| author | haftmann | 
| Thu, 18 Mar 2010 13:56:32 +0100 | |
| changeset 35817 | d8b8527102f5 | 
| parent 35631 | 0b8a5fd339ab | 
| child 35828 | 46cfc4b8112e | 
| permissions | -rw-r--r-- | 
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 1 | (* Title: HOL/Rings.thy | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 2 | Author: Gertrud Bauer | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 3 | Author: Steven Obua | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 4 | Author: Tobias Nipkow | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 5 | Author: Lawrence C Paulson | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 6 | Author: Markus Wenzel | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 7 | Author: Jeremy Avigad | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 8 | *) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 9 | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 10 | header {* Rings *}
 | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 11 | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 12 | theory Rings | 
| 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 13 | imports Groups | 
| 15131 | 14 | begin | 
| 14504 | 15 | |
| 22390 | 16 | class semiring = ab_semigroup_add + semigroup_mult + | 
| 29667 | 17 | assumes left_distrib[algebra_simps]: "(a + b) * c = a * c + b * c" | 
| 18 | assumes right_distrib[algebra_simps]: "a * (b + c) = a * b + a * c" | |
| 25152 | 19 | begin | 
| 20 | ||
| 21 | text{*For the @{text combine_numerals} simproc*}
 | |
| 22 | lemma combine_common_factor: | |
| 23 | "a * e + (b * e + c) = (a + b) * e + c" | |
| 29667 | 24 | by (simp add: left_distrib add_ac) | 
| 25152 | 25 | |
| 26 | end | |
| 14504 | 27 | |
| 22390 | 28 | class mult_zero = times + zero + | 
| 25062 | 29 | assumes mult_zero_left [simp]: "0 * a = 0" | 
| 30 | assumes mult_zero_right [simp]: "a * 0 = 0" | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 31 | |
| 22390 | 32 | class semiring_0 = semiring + comm_monoid_add + mult_zero | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 33 | |
| 29904 | 34 | class semiring_0_cancel = semiring + cancel_comm_monoid_add | 
| 25186 | 35 | begin | 
| 14504 | 36 | |
| 25186 | 37 | subclass semiring_0 | 
| 28823 | 38 | proof | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 39 | fix a :: 'a | 
| 29667 | 40 | have "0 * a + 0 * a = 0 * a + 0" by (simp add: left_distrib [symmetric]) | 
| 41 | thus "0 * a = 0" by (simp only: add_left_cancel) | |
| 25152 | 42 | next | 
| 43 | fix a :: 'a | |
| 29667 | 44 | have "a * 0 + a * 0 = a * 0 + 0" by (simp add: right_distrib [symmetric]) | 
| 45 | thus "a * 0 = 0" by (simp only: add_left_cancel) | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 46 | qed | 
| 14940 | 47 | |
| 25186 | 48 | end | 
| 25152 | 49 | |
| 22390 | 50 | class comm_semiring = ab_semigroup_add + ab_semigroup_mult + | 
| 25062 | 51 | assumes distrib: "(a + b) * c = a * c + b * c" | 
| 25152 | 52 | begin | 
| 14504 | 53 | |
| 25152 | 54 | subclass semiring | 
| 28823 | 55 | proof | 
| 14738 | 56 | fix a b c :: 'a | 
| 57 | show "(a + b) * c = a * c + b * c" by (simp add: distrib) | |
| 58 | have "a * (b + c) = (b + c) * a" by (simp add: mult_ac) | |
| 59 | also have "... = b * a + c * a" by (simp only: distrib) | |
| 60 | also have "... = a * b + a * c" by (simp add: mult_ac) | |
| 61 | finally show "a * (b + c) = a * b + a * c" by blast | |
| 14504 | 62 | qed | 
| 63 | ||
| 25152 | 64 | end | 
| 14504 | 65 | |
| 25152 | 66 | class comm_semiring_0 = comm_semiring + comm_monoid_add + mult_zero | 
| 67 | begin | |
| 68 | ||
| 27516 | 69 | subclass semiring_0 .. | 
| 25152 | 70 | |
| 71 | end | |
| 14504 | 72 | |
| 29904 | 73 | class comm_semiring_0_cancel = comm_semiring + cancel_comm_monoid_add | 
| 25186 | 74 | begin | 
| 14940 | 75 | |
| 27516 | 76 | subclass semiring_0_cancel .. | 
| 14940 | 77 | |
| 28141 
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
 huffman parents: 
27651diff
changeset | 78 | subclass comm_semiring_0 .. | 
| 
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
 huffman parents: 
27651diff
changeset | 79 | |
| 25186 | 80 | end | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 81 | |
| 22390 | 82 | class zero_neq_one = zero + one + | 
| 25062 | 83 | assumes zero_neq_one [simp]: "0 \<noteq> 1" | 
| 26193 | 84 | begin | 
| 85 | ||
| 86 | lemma one_neq_zero [simp]: "1 \<noteq> 0" | |
| 29667 | 87 | by (rule not_sym) (rule zero_neq_one) | 
| 26193 | 88 | |
| 89 | end | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 90 | |
| 22390 | 91 | class semiring_1 = zero_neq_one + semiring_0 + monoid_mult | 
| 14504 | 92 | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 93 | text {* Abstract divisibility *}
 | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 94 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 95 | class dvd = times | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 96 | begin | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 97 | |
| 28559 | 98 | definition dvd :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infixl "dvd" 50) where | 
| 99 | [code del]: "b dvd a \<longleftrightarrow> (\<exists>k. a = b * k)" | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 100 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 101 | lemma dvdI [intro?]: "a = b * k \<Longrightarrow> b dvd a" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 102 | unfolding dvd_def .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 103 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 104 | lemma dvdE [elim?]: "b dvd a \<Longrightarrow> (\<And>k. a = b * k \<Longrightarrow> P) \<Longrightarrow> P" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 105 | unfolding dvd_def by blast | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 106 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 107 | end | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 108 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 109 | class comm_semiring_1 = zero_neq_one + comm_semiring_0 + comm_monoid_mult + dvd | 
| 22390 | 110 | (*previously almost_semiring*) | 
| 25152 | 111 | begin | 
| 14738 | 112 | |
| 27516 | 113 | subclass semiring_1 .. | 
| 25152 | 114 | |
| 29925 | 115 | lemma dvd_refl[simp]: "a dvd a" | 
| 28559 | 116 | proof | 
| 117 | show "a = a * 1" by simp | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 118 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 119 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 120 | lemma dvd_trans: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 121 | assumes "a dvd b" and "b dvd c" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 122 | shows "a dvd c" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 123 | proof - | 
| 28559 | 124 | from assms obtain v where "b = a * v" by (auto elim!: dvdE) | 
| 125 | moreover from assms obtain w where "c = b * w" by (auto elim!: dvdE) | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 126 | ultimately have "c = a * (v * w)" by (simp add: mult_assoc) | 
| 28559 | 127 | then show ?thesis .. | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 128 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 129 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 130 | lemma dvd_0_left_iff [noatp, simp]: "0 dvd a \<longleftrightarrow> a = 0" | 
| 29667 | 131 | by (auto intro: dvd_refl elim!: dvdE) | 
| 28559 | 132 | |
| 133 | lemma dvd_0_right [iff]: "a dvd 0" | |
| 134 | proof | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 135 | show "0 = a * 0" by simp | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 136 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 137 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 138 | lemma one_dvd [simp]: "1 dvd a" | 
| 29667 | 139 | by (auto intro!: dvdI) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 140 | |
| 30042 | 141 | lemma dvd_mult[simp]: "a dvd c \<Longrightarrow> a dvd (b * c)" | 
| 29667 | 142 | by (auto intro!: mult_left_commute dvdI elim!: dvdE) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 143 | |
| 30042 | 144 | lemma dvd_mult2[simp]: "a dvd b \<Longrightarrow> a dvd (b * c)" | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 145 | apply (subst mult_commute) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 146 | apply (erule dvd_mult) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 147 | done | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 148 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 149 | lemma dvd_triv_right [simp]: "a dvd b * a" | 
| 29667 | 150 | by (rule dvd_mult) (rule dvd_refl) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 151 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 152 | lemma dvd_triv_left [simp]: "a dvd a * b" | 
| 29667 | 153 | by (rule dvd_mult2) (rule dvd_refl) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 154 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 155 | lemma mult_dvd_mono: | 
| 30042 | 156 | assumes "a dvd b" | 
| 157 | and "c dvd d" | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 158 | shows "a * c dvd b * d" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 159 | proof - | 
| 30042 | 160 | from `a dvd b` obtain b' where "b = a * b'" .. | 
| 161 | moreover from `c dvd d` obtain d' where "d = c * d'" .. | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 162 | ultimately have "b * d = (a * c) * (b' * d')" by (simp add: mult_ac) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 163 | then show ?thesis .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 164 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 165 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 166 | lemma dvd_mult_left: "a * b dvd c \<Longrightarrow> a dvd c" | 
| 29667 | 167 | by (simp add: dvd_def mult_assoc, blast) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 168 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 169 | lemma dvd_mult_right: "a * b dvd c \<Longrightarrow> b dvd c" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 170 | unfolding mult_ac [of a] by (rule dvd_mult_left) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 171 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 172 | lemma dvd_0_left: "0 dvd a \<Longrightarrow> a = 0" | 
| 29667 | 173 | by simp | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 174 | |
| 29925 | 175 | lemma dvd_add[simp]: | 
| 176 | assumes "a dvd b" and "a dvd c" shows "a dvd (b + c)" | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 177 | proof - | 
| 29925 | 178 | from `a dvd b` obtain b' where "b = a * b'" .. | 
| 179 | moreover from `a dvd c` obtain c' where "c = a * c'" .. | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 180 | ultimately have "b + c = a * (b' + c')" by (simp add: right_distrib) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 181 | then show ?thesis .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 182 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 183 | |
| 25152 | 184 | end | 
| 14421 
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
 paulson parents: 
14398diff
changeset | 185 | |
| 29925 | 186 | |
| 22390 | 187 | class no_zero_divisors = zero + times + | 
| 25062 | 188 | assumes no_zero_divisors: "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> a * b \<noteq> 0" | 
| 14504 | 189 | |
| 29904 | 190 | class semiring_1_cancel = semiring + cancel_comm_monoid_add | 
| 191 | + zero_neq_one + monoid_mult | |
| 25267 | 192 | begin | 
| 14940 | 193 | |
| 27516 | 194 | subclass semiring_0_cancel .. | 
| 25512 
4134f7c782e2
using intro_locales instead of unfold_locales if appropriate
 haftmann parents: 
25450diff
changeset | 195 | |
| 27516 | 196 | subclass semiring_1 .. | 
| 25267 | 197 | |
| 198 | end | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 199 | |
| 29904 | 200 | class comm_semiring_1_cancel = comm_semiring + cancel_comm_monoid_add | 
| 201 | + zero_neq_one + comm_monoid_mult | |
| 25267 | 202 | begin | 
| 14738 | 203 | |
| 27516 | 204 | subclass semiring_1_cancel .. | 
| 205 | subclass comm_semiring_0_cancel .. | |
| 206 | subclass comm_semiring_1 .. | |
| 25267 | 207 | |
| 208 | end | |
| 25152 | 209 | |
| 22390 | 210 | class ring = semiring + ab_group_add | 
| 25267 | 211 | begin | 
| 25152 | 212 | |
| 27516 | 213 | subclass semiring_0_cancel .. | 
| 25152 | 214 | |
| 215 | text {* Distribution rules *}
 | |
| 216 | ||
| 217 | lemma minus_mult_left: "- (a * b) = - a * b" | |
| 34146 
14595e0c27e8
rename equals_zero_I to minus_unique (keep old name too)
 huffman parents: 
33676diff
changeset | 218 | by (rule minus_unique) (simp add: left_distrib [symmetric]) | 
| 25152 | 219 | |
| 220 | lemma minus_mult_right: "- (a * b) = a * - b" | |
| 34146 
14595e0c27e8
rename equals_zero_I to minus_unique (keep old name too)
 huffman parents: 
33676diff
changeset | 221 | by (rule minus_unique) (simp add: right_distrib [symmetric]) | 
| 25152 | 222 | |
| 29407 
5ef7e97fd9e4
move lemmas mult_minus{left,right} inside class ring
 huffman parents: 
29406diff
changeset | 223 | text{*Extract signs from products*}
 | 
| 29833 | 224 | lemmas mult_minus_left [simp, noatp] = minus_mult_left [symmetric] | 
| 225 | lemmas mult_minus_right [simp,noatp] = minus_mult_right [symmetric] | |
| 29407 
5ef7e97fd9e4
move lemmas mult_minus{left,right} inside class ring
 huffman parents: 
29406diff
changeset | 226 | |
| 25152 | 227 | lemma minus_mult_minus [simp]: "- a * - b = a * b" | 
| 29667 | 228 | by simp | 
| 25152 | 229 | |
| 230 | lemma minus_mult_commute: "- a * b = a * - b" | |
| 29667 | 231 | by simp | 
| 232 | ||
| 233 | lemma right_diff_distrib[algebra_simps]: "a * (b - c) = a * b - a * c" | |
| 234 | by (simp add: right_distrib diff_minus) | |
| 235 | ||
| 236 | lemma left_diff_distrib[algebra_simps]: "(a - b) * c = a * c - b * c" | |
| 237 | by (simp add: left_distrib diff_minus) | |
| 25152 | 238 | |
| 29833 | 239 | lemmas ring_distribs[noatp] = | 
| 25152 | 240 | right_distrib left_distrib left_diff_distrib right_diff_distrib | 
| 241 | ||
| 29667 | 242 | text{*Legacy - use @{text algebra_simps} *}
 | 
| 29833 | 243 | lemmas ring_simps[noatp] = algebra_simps | 
| 25230 | 244 | |
| 245 | lemma eq_add_iff1: | |
| 246 | "a * e + c = b * e + d \<longleftrightarrow> (a - b) * e + c = d" | |
| 29667 | 247 | by (simp add: algebra_simps) | 
| 25230 | 248 | |
| 249 | lemma eq_add_iff2: | |
| 250 | "a * e + c = b * e + d \<longleftrightarrow> c = (b - a) * e + d" | |
| 29667 | 251 | by (simp add: algebra_simps) | 
| 25230 | 252 | |
| 25152 | 253 | end | 
| 254 | ||
| 29833 | 255 | lemmas ring_distribs[noatp] = | 
| 25152 | 256 | right_distrib left_distrib left_diff_distrib right_diff_distrib | 
| 257 | ||
| 22390 | 258 | class comm_ring = comm_semiring + ab_group_add | 
| 25267 | 259 | begin | 
| 14738 | 260 | |
| 27516 | 261 | subclass ring .. | 
| 28141 
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
 huffman parents: 
27651diff
changeset | 262 | subclass comm_semiring_0_cancel .. | 
| 25267 | 263 | |
| 264 | end | |
| 14738 | 265 | |
| 22390 | 266 | class ring_1 = ring + zero_neq_one + monoid_mult | 
| 25267 | 267 | begin | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 268 | |
| 27516 | 269 | subclass semiring_1_cancel .. | 
| 25267 | 270 | |
| 271 | end | |
| 25152 | 272 | |
| 22390 | 273 | class comm_ring_1 = comm_ring + zero_neq_one + comm_monoid_mult | 
| 274 | (*previously ring*) | |
| 25267 | 275 | begin | 
| 14738 | 276 | |
| 27516 | 277 | subclass ring_1 .. | 
| 278 | subclass comm_semiring_1_cancel .. | |
| 25267 | 279 | |
| 29465 
b2cfb5d0a59e
change dvd_minus_iff, minus_dvd_iff from [iff] to [simp] (due to problems with Library/Primes.thy)
 huffman parents: 
29461diff
changeset | 280 | lemma dvd_minus_iff [simp]: "x dvd - y \<longleftrightarrow> x dvd y" | 
| 29408 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 281 | proof | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 282 | assume "x dvd - y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 283 | then have "x dvd - 1 * - y" by (rule dvd_mult) | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 284 | then show "x dvd y" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 285 | next | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 286 | assume "x dvd y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 287 | then have "x dvd - 1 * y" by (rule dvd_mult) | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 288 | then show "x dvd - y" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 289 | qed | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 290 | |
| 29465 
b2cfb5d0a59e
change dvd_minus_iff, minus_dvd_iff from [iff] to [simp] (due to problems with Library/Primes.thy)
 huffman parents: 
29461diff
changeset | 291 | lemma minus_dvd_iff [simp]: "- x dvd y \<longleftrightarrow> x dvd y" | 
| 29408 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 292 | proof | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 293 | assume "- x dvd y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 294 | then obtain k where "y = - x * k" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 295 | then have "y = x * - k" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 296 | then show "x dvd y" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 297 | next | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 298 | assume "x dvd y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 299 | then obtain k where "y = x * k" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 300 | then have "y = - x * - k" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 301 | then show "- x dvd y" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 302 | qed | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 303 | |
| 30042 | 304 | lemma dvd_diff[simp]: "x dvd y \<Longrightarrow> x dvd z \<Longrightarrow> x dvd (y - z)" | 
| 35216 | 305 | by (simp only: diff_minus dvd_add dvd_minus_iff) | 
| 29409 | 306 | |
| 25267 | 307 | end | 
| 25152 | 308 | |
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 309 | class ring_no_zero_divisors = ring + no_zero_divisors | 
| 25230 | 310 | begin | 
| 311 | ||
| 312 | lemma mult_eq_0_iff [simp]: | |
| 313 | shows "a * b = 0 \<longleftrightarrow> (a = 0 \<or> b = 0)" | |
| 314 | proof (cases "a = 0 \<or> b = 0") | |
| 315 | case False then have "a \<noteq> 0" and "b \<noteq> 0" by auto | |
| 316 | then show ?thesis using no_zero_divisors by simp | |
| 317 | next | |
| 318 | case True then show ?thesis by auto | |
| 319 | qed | |
| 320 | ||
| 26193 | 321 | text{*Cancellation of equalities with a common factor*}
 | 
| 322 | lemma mult_cancel_right [simp, noatp]: | |
| 323 | "a * c = b * c \<longleftrightarrow> c = 0 \<or> a = b" | |
| 324 | proof - | |
| 325 | have "(a * c = b * c) = ((a - b) * c = 0)" | |
| 35216 | 326 | by (simp add: algebra_simps) | 
| 327 | thus ?thesis by (simp add: disj_commute) | |
| 26193 | 328 | qed | 
| 329 | ||
| 330 | lemma mult_cancel_left [simp, noatp]: | |
| 331 | "c * a = c * b \<longleftrightarrow> c = 0 \<or> a = b" | |
| 332 | proof - | |
| 333 | have "(c * a = c * b) = (c * (a - b) = 0)" | |
| 35216 | 334 | by (simp add: algebra_simps) | 
| 335 | thus ?thesis by simp | |
| 26193 | 336 | qed | 
| 337 | ||
| 25230 | 338 | end | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 339 | |
| 23544 | 340 | class ring_1_no_zero_divisors = ring_1 + ring_no_zero_divisors | 
| 26274 | 341 | begin | 
| 342 | ||
| 343 | lemma mult_cancel_right1 [simp]: | |
| 344 | "c = b * c \<longleftrightarrow> c = 0 \<or> b = 1" | |
| 29667 | 345 | by (insert mult_cancel_right [of 1 c b], force) | 
| 26274 | 346 | |
| 347 | lemma mult_cancel_right2 [simp]: | |
| 348 | "a * c = c \<longleftrightarrow> c = 0 \<or> a = 1" | |
| 29667 | 349 | by (insert mult_cancel_right [of a c 1], simp) | 
| 26274 | 350 | |
| 351 | lemma mult_cancel_left1 [simp]: | |
| 352 | "c = c * b \<longleftrightarrow> c = 0 \<or> b = 1" | |
| 29667 | 353 | by (insert mult_cancel_left [of c 1 b], force) | 
| 26274 | 354 | |
| 355 | lemma mult_cancel_left2 [simp]: | |
| 356 | "c * a = c \<longleftrightarrow> c = 0 \<or> a = 1" | |
| 29667 | 357 | by (insert mult_cancel_left [of c a 1], simp) | 
| 26274 | 358 | |
| 359 | end | |
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 360 | |
| 22390 | 361 | class idom = comm_ring_1 + no_zero_divisors | 
| 25186 | 362 | begin | 
| 14421 
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
 paulson parents: 
14398diff
changeset | 363 | |
| 27516 | 364 | subclass ring_1_no_zero_divisors .. | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 365 | |
| 29915 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 366 | lemma square_eq_iff: "a * a = b * b \<longleftrightarrow> (a = b \<or> a = - b)" | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 367 | proof | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 368 | assume "a * a = b * b" | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 369 | then have "(a - b) * (a + b) = 0" | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 370 | by (simp add: algebra_simps) | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 371 | then show "a = b \<or> a = - b" | 
| 35216 | 372 | by (simp add: eq_neg_iff_add_eq_0) | 
| 29915 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 373 | next | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 374 | assume "a = b \<or> a = - b" | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 375 | then show "a * a = b * b" by auto | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 376 | qed | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 377 | |
| 29981 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 378 | lemma dvd_mult_cancel_right [simp]: | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 379 | "a * c dvd b * c \<longleftrightarrow> c = 0 \<or> a dvd b" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 380 | proof - | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 381 | have "a * c dvd b * c \<longleftrightarrow> (\<exists>k. b * c = (a * k) * c)" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 382 | unfolding dvd_def by (simp add: mult_ac) | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 383 | also have "(\<exists>k. b * c = (a * k) * c) \<longleftrightarrow> c = 0 \<or> a dvd b" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 384 | unfolding dvd_def by simp | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 385 | finally show ?thesis . | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 386 | qed | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 387 | |
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 388 | lemma dvd_mult_cancel_left [simp]: | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 389 | "c * a dvd c * b \<longleftrightarrow> c = 0 \<or> a dvd b" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 390 | proof - | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 391 | have "c * a dvd c * b \<longleftrightarrow> (\<exists>k. b * c = (a * k) * c)" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 392 | unfolding dvd_def by (simp add: mult_ac) | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 393 | also have "(\<exists>k. b * c = (a * k) * c) \<longleftrightarrow> c = 0 \<or> a dvd b" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 394 | unfolding dvd_def by simp | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 395 | finally show ?thesis . | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 396 | qed | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 397 | |
| 25186 | 398 | end | 
| 25152 | 399 | |
| 35083 | 400 | class inverse = | 
| 401 | fixes inverse :: "'a \<Rightarrow> 'a" | |
| 402 | and divide :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "'/" 70) | |
| 403 | ||
| 22390 | 404 | class division_ring = ring_1 + inverse + | 
| 25062 | 405 | assumes left_inverse [simp]: "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1" | 
| 406 | assumes right_inverse [simp]: "a \<noteq> 0 \<Longrightarrow> a * inverse a = 1" | |
| 35083 | 407 | assumes divide_inverse: "a / b = a * inverse b" | 
| 25186 | 408 | begin | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 409 | |
| 25186 | 410 | subclass ring_1_no_zero_divisors | 
| 28823 | 411 | proof | 
| 22987 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 412 | fix a b :: 'a | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 413 | assume a: "a \<noteq> 0" and b: "b \<noteq> 0" | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 414 | show "a * b \<noteq> 0" | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 415 | proof | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 416 | assume ab: "a * b = 0" | 
| 29667 | 417 | hence "0 = inverse a * (a * b) * inverse b" by simp | 
| 22987 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 418 | also have "\<dots> = (inverse a * a) * (b * inverse b)" | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 419 | by (simp only: mult_assoc) | 
| 29667 | 420 | also have "\<dots> = 1" using a b by simp | 
| 421 | finally show False by simp | |
| 22987 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 422 | qed | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 423 | qed | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 424 | |
| 26274 | 425 | lemma nonzero_imp_inverse_nonzero: | 
| 426 | "a \<noteq> 0 \<Longrightarrow> inverse a \<noteq> 0" | |
| 427 | proof | |
| 428 | assume ianz: "inverse a = 0" | |
| 429 | assume "a \<noteq> 0" | |
| 430 | hence "1 = a * inverse a" by simp | |
| 431 | also have "... = 0" by (simp add: ianz) | |
| 432 | finally have "1 = 0" . | |
| 433 | thus False by (simp add: eq_commute) | |
| 434 | qed | |
| 435 | ||
| 436 | lemma inverse_zero_imp_zero: | |
| 437 | "inverse a = 0 \<Longrightarrow> a = 0" | |
| 438 | apply (rule classical) | |
| 439 | apply (drule nonzero_imp_inverse_nonzero) | |
| 440 | apply auto | |
| 441 | done | |
| 442 | ||
| 443 | lemma inverse_unique: | |
| 444 | assumes ab: "a * b = 1" | |
| 445 | shows "inverse a = b" | |
| 446 | proof - | |
| 447 | have "a \<noteq> 0" using ab by (cases "a = 0") simp_all | |
| 29406 | 448 | moreover have "inverse a * (a * b) = inverse a" by (simp add: ab) | 
| 449 | ultimately show ?thesis by (simp add: mult_assoc [symmetric]) | |
| 26274 | 450 | qed | 
| 451 | ||
| 29406 | 452 | lemma nonzero_inverse_minus_eq: | 
| 453 | "a \<noteq> 0 \<Longrightarrow> inverse (- a) = - inverse a" | |
| 29667 | 454 | by (rule inverse_unique) simp | 
| 29406 | 455 | |
| 456 | lemma nonzero_inverse_inverse_eq: | |
| 457 | "a \<noteq> 0 \<Longrightarrow> inverse (inverse a) = a" | |
| 29667 | 458 | by (rule inverse_unique) simp | 
| 29406 | 459 | |
| 460 | lemma nonzero_inverse_eq_imp_eq: | |
| 461 | assumes "inverse a = inverse b" and "a \<noteq> 0" and "b \<noteq> 0" | |
| 462 | shows "a = b" | |
| 463 | proof - | |
| 464 | from `inverse a = inverse b` | |
| 29667 | 465 | have "inverse (inverse a) = inverse (inverse b)" by (rule arg_cong) | 
| 29406 | 466 | with `a \<noteq> 0` and `b \<noteq> 0` show "a = b" | 
| 467 | by (simp add: nonzero_inverse_inverse_eq) | |
| 468 | qed | |
| 469 | ||
| 470 | lemma inverse_1 [simp]: "inverse 1 = 1" | |
| 29667 | 471 | by (rule inverse_unique) simp | 
| 29406 | 472 | |
| 26274 | 473 | lemma nonzero_inverse_mult_distrib: | 
| 29406 | 474 | assumes "a \<noteq> 0" and "b \<noteq> 0" | 
| 26274 | 475 | shows "inverse (a * b) = inverse b * inverse a" | 
| 476 | proof - | |
| 29667 | 477 | have "a * (b * inverse b) * inverse a = 1" using assms by simp | 
| 478 | hence "a * b * (inverse b * inverse a) = 1" by (simp only: mult_assoc) | |
| 479 | thus ?thesis by (rule inverse_unique) | |
| 26274 | 480 | qed | 
| 481 | ||
| 482 | lemma division_ring_inverse_add: | |
| 483 | "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> inverse a + inverse b = inverse a * (a + b) * inverse b" | |
| 29667 | 484 | by (simp add: algebra_simps) | 
| 26274 | 485 | |
| 486 | lemma division_ring_inverse_diff: | |
| 487 | "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> inverse a - inverse b = inverse a * (b - a) * inverse b" | |
| 29667 | 488 | by (simp add: algebra_simps) | 
| 26274 | 489 | |
| 25186 | 490 | end | 
| 25152 | 491 | |
| 22390 | 492 | class mult_mono = times + zero + ord + | 
| 25062 | 493 | assumes mult_left_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b" | 
| 494 | assumes mult_right_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * c" | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 495 | |
| 35302 | 496 | text {*
 | 
| 497 | The theory of partially ordered rings is taken from the books: | |
| 498 |   \begin{itemize}
 | |
| 499 |   \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
 | |
| 500 |   \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
 | |
| 501 |   \end{itemize}
 | |
| 502 | Most of the used notions can also be looked up in | |
| 503 |   \begin{itemize}
 | |
| 504 |   \item \url{http://www.mathworld.com} by Eric Weisstein et. al.
 | |
| 505 |   \item \emph{Algebra I} by van der Waerden, Springer.
 | |
| 506 |   \end{itemize}
 | |
| 507 | *} | |
| 508 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 509 | class ordered_semiring = mult_mono + semiring_0 + ordered_ab_semigroup_add | 
| 25230 | 510 | begin | 
| 511 | ||
| 512 | lemma mult_mono: | |
| 513 | "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> c | |
| 514 | \<Longrightarrow> a * c \<le> b * d" | |
| 515 | apply (erule mult_right_mono [THEN order_trans], assumption) | |
| 516 | apply (erule mult_left_mono, assumption) | |
| 517 | done | |
| 518 | ||
| 519 | lemma mult_mono': | |
| 520 | "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> c | |
| 521 | \<Longrightarrow> a * c \<le> b * d" | |
| 522 | apply (rule mult_mono) | |
| 523 | apply (fast intro: order_trans)+ | |
| 524 | done | |
| 525 | ||
| 526 | end | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 527 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 528 | class ordered_cancel_semiring = mult_mono + ordered_ab_semigroup_add | 
| 29904 | 529 | + semiring + cancel_comm_monoid_add | 
| 25267 | 530 | begin | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 531 | |
| 27516 | 532 | subclass semiring_0_cancel .. | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 533 | subclass ordered_semiring .. | 
| 23521 | 534 | |
| 25230 | 535 | lemma mult_nonneg_nonneg: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a * b" | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 536 | using mult_left_mono [of zero b a] by simp | 
| 25230 | 537 | |
| 538 | lemma mult_nonneg_nonpos: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> a * b \<le> 0" | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 539 | using mult_left_mono [of b zero a] by simp | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 540 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 541 | lemma mult_nonpos_nonneg: "a \<le> 0 \<Longrightarrow> 0 \<le> b \<Longrightarrow> a * b \<le> 0" | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 542 | using mult_right_mono [of a zero b] by simp | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 543 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 544 | text {* Legacy - use @{text mult_nonpos_nonneg} *}
 | 
| 25230 | 545 | lemma mult_nonneg_nonpos2: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> b * a \<le> 0" | 
| 29667 | 546 | by (drule mult_right_mono [of b zero], auto) | 
| 25230 | 547 | |
| 26234 | 548 | lemma split_mult_neg_le: "(0 \<le> a & b \<le> 0) | (a \<le> 0 & 0 \<le> b) \<Longrightarrow> a * b \<le> 0" | 
| 29667 | 549 | by (auto simp add: mult_nonneg_nonpos mult_nonneg_nonpos2) | 
| 25230 | 550 | |
| 551 | end | |
| 552 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 553 | class linordered_semiring = semiring + comm_monoid_add + linordered_cancel_ab_semigroup_add + mult_mono | 
| 25267 | 554 | begin | 
| 25230 | 555 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 556 | subclass ordered_cancel_semiring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 557 | |
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 558 | subclass ordered_comm_monoid_add .. | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 559 | |
| 25230 | 560 | lemma mult_left_less_imp_less: | 
| 561 | "c * a < c * b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b" | |
| 29667 | 562 | by (force simp add: mult_left_mono not_le [symmetric]) | 
| 25230 | 563 | |
| 564 | lemma mult_right_less_imp_less: | |
| 565 | "a * c < b * c \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b" | |
| 29667 | 566 | by (force simp add: mult_right_mono not_le [symmetric]) | 
| 23521 | 567 | |
| 25186 | 568 | end | 
| 25152 | 569 | |
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 570 | class linordered_semiring_1 = linordered_semiring + semiring_1 | 
| 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 571 | |
| 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 572 | class linordered_semiring_strict = semiring + comm_monoid_add + linordered_cancel_ab_semigroup_add + | 
| 25062 | 573 | assumes mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b" | 
| 574 | assumes mult_strict_right_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> a * c < b * c" | |
| 25267 | 575 | begin | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14334diff
changeset | 576 | |
| 27516 | 577 | subclass semiring_0_cancel .. | 
| 14940 | 578 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 579 | subclass linordered_semiring | 
| 28823 | 580 | proof | 
| 23550 | 581 | fix a b c :: 'a | 
| 582 | assume A: "a \<le> b" "0 \<le> c" | |
| 583 | from A show "c * a \<le> c * b" | |
| 25186 | 584 | unfolding le_less | 
| 585 | using mult_strict_left_mono by (cases "c = 0") auto | |
| 23550 | 586 | from A show "a * c \<le> b * c" | 
| 25152 | 587 | unfolding le_less | 
| 25186 | 588 | using mult_strict_right_mono by (cases "c = 0") auto | 
| 25152 | 589 | qed | 
| 590 | ||
| 25230 | 591 | lemma mult_left_le_imp_le: | 
| 592 | "c * a \<le> c * b \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b" | |
| 29667 | 593 | by (force simp add: mult_strict_left_mono _not_less [symmetric]) | 
| 25230 | 594 | |
| 595 | lemma mult_right_le_imp_le: | |
| 596 | "a * c \<le> b * c \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b" | |
| 29667 | 597 | by (force simp add: mult_strict_right_mono not_less [symmetric]) | 
| 25230 | 598 | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 599 | lemma mult_pos_pos: "0 < a \<Longrightarrow> 0 < b \<Longrightarrow> 0 < a * b" | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 600 | using mult_strict_left_mono [of zero b a] by simp | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 601 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 602 | lemma mult_pos_neg: "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> a * b < 0" | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 603 | using mult_strict_left_mono [of b zero a] by simp | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 604 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 605 | lemma mult_neg_pos: "a < 0 \<Longrightarrow> 0 < b \<Longrightarrow> a * b < 0" | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 606 | using mult_strict_right_mono [of a zero b] by simp | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 607 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 608 | text {* Legacy - use @{text mult_neg_pos} *}
 | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 609 | lemma mult_pos_neg2: "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> b * a < 0" | 
| 29667 | 610 | by (drule mult_strict_right_mono [of b zero], auto) | 
| 25230 | 611 | |
| 612 | lemma zero_less_mult_pos: | |
| 613 | "0 < a * b \<Longrightarrow> 0 < a \<Longrightarrow> 0 < b" | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 614 | apply (cases "b\<le>0") | 
| 25230 | 615 | apply (auto simp add: le_less not_less) | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 616 | apply (drule_tac mult_pos_neg [of a b]) | 
| 25230 | 617 | apply (auto dest: less_not_sym) | 
| 618 | done | |
| 619 | ||
| 620 | lemma zero_less_mult_pos2: | |
| 621 | "0 < b * a \<Longrightarrow> 0 < a \<Longrightarrow> 0 < b" | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 622 | apply (cases "b\<le>0") | 
| 25230 | 623 | apply (auto simp add: le_less not_less) | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 624 | apply (drule_tac mult_pos_neg2 [of a b]) | 
| 25230 | 625 | apply (auto dest: less_not_sym) | 
| 626 | done | |
| 627 | ||
| 26193 | 628 | text{*Strict monotonicity in both arguments*}
 | 
| 629 | lemma mult_strict_mono: | |
| 630 | assumes "a < b" and "c < d" and "0 < b" and "0 \<le> c" | |
| 631 | shows "a * c < b * d" | |
| 632 | using assms apply (cases "c=0") | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 633 | apply (simp add: mult_pos_pos) | 
| 26193 | 634 | apply (erule mult_strict_right_mono [THEN less_trans]) | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 635 | apply (force simp add: le_less) | 
| 26193 | 636 | apply (erule mult_strict_left_mono, assumption) | 
| 637 | done | |
| 638 | ||
| 639 | text{*This weaker variant has more natural premises*}
 | |
| 640 | lemma mult_strict_mono': | |
| 641 | assumes "a < b" and "c < d" and "0 \<le> a" and "0 \<le> c" | |
| 642 | shows "a * c < b * d" | |
| 29667 | 643 | by (rule mult_strict_mono) (insert assms, auto) | 
| 26193 | 644 | |
| 645 | lemma mult_less_le_imp_less: | |
| 646 | assumes "a < b" and "c \<le> d" and "0 \<le> a" and "0 < c" | |
| 647 | shows "a * c < b * d" | |
| 648 | using assms apply (subgoal_tac "a * c < b * c") | |
| 649 | apply (erule less_le_trans) | |
| 650 | apply (erule mult_left_mono) | |
| 651 | apply simp | |
| 652 | apply (erule mult_strict_right_mono) | |
| 653 | apply assumption | |
| 654 | done | |
| 655 | ||
| 656 | lemma mult_le_less_imp_less: | |
| 657 | assumes "a \<le> b" and "c < d" and "0 < a" and "0 \<le> c" | |
| 658 | shows "a * c < b * d" | |
| 659 | using assms apply (subgoal_tac "a * c \<le> b * c") | |
| 660 | apply (erule le_less_trans) | |
| 661 | apply (erule mult_strict_left_mono) | |
| 662 | apply simp | |
| 663 | apply (erule mult_right_mono) | |
| 664 | apply simp | |
| 665 | done | |
| 666 | ||
| 667 | lemma mult_less_imp_less_left: | |
| 668 | assumes less: "c * a < c * b" and nonneg: "0 \<le> c" | |
| 669 | shows "a < b" | |
| 670 | proof (rule ccontr) | |
| 671 | assume "\<not> a < b" | |
| 672 | hence "b \<le> a" by (simp add: linorder_not_less) | |
| 673 | hence "c * b \<le> c * a" using nonneg by (rule mult_left_mono) | |
| 29667 | 674 | with this and less show False by (simp add: not_less [symmetric]) | 
| 26193 | 675 | qed | 
| 676 | ||
| 677 | lemma mult_less_imp_less_right: | |
| 678 | assumes less: "a * c < b * c" and nonneg: "0 \<le> c" | |
| 679 | shows "a < b" | |
| 680 | proof (rule ccontr) | |
| 681 | assume "\<not> a < b" | |
| 682 | hence "b \<le> a" by (simp add: linorder_not_less) | |
| 683 | hence "b * c \<le> a * c" using nonneg by (rule mult_right_mono) | |
| 29667 | 684 | with this and less show False by (simp add: not_less [symmetric]) | 
| 26193 | 685 | qed | 
| 686 | ||
| 25230 | 687 | end | 
| 688 | ||
| 35097 
4554bb2abfa3
dropped last occurence of the linlinordered accident
 haftmann parents: 
35092diff
changeset | 689 | class linordered_semiring_1_strict = linordered_semiring_strict + semiring_1 | 
| 33319 | 690 | |
| 22390 | 691 | class mult_mono1 = times + zero + ord + | 
| 25230 | 692 | assumes mult_mono1: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b" | 
| 14270 | 693 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 694 | class ordered_comm_semiring = comm_semiring_0 | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 695 | + ordered_ab_semigroup_add + mult_mono1 | 
| 25186 | 696 | begin | 
| 25152 | 697 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 698 | subclass ordered_semiring | 
| 28823 | 699 | proof | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 700 | fix a b c :: 'a | 
| 23550 | 701 | assume "a \<le> b" "0 \<le> c" | 
| 25230 | 702 | thus "c * a \<le> c * b" by (rule mult_mono1) | 
| 23550 | 703 | thus "a * c \<le> b * c" by (simp only: mult_commute) | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 704 | qed | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 705 | |
| 25267 | 706 | end | 
| 707 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 708 | class ordered_cancel_comm_semiring = comm_semiring_0_cancel | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 709 | + ordered_ab_semigroup_add + mult_mono1 | 
| 25267 | 710 | begin | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 711 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 712 | subclass ordered_comm_semiring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 713 | subclass ordered_cancel_semiring .. | 
| 25267 | 714 | |
| 715 | end | |
| 716 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 717 | class linordered_comm_semiring_strict = comm_semiring_0 + linordered_cancel_ab_semigroup_add + | 
| 26193 | 718 | assumes mult_strict_left_mono_comm: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b" | 
| 25267 | 719 | begin | 
| 720 | ||
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 721 | subclass linordered_semiring_strict | 
| 28823 | 722 | proof | 
| 23550 | 723 | fix a b c :: 'a | 
| 724 | assume "a < b" "0 < c" | |
| 26193 | 725 | thus "c * a < c * b" by (rule mult_strict_left_mono_comm) | 
| 23550 | 726 | thus "a * c < b * c" by (simp only: mult_commute) | 
| 727 | qed | |
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 728 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 729 | subclass ordered_cancel_comm_semiring | 
| 28823 | 730 | proof | 
| 23550 | 731 | fix a b c :: 'a | 
| 732 | assume "a \<le> b" "0 \<le> c" | |
| 733 | thus "c * a \<le> c * b" | |
| 25186 | 734 | unfolding le_less | 
| 26193 | 735 | using mult_strict_left_mono by (cases "c = 0") auto | 
| 23550 | 736 | qed | 
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 737 | |
| 25267 | 738 | end | 
| 25230 | 739 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 740 | class ordered_ring = ring + ordered_cancel_semiring | 
| 25267 | 741 | begin | 
| 25230 | 742 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 743 | subclass ordered_ab_group_add .. | 
| 14270 | 744 | |
| 29667 | 745 | text{*Legacy - use @{text algebra_simps} *}
 | 
| 29833 | 746 | lemmas ring_simps[noatp] = algebra_simps | 
| 25230 | 747 | |
| 748 | lemma less_add_iff1: | |
| 749 | "a * e + c < b * e + d \<longleftrightarrow> (a - b) * e + c < d" | |
| 29667 | 750 | by (simp add: algebra_simps) | 
| 25230 | 751 | |
| 752 | lemma less_add_iff2: | |
| 753 | "a * e + c < b * e + d \<longleftrightarrow> c < (b - a) * e + d" | |
| 29667 | 754 | by (simp add: algebra_simps) | 
| 25230 | 755 | |
| 756 | lemma le_add_iff1: | |
| 757 | "a * e + c \<le> b * e + d \<longleftrightarrow> (a - b) * e + c \<le> d" | |
| 29667 | 758 | by (simp add: algebra_simps) | 
| 25230 | 759 | |
| 760 | lemma le_add_iff2: | |
| 761 | "a * e + c \<le> b * e + d \<longleftrightarrow> c \<le> (b - a) * e + d" | |
| 29667 | 762 | by (simp add: algebra_simps) | 
| 25230 | 763 | |
| 764 | lemma mult_left_mono_neg: | |
| 765 | "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> c * a \<le> c * b" | |
| 766 | apply (drule mult_left_mono [of _ _ "uminus c"]) | |
| 35216 | 767 | apply simp_all | 
| 25230 | 768 | done | 
| 769 | ||
| 770 | lemma mult_right_mono_neg: | |
| 771 | "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> a * c \<le> b * c" | |
| 772 | apply (drule mult_right_mono [of _ _ "uminus c"]) | |
| 35216 | 773 | apply simp_all | 
| 25230 | 774 | done | 
| 775 | ||
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 776 | lemma mult_nonpos_nonpos: "a \<le> 0 \<Longrightarrow> b \<le> 0 \<Longrightarrow> 0 \<le> a * b" | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 777 | using mult_right_mono_neg [of a zero b] by simp | 
| 25230 | 778 | |
| 779 | lemma split_mult_pos_le: | |
| 780 | "(0 \<le> a \<and> 0 \<le> b) \<or> (a \<le> 0 \<and> b \<le> 0) \<Longrightarrow> 0 \<le> a * b" | |
| 29667 | 781 | by (auto simp add: mult_nonneg_nonneg mult_nonpos_nonpos) | 
| 25186 | 782 | |
| 783 | end | |
| 14270 | 784 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 785 | class linordered_ring = ring + linordered_semiring + linordered_ab_group_add + abs_if | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 786 | begin | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 787 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 788 | subclass ordered_ring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 789 | |
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 790 | subclass ordered_ab_group_add_abs | 
| 28823 | 791 | proof | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 792 | fix a b | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 793 | show "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>" | 
| 35216 | 794 | by (auto simp add: abs_if not_less) | 
| 795 | (auto simp del: minus_add_distrib simp add: minus_add_distrib [symmetric], | |
| 796 | auto intro: add_nonneg_nonneg, auto intro!: less_imp_le add_neg_neg) | |
| 797 | qed (auto simp add: abs_if) | |
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 798 | |
| 35631 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 799 | lemma zero_le_square [simp]: "0 \<le> a * a" | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 800 | using linear [of 0 a] | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 801 | by (auto simp add: mult_nonneg_nonneg mult_nonpos_nonpos) | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 802 | |
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 803 | lemma not_square_less_zero [simp]: "\<not> (a * a < 0)" | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 804 | by (simp add: not_less) | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 805 | |
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 806 | end | 
| 23521 | 807 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 808 | (* The "strict" suffix can be seen as describing the combination of linordered_ring and no_zero_divisors. | 
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 809 | Basically, linordered_ring + no_zero_divisors = linordered_ring_strict. | 
| 25230 | 810 | *) | 
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 811 | class linordered_ring_strict = ring + linordered_semiring_strict | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 812 | + ordered_ab_group_add + abs_if | 
| 25230 | 813 | begin | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
14341diff
changeset | 814 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 815 | subclass linordered_ring .. | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 816 | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 817 | lemma mult_strict_left_mono_neg: "b < a \<Longrightarrow> c < 0 \<Longrightarrow> c * a < c * b" | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 818 | using mult_strict_left_mono [of b a "- c"] by simp | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 819 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 820 | lemma mult_strict_right_mono_neg: "b < a \<Longrightarrow> c < 0 \<Longrightarrow> a * c < b * c" | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 821 | using mult_strict_right_mono [of b a "- c"] by simp | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 822 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 823 | lemma mult_neg_neg: "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> 0 < a * b" | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 824 | using mult_strict_right_mono_neg [of a zero b] by simp | 
| 14738 | 825 | |
| 25917 | 826 | subclass ring_no_zero_divisors | 
| 28823 | 827 | proof | 
| 25917 | 828 | fix a b | 
| 829 | assume "a \<noteq> 0" then have A: "a < 0 \<or> 0 < a" by (simp add: neq_iff) | |
| 830 | assume "b \<noteq> 0" then have B: "b < 0 \<or> 0 < b" by (simp add: neq_iff) | |
| 831 | have "a * b < 0 \<or> 0 < a * b" | |
| 832 | proof (cases "a < 0") | |
| 833 | case True note A' = this | |
| 834 | show ?thesis proof (cases "b < 0") | |
| 835 | case True with A' | |
| 836 | show ?thesis by (auto dest: mult_neg_neg) | |
| 837 | next | |
| 838 | case False with B have "0 < b" by auto | |
| 839 | with A' show ?thesis by (auto dest: mult_strict_right_mono) | |
| 840 | qed | |
| 841 | next | |
| 842 | case False with A have A': "0 < a" by auto | |
| 843 | show ?thesis proof (cases "b < 0") | |
| 844 | case True with A' | |
| 845 | show ?thesis by (auto dest: mult_strict_right_mono_neg) | |
| 846 | next | |
| 847 | case False with B have "0 < b" by auto | |
| 848 | with A' show ?thesis by (auto dest: mult_pos_pos) | |
| 849 | qed | |
| 850 | qed | |
| 851 | then show "a * b \<noteq> 0" by (simp add: neq_iff) | |
| 852 | qed | |
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 853 | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 854 | lemma zero_less_mult_iff: | 
| 25917 | 855 | "0 < a * b \<longleftrightarrow> 0 < a \<and> 0 < b \<or> a < 0 \<and> b < 0" | 
| 856 | apply (auto simp add: mult_pos_pos mult_neg_neg) | |
| 857 | apply (simp_all add: not_less le_less) | |
| 858 | apply (erule disjE) apply assumption defer | |
| 859 | apply (erule disjE) defer apply (drule sym) apply simp | |
| 860 | apply (erule disjE) defer apply (drule sym) apply simp | |
| 861 | apply (erule disjE) apply assumption apply (drule sym) apply simp | |
| 862 | apply (drule sym) apply simp | |
| 863 | apply (blast dest: zero_less_mult_pos) | |
| 25230 | 864 | apply (blast dest: zero_less_mult_pos2) | 
| 865 | done | |
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 866 | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 867 | lemma zero_le_mult_iff: | 
| 25917 | 868 | "0 \<le> a * b \<longleftrightarrow> 0 \<le> a \<and> 0 \<le> b \<or> a \<le> 0 \<and> b \<le> 0" | 
| 29667 | 869 | by (auto simp add: eq_commute [of 0] le_less not_less zero_less_mult_iff) | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 870 | |
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 871 | lemma mult_less_0_iff: | 
| 25917 | 872 | "a * b < 0 \<longleftrightarrow> 0 < a \<and> b < 0 \<or> a < 0 \<and> 0 < b" | 
| 35216 | 873 | apply (insert zero_less_mult_iff [of "-a" b]) | 
| 874 | apply force | |
| 25917 | 875 | done | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 876 | |
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 877 | lemma mult_le_0_iff: | 
| 25917 | 878 | "a * b \<le> 0 \<longleftrightarrow> 0 \<le> a \<and> b \<le> 0 \<or> a \<le> 0 \<and> 0 \<le> b" | 
| 879 | apply (insert zero_le_mult_iff [of "-a" b]) | |
| 35216 | 880 | apply force | 
| 25917 | 881 | done | 
| 882 | ||
| 26193 | 883 | text{*Cancellation laws for @{term "c*a < c*b"} and @{term "a*c < b*c"},
 | 
| 884 |    also with the relations @{text "\<le>"} and equality.*}
 | |
| 885 | ||
| 886 | text{*These ``disjunction'' versions produce two cases when the comparison is
 | |
| 887 | an assumption, but effectively four when the comparison is a goal.*} | |
| 888 | ||
| 889 | lemma mult_less_cancel_right_disj: | |
| 890 | "a * c < b * c \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and> b < a" | |
| 891 | apply (cases "c = 0") | |
| 892 | apply (auto simp add: neq_iff mult_strict_right_mono | |
| 893 | mult_strict_right_mono_neg) | |
| 894 | apply (auto simp add: not_less | |
| 895 | not_le [symmetric, of "a*c"] | |
| 896 | not_le [symmetric, of a]) | |
| 897 | apply (erule_tac [!] notE) | |
| 898 | apply (auto simp add: less_imp_le mult_right_mono | |
| 899 | mult_right_mono_neg) | |
| 900 | done | |
| 901 | ||
| 902 | lemma mult_less_cancel_left_disj: | |
| 903 | "c * a < c * b \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and> b < a" | |
| 904 | apply (cases "c = 0") | |
| 905 | apply (auto simp add: neq_iff mult_strict_left_mono | |
| 906 | mult_strict_left_mono_neg) | |
| 907 | apply (auto simp add: not_less | |
| 908 | not_le [symmetric, of "c*a"] | |
| 909 | not_le [symmetric, of a]) | |
| 910 | apply (erule_tac [!] notE) | |
| 911 | apply (auto simp add: less_imp_le mult_left_mono | |
| 912 | mult_left_mono_neg) | |
| 913 | done | |
| 914 | ||
| 915 | text{*The ``conjunction of implication'' lemmas produce two cases when the
 | |
| 916 | comparison is a goal, but give four when the comparison is an assumption.*} | |
| 917 | ||
| 918 | lemma mult_less_cancel_right: | |
| 919 | "a * c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)" | |
| 920 | using mult_less_cancel_right_disj [of a c b] by auto | |
| 921 | ||
| 922 | lemma mult_less_cancel_left: | |
| 923 | "c * a < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)" | |
| 924 | using mult_less_cancel_left_disj [of c a b] by auto | |
| 925 | ||
| 926 | lemma mult_le_cancel_right: | |
| 927 | "a * c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" | |
| 29667 | 928 | by (simp add: not_less [symmetric] mult_less_cancel_right_disj) | 
| 26193 | 929 | |
| 930 | lemma mult_le_cancel_left: | |
| 931 | "c * a \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" | |
| 29667 | 932 | by (simp add: not_less [symmetric] mult_less_cancel_left_disj) | 
| 26193 | 933 | |
| 30649 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 934 | lemma mult_le_cancel_left_pos: | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 935 | "0 < c \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> a \<le> b" | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 936 | by (auto simp: mult_le_cancel_left) | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 937 | |
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 938 | lemma mult_le_cancel_left_neg: | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 939 | "c < 0 \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> b \<le> a" | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 940 | by (auto simp: mult_le_cancel_left) | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 941 | |
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 942 | lemma mult_less_cancel_left_pos: | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 943 | "0 < c \<Longrightarrow> c * a < c * b \<longleftrightarrow> a < b" | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 944 | by (auto simp: mult_less_cancel_left) | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 945 | |
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 946 | lemma mult_less_cancel_left_neg: | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 947 | "c < 0 \<Longrightarrow> c * a < c * b \<longleftrightarrow> b < a" | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 948 | by (auto simp: mult_less_cancel_left) | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 949 | |
| 25917 | 950 | end | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 951 | |
| 29667 | 952 | text{*Legacy - use @{text algebra_simps} *}
 | 
| 29833 | 953 | lemmas ring_simps[noatp] = algebra_simps | 
| 25230 | 954 | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 955 | lemmas mult_sign_intros = | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 956 | mult_nonneg_nonneg mult_nonneg_nonpos | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 957 | mult_nonpos_nonneg mult_nonpos_nonpos | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 958 | mult_pos_pos mult_pos_neg | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 959 | mult_neg_pos mult_neg_neg | 
| 25230 | 960 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 961 | class ordered_comm_ring = comm_ring + ordered_comm_semiring | 
| 25267 | 962 | begin | 
| 25230 | 963 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 964 | subclass ordered_ring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 965 | subclass ordered_cancel_comm_semiring .. | 
| 25230 | 966 | |
| 25267 | 967 | end | 
| 25230 | 968 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 969 | class linordered_semidom = comm_semiring_1_cancel + linordered_comm_semiring_strict + | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 970 | (*previously linordered_semiring*) | 
| 25230 | 971 | assumes zero_less_one [simp]: "0 < 1" | 
| 972 | begin | |
| 973 | ||
| 974 | lemma pos_add_strict: | |
| 975 | shows "0 < a \<Longrightarrow> b < c \<Longrightarrow> b < a + c" | |
| 976 | using add_strict_mono [of zero a b c] by simp | |
| 977 | ||
| 26193 | 978 | lemma zero_le_one [simp]: "0 \<le> 1" | 
| 29667 | 979 | by (rule zero_less_one [THEN less_imp_le]) | 
| 26193 | 980 | |
| 981 | lemma not_one_le_zero [simp]: "\<not> 1 \<le> 0" | |
| 29667 | 982 | by (simp add: not_le) | 
| 26193 | 983 | |
| 984 | lemma not_one_less_zero [simp]: "\<not> 1 < 0" | |
| 29667 | 985 | by (simp add: not_less) | 
| 26193 | 986 | |
| 987 | lemma less_1_mult: | |
| 988 | assumes "1 < m" and "1 < n" | |
| 989 | shows "1 < m * n" | |
| 990 | using assms mult_strict_mono [of 1 m 1 n] | |
| 991 | by (simp add: less_trans [OF zero_less_one]) | |
| 992 | ||
| 25230 | 993 | end | 
| 994 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 995 | class linordered_idom = comm_ring_1 + | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 996 | linordered_comm_semiring_strict + ordered_ab_group_add + | 
| 25230 | 997 | abs_if + sgn_if | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 998 | (*previously linordered_ring*) | 
| 25917 | 999 | begin | 
| 1000 | ||
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 1001 | subclass linordered_ring_strict .. | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1002 | subclass ordered_comm_ring .. | 
| 27516 | 1003 | subclass idom .. | 
| 25917 | 1004 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1005 | subclass linordered_semidom | 
| 28823 | 1006 | proof | 
| 26193 | 1007 | have "0 \<le> 1 * 1" by (rule zero_le_square) | 
| 1008 | thus "0 < 1" by (simp add: le_less) | |
| 25917 | 1009 | qed | 
| 1010 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1011 | lemma linorder_neqE_linordered_idom: | 
| 26193 | 1012 | assumes "x \<noteq> y" obtains "x < y" | "y < x" | 
| 1013 | using assms by (rule neqE) | |
| 1014 | ||
| 26274 | 1015 | text {* These cancellation simprules also produce two cases when the comparison is a goal. *}
 | 
| 1016 | ||
| 1017 | lemma mult_le_cancel_right1: | |
| 1018 | "c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)" | |
| 29667 | 1019 | by (insert mult_le_cancel_right [of 1 c b], simp) | 
| 26274 | 1020 | |
| 1021 | lemma mult_le_cancel_right2: | |
| 1022 | "a * c \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)" | |
| 29667 | 1023 | by (insert mult_le_cancel_right [of a c 1], simp) | 
| 26274 | 1024 | |
| 1025 | lemma mult_le_cancel_left1: | |
| 1026 | "c \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)" | |
| 29667 | 1027 | by (insert mult_le_cancel_left [of c 1 b], simp) | 
| 26274 | 1028 | |
| 1029 | lemma mult_le_cancel_left2: | |
| 1030 | "c * a \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)" | |
| 29667 | 1031 | by (insert mult_le_cancel_left [of c a 1], simp) | 
| 26274 | 1032 | |
| 1033 | lemma mult_less_cancel_right1: | |
| 1034 | "c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)" | |
| 29667 | 1035 | by (insert mult_less_cancel_right [of 1 c b], simp) | 
| 26274 | 1036 | |
| 1037 | lemma mult_less_cancel_right2: | |
| 1038 | "a * c < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)" | |
| 29667 | 1039 | by (insert mult_less_cancel_right [of a c 1], simp) | 
| 26274 | 1040 | |
| 1041 | lemma mult_less_cancel_left1: | |
| 1042 | "c < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)" | |
| 29667 | 1043 | by (insert mult_less_cancel_left [of c 1 b], simp) | 
| 26274 | 1044 | |
| 1045 | lemma mult_less_cancel_left2: | |
| 1046 | "c * a < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)" | |
| 29667 | 1047 | by (insert mult_less_cancel_left [of c a 1], simp) | 
| 26274 | 1048 | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1049 | lemma sgn_sgn [simp]: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1050 | "sgn (sgn a) = sgn a" | 
| 29700 | 1051 | unfolding sgn_if by simp | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1052 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1053 | lemma sgn_0_0: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1054 | "sgn a = 0 \<longleftrightarrow> a = 0" | 
| 29700 | 1055 | unfolding sgn_if by simp | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1056 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1057 | lemma sgn_1_pos: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1058 | "sgn a = 1 \<longleftrightarrow> a > 0" | 
| 35216 | 1059 | unfolding sgn_if by simp | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1060 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1061 | lemma sgn_1_neg: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1062 | "sgn a = - 1 \<longleftrightarrow> a < 0" | 
| 35216 | 1063 | unfolding sgn_if by auto | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1064 | |
| 29940 | 1065 | lemma sgn_pos [simp]: | 
| 1066 | "0 < a \<Longrightarrow> sgn a = 1" | |
| 1067 | unfolding sgn_1_pos . | |
| 1068 | ||
| 1069 | lemma sgn_neg [simp]: | |
| 1070 | "a < 0 \<Longrightarrow> sgn a = - 1" | |
| 1071 | unfolding sgn_1_neg . | |
| 1072 | ||
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1073 | lemma sgn_times: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1074 | "sgn (a * b) = sgn a * sgn b" | 
| 29667 | 1075 | by (auto simp add: sgn_if zero_less_mult_iff) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1076 | |
| 29653 | 1077 | lemma abs_sgn: "abs k = k * sgn k" | 
| 29700 | 1078 | unfolding sgn_if abs_if by auto | 
| 1079 | ||
| 29940 | 1080 | lemma sgn_greater [simp]: | 
| 1081 | "0 < sgn a \<longleftrightarrow> 0 < a" | |
| 1082 | unfolding sgn_if by auto | |
| 1083 | ||
| 1084 | lemma sgn_less [simp]: | |
| 1085 | "sgn a < 0 \<longleftrightarrow> a < 0" | |
| 1086 | unfolding sgn_if by auto | |
| 1087 | ||
| 29949 | 1088 | lemma abs_dvd_iff [simp]: "(abs m) dvd k \<longleftrightarrow> m dvd k" | 
| 1089 | by (simp add: abs_if) | |
| 1090 | ||
| 1091 | lemma dvd_abs_iff [simp]: "m dvd (abs k) \<longleftrightarrow> m dvd k" | |
| 1092 | by (simp add: abs_if) | |
| 29653 | 1093 | |
| 33676 
802f5e233e48
moved lemma from Algebra/IntRing to Ring_and_Field
 nipkow parents: 
33364diff
changeset | 1094 | lemma dvd_if_abs_eq: | 
| 
802f5e233e48
moved lemma from Algebra/IntRing to Ring_and_Field
 nipkow parents: 
33364diff
changeset | 1095 | "abs l = abs (k) \<Longrightarrow> l dvd k" | 
| 
802f5e233e48
moved lemma from Algebra/IntRing to Ring_and_Field
 nipkow parents: 
33364diff
changeset | 1096 | by(subst abs_dvd_iff[symmetric]) simp | 
| 
802f5e233e48
moved lemma from Algebra/IntRing to Ring_and_Field
 nipkow parents: 
33364diff
changeset | 1097 | |
| 25917 | 1098 | end | 
| 25230 | 1099 | |
| 26274 | 1100 | text {* Simprules for comparisons where common factors can be cancelled. *}
 | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1101 | |
| 29833 | 1102 | lemmas mult_compare_simps[noatp] = | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1103 | mult_le_cancel_right mult_le_cancel_left | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1104 | mult_le_cancel_right1 mult_le_cancel_right2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1105 | mult_le_cancel_left1 mult_le_cancel_left2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1106 | mult_less_cancel_right mult_less_cancel_left | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1107 | mult_less_cancel_right1 mult_less_cancel_right2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1108 | mult_less_cancel_left1 mult_less_cancel_left2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1109 | mult_cancel_right mult_cancel_left | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1110 | mult_cancel_right1 mult_cancel_right2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1111 | mult_cancel_left1 mult_cancel_left2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1112 | |
| 26274 | 1113 | -- {* FIXME continue localization here *}
 | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1114 | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1115 | subsection {* Reasoning about inequalities with division *}
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1116 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1117 | lemma mult_right_le_one_le: "0 <= (x::'a::linordered_idom) ==> 0 <= y ==> y <= 1 | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1118 | ==> x * y <= x" | 
| 35216 | 1119 | by (auto simp add: mult_le_cancel_left2) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1120 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1121 | lemma mult_left_le_one_le: "0 <= (x::'a::linordered_idom) ==> 0 <= y ==> y <= 1 | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1122 | ==> y * x <= x" | 
| 35216 | 1123 | by (auto simp add: mult_le_cancel_right2) | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1124 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1125 | context linordered_semidom | 
| 25193 | 1126 | begin | 
| 1127 | ||
| 1128 | lemma less_add_one: "a < a + 1" | |
| 14293 | 1129 | proof - | 
| 25193 | 1130 | have "a + 0 < a + 1" | 
| 23482 | 1131 | by (blast intro: zero_less_one add_strict_left_mono) | 
| 14293 | 1132 | thus ?thesis by simp | 
| 1133 | qed | |
| 1134 | ||
| 25193 | 1135 | lemma zero_less_two: "0 < 1 + 1" | 
| 29667 | 1136 | by (blast intro: less_trans zero_less_one less_add_one) | 
| 25193 | 1137 | |
| 1138 | end | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1139 | |
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1140 | |
| 14293 | 1141 | subsection {* Absolute Value *}
 | 
| 1142 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1143 | context linordered_idom | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1144 | begin | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1145 | |
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1146 | lemma mult_sgn_abs: "sgn x * abs x = x" | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1147 | unfolding abs_if sgn_if by auto | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1148 | |
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1149 | end | 
| 24491 | 1150 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1151 | lemma abs_one [simp]: "abs 1 = (1::'a::linordered_idom)" | 
| 29667 | 1152 | by (simp add: abs_if zero_less_one [THEN order_less_not_sym]) | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1153 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1154 | class ordered_ring_abs = ordered_ring + ordered_ab_group_add_abs + | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1155 | assumes abs_eq_mult: | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1156 | "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0) \<Longrightarrow> \<bar>a * b\<bar> = \<bar>a\<bar> * \<bar>b\<bar>" | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1157 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1158 | context linordered_idom | 
| 30961 | 1159 | begin | 
| 1160 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1161 | subclass ordered_ring_abs proof | 
| 35216 | 1162 | qed (auto simp add: abs_if not_less mult_less_0_iff) | 
| 30961 | 1163 | |
| 1164 | lemma abs_mult: | |
| 1165 | "abs (a * b) = abs a * abs b" | |
| 1166 | by (rule abs_eq_mult) auto | |
| 1167 | ||
| 1168 | lemma abs_mult_self: | |
| 1169 | "abs a * abs a = a * a" | |
| 1170 | by (simp add: abs_if) | |
| 1171 | ||
| 1172 | end | |
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 1173 | |
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 1174 | lemma abs_mult_less: | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1175 | "[| abs a < c; abs b < d |] ==> abs a * abs b < c*(d::'a::linordered_idom)" | 
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 1176 | proof - | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 1177 | assume ac: "abs a < c" | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 1178 | hence cpos: "0<c" by (blast intro: order_le_less_trans abs_ge_zero) | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 1179 | assume "abs b < d" | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 1180 | thus ?thesis by (simp add: ac cpos mult_strict_mono) | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 1181 | qed | 
| 14293 | 1182 | |
| 29833 | 1183 | lemmas eq_minus_self_iff[noatp] = equal_neg_zero | 
| 14738 | 1184 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1185 | lemma less_minus_self_iff: "(a < -a) = (a < (0::'a::linordered_idom))" | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1186 | unfolding order_less_le less_eq_neg_nonpos equal_neg_zero .. | 
| 14738 | 1187 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1188 | lemma abs_less_iff: "(abs a < b) = (a < b & -a < (b::'a::linordered_idom))" | 
| 14738 | 1189 | apply (simp add: order_less_le abs_le_iff) | 
| 35216 | 1190 | apply (auto simp add: abs_if) | 
| 14738 | 1191 | done | 
| 1192 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1193 | lemma abs_mult_pos: "(0::'a::linordered_idom) <= x ==> | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1194 | (abs y) * x = abs (y * x)" | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1195 | apply (subst abs_mult) | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1196 | apply simp | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1197 | done | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1198 | |
| 33364 | 1199 | code_modulename SML | 
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 1200 | Rings Arith | 
| 33364 | 1201 | |
| 1202 | code_modulename OCaml | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 1203 | Rings Arith | 
| 33364 | 1204 | |
| 1205 | code_modulename Haskell | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 1206 | Rings Arith | 
| 33364 | 1207 | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 1208 | end |