74101
|
1 |
(* Title: HOL/Boolean_Algebra.thy
|
|
2 |
Author: Brian Huffman
|
|
3 |
*)
|
|
4 |
|
|
5 |
section \<open>Abstract boolean Algebras\<close>
|
|
6 |
|
|
7 |
theory Boolean_Algebra
|
|
8 |
imports Lattices
|
|
9 |
begin
|
|
10 |
|
|
11 |
locale boolean_algebra = conj: abel_semigroup "(\<^bold>\<sqinter>)" + disj: abel_semigroup "(\<^bold>\<squnion>)"
|
|
12 |
for conj :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "\<^bold>\<sqinter>" 70)
|
|
13 |
and disj :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "\<^bold>\<squnion>" 65) +
|
|
14 |
fixes compl :: "'a \<Rightarrow> 'a" ("\<^bold>- _" [81] 80)
|
|
15 |
and zero :: "'a" ("\<^bold>0")
|
|
16 |
and one :: "'a" ("\<^bold>1")
|
|
17 |
assumes conj_disj_distrib: "x \<^bold>\<sqinter> (y \<^bold>\<squnion> z) = (x \<^bold>\<sqinter> y) \<^bold>\<squnion> (x \<^bold>\<sqinter> z)"
|
|
18 |
and disj_conj_distrib: "x \<^bold>\<squnion> (y \<^bold>\<sqinter> z) = (x \<^bold>\<squnion> y) \<^bold>\<sqinter> (x \<^bold>\<squnion> z)"
|
|
19 |
and conj_one_right: "x \<^bold>\<sqinter> \<^bold>1 = x"
|
|
20 |
and disj_zero_right: "x \<^bold>\<squnion> \<^bold>0 = x"
|
|
21 |
and conj_cancel_right [simp]: "x \<^bold>\<sqinter> \<^bold>- x = \<^bold>0"
|
|
22 |
and disj_cancel_right [simp]: "x \<^bold>\<squnion> \<^bold>- x = \<^bold>1"
|
|
23 |
begin
|
|
24 |
|
|
25 |
sublocale conj: semilattice_neutr "(\<^bold>\<sqinter>)" "\<^bold>1"
|
|
26 |
proof
|
|
27 |
show "x \<^bold>\<sqinter> \<^bold>1 = x" for x
|
|
28 |
by (fact conj_one_right)
|
|
29 |
show "x \<^bold>\<sqinter> x = x" for x
|
|
30 |
proof -
|
|
31 |
have "x \<^bold>\<sqinter> x = (x \<^bold>\<sqinter> x) \<^bold>\<squnion> \<^bold>0"
|
|
32 |
by (simp add: disj_zero_right)
|
|
33 |
also have "\<dots> = (x \<^bold>\<sqinter> x) \<^bold>\<squnion> (x \<^bold>\<sqinter> \<^bold>- x)"
|
|
34 |
by simp
|
|
35 |
also have "\<dots> = x \<^bold>\<sqinter> (x \<^bold>\<squnion> \<^bold>- x)"
|
|
36 |
by (simp only: conj_disj_distrib)
|
|
37 |
also have "\<dots> = x \<^bold>\<sqinter> \<^bold>1"
|
|
38 |
by simp
|
|
39 |
also have "\<dots> = x"
|
|
40 |
by (simp add: conj_one_right)
|
|
41 |
finally show ?thesis .
|
|
42 |
qed
|
|
43 |
qed
|
|
44 |
|
|
45 |
sublocale disj: semilattice_neutr "(\<^bold>\<squnion>)" "\<^bold>0"
|
|
46 |
proof
|
|
47 |
show "x \<^bold>\<squnion> \<^bold>0 = x" for x
|
|
48 |
by (fact disj_zero_right)
|
|
49 |
show "x \<^bold>\<squnion> x = x" for x
|
|
50 |
proof -
|
|
51 |
have "x \<^bold>\<squnion> x = (x \<^bold>\<squnion> x) \<^bold>\<sqinter> \<^bold>1"
|
|
52 |
by simp
|
|
53 |
also have "\<dots> = (x \<^bold>\<squnion> x) \<^bold>\<sqinter> (x \<^bold>\<squnion> \<^bold>- x)"
|
|
54 |
by simp
|
|
55 |
also have "\<dots> = x \<^bold>\<squnion> (x \<^bold>\<sqinter> \<^bold>- x)"
|
|
56 |
by (simp only: disj_conj_distrib)
|
|
57 |
also have "\<dots> = x \<^bold>\<squnion> \<^bold>0"
|
|
58 |
by simp
|
|
59 |
also have "\<dots> = x"
|
|
60 |
by (simp add: disj_zero_right)
|
|
61 |
finally show ?thesis .
|
|
62 |
qed
|
|
63 |
qed
|
|
64 |
|
|
65 |
|
|
66 |
subsection \<open>Complement\<close>
|
|
67 |
|
|
68 |
lemma complement_unique:
|
|
69 |
assumes 1: "a \<^bold>\<sqinter> x = \<^bold>0"
|
|
70 |
assumes 2: "a \<^bold>\<squnion> x = \<^bold>1"
|
|
71 |
assumes 3: "a \<^bold>\<sqinter> y = \<^bold>0"
|
|
72 |
assumes 4: "a \<^bold>\<squnion> y = \<^bold>1"
|
|
73 |
shows "x = y"
|
|
74 |
proof -
|
|
75 |
from 1 3 have "(a \<^bold>\<sqinter> x) \<^bold>\<squnion> (x \<^bold>\<sqinter> y) = (a \<^bold>\<sqinter> y) \<^bold>\<squnion> (x \<^bold>\<sqinter> y)"
|
|
76 |
by simp
|
|
77 |
then have "(x \<^bold>\<sqinter> a) \<^bold>\<squnion> (x \<^bold>\<sqinter> y) = (y \<^bold>\<sqinter> a) \<^bold>\<squnion> (y \<^bold>\<sqinter> x)"
|
|
78 |
by (simp add: ac_simps)
|
|
79 |
then have "x \<^bold>\<sqinter> (a \<^bold>\<squnion> y) = y \<^bold>\<sqinter> (a \<^bold>\<squnion> x)"
|
|
80 |
by (simp add: conj_disj_distrib)
|
|
81 |
with 2 4 have "x \<^bold>\<sqinter> \<^bold>1 = y \<^bold>\<sqinter> \<^bold>1"
|
|
82 |
by simp
|
|
83 |
then show "x = y"
|
|
84 |
by simp
|
|
85 |
qed
|
|
86 |
|
|
87 |
lemma compl_unique: "x \<^bold>\<sqinter> y = \<^bold>0 \<Longrightarrow> x \<^bold>\<squnion> y = \<^bold>1 \<Longrightarrow> \<^bold>- x = y"
|
|
88 |
by (rule complement_unique [OF conj_cancel_right disj_cancel_right])
|
|
89 |
|
|
90 |
lemma double_compl [simp]: "\<^bold>- (\<^bold>- x) = x"
|
|
91 |
proof (rule compl_unique)
|
|
92 |
show "\<^bold>- x \<^bold>\<sqinter> x = \<^bold>0"
|
|
93 |
by (simp only: conj_cancel_right conj.commute)
|
|
94 |
show "\<^bold>- x \<^bold>\<squnion> x = \<^bold>1"
|
|
95 |
by (simp only: disj_cancel_right disj.commute)
|
|
96 |
qed
|
|
97 |
|
|
98 |
lemma compl_eq_compl_iff [simp]:
|
|
99 |
\<open>\<^bold>- x = \<^bold>- y \<longleftrightarrow> x = y\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>)
|
|
100 |
proof
|
|
101 |
assume \<open>?Q\<close>
|
|
102 |
then show ?P by simp
|
|
103 |
next
|
|
104 |
assume \<open>?P\<close>
|
|
105 |
then have \<open>\<^bold>- (\<^bold>- x) = \<^bold>- (\<^bold>- y)\<close>
|
|
106 |
by simp
|
|
107 |
then show ?Q
|
|
108 |
by simp
|
|
109 |
qed
|
|
110 |
|
|
111 |
|
|
112 |
subsection \<open>Conjunction\<close>
|
|
113 |
|
|
114 |
lemma conj_zero_right [simp]: "x \<^bold>\<sqinter> \<^bold>0 = \<^bold>0"
|
|
115 |
using conj.left_idem conj_cancel_right by fastforce
|
|
116 |
|
|
117 |
lemma compl_one [simp]: "\<^bold>- \<^bold>1 = \<^bold>0"
|
|
118 |
by (rule compl_unique [OF conj_zero_right disj_zero_right])
|
|
119 |
|
|
120 |
lemma conj_zero_left [simp]: "\<^bold>0 \<^bold>\<sqinter> x = \<^bold>0"
|
|
121 |
by (subst conj.commute) (rule conj_zero_right)
|
|
122 |
|
|
123 |
lemma conj_cancel_left [simp]: "\<^bold>- x \<^bold>\<sqinter> x = \<^bold>0"
|
|
124 |
by (subst conj.commute) (rule conj_cancel_right)
|
|
125 |
|
|
126 |
lemma conj_disj_distrib2: "(y \<^bold>\<squnion> z) \<^bold>\<sqinter> x = (y \<^bold>\<sqinter> x) \<^bold>\<squnion> (z \<^bold>\<sqinter> x)"
|
|
127 |
by (simp only: conj.commute conj_disj_distrib)
|
|
128 |
|
|
129 |
lemmas conj_disj_distribs = conj_disj_distrib conj_disj_distrib2
|
|
130 |
|
|
131 |
lemma conj_assoc: "(x \<^bold>\<sqinter> y) \<^bold>\<sqinter> z = x \<^bold>\<sqinter> (y \<^bold>\<sqinter> z)"
|
|
132 |
by (fact ac_simps)
|
|
133 |
|
|
134 |
lemma conj_commute: "x \<^bold>\<sqinter> y = y \<^bold>\<sqinter> x"
|
|
135 |
by (fact ac_simps)
|
|
136 |
|
|
137 |
lemmas conj_left_commute = conj.left_commute
|
|
138 |
lemmas conj_ac = conj.assoc conj.commute conj.left_commute
|
|
139 |
|
|
140 |
lemma conj_one_left: "\<^bold>1 \<^bold>\<sqinter> x = x"
|
|
141 |
by (fact conj.left_neutral)
|
|
142 |
|
|
143 |
lemma conj_left_absorb: "x \<^bold>\<sqinter> (x \<^bold>\<sqinter> y) = x \<^bold>\<sqinter> y"
|
|
144 |
by (fact conj.left_idem)
|
|
145 |
|
|
146 |
lemma conj_absorb: "x \<^bold>\<sqinter> x = x"
|
|
147 |
by (fact conj.idem)
|
|
148 |
|
|
149 |
|
|
150 |
subsection \<open>Disjunction\<close>
|
|
151 |
|
|
152 |
interpretation dual: boolean_algebra "(\<^bold>\<squnion>)" "(\<^bold>\<sqinter>)" compl \<open>\<^bold>1\<close> \<open>\<^bold>0\<close>
|
|
153 |
apply standard
|
|
154 |
apply (rule disj_conj_distrib)
|
|
155 |
apply (rule conj_disj_distrib)
|
|
156 |
apply simp_all
|
|
157 |
done
|
|
158 |
|
|
159 |
lemma compl_zero [simp]: "\<^bold>- \<^bold>0 = \<^bold>1"
|
|
160 |
by (fact dual.compl_one)
|
|
161 |
|
|
162 |
lemma disj_one_right [simp]: "x \<^bold>\<squnion> \<^bold>1 = \<^bold>1"
|
|
163 |
by (fact dual.conj_zero_right)
|
|
164 |
|
|
165 |
lemma disj_one_left [simp]: "\<^bold>1 \<^bold>\<squnion> x = \<^bold>1"
|
|
166 |
by (fact dual.conj_zero_left)
|
|
167 |
|
|
168 |
lemma disj_cancel_left [simp]: "\<^bold>- x \<^bold>\<squnion> x = \<^bold>1"
|
|
169 |
by (rule dual.conj_cancel_left)
|
|
170 |
|
|
171 |
lemma disj_conj_distrib2: "(y \<^bold>\<sqinter> z) \<^bold>\<squnion> x = (y \<^bold>\<squnion> x) \<^bold>\<sqinter> (z \<^bold>\<squnion> x)"
|
|
172 |
by (rule dual.conj_disj_distrib2)
|
|
173 |
|
|
174 |
lemmas disj_conj_distribs = disj_conj_distrib disj_conj_distrib2
|
|
175 |
|
|
176 |
lemma disj_assoc: "(x \<^bold>\<squnion> y) \<^bold>\<squnion> z = x \<^bold>\<squnion> (y \<^bold>\<squnion> z)"
|
|
177 |
by (fact ac_simps)
|
|
178 |
|
|
179 |
lemma disj_commute: "x \<^bold>\<squnion> y = y \<^bold>\<squnion> x"
|
|
180 |
by (fact ac_simps)
|
|
181 |
|
|
182 |
lemmas disj_left_commute = disj.left_commute
|
|
183 |
|
|
184 |
lemmas disj_ac = disj.assoc disj.commute disj.left_commute
|
|
185 |
|
|
186 |
lemma disj_zero_left: "\<^bold>0 \<^bold>\<squnion> x = x"
|
|
187 |
by (fact disj.left_neutral)
|
|
188 |
|
|
189 |
lemma disj_left_absorb: "x \<^bold>\<squnion> (x \<^bold>\<squnion> y) = x \<^bold>\<squnion> y"
|
|
190 |
by (fact disj.left_idem)
|
|
191 |
|
|
192 |
lemma disj_absorb: "x \<^bold>\<squnion> x = x"
|
|
193 |
by (fact disj.idem)
|
|
194 |
|
|
195 |
|
|
196 |
subsection \<open>De Morgan's Laws\<close>
|
|
197 |
|
|
198 |
lemma de_Morgan_conj [simp]: "\<^bold>- (x \<^bold>\<sqinter> y) = \<^bold>- x \<^bold>\<squnion> \<^bold>- y"
|
|
199 |
proof (rule compl_unique)
|
|
200 |
have "(x \<^bold>\<sqinter> y) \<^bold>\<sqinter> (\<^bold>- x \<^bold>\<squnion> \<^bold>- y) = ((x \<^bold>\<sqinter> y) \<^bold>\<sqinter> \<^bold>- x) \<^bold>\<squnion> ((x \<^bold>\<sqinter> y) \<^bold>\<sqinter> \<^bold>- y)"
|
|
201 |
by (rule conj_disj_distrib)
|
|
202 |
also have "\<dots> = (y \<^bold>\<sqinter> (x \<^bold>\<sqinter> \<^bold>- x)) \<^bold>\<squnion> (x \<^bold>\<sqinter> (y \<^bold>\<sqinter> \<^bold>- y))"
|
|
203 |
by (simp only: conj_ac)
|
|
204 |
finally show "(x \<^bold>\<sqinter> y) \<^bold>\<sqinter> (\<^bold>- x \<^bold>\<squnion> \<^bold>- y) = \<^bold>0"
|
|
205 |
by (simp only: conj_cancel_right conj_zero_right disj_zero_right)
|
|
206 |
next
|
|
207 |
have "(x \<^bold>\<sqinter> y) \<^bold>\<squnion> (\<^bold>- x \<^bold>\<squnion> \<^bold>- y) = (x \<^bold>\<squnion> (\<^bold>- x \<^bold>\<squnion> \<^bold>- y)) \<^bold>\<sqinter> (y \<^bold>\<squnion> (\<^bold>- x \<^bold>\<squnion> \<^bold>- y))"
|
|
208 |
by (rule disj_conj_distrib2)
|
|
209 |
also have "\<dots> = (\<^bold>- y \<^bold>\<squnion> (x \<^bold>\<squnion> \<^bold>- x)) \<^bold>\<sqinter> (\<^bold>- x \<^bold>\<squnion> (y \<^bold>\<squnion> \<^bold>- y))"
|
|
210 |
by (simp only: disj_ac)
|
|
211 |
finally show "(x \<^bold>\<sqinter> y) \<^bold>\<squnion> (\<^bold>- x \<^bold>\<squnion> \<^bold>- y) = \<^bold>1"
|
|
212 |
by (simp only: disj_cancel_right disj_one_right conj_one_right)
|
|
213 |
qed
|
|
214 |
|
|
215 |
lemma de_Morgan_disj [simp]: "\<^bold>- (x \<^bold>\<squnion> y) = \<^bold>- x \<^bold>\<sqinter> \<^bold>- y"
|
|
216 |
using dual.boolean_algebra_axioms by (rule boolean_algebra.de_Morgan_conj)
|
|
217 |
|
|
218 |
|
|
219 |
subsection \<open>Symmetric Difference\<close>
|
|
220 |
|
|
221 |
definition xor :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "\<^bold>\<ominus>" 65)
|
|
222 |
where "x \<^bold>\<ominus> y = (x \<^bold>\<sqinter> \<^bold>- y) \<^bold>\<squnion> (\<^bold>- x \<^bold>\<sqinter> y)"
|
|
223 |
|
|
224 |
sublocale xor: comm_monoid xor \<open>\<^bold>0\<close>
|
|
225 |
proof
|
|
226 |
fix x y z :: 'a
|
|
227 |
let ?t = "(x \<^bold>\<sqinter> y \<^bold>\<sqinter> z) \<^bold>\<squnion> (x \<^bold>\<sqinter> \<^bold>- y \<^bold>\<sqinter> \<^bold>- z) \<^bold>\<squnion> (\<^bold>- x \<^bold>\<sqinter> y \<^bold>\<sqinter> \<^bold>- z) \<^bold>\<squnion> (\<^bold>- x \<^bold>\<sqinter> \<^bold>- y \<^bold>\<sqinter> z)"
|
|
228 |
have "?t \<^bold>\<squnion> (z \<^bold>\<sqinter> x \<^bold>\<sqinter> \<^bold>- x) \<^bold>\<squnion> (z \<^bold>\<sqinter> y \<^bold>\<sqinter> \<^bold>- y) = ?t \<^bold>\<squnion> (x \<^bold>\<sqinter> y \<^bold>\<sqinter> \<^bold>- y) \<^bold>\<squnion> (x \<^bold>\<sqinter> z \<^bold>\<sqinter> \<^bold>- z)"
|
|
229 |
by (simp only: conj_cancel_right conj_zero_right)
|
|
230 |
then show "(x \<^bold>\<ominus> y) \<^bold>\<ominus> z = x \<^bold>\<ominus> (y \<^bold>\<ominus> z)"
|
|
231 |
by (simp only: xor_def de_Morgan_disj de_Morgan_conj double_compl)
|
|
232 |
(simp only: conj_disj_distribs conj_ac disj_ac)
|
|
233 |
show "x \<^bold>\<ominus> y = y \<^bold>\<ominus> x"
|
|
234 |
by (simp only: xor_def conj_commute disj_commute)
|
|
235 |
show "x \<^bold>\<ominus> \<^bold>0 = x"
|
|
236 |
by (simp add: xor_def)
|
|
237 |
qed
|
|
238 |
|
|
239 |
lemmas xor_assoc = xor.assoc
|
|
240 |
lemmas xor_commute = xor.commute
|
|
241 |
lemmas xor_left_commute = xor.left_commute
|
|
242 |
|
|
243 |
lemmas xor_ac = xor.assoc xor.commute xor.left_commute
|
|
244 |
|
|
245 |
lemma xor_def2: "x \<^bold>\<ominus> y = (x \<^bold>\<squnion> y) \<^bold>\<sqinter> (\<^bold>- x \<^bold>\<squnion> \<^bold>- y)"
|
|
246 |
using conj.commute conj_disj_distrib2 disj.commute xor_def by auto
|
|
247 |
|
|
248 |
lemma xor_zero_right: "x \<^bold>\<ominus> \<^bold>0 = x"
|
|
249 |
by (fact xor.comm_neutral)
|
|
250 |
|
|
251 |
lemma xor_zero_left: "\<^bold>0 \<^bold>\<ominus> x = x"
|
|
252 |
by (fact xor.left_neutral)
|
|
253 |
|
|
254 |
lemma xor_one_right [simp]: "x \<^bold>\<ominus> \<^bold>1 = \<^bold>- x"
|
|
255 |
by (simp only: xor_def compl_one conj_zero_right conj_one_right disj_zero_left)
|
|
256 |
|
|
257 |
lemma xor_one_left [simp]: "\<^bold>1 \<^bold>\<ominus> x = \<^bold>- x"
|
|
258 |
by (subst xor_commute) (rule xor_one_right)
|
|
259 |
|
|
260 |
lemma xor_self [simp]: "x \<^bold>\<ominus> x = \<^bold>0"
|
|
261 |
by (simp only: xor_def conj_cancel_right conj_cancel_left disj_zero_right)
|
|
262 |
|
|
263 |
lemma xor_left_self [simp]: "x \<^bold>\<ominus> (x \<^bold>\<ominus> y) = y"
|
|
264 |
by (simp only: xor_assoc [symmetric] xor_self xor_zero_left)
|
|
265 |
|
|
266 |
lemma xor_compl_left [simp]: "\<^bold>- x \<^bold>\<ominus> y = \<^bold>- (x \<^bold>\<ominus> y)"
|
|
267 |
by (simp add: ac_simps flip: xor_one_left)
|
|
268 |
|
|
269 |
lemma xor_compl_right [simp]: "x \<^bold>\<ominus> \<^bold>- y = \<^bold>- (x \<^bold>\<ominus> y)"
|
|
270 |
using xor_commute xor_compl_left by auto
|
|
271 |
|
|
272 |
lemma xor_cancel_right: "x \<^bold>\<ominus> \<^bold>- x = \<^bold>1"
|
|
273 |
by (simp only: xor_compl_right xor_self compl_zero)
|
|
274 |
|
|
275 |
lemma xor_cancel_left: "\<^bold>- x \<^bold>\<ominus> x = \<^bold>1"
|
|
276 |
by (simp only: xor_compl_left xor_self compl_zero)
|
|
277 |
|
|
278 |
lemma conj_xor_distrib: "x \<^bold>\<sqinter> (y \<^bold>\<ominus> z) = (x \<^bold>\<sqinter> y) \<^bold>\<ominus> (x \<^bold>\<sqinter> z)"
|
|
279 |
proof -
|
|
280 |
have *: "(x \<^bold>\<sqinter> y \<^bold>\<sqinter> \<^bold>- z) \<^bold>\<squnion> (x \<^bold>\<sqinter> \<^bold>- y \<^bold>\<sqinter> z) =
|
|
281 |
(y \<^bold>\<sqinter> x \<^bold>\<sqinter> \<^bold>- x) \<^bold>\<squnion> (z \<^bold>\<sqinter> x \<^bold>\<sqinter> \<^bold>- x) \<^bold>\<squnion> (x \<^bold>\<sqinter> y \<^bold>\<sqinter> \<^bold>- z) \<^bold>\<squnion> (x \<^bold>\<sqinter> \<^bold>- y \<^bold>\<sqinter> z)"
|
|
282 |
by (simp only: conj_cancel_right conj_zero_right disj_zero_left)
|
|
283 |
then show "x \<^bold>\<sqinter> (y \<^bold>\<ominus> z) = (x \<^bold>\<sqinter> y) \<^bold>\<ominus> (x \<^bold>\<sqinter> z)"
|
|
284 |
by (simp (no_asm_use) only:
|
|
285 |
xor_def de_Morgan_disj de_Morgan_conj double_compl
|
|
286 |
conj_disj_distribs conj_ac disj_ac)
|
|
287 |
qed
|
|
288 |
|
|
289 |
lemma conj_xor_distrib2: "(y \<^bold>\<ominus> z) \<^bold>\<sqinter> x = (y \<^bold>\<sqinter> x) \<^bold>\<ominus> (z \<^bold>\<sqinter> x)"
|
|
290 |
by (simp add: conj.commute conj_xor_distrib)
|
|
291 |
|
|
292 |
lemmas conj_xor_distribs = conj_xor_distrib conj_xor_distrib2
|
|
293 |
|
|
294 |
end
|
|
295 |
|
|
296 |
end
|