| author | berghofe | 
| Wed, 11 Jul 2007 11:04:39 +0200 | |
| changeset 23740 | d7f18c837ce7 | 
| parent 23417 | 42c1a89b45c1 | 
| child 23881 | 851c74f1bb69 | 
| permissions | -rw-r--r-- | 
| 15524 | 1 | (* Title: HOL/Orderings.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson | |
| 4 | *) | |
| 5 | ||
| 21329 | 6 | header {* Syntactic and abstract orders *}
 | 
| 15524 | 7 | |
| 8 | theory Orderings | |
| 23247 | 9 | imports HOL | 
| 23263 | 10 | uses | 
| 11 | (*"~~/src/Provers/quasi.ML"*) | |
| 12 | "~~/src/Provers/order.ML" | |
| 15524 | 13 | begin | 
| 14 | ||
| 21329 | 15 | subsection {* Order syntax *}
 | 
| 15524 | 16 | |
| 22473 | 17 | class ord = type + | 
| 21656 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 18 | fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<sqsubseteq>" 50) | 
| 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 19 | and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<sqsubset>" 50) | 
| 21204 | 20 | begin | 
| 21 | ||
| 22 | notation | |
| 21656 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 23 |   less_eq  ("op \<^loc><=") and
 | 
| 21620 | 24 |   less_eq  ("(_/ \<^loc><= _)" [51, 51] 50) and
 | 
| 21656 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 25 |   less  ("op \<^loc><") and
 | 
| 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 26 |   less  ("(_/ \<^loc>< _)"  [51, 51] 50)
 | 
| 21620 | 27 | |
| 21204 | 28 | notation (xsymbols) | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21383diff
changeset | 29 |   less_eq  ("op \<^loc>\<le>") and
 | 
| 21259 
63ab016c99ca
modified less/less_eq syntax to avoid "x < y < z" etc.;
 wenzelm parents: 
21248diff
changeset | 30 |   less_eq  ("(_/ \<^loc>\<le> _)"  [51, 51] 50)
 | 
| 15524 | 31 | |
| 21204 | 32 | notation (HTML output) | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21383diff
changeset | 33 |   less_eq  ("op \<^loc>\<le>") and
 | 
| 21259 
63ab016c99ca
modified less/less_eq syntax to avoid "x < y < z" etc.;
 wenzelm parents: 
21248diff
changeset | 34 |   less_eq  ("(_/ \<^loc>\<le> _)"  [51, 51] 50)
 | 
| 21204 | 35 | |
| 36 | abbreviation (input) | |
| 21656 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 37 | greater (infix "\<^loc>>" 50) where | 
| 21620 | 38 | "x \<^loc>> y \<equiv> y \<^loc>< x" | 
| 39 | ||
| 21656 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 40 | abbreviation (input) | 
| 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 41 | greater_eq (infix "\<^loc>>=" 50) where | 
| 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 42 | "x \<^loc>>= y \<equiv> y \<^loc><= x" | 
| 21204 | 43 | |
| 21656 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 44 | notation (input) | 
| 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 45 | greater_eq (infix "\<^loc>\<ge>" 50) | 
| 21204 | 46 | |
| 22738 | 47 | text {*
 | 
| 48 | syntactic min/max -- these definitions reach | |
| 49 | their usual semantics in class linorder ahead. | |
| 50 | *} | |
| 51 | ||
| 52 | definition | |
| 53 | min :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where | |
| 22841 | 54 | "min a b = (if a \<^loc>\<le> b then a else b)" | 
| 22738 | 55 | |
| 56 | definition | |
| 57 | max :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where | |
| 22841 | 58 | "max a b = (if a \<^loc>\<le> b then b else a)" | 
| 22738 | 59 | |
| 21204 | 60 | end | 
| 61 | ||
| 62 | notation | |
| 21656 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 63 |   less_eq  ("op <=") and
 | 
| 21620 | 64 |   less_eq  ("(_/ <= _)" [51, 51] 50) and
 | 
| 21656 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 65 |   less  ("op <") and
 | 
| 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 66 |   less  ("(_/ < _)"  [51, 51] 50)
 | 
| 21204 | 67 | |
| 68 | notation (xsymbols) | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21383diff
changeset | 69 |   less_eq  ("op \<le>") and
 | 
| 21259 
63ab016c99ca
modified less/less_eq syntax to avoid "x < y < z" etc.;
 wenzelm parents: 
21248diff
changeset | 70 |   less_eq  ("(_/ \<le> _)"  [51, 51] 50)
 | 
| 15524 | 71 | |
| 21204 | 72 | notation (HTML output) | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21383diff
changeset | 73 |   less_eq  ("op \<le>") and
 | 
| 21259 
63ab016c99ca
modified less/less_eq syntax to avoid "x < y < z" etc.;
 wenzelm parents: 
21248diff
changeset | 74 |   less_eq  ("(_/ \<le> _)"  [51, 51] 50)
 | 
| 20714 | 75 | |
| 19536 | 76 | abbreviation (input) | 
| 21656 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 77 | greater (infix ">" 50) where | 
| 21620 | 78 | "x > y \<equiv> y < x" | 
| 79 | ||
| 21656 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 80 | abbreviation (input) | 
| 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 81 | greater_eq (infix ">=" 50) where | 
| 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 82 | "x >= y \<equiv> y <= x" | 
| 21620 | 83 | |
| 21656 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 84 | notation (input) | 
| 
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
 wenzelm parents: 
21620diff
changeset | 85 | greater_eq (infix "\<ge>" 50) | 
| 15524 | 86 | |
| 23087 | 87 | lemmas min_def [code func, code unfold, code inline del] = min_def [folded ord_class.min] | 
| 88 | lemmas max_def [code func, code unfold, code inline del] = max_def [folded ord_class.max] | |
| 22738 | 89 | |
| 15524 | 90 | |
| 22841 | 91 | subsection {* Partial orders *}
 | 
| 15524 | 92 | |
| 22841 | 93 | class order = ord + | 
| 22316 | 94 | assumes less_le: "x \<sqsubset> y \<longleftrightarrow> x \<sqsubseteq> y \<and> x \<noteq> y" | 
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 95 | and order_refl [iff]: "x \<sqsubseteq> x" | 
| 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 96 | and order_trans: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> z" | 
| 22841 | 97 | assumes antisym: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> x \<Longrightarrow> x = y" | 
| 98 | ||
| 21248 | 99 | begin | 
| 100 | ||
| 15524 | 101 | text {* Reflexivity. *}
 | 
| 102 | ||
| 22841 | 103 | lemma eq_refl: "x = y \<Longrightarrow> x \<^loc>\<le> y" | 
| 15524 | 104 |     -- {* This form is useful with the classical reasoner. *}
 | 
| 23212 | 105 | by (erule ssubst) (rule order_refl) | 
| 15524 | 106 | |
| 22841 | 107 | lemma less_irrefl [iff]: "\<not> x \<^loc>< x" | 
| 23212 | 108 | by (simp add: less_le) | 
| 15524 | 109 | |
| 22841 | 110 | lemma le_less: "x \<^loc>\<le> y \<longleftrightarrow> x \<^loc>< y \<or> x = y" | 
| 15524 | 111 |     -- {* NOT suitable for iff, since it can cause PROOF FAILED. *}
 | 
| 23212 | 112 | by (simp add: less_le) blast | 
| 15524 | 113 | |
| 22841 | 114 | lemma le_imp_less_or_eq: "x \<^loc>\<le> y \<Longrightarrow> x \<^loc>< y \<or> x = y" | 
| 23212 | 115 | unfolding less_le by blast | 
| 15524 | 116 | |
| 22841 | 117 | lemma less_imp_le: "x \<^loc>< y \<Longrightarrow> x \<^loc>\<le> y" | 
| 23212 | 118 | unfolding less_le by blast | 
| 21248 | 119 | |
| 22841 | 120 | lemma less_imp_neq: "x \<^loc>< y \<Longrightarrow> x \<noteq> y" | 
| 23212 | 121 | by (erule contrapos_pn, erule subst, rule less_irrefl) | 
| 21329 | 122 | |
| 123 | ||
| 124 | text {* Useful for simplification, but too risky to include by default. *}
 | |
| 125 | ||
| 22841 | 126 | lemma less_imp_not_eq: "x \<^loc>< y \<Longrightarrow> (x = y) \<longleftrightarrow> False" | 
| 23212 | 127 | by auto | 
| 21329 | 128 | |
| 22841 | 129 | lemma less_imp_not_eq2: "x \<^loc>< y \<Longrightarrow> (y = x) \<longleftrightarrow> False" | 
| 23212 | 130 | by auto | 
| 21329 | 131 | |
| 132 | ||
| 133 | text {* Transitivity rules for calculational reasoning *}
 | |
| 134 | ||
| 22841 | 135 | lemma neq_le_trans: "a \<noteq> b \<Longrightarrow> a \<^loc>\<le> b \<Longrightarrow> a \<^loc>< b" | 
| 23212 | 136 | by (simp add: less_le) | 
| 21329 | 137 | |
| 22841 | 138 | lemma le_neq_trans: "a \<^loc>\<le> b \<Longrightarrow> a \<noteq> b \<Longrightarrow> a \<^loc>< b" | 
| 23212 | 139 | by (simp add: less_le) | 
| 21329 | 140 | |
| 15524 | 141 | |
| 142 | text {* Asymmetry. *}
 | |
| 143 | ||
| 22841 | 144 | lemma less_not_sym: "x \<^loc>< y \<Longrightarrow> \<not> (y \<^loc>< x)" | 
| 23212 | 145 | by (simp add: less_le antisym) | 
| 15524 | 146 | |
| 22841 | 147 | lemma less_asym: "x \<^loc>< y \<Longrightarrow> (\<not> P \<Longrightarrow> y \<^loc>< x) \<Longrightarrow> P" | 
| 23212 | 148 | by (drule less_not_sym, erule contrapos_np) simp | 
| 15524 | 149 | |
| 22841 | 150 | lemma eq_iff: "x = y \<longleftrightarrow> x \<^loc>\<le> y \<and> y \<^loc>\<le> x" | 
| 23212 | 151 | by (blast intro: antisym) | 
| 15524 | 152 | |
| 22841 | 153 | lemma antisym_conv: "y \<^loc>\<le> x \<Longrightarrow> x \<^loc>\<le> y \<longleftrightarrow> x = y" | 
| 23212 | 154 | by (blast intro: antisym) | 
| 15524 | 155 | |
| 22841 | 156 | lemma less_imp_neq: "x \<^loc>< y \<Longrightarrow> x \<noteq> y" | 
| 23212 | 157 | by (erule contrapos_pn, erule subst, rule less_irrefl) | 
| 21248 | 158 | |
| 21083 | 159 | |
| 15524 | 160 | text {* Transitivity. *}
 | 
| 161 | ||
| 22841 | 162 | lemma less_trans: "x \<^loc>< y \<Longrightarrow> y \<^loc>< z \<Longrightarrow> x \<^loc>< z" | 
| 23212 | 163 | by (simp add: less_le) (blast intro: order_trans antisym) | 
| 15524 | 164 | |
| 22841 | 165 | lemma le_less_trans: "x \<^loc>\<le> y \<Longrightarrow> y \<^loc>< z \<Longrightarrow> x \<^loc>< z" | 
| 23212 | 166 | by (simp add: less_le) (blast intro: order_trans antisym) | 
| 15524 | 167 | |
| 22841 | 168 | lemma less_le_trans: "x \<^loc>< y \<Longrightarrow> y \<^loc>\<le> z \<Longrightarrow> x \<^loc>< z" | 
| 23212 | 169 | by (simp add: less_le) (blast intro: order_trans antisym) | 
| 15524 | 170 | |
| 171 | ||
| 172 | text {* Useful for simplification, but too risky to include by default. *}
 | |
| 173 | ||
| 22841 | 174 | lemma less_imp_not_less: "x \<^loc>< y \<Longrightarrow> (\<not> y \<^loc>< x) \<longleftrightarrow> True" | 
| 23212 | 175 | by (blast elim: less_asym) | 
| 15524 | 176 | |
| 22841 | 177 | lemma less_imp_triv: "x \<^loc>< y \<Longrightarrow> (y \<^loc>< x \<longrightarrow> P) \<longleftrightarrow> True" | 
| 23212 | 178 | by (blast elim: less_asym) | 
| 15524 | 179 | |
| 21248 | 180 | |
| 21083 | 181 | text {* Transitivity rules for calculational reasoning *}
 | 
| 15524 | 182 | |
| 22841 | 183 | lemma less_asym': "a \<^loc>< b \<Longrightarrow> b \<^loc>< a \<Longrightarrow> P" | 
| 23212 | 184 | by (rule less_asym) | 
| 21248 | 185 | |
| 22916 | 186 | |
| 187 | text {* Reverse order *}
 | |
| 188 | ||
| 189 | lemma order_reverse: | |
| 23018 
1d29bc31b0cb
no special treatment in naming of locale predicates stemming form classes
 haftmann parents: 
22997diff
changeset | 190 | "order (\<lambda>x y. y \<^loc>\<le> x) (\<lambda>x y. y \<^loc>< x)" | 
| 23212 | 191 | by unfold_locales | 
| 192 | (simp add: less_le, auto intro: antisym order_trans) | |
| 22916 | 193 | |
| 21248 | 194 | end | 
| 15524 | 195 | |
| 21329 | 196 | |
| 197 | subsection {* Linear (total) orders *}
 | |
| 198 | ||
| 22316 | 199 | class linorder = order + | 
| 21216 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 haftmann parents: 
21204diff
changeset | 200 | assumes linear: "x \<sqsubseteq> y \<or> y \<sqsubseteq> x" | 
| 21248 | 201 | begin | 
| 202 | ||
| 22841 | 203 | lemma less_linear: "x \<^loc>< y \<or> x = y \<or> y \<^loc>< x" | 
| 23212 | 204 | unfolding less_le using less_le linear by blast | 
| 21248 | 205 | |
| 22841 | 206 | lemma le_less_linear: "x \<^loc>\<le> y \<or> y \<^loc>< x" | 
| 23212 | 207 | by (simp add: le_less less_linear) | 
| 21248 | 208 | |
| 209 | lemma le_cases [case_names le ge]: | |
| 22841 | 210 | "(x \<^loc>\<le> y \<Longrightarrow> P) \<Longrightarrow> (y \<^loc>\<le> x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 23212 | 211 | using linear by blast | 
| 21248 | 212 | |
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 213 | lemma linorder_cases [case_names less equal greater]: | 
| 23212 | 214 | "(x \<^loc>< y \<Longrightarrow> P) \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> (y \<^loc>< x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 215 | using less_linear by blast | |
| 21248 | 216 | |
| 22841 | 217 | lemma not_less: "\<not> x \<^loc>< y \<longleftrightarrow> y \<^loc>\<le> x" | 
| 23212 | 218 | apply (simp add: less_le) | 
| 219 | using linear apply (blast intro: antisym) | |
| 220 | done | |
| 221 | ||
| 222 | lemma not_less_iff_gr_or_eq: | |
| 223 | "\<not>(x \<^loc>< y) \<longleftrightarrow> (x \<^loc>> y | x = y)" | |
| 224 | apply(simp add:not_less le_less) | |
| 225 | apply blast | |
| 226 | done | |
| 15524 | 227 | |
| 22841 | 228 | lemma not_le: "\<not> x \<^loc>\<le> y \<longleftrightarrow> y \<^loc>< x" | 
| 23212 | 229 | apply (simp add: less_le) | 
| 230 | using linear apply (blast intro: antisym) | |
| 231 | done | |
| 15524 | 232 | |
| 22841 | 233 | lemma neq_iff: "x \<noteq> y \<longleftrightarrow> x \<^loc>< y \<or> y \<^loc>< x" | 
| 23212 | 234 | by (cut_tac x = x and y = y in less_linear, auto) | 
| 15524 | 235 | |
| 22841 | 236 | lemma neqE: "x \<noteq> y \<Longrightarrow> (x \<^loc>< y \<Longrightarrow> R) \<Longrightarrow> (y \<^loc>< x \<Longrightarrow> R) \<Longrightarrow> R" | 
| 23212 | 237 | by (simp add: neq_iff) blast | 
| 15524 | 238 | |
| 22841 | 239 | lemma antisym_conv1: "\<not> x \<^loc>< y \<Longrightarrow> x \<^loc>\<le> y \<longleftrightarrow> x = y" | 
| 23212 | 240 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 241 | |
| 22841 | 242 | lemma antisym_conv2: "x \<^loc>\<le> y \<Longrightarrow> \<not> x \<^loc>< y \<longleftrightarrow> x = y" | 
| 23212 | 243 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 244 | |
| 22841 | 245 | lemma antisym_conv3: "\<not> y \<^loc>< x \<Longrightarrow> \<not> x \<^loc>< y \<longleftrightarrow> x = y" | 
| 23212 | 246 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 247 | |
| 16796 | 248 | text{*Replacing the old Nat.leI*}
 | 
| 22841 | 249 | lemma leI: "\<not> x \<^loc>< y \<Longrightarrow> y \<^loc>\<le> x" | 
| 23212 | 250 | unfolding not_less . | 
| 16796 | 251 | |
| 22841 | 252 | lemma leD: "y \<^loc>\<le> x \<Longrightarrow> \<not> x \<^loc>< y" | 
| 23212 | 253 | unfolding not_less . | 
| 16796 | 254 | |
| 255 | (*FIXME inappropriate name (or delete altogether)*) | |
| 22841 | 256 | lemma not_leE: "\<not> y \<^loc>\<le> x \<Longrightarrow> x \<^loc>< y" | 
| 23212 | 257 | unfolding not_le . | 
| 21248 | 258 | |
| 22916 | 259 | |
| 260 | text {* Reverse order *}
 | |
| 261 | ||
| 262 | lemma linorder_reverse: | |
| 23018 
1d29bc31b0cb
no special treatment in naming of locale predicates stemming form classes
 haftmann parents: 
22997diff
changeset | 263 | "linorder (\<lambda>x y. y \<^loc>\<le> x) (\<lambda>x y. y \<^loc>< x)" | 
| 23212 | 264 | by unfold_locales | 
| 265 | (simp add: less_le, auto intro: antisym order_trans simp add: linear) | |
| 22916 | 266 | |
| 267 | ||
| 22738 | 268 | text {* min/max properties *}
 | 
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 269 | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 270 | lemma min_le_iff_disj: | 
| 22841 | 271 | "min x y \<^loc>\<le> z \<longleftrightarrow> x \<^loc>\<le> z \<or> y \<^loc>\<le> z" | 
| 23212 | 272 | unfolding min_def using linear by (auto intro: order_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 273 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 274 | lemma le_max_iff_disj: | 
| 22841 | 275 | "z \<^loc>\<le> max x y \<longleftrightarrow> z \<^loc>\<le> x \<or> z \<^loc>\<le> y" | 
| 23212 | 276 | unfolding max_def using linear by (auto intro: order_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 277 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 278 | lemma min_less_iff_disj: | 
| 22841 | 279 | "min x y \<^loc>< z \<longleftrightarrow> x \<^loc>< z \<or> y \<^loc>< z" | 
| 23212 | 280 | unfolding min_def le_less using less_linear by (auto intro: less_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 281 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 282 | lemma less_max_iff_disj: | 
| 22841 | 283 | "z \<^loc>< max x y \<longleftrightarrow> z \<^loc>< x \<or> z \<^loc>< y" | 
| 23212 | 284 | unfolding max_def le_less using less_linear by (auto intro: less_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 285 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 286 | lemma min_less_iff_conj [simp]: | 
| 22841 | 287 | "z \<^loc>< min x y \<longleftrightarrow> z \<^loc>< x \<and> z \<^loc>< y" | 
| 23212 | 288 | unfolding min_def le_less using less_linear by (auto intro: less_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 289 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 290 | lemma max_less_iff_conj [simp]: | 
| 22841 | 291 | "max x y \<^loc>< z \<longleftrightarrow> x \<^loc>< z \<and> y \<^loc>< z" | 
| 23212 | 292 | unfolding max_def le_less using less_linear by (auto intro: less_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 293 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 294 | lemma split_min: | 
| 22841 | 295 | "P (min i j) \<longleftrightarrow> (i \<^loc>\<le> j \<longrightarrow> P i) \<and> (\<not> i \<^loc>\<le> j \<longrightarrow> P j)" | 
| 23212 | 296 | by (simp add: min_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 297 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 298 | lemma split_max: | 
| 22841 | 299 | "P (max i j) \<longleftrightarrow> (i \<^loc>\<le> j \<longrightarrow> P j) \<and> (\<not> i \<^loc>\<le> j \<longrightarrow> P i)" | 
| 23212 | 300 | by (simp add: max_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 301 | |
| 21248 | 302 | end | 
| 303 | ||
| 22916 | 304 | subsection {* Name duplicates -- including min/max interpretation *}
 | 
| 21248 | 305 | |
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 306 | lemmas order_less_le = less_le | 
| 22841 | 307 | lemmas order_eq_refl = order_class.eq_refl | 
| 308 | lemmas order_less_irrefl = order_class.less_irrefl | |
| 309 | lemmas order_le_less = order_class.le_less | |
| 310 | lemmas order_le_imp_less_or_eq = order_class.le_imp_less_or_eq | |
| 311 | lemmas order_less_imp_le = order_class.less_imp_le | |
| 312 | lemmas order_less_imp_not_eq = order_class.less_imp_not_eq | |
| 313 | lemmas order_less_imp_not_eq2 = order_class.less_imp_not_eq2 | |
| 314 | lemmas order_neq_le_trans = order_class.neq_le_trans | |
| 315 | lemmas order_le_neq_trans = order_class.le_neq_trans | |
| 22316 | 316 | |
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 317 | lemmas order_antisym = antisym | 
| 22316 | 318 | lemmas order_less_not_sym = order_class.less_not_sym | 
| 319 | lemmas order_less_asym = order_class.less_asym | |
| 320 | lemmas order_eq_iff = order_class.eq_iff | |
| 321 | lemmas order_antisym_conv = order_class.antisym_conv | |
| 322 | lemmas order_less_trans = order_class.less_trans | |
| 323 | lemmas order_le_less_trans = order_class.le_less_trans | |
| 324 | lemmas order_less_le_trans = order_class.less_le_trans | |
| 325 | lemmas order_less_imp_not_less = order_class.less_imp_not_less | |
| 326 | lemmas order_less_imp_triv = order_class.less_imp_triv | |
| 327 | lemmas order_less_asym' = order_class.less_asym' | |
| 328 | ||
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 329 | lemmas linorder_linear = linear | 
| 22316 | 330 | lemmas linorder_less_linear = linorder_class.less_linear | 
| 331 | lemmas linorder_le_less_linear = linorder_class.le_less_linear | |
| 332 | lemmas linorder_le_cases = linorder_class.le_cases | |
| 333 | lemmas linorder_not_less = linorder_class.not_less | |
| 334 | lemmas linorder_not_le = linorder_class.not_le | |
| 335 | lemmas linorder_neq_iff = linorder_class.neq_iff | |
| 336 | lemmas linorder_neqE = linorder_class.neqE | |
| 337 | lemmas linorder_antisym_conv1 = linorder_class.antisym_conv1 | |
| 338 | lemmas linorder_antisym_conv2 = linorder_class.antisym_conv2 | |
| 339 | lemmas linorder_antisym_conv3 = linorder_class.antisym_conv3 | |
| 16796 | 340 | |
| 23087 | 341 | lemmas min_le_iff_disj = linorder_class.min_le_iff_disj [folded ord_class.min] | 
| 342 | lemmas le_max_iff_disj = linorder_class.le_max_iff_disj [folded ord_class.max] | |
| 343 | lemmas min_less_iff_disj = linorder_class.min_less_iff_disj [folded ord_class.min] | |
| 344 | lemmas less_max_iff_disj = linorder_class.less_max_iff_disj [folded ord_class.max] | |
| 345 | lemmas min_less_iff_conj [simp] = linorder_class.min_less_iff_conj [folded ord_class.min] | |
| 346 | lemmas max_less_iff_conj [simp] = linorder_class.max_less_iff_conj [folded ord_class.max] | |
| 347 | lemmas split_min = linorder_class.split_min [folded ord_class.min] | |
| 348 | lemmas split_max = linorder_class.split_max [folded ord_class.max] | |
| 22916 | 349 | |
| 21083 | 350 | |
| 351 | subsection {* Reasoning tools setup *}
 | |
| 352 | ||
| 21091 | 353 | ML {*
 | 
| 354 | local | |
| 355 | ||
| 356 | fun decomp_gen sort thy (Trueprop $ t) = | |
| 21248 | 357 | let | 
| 358 | fun of_sort t = | |
| 359 | let | |
| 360 | val T = type_of t | |
| 361 | in | |
| 21091 | 362 | (* exclude numeric types: linear arithmetic subsumes transitivity *) | 
| 21248 | 363 | T <> HOLogic.natT andalso T <> HOLogic.intT | 
| 364 | andalso T <> HOLogic.realT andalso Sign.of_sort thy (T, sort) | |
| 365 | end; | |
| 22916 | 366 |     fun dec (Const (@{const_name Not}, _) $ t) = (case dec t
 | 
| 21248 | 367 | of NONE => NONE | 
| 368 | | SOME (t1, rel, t2) => SOME (t1, "~" ^ rel, t2)) | |
| 22916 | 369 |       | dec (Const (@{const_name "op ="},  _) $ t1 $ t2) =
 | 
| 21248 | 370 | if of_sort t1 | 
| 371 | then SOME (t1, "=", t2) | |
| 372 | else NONE | |
| 22997 | 373 |       | dec (Const (@{const_name Orderings.less_eq},  _) $ t1 $ t2) =
 | 
| 21248 | 374 | if of_sort t1 | 
| 375 | then SOME (t1, "<=", t2) | |
| 376 | else NONE | |
| 22997 | 377 |       | dec (Const (@{const_name Orderings.less},  _) $ t1 $ t2) =
 | 
| 21248 | 378 | if of_sort t1 | 
| 379 | then SOME (t1, "<", t2) | |
| 380 | else NONE | |
| 381 | | dec _ = NONE; | |
| 21091 | 382 | in dec t end; | 
| 383 | ||
| 384 | in | |
| 385 | ||
| 22841 | 386 | (* sorry - there is no preorder class | 
| 21248 | 387 | structure Quasi_Tac = Quasi_Tac_Fun ( | 
| 388 | struct | |
| 389 | val le_trans = thm "order_trans"; | |
| 390 | val le_refl = thm "order_refl"; | |
| 391 | val eqD1 = thm "order_eq_refl"; | |
| 392 | val eqD2 = thm "sym" RS thm "order_eq_refl"; | |
| 393 | val less_reflE = thm "order_less_irrefl" RS thm "notE"; | |
| 394 | val less_imp_le = thm "order_less_imp_le"; | |
| 395 | val le_neq_trans = thm "order_le_neq_trans"; | |
| 396 | val neq_le_trans = thm "order_neq_le_trans"; | |
| 397 | val less_imp_neq = thm "less_imp_neq"; | |
| 22738 | 398 | val decomp_trans = decomp_gen ["Orderings.preorder"]; | 
| 399 | val decomp_quasi = decomp_gen ["Orderings.preorder"]; | |
| 22841 | 400 | end);*) | 
| 21091 | 401 | |
| 402 | structure Order_Tac = Order_Tac_Fun ( | |
| 21248 | 403 | struct | 
| 404 | val less_reflE = thm "order_less_irrefl" RS thm "notE"; | |
| 405 | val le_refl = thm "order_refl"; | |
| 406 | val less_imp_le = thm "order_less_imp_le"; | |
| 407 | val not_lessI = thm "linorder_not_less" RS thm "iffD2"; | |
| 408 | val not_leI = thm "linorder_not_le" RS thm "iffD2"; | |
| 409 | val not_lessD = thm "linorder_not_less" RS thm "iffD1"; | |
| 410 | val not_leD = thm "linorder_not_le" RS thm "iffD1"; | |
| 411 | val eqI = thm "order_antisym"; | |
| 412 | val eqD1 = thm "order_eq_refl"; | |
| 413 | val eqD2 = thm "sym" RS thm "order_eq_refl"; | |
| 414 | val less_trans = thm "order_less_trans"; | |
| 415 | val less_le_trans = thm "order_less_le_trans"; | |
| 416 | val le_less_trans = thm "order_le_less_trans"; | |
| 417 | val le_trans = thm "order_trans"; | |
| 418 | val le_neq_trans = thm "order_le_neq_trans"; | |
| 419 | val neq_le_trans = thm "order_neq_le_trans"; | |
| 420 | val less_imp_neq = thm "less_imp_neq"; | |
| 421 | val eq_neq_eq_imp_neq = thm "eq_neq_eq_imp_neq"; | |
| 422 | val not_sym = thm "not_sym"; | |
| 423 | val decomp_part = decomp_gen ["Orderings.order"]; | |
| 424 | val decomp_lin = decomp_gen ["Orderings.linorder"]; | |
| 425 | end); | |
| 21091 | 426 | |
| 427 | end; | |
| 428 | *} | |
| 429 | ||
| 21083 | 430 | setup {*
 | 
| 431 | let | |
| 432 | ||
| 433 | fun prp t thm = (#prop (rep_thm thm) = t); | |
| 15524 | 434 | |
| 21083 | 435 | fun prove_antisym_le sg ss ((le as Const(_,T)) $ r $ s) = | 
| 436 | let val prems = prems_of_ss ss; | |
| 22916 | 437 |       val less = Const (@{const_name less}, T);
 | 
| 21083 | 438 | val t = HOLogic.mk_Trueprop(le $ s $ r); | 
| 439 | in case find_first (prp t) prems of | |
| 440 | NONE => | |
| 441 | let val t = HOLogic.mk_Trueprop(HOLogic.Not $ (less $ r $ s)) | |
| 442 | in case find_first (prp t) prems of | |
| 443 | NONE => NONE | |
| 22738 | 444 |             | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_antisym_conv1}))
 | 
| 21083 | 445 | end | 
| 22738 | 446 |      | SOME thm => SOME(mk_meta_eq(thm RS @{thm order_antisym_conv}))
 | 
| 21083 | 447 | end | 
| 448 | handle THM _ => NONE; | |
| 15524 | 449 | |
| 21083 | 450 | fun prove_antisym_less sg ss (NotC $ ((less as Const(_,T)) $ r $ s)) = | 
| 451 | let val prems = prems_of_ss ss; | |
| 22916 | 452 |       val le = Const (@{const_name less_eq}, T);
 | 
| 21083 | 453 | val t = HOLogic.mk_Trueprop(le $ r $ s); | 
| 454 | in case find_first (prp t) prems of | |
| 455 | NONE => | |
| 456 | let val t = HOLogic.mk_Trueprop(NotC $ (less $ s $ r)) | |
| 457 | in case find_first (prp t) prems of | |
| 458 | NONE => NONE | |
| 22738 | 459 |             | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_antisym_conv3}))
 | 
| 21083 | 460 | end | 
| 22738 | 461 |      | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_antisym_conv2}))
 | 
| 21083 | 462 | end | 
| 463 | handle THM _ => NONE; | |
| 15524 | 464 | |
| 21248 | 465 | fun add_simprocs procs thy = | 
| 466 | (Simplifier.change_simpset_of thy (fn ss => ss | |
| 467 | addsimprocs (map (fn (name, raw_ts, proc) => | |
| 468 | Simplifier.simproc thy name raw_ts proc)) procs); thy); | |
| 469 | fun add_solver name tac thy = | |
| 470 | (Simplifier.change_simpset_of thy (fn ss => ss addSolver | |
| 471 | (mk_solver name (K tac))); thy); | |
| 21083 | 472 | |
| 473 | in | |
| 21248 | 474 | add_simprocs [ | 
| 475 |        ("antisym le", ["(x::'a::order) <= y"], prove_antisym_le),
 | |
| 476 |        ("antisym less", ["~ (x::'a::linorder) < y"], prove_antisym_less)
 | |
| 477 | ] | |
| 478 | #> add_solver "Trans_linear" Order_Tac.linear_tac | |
| 479 | #> add_solver "Trans_partial" Order_Tac.partial_tac | |
| 480 | (* Adding the transitivity reasoners also as safe solvers showed a slight | |
| 481 | speed up, but the reasoning strength appears to be not higher (at least | |
| 482 | no breaking of additional proofs in the entire HOL distribution, as | |
| 483 | of 5 March 2004, was observed). *) | |
| 21083 | 484 | end | 
| 485 | *} | |
| 15524 | 486 | |
| 487 | ||
| 21083 | 488 | subsection {* Bounded quantifiers *}
 | 
| 489 | ||
| 490 | syntax | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 491 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3ALL _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 492 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3EX _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 493 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _<=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 494 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _<=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 495 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 496 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3ALL _>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 497 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3EX _>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 498 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _>=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 499 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _>=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 500 | |
| 501 | syntax (xsymbols) | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 502 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 503 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 504 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 505 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 506 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 507 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 508 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 509 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 510 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 511 | |
| 512 | syntax (HOL) | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 513 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3! _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 514 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3? _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 515 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3! _<=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 516 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3? _<=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 517 | |
| 518 | syntax (HTML output) | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 519 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 520 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 521 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 522 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 523 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 524 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 525 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 526 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 527 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 528 | |
| 529 | translations | |
| 530 | "ALL x<y. P" => "ALL x. x < y \<longrightarrow> P" | |
| 531 | "EX x<y. P" => "EX x. x < y \<and> P" | |
| 532 | "ALL x<=y. P" => "ALL x. x <= y \<longrightarrow> P" | |
| 533 | "EX x<=y. P" => "EX x. x <= y \<and> P" | |
| 534 | "ALL x>y. P" => "ALL x. x > y \<longrightarrow> P" | |
| 535 | "EX x>y. P" => "EX x. x > y \<and> P" | |
| 536 | "ALL x>=y. P" => "ALL x. x >= y \<longrightarrow> P" | |
| 537 | "EX x>=y. P" => "EX x. x >= y \<and> P" | |
| 538 | ||
| 539 | print_translation {*
 | |
| 540 | let | |
| 22916 | 541 |   val All_binder = Syntax.binder_name @{const_syntax All};
 | 
| 542 |   val Ex_binder = Syntax.binder_name @{const_syntax Ex};
 | |
| 22377 | 543 |   val impl = @{const_syntax "op -->"};
 | 
| 544 |   val conj = @{const_syntax "op &"};
 | |
| 22916 | 545 |   val less = @{const_syntax less};
 | 
| 546 |   val less_eq = @{const_syntax less_eq};
 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 547 | |
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 548 | val trans = | 
| 21524 | 549 |    [((All_binder, impl, less), ("_All_less", "_All_greater")),
 | 
| 550 |     ((All_binder, impl, less_eq), ("_All_less_eq", "_All_greater_eq")),
 | |
| 551 |     ((Ex_binder, conj, less), ("_Ex_less", "_Ex_greater")),
 | |
| 552 |     ((Ex_binder, conj, less_eq), ("_Ex_less_eq", "_Ex_greater_eq"))];
 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 553 | |
| 22344 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 554 | fun matches_bound v t = | 
| 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 555 |      case t of (Const ("_bound", _) $ Free (v', _)) => (v = v')
 | 
| 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 556 | | _ => false | 
| 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 557 | fun contains_var v = Term.exists_subterm (fn Free (x, _) => x = v | _ => false) | 
| 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 558 | fun mk v c n P = Syntax.const c $ Syntax.mark_bound v $ n $ P | 
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 559 | |
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 560 | fun tr' q = (q, | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 561 |     fn [Const ("_bound", _) $ Free (v, _), Const (c, _) $ (Const (d, _) $ t $ u) $ P] =>
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 562 | (case AList.lookup (op =) trans (q, c, d) of | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 563 | NONE => raise Match | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 564 | | SOME (l, g) => | 
| 22344 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 565 | if matches_bound v t andalso not (contains_var v u) then mk v l u P | 
| 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 566 | else if matches_bound v u andalso not (contains_var v t) then mk v g t P | 
| 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 567 | else raise Match) | 
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 568 | | _ => raise Match); | 
| 21524 | 569 | in [tr' All_binder, tr' Ex_binder] end | 
| 21083 | 570 | *} | 
| 571 | ||
| 572 | ||
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 573 | subsection {* Transitivity reasoning *}
 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 574 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 575 | lemma ord_le_eq_trans: "a <= b ==> b = c ==> a <= c" | 
| 23212 | 576 | by (rule subst) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 577 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 578 | lemma ord_eq_le_trans: "a = b ==> b <= c ==> a <= c" | 
| 23212 | 579 | by (rule ssubst) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 580 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 581 | lemma ord_less_eq_trans: "a < b ==> b = c ==> a < c" | 
| 23212 | 582 | by (rule subst) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 583 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 584 | lemma ord_eq_less_trans: "a = b ==> b < c ==> a < c" | 
| 23212 | 585 | by (rule ssubst) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 586 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 587 | lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 588 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 589 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 590 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 591 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 592 | also assume "f b < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 593 | finally (order_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 594 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 595 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 596 | lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 597 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 598 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 599 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 600 | assume "a < f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 601 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 602 | finally (order_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 603 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 604 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 605 | lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 606 | (!!x y. x <= y ==> f x <= f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 607 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 608 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 609 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 610 | also assume "f b < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 611 | finally (order_le_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 612 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 613 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 614 | lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 615 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 616 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 617 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 618 | assume "a <= f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 619 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 620 | finally (order_le_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 621 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 622 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 623 | lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 624 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 625 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 626 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 627 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 628 | also assume "f b <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 629 | finally (order_less_le_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 630 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 631 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 632 | lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 633 | (!!x y. x <= y ==> f x <= f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 634 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 635 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 636 | assume "a < f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 637 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 638 | finally (order_less_le_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 639 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 640 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 641 | lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 642 | (!!x y. x <= y ==> f x <= f y) ==> a <= f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 643 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 644 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 645 | assume "a <= f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 646 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 647 | finally (order_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 648 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 649 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 650 | lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 651 | (!!x y. x <= y ==> f x <= f y) ==> f a <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 652 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 653 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 654 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 655 | also assume "f b <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 656 | finally (order_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 657 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 658 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 659 | lemma ord_le_eq_subst: "a <= b ==> f b = c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 660 | (!!x y. x <= y ==> f x <= f y) ==> f a <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 661 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 662 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 663 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 664 | also assume "f b = c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 665 | finally (ord_le_eq_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 666 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 667 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 668 | lemma ord_eq_le_subst: "a = f b ==> b <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 669 | (!!x y. x <= y ==> f x <= f y) ==> a <= f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 670 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 671 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 672 | assume "a = f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 673 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 674 | finally (ord_eq_le_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 675 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 676 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 677 | lemma ord_less_eq_subst: "a < b ==> f b = c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 678 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 679 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 680 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 681 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 682 | also assume "f b = c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 683 | finally (ord_less_eq_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 684 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 685 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 686 | lemma ord_eq_less_subst: "a = f b ==> b < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 687 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 688 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 689 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 690 | assume "a = f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 691 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 692 | finally (ord_eq_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 693 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 694 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 695 | text {*
 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 696 | Note that this list of rules is in reverse order of priorities. | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 697 | *} | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 698 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 699 | lemmas order_trans_rules [trans] = | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 700 | order_less_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 701 | order_less_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 702 | order_le_less_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 703 | order_le_less_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 704 | order_less_le_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 705 | order_less_le_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 706 | order_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 707 | order_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 708 | ord_le_eq_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 709 | ord_eq_le_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 710 | ord_less_eq_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 711 | ord_eq_less_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 712 | forw_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 713 | back_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 714 | rev_mp | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 715 | mp | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 716 | order_neq_le_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 717 | order_le_neq_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 718 | order_less_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 719 | order_less_asym' | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 720 | order_le_less_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 721 | order_less_le_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 722 | order_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 723 | order_antisym | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 724 | ord_le_eq_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 725 | ord_eq_le_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 726 | ord_less_eq_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 727 | ord_eq_less_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 728 | trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 729 | |
| 21083 | 730 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 731 | (* FIXME cleanup *) | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 732 | |
| 21083 | 733 | text {* These support proving chains of decreasing inequalities
 | 
| 734 | a >= b >= c ... in Isar proofs. *} | |
| 735 | ||
| 736 | lemma xt1: | |
| 737 | "a = b ==> b > c ==> a > c" | |
| 738 | "a > b ==> b = c ==> a > c" | |
| 739 | "a = b ==> b >= c ==> a >= c" | |
| 740 | "a >= b ==> b = c ==> a >= c" | |
| 741 | "(x::'a::order) >= y ==> y >= x ==> x = y" | |
| 742 | "(x::'a::order) >= y ==> y >= z ==> x >= z" | |
| 743 | "(x::'a::order) > y ==> y >= z ==> x > z" | |
| 744 | "(x::'a::order) >= y ==> y > z ==> x > z" | |
| 23417 | 745 | "(a::'a::order) > b ==> b > a ==> P" | 
| 21083 | 746 | "(x::'a::order) > y ==> y > z ==> x > z" | 
| 747 | "(a::'a::order) >= b ==> a ~= b ==> a > b" | |
| 748 | "(a::'a::order) ~= b ==> a >= b ==> a > b" | |
| 749 | "a = f b ==> b > c ==> (!!x y. x > y ==> f x > f y) ==> a > f c" | |
| 750 | "a > b ==> f b = c ==> (!!x y. x > y ==> f x > f y) ==> f a > c" | |
| 751 | "a = f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" | |
| 752 | "a >= b ==> f b = c ==> (!! x y. x >= y ==> f x >= f y) ==> f a >= c" | |
| 753 | by auto | |
| 754 | ||
| 755 | lemma xt2: | |
| 756 | "(a::'a::order) >= f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" | |
| 757 | by (subgoal_tac "f b >= f c", force, force) | |
| 758 | ||
| 759 | lemma xt3: "(a::'a::order) >= b ==> (f b::'b::order) >= c ==> | |
| 760 | (!!x y. x >= y ==> f x >= f y) ==> f a >= c" | |
| 761 | by (subgoal_tac "f a >= f b", force, force) | |
| 762 | ||
| 763 | lemma xt4: "(a::'a::order) > f b ==> (b::'b::order) >= c ==> | |
| 764 | (!!x y. x >= y ==> f x >= f y) ==> a > f c" | |
| 765 | by (subgoal_tac "f b >= f c", force, force) | |
| 766 | ||
| 767 | lemma xt5: "(a::'a::order) > b ==> (f b::'b::order) >= c==> | |
| 768 | (!!x y. x > y ==> f x > f y) ==> f a > c" | |
| 769 | by (subgoal_tac "f a > f b", force, force) | |
| 770 | ||
| 771 | lemma xt6: "(a::'a::order) >= f b ==> b > c ==> | |
| 772 | (!!x y. x > y ==> f x > f y) ==> a > f c" | |
| 773 | by (subgoal_tac "f b > f c", force, force) | |
| 774 | ||
| 775 | lemma xt7: "(a::'a::order) >= b ==> (f b::'b::order) > c ==> | |
| 776 | (!!x y. x >= y ==> f x >= f y) ==> f a > c" | |
| 777 | by (subgoal_tac "f a >= f b", force, force) | |
| 778 | ||
| 779 | lemma xt8: "(a::'a::order) > f b ==> (b::'b::order) > c ==> | |
| 780 | (!!x y. x > y ==> f x > f y) ==> a > f c" | |
| 781 | by (subgoal_tac "f b > f c", force, force) | |
| 782 | ||
| 783 | lemma xt9: "(a::'a::order) > b ==> (f b::'b::order) > c ==> | |
| 784 | (!!x y. x > y ==> f x > f y) ==> f a > c" | |
| 785 | by (subgoal_tac "f a > f b", force, force) | |
| 786 | ||
| 787 | lemmas xtrans = xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 | |
| 788 | ||
| 789 | (* | |
| 790 | Since "a >= b" abbreviates "b <= a", the abbreviation "..." stands | |
| 791 | for the wrong thing in an Isar proof. | |
| 792 | ||
| 793 | The extra transitivity rules can be used as follows: | |
| 794 | ||
| 795 | lemma "(a::'a::order) > z" | |
| 796 | proof - | |
| 797 | have "a >= b" (is "_ >= ?rhs") | |
| 798 | sorry | |
| 799 | also have "?rhs >= c" (is "_ >= ?rhs") | |
| 800 | sorry | |
| 801 | also (xtrans) have "?rhs = d" (is "_ = ?rhs") | |
| 802 | sorry | |
| 803 | also (xtrans) have "?rhs >= e" (is "_ >= ?rhs") | |
| 804 | sorry | |
| 805 | also (xtrans) have "?rhs > f" (is "_ > ?rhs") | |
| 806 | sorry | |
| 807 | also (xtrans) have "?rhs > z" | |
| 808 | sorry | |
| 809 | finally (xtrans) show ?thesis . | |
| 810 | qed | |
| 811 | ||
| 812 | Alternatively, one can use "declare xtrans [trans]" and then | |
| 813 | leave out the "(xtrans)" above. | |
| 814 | *) | |
| 815 | ||
| 21546 | 816 | subsection {* Order on bool *}
 | 
| 817 | ||
| 22886 | 818 | instance bool :: order | 
| 21546 | 819 | le_bool_def: "P \<le> Q \<equiv> P \<longrightarrow> Q" | 
| 820 | less_bool_def: "P < Q \<equiv> P \<le> Q \<and> P \<noteq> Q" | |
| 22916 | 821 | by intro_classes (auto simp add: le_bool_def less_bool_def) | 
| 21546 | 822 | |
| 823 | lemma le_boolI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<le> Q" | |
| 23212 | 824 | by (simp add: le_bool_def) | 
| 21546 | 825 | |
| 826 | lemma le_boolI': "P \<longrightarrow> Q \<Longrightarrow> P \<le> Q" | |
| 23212 | 827 | by (simp add: le_bool_def) | 
| 21546 | 828 | |
| 829 | lemma le_boolE: "P \<le> Q \<Longrightarrow> P \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R" | |
| 23212 | 830 | by (simp add: le_bool_def) | 
| 21546 | 831 | |
| 832 | lemma le_boolD: "P \<le> Q \<Longrightarrow> P \<longrightarrow> Q" | |
| 23212 | 833 | by (simp add: le_bool_def) | 
| 21546 | 834 | |
| 22348 | 835 | lemma [code func]: | 
| 836 | "False \<le> b \<longleftrightarrow> True" | |
| 837 | "True \<le> b \<longleftrightarrow> b" | |
| 838 | "False < b \<longleftrightarrow> b" | |
| 839 | "True < b \<longleftrightarrow> False" | |
| 840 | unfolding le_bool_def less_bool_def by simp_all | |
| 841 | ||
| 22424 | 842 | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 843 | subsection {* Monotonicity, syntactic least value operator and min/max *}
 | 
| 21083 | 844 | |
| 21216 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 haftmann parents: 
21204diff
changeset | 845 | locale mono = | 
| 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 haftmann parents: 
21204diff
changeset | 846 | fixes f | 
| 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 haftmann parents: 
21204diff
changeset | 847 | assumes mono: "A \<le> B \<Longrightarrow> f A \<le> f B" | 
| 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 haftmann parents: 
21204diff
changeset | 848 | |
| 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 haftmann parents: 
21204diff
changeset | 849 | lemmas monoI [intro?] = mono.intro | 
| 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 haftmann parents: 
21204diff
changeset | 850 | and monoD [dest?] = mono.mono | 
| 21083 | 851 | |
| 852 | constdefs | |
| 853 |   Least :: "('a::ord => bool) => 'a"               (binder "LEAST " 10)
 | |
| 854 | "Least P == THE x. P x & (ALL y. P y --> x <= y)" | |
| 855 |     -- {* We can no longer use LeastM because the latter requires Hilbert-AC. *}
 | |
| 856 | ||
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 857 | lemma LeastI2_order: | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 858 | "[| P (x::'a::order); | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 859 | !!y. P y ==> x <= y; | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 860 | !!x. [| P x; ALL y. P y --> x \<le> y |] ==> Q x |] | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 861 | ==> Q (Least P)" | 
| 23212 | 862 | apply (unfold Least_def) | 
| 863 | apply (rule theI2) | |
| 864 | apply (blast intro: order_antisym)+ | |
| 865 | done | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 866 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 867 | lemma Least_equality: | 
| 23212 | 868 | "[| P (k::'a::order); !!x. P x ==> k <= x |] ==> (LEAST x. P x) = k" | 
| 869 | apply (simp add: Least_def) | |
| 870 | apply (rule the_equality) | |
| 871 | apply (auto intro!: order_antisym) | |
| 872 | done | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 873 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 874 | lemma min_leastL: "(!!x. least <= x) ==> min least x = least" | 
| 23212 | 875 | by (simp add: min_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 876 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 877 | lemma max_leastL: "(!!x. least <= x) ==> max least x = x" | 
| 23212 | 878 | by (simp add: max_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 879 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 880 | lemma min_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> min x least = least" | 
| 23212 | 881 | apply (simp add: min_def) | 
| 882 | apply (blast intro: order_antisym) | |
| 883 | done | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 884 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 885 | lemma max_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> max x least = x" | 
| 23212 | 886 | apply (simp add: max_def) | 
| 887 | apply (blast intro: order_antisym) | |
| 888 | done | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 889 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 890 | lemma min_of_mono: | 
| 23212 | 891 | "(!!x y. (f x <= f y) = (x <= y)) ==> min (f m) (f n) = f (min m n)" | 
| 892 | by (simp add: min_def) | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 893 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 894 | lemma max_of_mono: | 
| 23212 | 895 | "(!!x y. (f x <= f y) = (x <= y)) ==> max (f m) (f n) = f (max m n)" | 
| 896 | by (simp add: max_def) | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 897 | |
| 22548 | 898 | |
| 899 | subsection {* legacy ML bindings *}
 | |
| 21673 | 900 | |
| 901 | ML {*
 | |
| 22548 | 902 | val monoI = @{thm monoI};
 | 
| 22886 | 903 | *} | 
| 21673 | 904 | |
| 15524 | 905 | end |