lambda>i. A i \<subseteq> S) sequentially"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2041
  by (rule countable_basis_at_decseq) blast
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2042
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2043
  have [measurable]: "\<And>N i. (f N)-`(A i) \<inter> space M \<in> sets M" using A(1) by auto
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2044
  then have mes: "(\<Inter>i. \<Union>n. \<Inter>N\<in>{n..}. (f N)-`(A i) \<inter> space M) \<in> sets M" by blast
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2045
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2046
  have "(u \<longlonglongrightarrow> c) \<longleftrightarrow> (\<forall>i. eventually (\<lambda>n. u n \<in> A i) sequentially)" for u::"nat \<Rightarrow> 'b"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2047
  proof
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2048
    assume "u \<longlonglongrightarrow> c"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2049
    then have "eventually (\<lambda>n. u n \<in> A i) sequentially" for i using A(1)[of i] A(2)[of i]
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2050
      by (simp add: topological_tendstoD)
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2051
    then show "(\<forall>i. eventually (\<lambda>n. u n \<in> A i) sequentially)" by auto
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2052
  next
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2053
    assume H: "(\<forall>i. eventually (\<lambda>n. u n \<in> A i) sequentially)"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2054
    show "(u \<longlonglongrightarrow> c)"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2055
    proof (rule topological_tendstoI)
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2056
      fix S assume "open S" "c \<in> S"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2057
      with A(3)[OF this] obtain i where "A i \<subseteq> S"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2058
        using eventually_False_sequentially eventually_mono by blast
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2059
      moreover have "eventually (\<lambda>n. u n \<in> A i) sequentially" using H by simp
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2060
      ultimately show "\<forall>\<^sub>F n in sequentially. u n \<in> S"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2061
        by (simp add: eventually_mono subset_eq)
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2062
    qed
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2063
  qed
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2064
  then have "{x. (\<lambda>n. f n x) \<longlonglongrightarrow> c} = (\<Inter>i. \<Union>n. \<Inter>N\<in>{n..}. (f N)-`(A i))"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2065
    by (auto simp add: atLeast_def eventually_at_top_linorder)
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2066
  then have "{x \<in> space M. (\<lambda>n. f n x) \<longlonglongrightarrow> c} = (\<Inter>i. \<Union>n. \<Inter>N\<in>{n..}. (f N)-`(A i) \<inter> space M)"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2067
    by auto
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2068
  then have "{x \<in> space M. (\<lambda>n. f n x) \<longlonglongrightarrow> c} \<in> sets M" using mes by simp
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2069
  then show ?thesis by auto
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2070
qed
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2071
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  2072
lemma measurable_limit2 [measurable]:
64284
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2073
  fixes u::"nat \<Rightarrow> 'a \<Rightarrow> real"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2074
  assumes [measurable]: "\<And>n. u n \<in> borel_measurable M" "v \<in> borel_measurable M"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2075
  shows "Measurable.pred M (\<lambda>x. (\<lambda>n. u n x) \<longlonglongrightarrow> v x)"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  2076
proof -
64284
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2077
  define w where "w = (\<lambda>n x. u n x - v x)"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2078
  have [measurable]: "w n \<in> borel_measurable M" for n unfolding w_def by auto
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2079
  have "((\<lambda>n. u n x) \<longlonglongrightarrow> v x) \<longleftrightarrow> ((\<lambda>n. w n x) \<longlonglongrightarrow> 0)" for x
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2080
    unfolding w_def using Lim_null by auto
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2081
  then show ?thesis using measurable_limit by auto
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2082
qed
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2083
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  2084
lemma measurable_P_restriction [measurable (raw)]:
64284
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2085
  assumes [measurable]: "Measurable.pred M P" "A \<in> sets M"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2086
  shows "{x \<in> A. P x} \<in> sets M"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2087
proof -
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2088
  have "A \<subseteq> space M" using sets.sets_into_space[OF assms(2)].
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2089
  then have "{x \<in> A. P x} = A \<inter> {x \<in> space M. P x}" by blast
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2090
  then show ?thesis by auto
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2091
qed
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2092
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  2093
lemma measurable_sum_nat [measurable (raw)]:
64284
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2094
  fixes f :: "'c \<Rightarrow> 'a \<Rightarrow> nat"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2095
  assumes "\<And>i. i \<in> S \<Longrightarrow> f i \<in> measurable M (count_space UNIV)"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2096
  shows "(\<lambda>x. \<Sum>i\<in>S. f i x) \<in> measurable M (count_space UNIV)"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2097
proof cases
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2098
  assume "finite S"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2099
  then show ?thesis using assms by induct auto
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2100
qed simp
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2101
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2102
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  2103
lemma measurable_abs_powr [measurable]:
64284
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2104
  fixes p::real
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2105
  assumes [measurable]: "f \<in> borel_measurable M"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2106
  shows "(\<lambda>x. \<bar>f x\<bar> powr p) \<in> borel_measurable M"
70688
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70617
diff changeset
  2107
  by simp
64284
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2108
69566
c41954ee87cf more antiquotations -- less LaTeX macros;
wenzelm
parents: 69517
diff changeset
  2109
text \<open>The next one is a variation around \<open>measurable_restrict_space\<close>.\<close>
64284
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2110
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  2111
lemma measurable_restrict_space3:
64284
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2112
  assumes "f \<in> measurable M N" and
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2113
          "f \<in> A \<rightarrow> B"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2114
  shows "f \<in> measurable (restrict_space M A) (restrict_space N B)"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2115
proof -
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2116
  have "f \<in> measurable (restrict_space M A) N" using assms(1) measurable_restrict_space1 by auto
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2117
  then show ?thesis by (metis Int_iff funcsetI funcset_mem
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2118
      measurable_restrict_space2[of f, of "restrict_space M A", of B, of N] assms(2) space_restrict_space)
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2119
qed
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2120
70688
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70617
diff changeset
  2121
lemma measurable_restrict_mono:
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70617
diff changeset
  2122
  assumes f: "f \<in> restrict_space M A \<rightarrow>\<^sub>M N" and "B \<subseteq> A"
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70617
diff changeset
  2123
  shows "f \<in> restrict_space M B \<rightarrow>\<^sub>M N"
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70617
diff changeset
  2124
by (rule measurable_compose[OF measurable_restrict_space3 f])
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70617
diff changeset
  2125
   (insert \<open>B \<subseteq> A\<close>, auto)
3d894e1cfc75 new material on Analysis, plus some rearrangements
paulson <lp15@cam.ac.uk>
parents: 70617
diff changeset
  2126
69566
c41954ee87cf more antiquotations -- less LaTeX macros;
wenzelm
parents: 69517
diff changeset
  2127
text \<open>The next one is a variation around \<open>measurable_piecewise_restrict\<close>.\<close>
64284
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2128
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  2129
lemma measurable_piecewise_restrict2:
64284
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2130
  assumes [measurable]: "\<And>n. A n \<in> sets M"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2131
      and "space M = (\<Union>(n::nat). A n)"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2132
          "\<And>n. \<exists>h \<in> measurable M N. (\<forall>x \<in> A n. f x = h x)"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2133
  shows "f \<in> measurable M N"
69652
3417a8f154eb updated tagging first 5
Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk>
parents: 69597
diff changeset
  2134
proof (rule measurableI)
64284
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2135
  fix B assume [measurable]: "B \<in> sets N"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2136
  {
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2137
    fix n::nat
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2138
    obtain h where [measurable]: "h \<in> measurable M N" and "\<forall>x \<in> A n. f x = h x" using assms(3) by blast
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2139
    then have *: "f-`B \<inter> A n = h-`B \<inter> A n" by auto
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2140
    have "h-`B \<inter> A n = h-`B \<inter> space M \<inter> A n" using assms(2) sets.sets_into_space by auto
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2141
    then have "h-`B \<inter> A n \<in> sets M" by simp
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2142
    then have "f-`B \<inter> A n \<in> sets M" using * by simp
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2143
  }
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2144
  then have "(\<Union>n. f-`B \<inter> A n) \<in> sets M" by measurable
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2145
  moreover have "f-`B \<inter> space M = (\<Union>n. f-`B \<inter> A n)" using assms(2) by blast
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2146
  ultimately show "f-`B \<inter> space M \<in> sets M" by simp
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2147
next
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2148
  fix x assume "x \<in> space M"
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2149
  then obtain n where "x \<in> A n" using assms(2) by blast
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2150
  obtain h where [measurable]: "h \<in> measurable M N" and "\<forall>x \<in> A n. f x = h x" using assms(3) by blast
64911
f0e07600de47 isabelle update_cartouches -c -t;
wenzelm
parents: 64320
diff changeset
  2151
  then have "f x = h x" using \<open>x \<in> A n\<close> by blast
f0e07600de47 isabelle update_cartouches -c -t;
wenzelm
parents: 64320
diff changeset
  2152
  moreover have "h x \<in> space N" by (metis measurable_space \<open>x \<in> space M\<close> \<open>h \<in> measurable M N\<close>)
64284
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2153
  ultimately show "f x \<in> space N" by simp
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2154
qed
f3b905b2eee2 HOL-Analysis: more theorems from Sébastien Gouëzel's Ergodic_Theory
hoelzl
parents: 64283
diff changeset
  2155
51683
baefa3b461c2 generalize Borel-set properties from real/ereal/ordered_euclidean_spaces to order_topology and real_normed_vector
hoelzl
parents: 51478
diff changeset
  2156
end