| author | nipkow | 
| Wed, 17 Jun 2015 17:21:11 +0200 | |
| changeset 60495 | d7ff0a1df90a | 
| parent 59726 | 64c2bb331035 | 
| child 60758 | d8d85a8172b5 | 
| permissions | -rw-r--r-- | 
| 55059 | 1 | (* Title: HOL/BNF_Def.thy | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 2 | Author: Dmitriy Traytel, TU Muenchen | 
| 57398 | 3 | Author: Jasmin Blanchette, TU Muenchen | 
| 57698 | 4 | Copyright 2012, 2013, 2014 | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 5 | |
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 6 | Definition of bounded natural functors. | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 7 | *) | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 8 | |
| 58889 | 9 | section {* Definition of Bounded Natural Functors *}
 | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 10 | |
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 11 | theory BNF_Def | 
| 57398 | 12 | imports BNF_Cardinal_Arithmetic Fun_Def_Base | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 13 | keywords | 
| 49286 | 14 | "print_bnfs" :: diag and | 
| 51836 
4d6dcd51dd52
renamed "bnf_def" keyword to "bnf" (since it's not a definition, but rather a registration)
 blanchet parents: 
49537diff
changeset | 15 | "bnf" :: thy_goal | 
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 16 | begin | 
| 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 17 | |
| 58104 | 18 | lemma Collect_splitD: "x \<in> Collect (split A) \<Longrightarrow> A (fst x) (snd x)" | 
| 19 | by auto | |
| 20 | ||
| 58916 | 21 | inductive | 
| 22 |    rel_sum :: "('a \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> 'a + 'b \<Rightarrow> 'c + 'd \<Rightarrow> bool" for R1 R2
 | |
| 58446 | 23 | where | 
| 58916 | 24 | "R1 a c \<Longrightarrow> rel_sum R1 R2 (Inl a) (Inl c)" | 
| 25 | | "R2 b d \<Longrightarrow> rel_sum R1 R2 (Inr b) (Inr d)" | |
| 26 | ||
| 27 | hide_fact rel_sum_def | |
| 58446 | 28 | |
| 29 | definition | |
| 57398 | 30 |   rel_fun :: "('a \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'd) \<Rightarrow> bool"
 | 
| 31 | where | |
| 32 | "rel_fun A B = (\<lambda>f g. \<forall>x y. A x y \<longrightarrow> B (f x) (g y))" | |
| 33 | ||
| 34 | lemma rel_funI [intro]: | |
| 35 | assumes "\<And>x y. A x y \<Longrightarrow> B (f x) (g y)" | |
| 36 | shows "rel_fun A B f g" | |
| 37 | using assms by (simp add: rel_fun_def) | |
| 38 | ||
| 39 | lemma rel_funD: | |
| 40 | assumes "rel_fun A B f g" and "A x y" | |
| 41 | shows "B (f x) (g y)" | |
| 42 | using assms by (simp add: rel_fun_def) | |
| 43 | ||
| 59513 | 44 | lemma rel_fun_mono: | 
| 45 | "\<lbrakk> rel_fun X A f g; \<And>x y. Y x y \<longrightarrow> X x y; \<And>x y. A x y \<Longrightarrow> B x y \<rbrakk> \<Longrightarrow> rel_fun Y B f g" | |
| 46 | by(simp add: rel_fun_def) | |
| 47 | ||
| 48 | lemma rel_fun_mono' [mono]: | |
| 49 | "\<lbrakk> \<And>x y. Y x y \<longrightarrow> X x y; \<And>x y. A x y \<longrightarrow> B x y \<rbrakk> \<Longrightarrow> rel_fun X A f g \<longrightarrow> rel_fun Y B f g" | |
| 50 | by(simp add: rel_fun_def) | |
| 51 | ||
| 58104 | 52 | definition rel_set :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> bool"
 | 
| 53 | where "rel_set R = (\<lambda>A B. (\<forall>x\<in>A. \<exists>y\<in>B. R x y) \<and> (\<forall>y\<in>B. \<exists>x\<in>A. R x y))" | |
| 54 | ||
| 55 | lemma rel_setI: | |
| 56 | assumes "\<And>x. x \<in> A \<Longrightarrow> \<exists>y\<in>B. R x y" | |
| 57 | assumes "\<And>y. y \<in> B \<Longrightarrow> \<exists>x\<in>A. R x y" | |
| 58 | shows "rel_set R A B" | |
| 59 | using assms unfolding rel_set_def by simp | |
| 60 | ||
| 61 | lemma predicate2_transferD: | |
| 62 |    "\<lbrakk>rel_fun R1 (rel_fun R2 (op =)) P Q; a \<in> A; b \<in> B; A \<subseteq> {(x, y). R1 x y}; B \<subseteq> {(x, y). R2 x y}\<rbrakk> \<Longrightarrow>
 | |
| 63 | P (fst a) (fst b) \<longleftrightarrow> Q (snd a) (snd b)" | |
| 64 | unfolding rel_fun_def by (blast dest!: Collect_splitD) | |
| 65 | ||
| 57398 | 66 | definition collect where | 
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 67 | "collect F x = (\<Union>f \<in> F. f x)" | 
| 57398 | 68 | |
| 69 | lemma fstI: "x = (y, z) \<Longrightarrow> fst x = y" | |
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 70 | by simp | 
| 57398 | 71 | |
| 72 | lemma sndI: "x = (y, z) \<Longrightarrow> snd x = z" | |
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 73 | by simp | 
| 57398 | 74 | |
| 75 | lemma bijI': "\<lbrakk>\<And>x y. (f x = f y) = (x = y); \<And>y. \<exists>x. y = f x\<rbrakk> \<Longrightarrow> bij f" | |
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 76 | unfolding bij_def inj_on_def by auto blast | 
| 57398 | 77 | |
| 78 | (* Operator: *) | |
| 79 | definition "Gr A f = {(a, f a) | a. a \<in> A}"
 | |
| 80 | ||
| 81 | definition "Grp A f = (\<lambda>a b. b = f a \<and> a \<in> A)" | |
| 82 | ||
| 83 | definition vimage2p where | |
| 84 | "vimage2p f g R = (\<lambda>x y. R (f x) (g y))" | |
| 85 | ||
| 56635 | 86 | lemma collect_comp: "collect F \<circ> g = collect ((\<lambda>f. f \<circ> g) ` F)" | 
| 55066 | 87 | by (rule ext) (auto simp only: comp_apply collect_def) | 
| 51893 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 88 | |
| 57641 
dc59f147b27d
more robust notation BNF_Def.convol, which is private to main HOL, but may cause syntax ambiguities nonetheless (e.g. List.thy);
 wenzelm parents: 
57398diff
changeset | 89 | definition convol ("\<langle>(_,/ _)\<rangle>") where
 | 
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 90 | "\<langle>f, g\<rangle> \<equiv> \<lambda>a. (f a, g a)" | 
| 49495 | 91 | |
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 92 | lemma fst_convol: "fst \<circ> \<langle>f, g\<rangle> = f" | 
| 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 93 | apply(rule ext) | 
| 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 94 | unfolding convol_def by simp | 
| 49495 | 95 | |
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 96 | lemma snd_convol: "snd \<circ> \<langle>f, g\<rangle> = g" | 
| 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 97 | apply(rule ext) | 
| 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 98 | unfolding convol_def by simp | 
| 49495 | 99 | |
| 51893 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 100 | lemma convol_mem_GrpI: | 
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 101 | "x \<in> A \<Longrightarrow> \<langle>id, g\<rangle> x \<in> (Collect (split (Grp A g)))" | 
| 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 102 | unfolding convol_def Grp_def by auto | 
| 51893 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 103 | |
| 49312 | 104 | definition csquare where | 
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 105 | "csquare A f1 f2 p1 p2 \<longleftrightarrow> (\<forall> a \<in> A. f1 (p1 a) = f2 (p2 a))" | 
| 49312 | 106 | |
| 51893 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 107 | lemma eq_alt: "op = = Grp UNIV id" | 
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 108 | unfolding Grp_def by auto | 
| 51893 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 109 | |
| 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 110 | lemma leq_conversepI: "R = op = \<Longrightarrow> R \<le> R^--1" | 
| 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 111 | by auto | 
| 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 112 | |
| 54841 
af71b753c459
express weak pullback property of bnfs only in terms of the relator
 traytel parents: 
54581diff
changeset | 113 | lemma leq_OOI: "R = op = \<Longrightarrow> R \<le> R OO R" | 
| 51893 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 114 | by auto | 
| 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 115 | |
| 53561 | 116 | lemma OO_Grp_alt: "(Grp A f)^--1 OO Grp A g = (\<lambda>x y. \<exists>z. z \<in> A \<and> f z = x \<and> g z = y)" | 
| 117 | unfolding Grp_def by auto | |
| 118 | ||
| 51893 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 119 | lemma Grp_UNIV_id: "f = id \<Longrightarrow> (Grp UNIV f)^--1 OO Grp UNIV f = Grp UNIV f" | 
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 120 | unfolding Grp_def by auto | 
| 51893 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 121 | |
| 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 122 | lemma Grp_UNIV_idI: "x = y \<Longrightarrow> Grp UNIV id x y" | 
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 123 | unfolding Grp_def by auto | 
| 51893 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 124 | |
| 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 125 | lemma Grp_mono: "A \<le> B \<Longrightarrow> Grp A f \<le> Grp B f" | 
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 126 | unfolding Grp_def by auto | 
| 51893 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 127 | |
| 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 128 | lemma GrpI: "\<lbrakk>f x = y; x \<in> A\<rbrakk> \<Longrightarrow> Grp A f x y" | 
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 129 | unfolding Grp_def by auto | 
| 51893 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 130 | |
| 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 131 | lemma GrpE: "Grp A f x y \<Longrightarrow> (\<lbrakk>f x = y; x \<in> A\<rbrakk> \<Longrightarrow> R) \<Longrightarrow> R" | 
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 132 | unfolding Grp_def by auto | 
| 51893 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 133 | |
| 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 134 | lemma Collect_split_Grp_eqD: "z \<in> Collect (split (Grp A f)) \<Longrightarrow> (f \<circ> fst) z = snd z" | 
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 135 | unfolding Grp_def comp_def by auto | 
| 51893 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 136 | |
| 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 137 | lemma Collect_split_Grp_inD: "z \<in> Collect (split (Grp A f)) \<Longrightarrow> fst z \<in> A" | 
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 138 | unfolding Grp_def comp_def by auto | 
| 51893 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 139 | |
| 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 140 | definition "pick_middlep P Q a c = (SOME b. P a b \<and> Q b c)" | 
| 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 141 | |
| 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 142 | lemma pick_middlep: | 
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 143 | "(P OO Q) a c \<Longrightarrow> P a (pick_middlep P Q a c) \<and> Q (pick_middlep P Q a c) c" | 
| 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 144 | unfolding pick_middlep_def apply(rule someI_ex) by auto | 
| 49312 | 145 | |
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 146 | definition fstOp where | 
| 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 147 | "fstOp P Q ac = (fst ac, pick_middlep P Q (fst ac) (snd ac))" | 
| 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 148 | |
| 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 149 | definition sndOp where | 
| 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 150 | "sndOp P Q ac = (pick_middlep P Q (fst ac) (snd ac), (snd ac))" | 
| 51893 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 151 | |
| 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 152 | lemma fstOp_in: "ac \<in> Collect (split (P OO Q)) \<Longrightarrow> fstOp P Q ac \<in> Collect (split P)" | 
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 153 | unfolding fstOp_def mem_Collect_eq | 
| 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 154 | by (subst (asm) surjective_pairing, unfold prod.case) (erule pick_middlep[THEN conjunct1]) | 
| 49312 | 155 | |
| 51893 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 156 | lemma fst_fstOp: "fst bc = (fst \<circ> fstOp P Q) bc" | 
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 157 | unfolding comp_def fstOp_def by simp | 
| 51893 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 158 | |
| 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 159 | lemma snd_sndOp: "snd bc = (snd \<circ> sndOp P Q) bc" | 
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 160 | unfolding comp_def sndOp_def by simp | 
| 51893 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 161 | |
| 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 162 | lemma sndOp_in: "ac \<in> Collect (split (P OO Q)) \<Longrightarrow> sndOp P Q ac \<in> Collect (split Q)" | 
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 163 | unfolding sndOp_def mem_Collect_eq | 
| 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 164 | by (subst (asm) surjective_pairing, unfold prod.case) (erule pick_middlep[THEN conjunct2]) | 
| 51893 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 165 | |
| 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 166 | lemma csquare_fstOp_sndOp: | 
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 167 | "csquare (Collect (split (P OO Q))) snd fst (fstOp P Q) (sndOp P Q)" | 
| 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 168 | unfolding csquare_def fstOp_def sndOp_def using pick_middlep by simp | 
| 51893 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 169 | |
| 56635 | 170 | lemma snd_fst_flip: "snd xy = (fst \<circ> (%(x, y). (y, x))) xy" | 
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 171 | by (simp split: prod.split) | 
| 49312 | 172 | |
| 56635 | 173 | lemma fst_snd_flip: "fst xy = (snd \<circ> (%(x, y). (y, x))) xy" | 
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 174 | by (simp split: prod.split) | 
| 49312 | 175 | |
| 51893 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 176 | lemma flip_pred: "A \<subseteq> Collect (split (R ^--1)) \<Longrightarrow> (%(x, y). (y, x)) ` A \<subseteq> Collect (split R)" | 
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 177 | by auto | 
| 51893 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 178 | |
| 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 179 | lemma Collect_split_mono: "A \<le> B \<Longrightarrow> Collect (split A) \<subseteq> Collect (split B)" | 
| 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 180 | by auto | 
| 
596baae88a88
got rid of the set based relator---use (binary) predicate based relator instead
 traytel parents: 
51836diff
changeset | 181 | |
| 51916 | 182 | lemma Collect_split_mono_strong: | 
| 55163 | 183 | "\<lbrakk>X = fst ` A; Y = snd ` A; \<forall>a\<in>X. \<forall>b \<in> Y. P a b \<longrightarrow> Q a b; A \<subseteq> Collect (split P)\<rbrakk> \<Longrightarrow> | 
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 184 | A \<subseteq> Collect (split Q)" | 
| 51916 | 185 | by fastforce | 
| 186 | ||
| 55163 | 187 | |
| 51917 
f964a9887713
store proper theorems even for fixed points that have no passive live variables
 traytel parents: 
51916diff
changeset | 188 | lemma predicate2_eqD: "A = B \<Longrightarrow> A a b \<longleftrightarrow> B a b" | 
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 189 | by simp | 
| 49537 
fe1deee434b6
generate "rel_as_srel" and "rel_flip" properties
 blanchet parents: 
49510diff
changeset | 190 | |
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 191 | lemma case_sum_o_inj: "case_sum f g \<circ> Inl = f" "case_sum f g \<circ> Inr = g" | 
| 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 192 | by auto | 
| 52635 
4f84b730c489
got rid of in_bd BNF property (derivable from set_bd+map_cong+map_comp+map_id)
 traytel parents: 
51917diff
changeset | 193 | |
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 194 | lemma map_sum_o_inj: "map_sum f g o Inl = Inl o f" "map_sum f g o Inr = Inr o g" | 
| 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 195 | by auto | 
| 57802 | 196 | |
| 52635 
4f84b730c489
got rid of in_bd BNF property (derivable from set_bd+map_cong+map_comp+map_id)
 traytel parents: 
51917diff
changeset | 197 | lemma card_order_csum_cone_cexp_def: | 
| 
4f84b730c489
got rid of in_bd BNF property (derivable from set_bd+map_cong+map_comp+map_id)
 traytel parents: 
51917diff
changeset | 198 |   "card_order r \<Longrightarrow> ( |A1| +c cone) ^c r = |Func UNIV (Inl ` A1 \<union> {Inr ()})|"
 | 
| 
4f84b730c489
got rid of in_bd BNF property (derivable from set_bd+map_cong+map_comp+map_id)
 traytel parents: 
51917diff
changeset | 199 | unfolding cexp_def cone_def Field_csum Field_card_of by (auto dest: Field_card_order) | 
| 
4f84b730c489
got rid of in_bd BNF property (derivable from set_bd+map_cong+map_comp+map_id)
 traytel parents: 
51917diff
changeset | 200 | |
| 
4f84b730c489
got rid of in_bd BNF property (derivable from set_bd+map_cong+map_comp+map_id)
 traytel parents: 
51917diff
changeset | 201 | lemma If_the_inv_into_in_Func: | 
| 
4f84b730c489
got rid of in_bd BNF property (derivable from set_bd+map_cong+map_comp+map_id)
 traytel parents: 
51917diff
changeset | 202 |   "\<lbrakk>inj_on g C; C \<subseteq> B \<union> {x}\<rbrakk> \<Longrightarrow>
 | 
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 203 |    (\<lambda>i. if i \<in> g ` C then the_inv_into C g i else x) \<in> Func UNIV (B \<union> {x})"
 | 
| 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 204 | unfolding Func_def by (auto dest: the_inv_into_into) | 
| 52635 
4f84b730c489
got rid of in_bd BNF property (derivable from set_bd+map_cong+map_comp+map_id)
 traytel parents: 
51917diff
changeset | 205 | |
| 
4f84b730c489
got rid of in_bd BNF property (derivable from set_bd+map_cong+map_comp+map_id)
 traytel parents: 
51917diff
changeset | 206 | lemma If_the_inv_into_f_f: | 
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 207 | "\<lbrakk>i \<in> C; inj_on g C\<rbrakk> \<Longrightarrow> ((\<lambda>i. if i \<in> g ` C then the_inv_into C g i else x) \<circ> g) i = id i" | 
| 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 208 | unfolding Func_def by (auto elim: the_inv_into_f_f) | 
| 52635 
4f84b730c489
got rid of in_bd BNF property (derivable from set_bd+map_cong+map_comp+map_id)
 traytel parents: 
51917diff
changeset | 209 | |
| 56635 | 210 | lemma the_inv_f_o_f_id: "inj f \<Longrightarrow> (the_inv f \<circ> f) z = id z" | 
| 211 | by (simp add: the_inv_f_f) | |
| 212 | ||
| 52731 | 213 | lemma vimage2pI: "R (f x) (g y) \<Longrightarrow> vimage2p f g R x y" | 
| 214 | unfolding vimage2p_def by - | |
| 52719 
480a3479fa47
transfer rule for map (not yet registered as a transfer rule)
 traytel parents: 
52660diff
changeset | 215 | |
| 55945 | 216 | lemma rel_fun_iff_leq_vimage2p: "(rel_fun R S) f g = (R \<le> vimage2p f g S)" | 
| 217 | unfolding rel_fun_def vimage2p_def by auto | |
| 52719 
480a3479fa47
transfer rule for map (not yet registered as a transfer rule)
 traytel parents: 
52660diff
changeset | 218 | |
| 57641 
dc59f147b27d
more robust notation BNF_Def.convol, which is private to main HOL, but may cause syntax ambiguities nonetheless (e.g. List.thy);
 wenzelm parents: 
57398diff
changeset | 219 | lemma convol_image_vimage2p: "\<langle>f \<circ> fst, g \<circ> snd\<rangle> ` Collect (split (vimage2p f g R)) \<subseteq> Collect (split R)" | 
| 52731 | 220 | unfolding vimage2p_def convol_def by auto | 
| 52719 
480a3479fa47
transfer rule for map (not yet registered as a transfer rule)
 traytel parents: 
52660diff
changeset | 221 | |
| 54961 | 222 | lemma vimage2p_Grp: "vimage2p f g P = Grp UNIV f OO P OO (Grp UNIV g)\<inverse>\<inverse>" | 
| 223 | unfolding vimage2p_def Grp_def by auto | |
| 224 | ||
| 58106 | 225 | lemma subst_Pair: "P x y \<Longrightarrow> a = (x, y) \<Longrightarrow> P (fst a) (snd a)" | 
| 226 | by simp | |
| 227 | ||
| 58352 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 228 | lemma comp_apply_eq: "f (g x) = h (k x) \<Longrightarrow> (f \<circ> g) x = (h \<circ> k) x" | 
| 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 229 | unfolding comp_apply by assumption | 
| 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 blanchet parents: 
58106diff
changeset | 230 | |
| 59726 | 231 | lemma refl_ge_eq: "(\<And>x. R x x) \<Longrightarrow> op = \<le> R" | 
| 232 | by auto | |
| 233 | ||
| 234 | lemma ge_eq_refl: "op = \<le> R \<Longrightarrow> R x x" | |
| 235 | by auto | |
| 236 | ||
| 57398 | 237 | ML_file "Tools/BNF/bnf_util.ML" | 
| 238 | ML_file "Tools/BNF/bnf_tactics.ML" | |
| 55062 | 239 | ML_file "Tools/BNF/bnf_def_tactics.ML" | 
| 240 | ML_file "Tools/BNF/bnf_def.ML" | |
| 49309 
f20b24214ac2
split basic BNFs into really basic ones and others, and added Andreas Lochbihler's "option" BNF
 blanchet parents: 
49286diff
changeset | 241 | |
| 48975 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 blanchet parents: diff
changeset | 242 | end |