| 1459 |      1 | (*  Title:      FOLP/ex/cla
 | 
| 0 |      2 |     ID:         $Id$
 | 
| 1459 |      3 |     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
 | 
| 0 |      4 |     Copyright   1993  University of Cambridge
 | 
|  |      5 | 
 | 
|  |      6 | Classical First-Order Logic
 | 
|  |      7 | *)
 | 
|  |      8 | 
 | 
| 1464 |      9 | writeln"File FOLP/ex/cla.ML";
 | 
| 0 |     10 | 
 | 
|  |     11 | open Cla;    (*in case structure Int is open!*)
 | 
|  |     12 | 
 | 
|  |     13 | goal FOLP.thy "?p : (P --> Q | R) --> (P-->Q) | (P-->R)";
 | 
|  |     14 | by (fast_tac FOLP_cs 1);
 | 
|  |     15 | result();
 | 
|  |     16 | 
 | 
|  |     17 | (*If and only if*)
 | 
|  |     18 | 
 | 
|  |     19 | goal FOLP.thy "?p : (P<->Q) <-> (Q<->P)";
 | 
|  |     20 | by (fast_tac FOLP_cs 1);
 | 
|  |     21 | result();
 | 
|  |     22 | 
 | 
|  |     23 | goal FOLP.thy "?p : ~ (P <-> ~P)";
 | 
|  |     24 | by (fast_tac FOLP_cs 1);
 | 
|  |     25 | result();
 | 
|  |     26 | 
 | 
|  |     27 | 
 | 
|  |     28 | (*Sample problems from 
 | 
|  |     29 |   F. J. Pelletier, 
 | 
|  |     30 |   Seventy-Five Problems for Testing Automatic Theorem Provers,
 | 
|  |     31 |   J. Automated Reasoning 2 (1986), 191-216.
 | 
|  |     32 |   Errata, JAR 4 (1988), 236-236.
 | 
|  |     33 | 
 | 
|  |     34 | The hardest problems -- judging by experience with several theorem provers,
 | 
|  |     35 | including matrix ones -- are 34 and 43.
 | 
|  |     36 | *)
 | 
|  |     37 | 
 | 
|  |     38 | writeln"Pelletier's examples";
 | 
|  |     39 | (*1*)
 | 
|  |     40 | goal FOLP.thy "?p : (P-->Q)  <->  (~Q --> ~P)";
 | 
|  |     41 | by (fast_tac FOLP_cs 1);
 | 
|  |     42 | result();
 | 
|  |     43 | 
 | 
|  |     44 | (*2*)
 | 
|  |     45 | goal FOLP.thy "?p : ~ ~ P  <->  P";
 | 
|  |     46 | by (fast_tac FOLP_cs 1);
 | 
|  |     47 | result();
 | 
|  |     48 | 
 | 
|  |     49 | (*3*)
 | 
|  |     50 | goal FOLP.thy "?p : ~(P-->Q) --> (Q-->P)";
 | 
|  |     51 | by (fast_tac FOLP_cs 1);
 | 
|  |     52 | result();
 | 
|  |     53 | 
 | 
|  |     54 | (*4*)
 | 
|  |     55 | goal FOLP.thy "?p : (~P-->Q)  <->  (~Q --> P)";
 | 
|  |     56 | by (fast_tac FOLP_cs 1);
 | 
|  |     57 | result();
 | 
|  |     58 | 
 | 
|  |     59 | (*5*)
 | 
|  |     60 | goal FOLP.thy "?p : ((P|Q)-->(P|R)) --> (P|(Q-->R))";
 | 
|  |     61 | by (fast_tac FOLP_cs 1);
 | 
|  |     62 | result();
 | 
|  |     63 | 
 | 
|  |     64 | (*6*)
 | 
|  |     65 | goal FOLP.thy "?p : P | ~ P";
 | 
|  |     66 | by (fast_tac FOLP_cs 1);
 | 
|  |     67 | result();
 | 
|  |     68 | 
 | 
|  |     69 | (*7*)
 | 
|  |     70 | goal FOLP.thy "?p : P | ~ ~ ~ P";
 | 
|  |     71 | by (fast_tac FOLP_cs 1);
 | 
|  |     72 | result();
 | 
|  |     73 | 
 | 
|  |     74 | (*8.  Peirce's law*)
 | 
|  |     75 | goal FOLP.thy "?p : ((P-->Q) --> P)  -->  P";
 | 
|  |     76 | by (fast_tac FOLP_cs 1);
 | 
|  |     77 | result();
 | 
|  |     78 | 
 | 
|  |     79 | (*9*)
 | 
|  |     80 | goal FOLP.thy "?p : ((P|Q) & (~P|Q) & (P| ~Q)) --> ~ (~P | ~Q)";
 | 
|  |     81 | by (fast_tac FOLP_cs 1);
 | 
|  |     82 | result();
 | 
|  |     83 | 
 | 
|  |     84 | (*10*)
 | 
|  |     85 | goal FOLP.thy "?p : (Q-->R) & (R-->P&Q) & (P-->Q|R) --> (P<->Q)";
 | 
|  |     86 | by (fast_tac FOLP_cs 1);
 | 
|  |     87 | result();
 | 
|  |     88 | 
 | 
|  |     89 | (*11.  Proved in each direction (incorrectly, says Pelletier!!)  *)
 | 
|  |     90 | goal FOLP.thy "?p : P<->P";
 | 
|  |     91 | by (fast_tac FOLP_cs 1);
 | 
|  |     92 | result();
 | 
|  |     93 | 
 | 
|  |     94 | (*12.  "Dijkstra's law"*)
 | 
|  |     95 | goal FOLP.thy "?p : ((P <-> Q) <-> R)  <->  (P <-> (Q <-> R))";
 | 
|  |     96 | by (fast_tac FOLP_cs 1);
 | 
|  |     97 | result();
 | 
|  |     98 | 
 | 
|  |     99 | (*13.  Distributive law*)
 | 
|  |    100 | goal FOLP.thy "?p : P | (Q & R)  <-> (P | Q) & (P | R)";
 | 
|  |    101 | by (fast_tac FOLP_cs 1);
 | 
|  |    102 | result();
 | 
|  |    103 | 
 | 
|  |    104 | (*14*)
 | 
|  |    105 | goal FOLP.thy "?p : (P <-> Q) <-> ((Q | ~P) & (~Q|P))";
 | 
|  |    106 | by (fast_tac FOLP_cs 1);
 | 
|  |    107 | result();
 | 
|  |    108 | 
 | 
|  |    109 | (*15*)
 | 
|  |    110 | goal FOLP.thy "?p : (P --> Q) <-> (~P | Q)";
 | 
|  |    111 | by (fast_tac FOLP_cs 1);
 | 
|  |    112 | result();
 | 
|  |    113 | 
 | 
|  |    114 | (*16*)
 | 
|  |    115 | goal FOLP.thy "?p : (P-->Q) | (Q-->P)";
 | 
|  |    116 | by (fast_tac FOLP_cs 1);
 | 
|  |    117 | result();
 | 
|  |    118 | 
 | 
|  |    119 | (*17*)
 | 
|  |    120 | goal FOLP.thy "?p : ((P & (Q-->R))-->S) <-> ((~P | Q | S) & (~P | ~R | S))";
 | 
|  |    121 | by (fast_tac FOLP_cs 1);
 | 
|  |    122 | result();
 | 
|  |    123 | 
 | 
|  |    124 | writeln"Classical Logic: examples with quantifiers";
 | 
|  |    125 | 
 | 
|  |    126 | goal FOLP.thy "?p : (ALL x. P(x) & Q(x)) <-> (ALL x. P(x))  &  (ALL x. Q(x))";
 | 
|  |    127 | by (fast_tac FOLP_cs 1);
 | 
|  |    128 | result(); 
 | 
|  |    129 | 
 | 
|  |    130 | goal FOLP.thy "?p : (EX x. P-->Q(x))  <->  (P --> (EX x.Q(x)))";
 | 
|  |    131 | by (fast_tac FOLP_cs 1);
 | 
|  |    132 | result(); 
 | 
|  |    133 | 
 | 
|  |    134 | goal FOLP.thy "?p : (EX x.P(x)-->Q)  <->  (ALL x.P(x)) --> Q";
 | 
|  |    135 | by (fast_tac FOLP_cs 1);
 | 
|  |    136 | result(); 
 | 
|  |    137 | 
 | 
|  |    138 | goal FOLP.thy "?p : (ALL x.P(x)) | Q  <->  (ALL x. P(x) | Q)";
 | 
|  |    139 | by (fast_tac FOLP_cs 1);
 | 
|  |    140 | result(); 
 | 
|  |    141 | 
 | 
|  |    142 | writeln"Problems requiring quantifier duplication";
 | 
|  |    143 | 
 | 
|  |    144 | (*Needs multiple instantiation of ALL.*)
 | 
|  |    145 | (*
 | 
|  |    146 | goal FOLP.thy "?p : (ALL x. P(x)-->P(f(x)))  &  P(d)-->P(f(f(f(d))))";
 | 
|  |    147 | by (best_tac FOLP_dup_cs 1);
 | 
|  |    148 | result();
 | 
|  |    149 | *)
 | 
|  |    150 | (*Needs double instantiation of the quantifier*)
 | 
|  |    151 | goal FOLP.thy "?p : EX x. P(x) --> P(a) & P(b)";
 | 
|  |    152 | by (best_tac FOLP_dup_cs 1);
 | 
|  |    153 | result();
 | 
|  |    154 | 
 | 
|  |    155 | goal FOLP.thy "?p : EX z. P(z) --> (ALL x. P(x))";
 | 
|  |    156 | by (best_tac FOLP_dup_cs 1);
 | 
|  |    157 | result();
 | 
|  |    158 | 
 | 
|  |    159 | 
 | 
|  |    160 | writeln"Hard examples with quantifiers";
 | 
|  |    161 | 
 | 
|  |    162 | writeln"Problem 18";
 | 
|  |    163 | goal FOLP.thy "?p : EX y. ALL x. P(y)-->P(x)";
 | 
|  |    164 | by (best_tac FOLP_dup_cs 1);
 | 
|  |    165 | result(); 
 | 
|  |    166 | 
 | 
|  |    167 | writeln"Problem 19";
 | 
|  |    168 | goal FOLP.thy "?p : EX x. ALL y z. (P(y)-->Q(z)) --> (P(x)-->Q(x))";
 | 
|  |    169 | by (best_tac FOLP_dup_cs 1);
 | 
|  |    170 | result();
 | 
|  |    171 | 
 | 
|  |    172 | writeln"Problem 20";
 | 
|  |    173 | goal FOLP.thy "?p : (ALL x y. EX z. ALL w. (P(x)&Q(y)-->R(z)&S(w)))     \
 | 
|  |    174 | \   --> (EX x y. P(x) & Q(y)) --> (EX z. R(z))";
 | 
|  |    175 | by (fast_tac FOLP_cs 1); 
 | 
|  |    176 | result();
 | 
|  |    177 | (*
 | 
|  |    178 | writeln"Problem 21";
 | 
|  |    179 | goal FOLP.thy "?p : (EX x. P-->Q(x)) & (EX x. Q(x)-->P) --> (EX x. P<->Q(x))";
 | 
|  |    180 | by (best_tac FOLP_dup_cs 1);
 | 
|  |    181 | result();
 | 
|  |    182 | *)
 | 
|  |    183 | writeln"Problem 22";
 | 
|  |    184 | goal FOLP.thy "?p : (ALL x. P <-> Q(x))  -->  (P <-> (ALL x. Q(x)))";
 | 
|  |    185 | by (fast_tac FOLP_cs 1); 
 | 
|  |    186 | result();
 | 
|  |    187 | 
 | 
|  |    188 | writeln"Problem 23";
 | 
|  |    189 | goal FOLP.thy "?p : (ALL x. P | Q(x))  <->  (P | (ALL x. Q(x)))";
 | 
|  |    190 | by (best_tac FOLP_cs 1);  
 | 
|  |    191 | result();
 | 
|  |    192 | 
 | 
|  |    193 | writeln"Problem 24";
 | 
|  |    194 | goal FOLP.thy "?p : ~(EX x. S(x)&Q(x)) & (ALL x. P(x) --> Q(x)|R(x)) &  \
 | 
|  |    195 | \    ~(EX x.P(x)) --> (EX x.Q(x)) & (ALL x. Q(x)|R(x) --> S(x))  \
 | 
|  |    196 | \   --> (EX x. P(x)&R(x))";
 | 
|  |    197 | by (fast_tac FOLP_cs 1); 
 | 
|  |    198 | result();
 | 
|  |    199 | (*
 | 
|  |    200 | writeln"Problem 25";
 | 
|  |    201 | goal FOLP.thy "?p : (EX x. P(x)) &  \
 | 
|  |    202 | \       (ALL x. L(x) --> ~ (M(x) & R(x))) &  \
 | 
|  |    203 | \       (ALL x. P(x) --> (M(x) & L(x))) &   \
 | 
|  |    204 | \       ((ALL x. P(x)-->Q(x)) | (EX x. P(x)&R(x)))  \
 | 
|  |    205 | \   --> (EX x. Q(x)&P(x))";
 | 
|  |    206 | by (best_tac FOLP_cs 1); 
 | 
|  |    207 | result();
 | 
|  |    208 | 
 | 
|  |    209 | writeln"Problem 26";
 | 
| 1459 |    210 | goal FOLP.thy "?u : ((EX x. p(x)) <-> (EX x. q(x))) &   \
 | 
|  |    211 | \     (ALL x. ALL y. p(x) & q(y) --> (r(x) <-> s(y)))   \
 | 
| 0 |    212 | \ --> ((ALL x. p(x)-->r(x)) <-> (ALL x. q(x)-->s(x)))";
 | 
|  |    213 | by (fast_tac FOLP_cs 1);
 | 
|  |    214 | result();
 | 
|  |    215 | *)
 | 
|  |    216 | writeln"Problem 27";
 | 
|  |    217 | goal FOLP.thy "?p : (EX x. P(x) & ~Q(x)) &   \
 | 
|  |    218 | \             (ALL x. P(x) --> R(x)) &   \
 | 
|  |    219 | \             (ALL x. M(x) & L(x) --> P(x)) &   \
 | 
|  |    220 | \             ((EX x. R(x) & ~ Q(x)) --> (ALL x. L(x) --> ~ R(x)))  \
 | 
|  |    221 | \         --> (ALL x. M(x) --> ~L(x))";
 | 
|  |    222 | by (fast_tac FOLP_cs 1); 
 | 
|  |    223 | result();
 | 
|  |    224 | 
 | 
|  |    225 | writeln"Problem 28.  AMENDED";
 | 
|  |    226 | goal FOLP.thy "?p : (ALL x. P(x) --> (ALL x. Q(x))) &   \
 | 
|  |    227 | \       ((ALL x. Q(x)|R(x)) --> (EX x. Q(x)&S(x))) &  \
 | 
|  |    228 | \       ((EX x.S(x)) --> (ALL x. L(x) --> M(x)))  \
 | 
|  |    229 | \   --> (ALL x. P(x) & L(x) --> M(x))";
 | 
|  |    230 | by (fast_tac FOLP_cs 1);  
 | 
|  |    231 | result();
 | 
|  |    232 | 
 | 
|  |    233 | writeln"Problem 29.  Essentially the same as Principia Mathematica *11.71";
 | 
|  |    234 | goal FOLP.thy "?p : (EX x. P(x)) & (EX y. Q(y))  \
 | 
|  |    235 | \   --> ((ALL x. P(x)-->R(x)) & (ALL y. Q(y)-->S(y))   <->     \
 | 
|  |    236 | \        (ALL x y. P(x) & Q(y) --> R(x) & S(y)))";
 | 
|  |    237 | by (fast_tac FOLP_cs 1); 
 | 
|  |    238 | result();
 | 
|  |    239 | 
 | 
|  |    240 | writeln"Problem 30";
 | 
|  |    241 | goal FOLP.thy "?p : (ALL x. P(x) | Q(x) --> ~ R(x)) & \
 | 
|  |    242 | \       (ALL x. (Q(x) --> ~ S(x)) --> P(x) & R(x))  \
 | 
|  |    243 | \   --> (ALL x. S(x))";
 | 
|  |    244 | by (fast_tac FOLP_cs 1);  
 | 
|  |    245 | result();
 | 
|  |    246 | 
 | 
|  |    247 | writeln"Problem 31";
 | 
|  |    248 | goal FOLP.thy "?p : ~(EX x.P(x) & (Q(x) | R(x))) & \
 | 
|  |    249 | \       (EX x. L(x) & P(x)) & \
 | 
|  |    250 | \       (ALL x. ~ R(x) --> M(x))  \
 | 
|  |    251 | \   --> (EX x. L(x) & M(x))";
 | 
|  |    252 | by (fast_tac FOLP_cs 1);
 | 
|  |    253 | result();
 | 
|  |    254 | 
 | 
|  |    255 | writeln"Problem 32";
 | 
|  |    256 | goal FOLP.thy "?p : (ALL x. P(x) & (Q(x)|R(x))-->S(x)) & \
 | 
|  |    257 | \       (ALL x. S(x) & R(x) --> L(x)) & \
 | 
|  |    258 | \       (ALL x. M(x) --> R(x))  \
 | 
|  |    259 | \   --> (ALL x. P(x) & M(x) --> L(x))";
 | 
|  |    260 | by (best_tac FOLP_cs 1);
 | 
|  |    261 | result();
 | 
|  |    262 | 
 | 
|  |    263 | writeln"Problem 33";
 | 
|  |    264 | goal FOLP.thy "?p : (ALL x. P(a) & (P(x)-->P(b))-->P(c))  <->    \
 | 
|  |    265 | \    (ALL x. (~P(a) | P(x) | P(c)) & (~P(a) | ~P(b) | P(c)))";
 | 
|  |    266 | by (best_tac FOLP_cs 1);
 | 
|  |    267 | result();
 | 
|  |    268 | 
 | 
|  |    269 | writeln"Problem 35";
 | 
|  |    270 | goal FOLP.thy "?p : EX x y. P(x,y) -->  (ALL u v. P(u,v))";
 | 
|  |    271 | by (best_tac FOLP_dup_cs 1);
 | 
|  |    272 | result();
 | 
|  |    273 | 
 | 
|  |    274 | writeln"Problem 36";
 | 
|  |    275 | goal FOLP.thy
 | 
|  |    276 | "?p : (ALL x. EX y. J(x,y)) & \
 | 
|  |    277 | \     (ALL x. EX y. G(x,y)) & \
 | 
|  |    278 | \     (ALL x y. J(x,y) | G(x,y) --> (ALL z. J(y,z) | G(y,z) --> H(x,z)))   \
 | 
|  |    279 | \ --> (ALL x. EX y. H(x,y))";
 | 
|  |    280 | by (fast_tac FOLP_cs 1);
 | 
|  |    281 | result();
 | 
|  |    282 | 
 | 
|  |    283 | writeln"Problem 37";
 | 
|  |    284 | goal FOLP.thy "?p : (ALL z. EX w. ALL x. EX y. \
 | 
|  |    285 | \          (P(x,z)-->P(y,w)) & P(y,z) & (P(y,w) --> (EX u.Q(u,w)))) & \
 | 
|  |    286 | \       (ALL x z. ~P(x,z) --> (EX y. Q(y,z))) & \
 | 
|  |    287 | \       ((EX x y. Q(x,y)) --> (ALL x. R(x,x)))  \
 | 
|  |    288 | \   --> (ALL x. EX y. R(x,y))";
 | 
|  |    289 | by (fast_tac FOLP_cs 1);
 | 
|  |    290 | result();
 | 
|  |    291 | 
 | 
|  |    292 | writeln"Problem 39";
 | 
|  |    293 | goal FOLP.thy "?p : ~ (EX x. ALL y. F(y,x) <-> ~F(y,y))";
 | 
|  |    294 | by (fast_tac FOLP_cs 1);
 | 
|  |    295 | result();
 | 
|  |    296 | 
 | 
|  |    297 | writeln"Problem 40.  AMENDED";
 | 
|  |    298 | goal FOLP.thy "?p : (EX y. ALL x. F(x,y) <-> F(x,x)) -->  \
 | 
|  |    299 | \             ~(ALL x. EX y. ALL z. F(z,y) <-> ~ F(z,x))";
 | 
|  |    300 | by (fast_tac FOLP_cs 1);
 | 
|  |    301 | result();
 | 
|  |    302 | 
 | 
|  |    303 | writeln"Problem 41";
 | 
| 1459 |    304 | goal FOLP.thy "?p : (ALL z. EX y. ALL x. f(x,y) <-> f(x,z) & ~ f(x,x))  \
 | 
| 0 |    305 | \         --> ~ (EX z. ALL x. f(x,z))";
 | 
|  |    306 | by (best_tac FOLP_cs 1);
 | 
|  |    307 | result();
 | 
|  |    308 | 
 | 
|  |    309 | writeln"Problem 44";
 | 
| 1459 |    310 | goal FOLP.thy "?p : (ALL x. f(x) -->                                    \
 | 
|  |    311 | \             (EX y. g(y) & h(x,y) & (EX y. g(y) & ~ h(x,y))))  &       \
 | 
|  |    312 | \             (EX x. j(x) & (ALL y. g(y) --> h(x,y)))                   \
 | 
| 0 |    313 | \             --> (EX x. j(x) & ~f(x))";
 | 
|  |    314 | by (fast_tac FOLP_cs 1);
 | 
|  |    315 | result();
 | 
|  |    316 | 
 | 
|  |    317 | writeln"Problems (mainly) involving equality or functions";
 | 
|  |    318 | 
 | 
|  |    319 | writeln"Problem 48";
 | 
|  |    320 | goal FOLP.thy "?p : (a=b | c=d) & (a=c | b=d) --> a=d | b=c";
 | 
|  |    321 | by (fast_tac FOLP_cs 1);
 | 
|  |    322 | result();
 | 
|  |    323 | 
 | 
|  |    324 | writeln"Problem 50";  
 | 
|  |    325 | (*What has this to do with equality?*)
 | 
|  |    326 | goal FOLP.thy "?p : (ALL x. P(a,x) | (ALL y.P(x,y))) --> (EX x. ALL y.P(x,y))";
 | 
|  |    327 | by (best_tac FOLP_dup_cs 1);
 | 
|  |    328 | result();
 | 
|  |    329 | 
 | 
|  |    330 | writeln"Problem 56";
 | 
|  |    331 | goal FOLP.thy
 | 
|  |    332 |  "?p : (ALL x. (EX y. P(y) & x=f(y)) --> P(x)) <-> (ALL x. P(x) --> P(f(x)))";
 | 
|  |    333 | by (fast_tac FOLP_cs 1);
 | 
|  |    334 | result();
 | 
|  |    335 | 
 | 
|  |    336 | writeln"Problem 57";
 | 
|  |    337 | goal FOLP.thy
 | 
|  |    338 | "?p : P(f(a,b), f(b,c)) & P(f(b,c), f(a,c)) & \
 | 
|  |    339 | \     (ALL x y z. P(x,y) & P(y,z) --> P(x,z))    -->   P(f(a,b), f(a,c))";
 | 
|  |    340 | by (fast_tac FOLP_cs 1);
 | 
|  |    341 | result();
 | 
|  |    342 | 
 | 
|  |    343 | writeln"Problem 58  NOT PROVED AUTOMATICALLY";
 | 
|  |    344 | goal FOLP.thy "?p : (ALL x y. f(x)=g(y)) --> (ALL x y. f(f(x))=f(g(y)))";
 | 
|  |    345 | val f_cong = read_instantiate [("t","f")] subst_context;
 | 
|  |    346 | by (fast_tac (FOLP_cs addIs [f_cong]) 1);
 | 
|  |    347 | result();
 | 
|  |    348 | 
 | 
|  |    349 | writeln"Problem 59";
 | 
|  |    350 | goal FOLP.thy "?p : (ALL x. P(x) <-> ~P(f(x))) --> (EX x. P(x) & ~P(f(x)))";
 | 
|  |    351 | by (best_tac FOLP_dup_cs 1);
 | 
|  |    352 | result();
 | 
|  |    353 | 
 | 
|  |    354 | writeln"Problem 60";
 | 
|  |    355 | goal FOLP.thy
 | 
|  |    356 | "?p : ALL x. P(x,f(x)) <-> (EX y. (ALL z. P(z,y) --> P(z,f(x))) & P(x,y))";
 | 
|  |    357 | by (fast_tac FOLP_cs 1);
 | 
|  |    358 | result();
 | 
|  |    359 | 
 | 
|  |    360 | writeln"Reached end of file.";
 |