| author | wenzelm | 
| Sun, 27 Feb 2000 15:22:14 +0100 | |
| changeset 8302 | da404f79c1fc | 
| parent 7499 | 23e090051cb8 | 
| child 8393 | c7772d3787c3 | 
| permissions | -rw-r--r-- | 
| 3366 | 1 | (* Title: HOL/Divides.ML | 
| 2 | ID: $Id$ | |
| 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 4 | Copyright 1993 University of Cambridge | |
| 5 | ||
| 6 | The division operators div, mod and the divides relation "dvd" | |
| 7 | *) | |
| 8 | ||
| 9 | ||
| 10 | (** Less-then properties **) | |
| 11 | ||
| 12 | val wf_less_trans = [eq_reflection, wf_pred_nat RS wf_trancl] MRS | |
| 13 | def_wfrec RS trans; | |
| 14 | ||
| 5069 | 15 | Goal "(%m. m mod n) = wfrec (trancl pred_nat) \ | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 16 | \ (%f j. if j<n | n=0 then j else f (j-n))"; | 
| 4089 | 17 | by (simp_tac (simpset() addsimps [mod_def]) 1); | 
| 3366 | 18 | qed "mod_eq"; | 
| 19 | ||
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 20 | Goal "(%m. m div n) = wfrec (trancl pred_nat) \ | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 21 | \ (%f j. if j<n | n=0 then 0 else Suc (f (j-n)))"; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 22 | by (simp_tac (simpset() addsimps [div_def]) 1); | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 23 | qed "div_eq"; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 24 | |
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 25 | |
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 26 | (** Aribtrary definitions for division by zero. Useful to simplify | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 27 | certain equations **) | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 28 | |
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 29 | Goal "a div 0 = 0"; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 30 | by (rtac (div_eq RS wf_less_trans) 1); | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 31 | by (Asm_simp_tac 1); | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 32 | qed "DIVISION_BY_ZERO_DIV"; (*NOT for adding to default simpset*) | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 33 | |
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 34 | Goal "a mod 0 = a"; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 35 | by (rtac (mod_eq RS wf_less_trans) 1); | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 36 | by (Asm_simp_tac 1); | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 37 | qed "DIVISION_BY_ZERO_MOD"; (*NOT for adding to default simpset*) | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 38 | |
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 39 | fun div_undefined_case_tac s i = | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 40 | case_tac s i THEN | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 41 | Full_simp_tac (i+1) THEN | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 42 | asm_simp_tac (simpset() addsimps [DIVISION_BY_ZERO_DIV, | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 43 | DIVISION_BY_ZERO_MOD]) i; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 44 | |
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 45 | (*** Remainder ***) | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 46 | |
| 6865 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 paulson parents: 
6073diff
changeset | 47 | Goal "m<n ==> m mod n = (m::nat)"; | 
| 3366 | 48 | by (rtac (mod_eq RS wf_less_trans) 1); | 
| 49 | by (Asm_simp_tac 1); | |
| 50 | qed "mod_less"; | |
| 51 | ||
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 52 | Goal "~ m < (n::nat) ==> m mod n = (m-n) mod n"; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 53 | by (div_undefined_case_tac "n=0" 1); | 
| 3366 | 54 | by (rtac (mod_eq RS wf_less_trans) 1); | 
| 4089 | 55 | by (asm_simp_tac (simpset() addsimps [diff_less, cut_apply, less_eq]) 1); | 
| 3366 | 56 | qed "mod_geq"; | 
| 57 | ||
| 5415 | 58 | (*Avoids the ugly ~m<n above*) | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 59 | Goal "(n::nat) <= m ==> m mod n = (m-n) mod n"; | 
| 5415 | 60 | by (asm_simp_tac (simpset() addsimps [mod_geq, not_less_iff_le]) 1); | 
| 61 | qed "le_mod_geq"; | |
| 62 | ||
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 63 | Goal "m mod (n::nat) = (if m<n then m else (m-n) mod n)"; | 
| 4774 | 64 | by (asm_simp_tac (simpset() addsimps [mod_less, mod_geq]) 1); | 
| 65 | qed "mod_if"; | |
| 66 | ||
| 5069 | 67 | Goal "m mod 1 = 0"; | 
| 3366 | 68 | by (induct_tac "m" 1); | 
| 4089 | 69 | by (ALLGOALS (asm_simp_tac (simpset() addsimps [mod_less, mod_geq]))); | 
| 3366 | 70 | qed "mod_1"; | 
| 71 | Addsimps [mod_1]; | |
| 72 | ||
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 73 | Goal "n mod n = 0"; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 74 | by (div_undefined_case_tac "n=0" 1); | 
| 4089 | 75 | by (asm_simp_tac (simpset() addsimps [mod_less, mod_geq]) 1); | 
| 3366 | 76 | qed "mod_self"; | 
| 77 | ||
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 78 | Goal "(m+n) mod n = m mod (n::nat)"; | 
| 3366 | 79 | by (subgoal_tac "(n + m) mod n = (n+m-n) mod n" 1); | 
| 80 | by (stac (mod_geq RS sym) 2); | |
| 4089 | 81 | by (ALLGOALS (asm_full_simp_tac (simpset() addsimps [add_commute]))); | 
| 4811 | 82 | qed "mod_add_self2"; | 
| 4810 | 83 | |
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 84 | Goal "(n+m) mod n = m mod (n::nat)"; | 
| 4811 | 85 | by (asm_simp_tac (simpset() addsimps [add_commute, mod_add_self2]) 1); | 
| 86 | qed "mod_add_self1"; | |
| 4810 | 87 | |
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 88 | Goal "(m + k*n) mod n = m mod (n::nat)"; | 
| 4810 | 89 | by (induct_tac "k" 1); | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 90 | by (ALLGOALS | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 91 | (asm_simp_tac | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 92 |      (simpset() addsimps [read_instantiate [("y","n")] add_left_commute, 
 | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 93 | mod_add_self1]))); | 
| 4811 | 94 | qed "mod_mult_self1"; | 
| 4810 | 95 | |
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 96 | Goal "(m + n*k) mod n = m mod (n::nat)"; | 
| 4811 | 97 | by (asm_simp_tac (simpset() addsimps [mult_commute, mod_mult_self1]) 1); | 
| 98 | qed "mod_mult_self2"; | |
| 4810 | 99 | |
| 4811 | 100 | Addsimps [mod_mult_self1, mod_mult_self2]; | 
| 3366 | 101 | |
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 102 | Goal "(m mod n) * (k::nat) = (m*k) mod (n*k)"; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 103 | by (div_undefined_case_tac "n=0" 1); | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 104 | by (div_undefined_case_tac "k=0" 1); | 
| 3366 | 105 | by (res_inst_tac [("n","m")] less_induct 1);
 | 
| 4774 | 106 | by (stac mod_if 1); | 
| 107 | by (Asm_simp_tac 1); | |
| 108 | by (asm_simp_tac (simpset() addsimps [mod_less, mod_geq, | |
| 109 | diff_less, diff_mult_distrib]) 1); | |
| 3366 | 110 | qed "mod_mult_distrib"; | 
| 111 | ||
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 112 | Goal "(k::nat) * (m mod n) = (k*m) mod (k*n)"; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 113 | by (asm_simp_tac | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 114 |     (simpset() addsimps [read_instantiate [("m","k")] mult_commute, 
 | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 115 | mod_mult_distrib]) 1); | 
| 3366 | 116 | qed "mod_mult_distrib2"; | 
| 117 | ||
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 118 | Goal "(m*n) mod n = 0"; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 119 | by (div_undefined_case_tac "n=0" 1); | 
| 3366 | 120 | by (induct_tac "m" 1); | 
| 4089 | 121 | by (asm_simp_tac (simpset() addsimps [mod_less]) 1); | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 122 | by (rename_tac "k" 1); | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 123 | by (cut_inst_tac [("m","k*n"),("n","n")] mod_add_self2 1);
 | 
| 4089 | 124 | by (asm_full_simp_tac (simpset() addsimps [add_commute]) 1); | 
| 3366 | 125 | qed "mod_mult_self_is_0"; | 
| 7082 | 126 | |
| 127 | Goal "(n*m) mod n = 0"; | |
| 128 | by (simp_tac (simpset() addsimps [mult_commute, mod_mult_self_is_0]) 1); | |
| 129 | qed "mod_mult_self1_is_0"; | |
| 130 | Addsimps [mod_mult_self_is_0, mod_mult_self1_is_0]; | |
| 3366 | 131 | |
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 132 | |
| 3366 | 133 | (*** Quotient ***) | 
| 134 | ||
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 135 | Goal "m<n ==> m div n = 0"; | 
| 3366 | 136 | by (rtac (div_eq RS wf_less_trans) 1); | 
| 137 | by (Asm_simp_tac 1); | |
| 138 | qed "div_less"; | |
| 139 | ||
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 140 | Goal "[| 0<n; ~m<n |] ==> m div n = Suc((m-n) div n)"; | 
| 3366 | 141 | by (rtac (div_eq RS wf_less_trans) 1); | 
| 4089 | 142 | by (asm_simp_tac (simpset() addsimps [diff_less, cut_apply, less_eq]) 1); | 
| 3366 | 143 | qed "div_geq"; | 
| 144 | ||
| 5415 | 145 | (*Avoids the ugly ~m<n above*) | 
| 146 | Goal "[| 0<n; n<=m |] ==> m div n = Suc((m-n) div n)"; | |
| 147 | by (asm_simp_tac (simpset() addsimps [div_geq, not_less_iff_le]) 1); | |
| 148 | qed "le_div_geq"; | |
| 149 | ||
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 150 | Goal "0<n ==> m div n = (if m<n then 0 else Suc((m-n) div n))"; | 
| 4774 | 151 | by (asm_simp_tac (simpset() addsimps [div_less, div_geq]) 1); | 
| 152 | qed "div_if"; | |
| 153 | ||
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 154 | |
| 3366 | 155 | (*Main Result about quotient and remainder.*) | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 156 | Goal "(m div n)*n + m mod n = (m::nat)"; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 157 | by (div_undefined_case_tac "n=0" 1); | 
| 3366 | 158 | by (res_inst_tac [("n","m")] less_induct 1);
 | 
| 4774 | 159 | by (stac mod_if 1); | 
| 160 | by (ALLGOALS (asm_simp_tac | |
| 5537 | 161 | (simpset() addsimps [add_assoc, div_less, div_geq, | 
| 162 | add_diff_inverse, diff_less]))); | |
| 3366 | 163 | qed "mod_div_equality"; | 
| 164 | ||
| 4358 | 165 | (* a simple rearrangement of mod_div_equality: *) | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 166 | Goal "(n::nat) * (m div n) = m - (m mod n)"; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 167 | by (cut_inst_tac [("m","m"),("n","n")] mod_div_equality 1);
 | 
| 4358 | 168 | by (EVERY1[etac subst, simp_tac (simpset() addsimps mult_ac), | 
| 169 | K(IF_UNSOLVED no_tac)]); | |
| 170 | qed "mult_div_cancel"; | |
| 171 | ||
| 5069 | 172 | Goal "m div 1 = m"; | 
| 3366 | 173 | by (induct_tac "m" 1); | 
| 4089 | 174 | by (ALLGOALS (asm_simp_tac (simpset() addsimps [div_less, div_geq]))); | 
| 3366 | 175 | qed "div_1"; | 
| 176 | Addsimps [div_1]; | |
| 177 | ||
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 178 | Goal "0<n ==> n div n = 1"; | 
| 4089 | 179 | by (asm_simp_tac (simpset() addsimps [div_less, div_geq]) 1); | 
| 3366 | 180 | qed "div_self"; | 
| 181 | ||
| 4811 | 182 | |
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 183 | Goal "0<n ==> (m+n) div n = Suc (m div n)"; | 
| 4811 | 184 | by (subgoal_tac "(n + m) div n = Suc ((n+m-n) div n)" 1); | 
| 185 | by (stac (div_geq RS sym) 2); | |
| 186 | by (ALLGOALS (asm_full_simp_tac (simpset() addsimps [add_commute]))); | |
| 187 | qed "div_add_self2"; | |
| 188 | ||
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 189 | Goal "0<n ==> (n+m) div n = Suc (m div n)"; | 
| 4811 | 190 | by (asm_simp_tac (simpset() addsimps [add_commute, div_add_self2]) 1); | 
| 191 | qed "div_add_self1"; | |
| 192 | ||
| 5069 | 193 | Goal "!!n. 0<n ==> (m + k*n) div n = k + m div n"; | 
| 4811 | 194 | by (induct_tac "k" 1); | 
| 5537 | 195 | by (ALLGOALS (asm_simp_tac (simpset() addsimps add_ac @ [div_add_self1]))); | 
| 4811 | 196 | qed "div_mult_self1"; | 
| 197 | ||
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 198 | Goal "0<n ==> (m + n*k) div n = k + m div n"; | 
| 4811 | 199 | by (asm_simp_tac (simpset() addsimps [mult_commute, div_mult_self1]) 1); | 
| 200 | qed "div_mult_self2"; | |
| 201 | ||
| 202 | Addsimps [div_mult_self1, div_mult_self2]; | |
| 203 | ||
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 204 | (** A dividend of zero **) | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 205 | |
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 206 | Goal "0 div m = 0"; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 207 | by (div_undefined_case_tac "m=0" 1); | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 208 | by (asm_simp_tac (simpset() addsimps [div_less]) 1); | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 209 | qed "div_0"; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 210 | |
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 211 | Goal "0 mod m = 0"; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 212 | by (div_undefined_case_tac "m=0" 1); | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 213 | by (asm_simp_tac (simpset() addsimps [mod_less]) 1); | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 214 | qed "mod_0"; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 215 | Addsimps [div_0, mod_0]; | 
| 4811 | 216 | |
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 217 | (* Monotonicity of div in first argument *) | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 218 | Goal "ALL m::nat. m <= n --> (m div k) <= (n div k)"; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 219 | by (div_undefined_case_tac "k=0" 1); | 
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 220 | by (res_inst_tac [("n","n")] less_induct 1);
 | 
| 3718 | 221 | by (Clarify_tac 1); | 
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 222 | by (case_tac "n<k" 1); | 
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 223 | (* 1 case n<k *) | 
| 4089 | 224 | by (asm_simp_tac (simpset() addsimps [div_less]) 1); | 
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 225 | (* 2 case n >= k *) | 
| 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 226 | by (case_tac "m<k" 1); | 
| 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 227 | (* 2.1 case m<k *) | 
| 4089 | 228 | by (asm_simp_tac (simpset() addsimps [div_less]) 1); | 
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 229 | (* 2.2 case m>=k *) | 
| 4089 | 230 | by (asm_simp_tac (simpset() addsimps [div_geq, diff_less, diff_le_mono]) 1); | 
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 231 | qed_spec_mp "div_le_mono"; | 
| 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 232 | |
| 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 233 | (* Antimonotonicity of div in second argument *) | 
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 234 | Goal "[| 0<m; m<=n |] ==> (k div n) <= (k div m)"; | 
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 235 | by (subgoal_tac "0<n" 1); | 
| 6073 | 236 | by (Asm_simp_tac 2); | 
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 237 | by (res_inst_tac [("n","k")] less_induct 1);
 | 
| 3496 | 238 | by (rename_tac "k" 1); | 
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 239 | by (case_tac "k<n" 1); | 
| 4089 | 240 | by (asm_simp_tac (simpset() addsimps [div_less]) 1); | 
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 241 | by (subgoal_tac "~(k<m)" 1); | 
| 6073 | 242 | by (Asm_simp_tac 2); | 
| 4089 | 243 | by (asm_simp_tac (simpset() addsimps [div_geq]) 1); | 
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 244 | by (subgoal_tac "(k-n) div n <= (k-m) div n" 1); | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 245 | by (REPEAT (ares_tac [div_le_mono,diff_le_mono2] 2)); | 
| 5318 | 246 | by (rtac le_trans 1); | 
| 5316 | 247 | by (Asm_simp_tac 1); | 
| 248 | by (asm_simp_tac (simpset() addsimps [diff_less]) 1); | |
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 249 | qed "div_le_mono2"; | 
| 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 250 | |
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 251 | Goal "m div n <= (m::nat)"; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 252 | by (div_undefined_case_tac "n=0" 1); | 
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 253 | by (subgoal_tac "m div n <= m div 1" 1); | 
| 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 254 | by (Asm_full_simp_tac 1); | 
| 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 255 | by (rtac div_le_mono2 1); | 
| 6073 | 256 | by (ALLGOALS Asm_simp_tac); | 
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 257 | qed "div_le_dividend"; | 
| 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 258 | Addsimps [div_le_dividend]; | 
| 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 259 | |
| 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 260 | (* Similar for "less than" *) | 
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 261 | Goal "1<n ==> (0 < m) --> (m div n < m)"; | 
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 262 | by (res_inst_tac [("n","m")] less_induct 1);
 | 
| 3496 | 263 | by (rename_tac "m" 1); | 
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 264 | by (case_tac "m<n" 1); | 
| 4089 | 265 | by (asm_full_simp_tac (simpset() addsimps [div_less]) 1); | 
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 266 | by (subgoal_tac "0<n" 1); | 
| 6073 | 267 | by (Asm_simp_tac 2); | 
| 4089 | 268 | by (asm_full_simp_tac (simpset() addsimps [div_geq]) 1); | 
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 269 | by (case_tac "n<m" 1); | 
| 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 270 | by (subgoal_tac "(m-n) div n < (m-n)" 1); | 
| 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 271 | by (REPEAT (ares_tac [impI,less_trans_Suc] 1)); | 
| 4089 | 272 | by (asm_full_simp_tac (simpset() addsimps [diff_less]) 1); | 
| 273 | by (asm_full_simp_tac (simpset() addsimps [diff_less]) 1); | |
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 274 | (* case n=m *) | 
| 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 275 | by (subgoal_tac "m=n" 1); | 
| 6073 | 276 | by (Asm_simp_tac 2); | 
| 4089 | 277 | by (asm_simp_tac (simpset() addsimps [div_less]) 1); | 
| 3484 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 278 | qed_spec_mp "div_less_dividend"; | 
| 
1e93eb09ebb9
Added the following lemmas tp Divides and a few others to Arith and NatDef:
 nipkow parents: 
3457diff
changeset | 279 | Addsimps [div_less_dividend]; | 
| 3366 | 280 | |
| 281 | (*** Further facts about mod (mainly for the mutilated chess board ***) | |
| 282 | ||
| 5278 | 283 | Goal "0<n ==> Suc(m) mod n = (if Suc(m mod n) = n then 0 else Suc(m mod n))"; | 
| 3366 | 284 | by (res_inst_tac [("n","m")] less_induct 1);
 | 
| 285 | by (excluded_middle_tac "Suc(na)<n" 1); | |
| 286 | (* case Suc(na) < n *) | |
| 287 | by (forward_tac [lessI RS less_trans] 2); | |
| 5355 | 288 | by (asm_simp_tac (simpset() addsimps [mod_less, less_not_refl3]) 2); | 
| 3366 | 289 | (* case n <= Suc(na) *) | 
| 5415 | 290 | by (asm_full_simp_tac (simpset() addsimps [not_less_iff_le, le_Suc_eq, | 
| 291 | mod_geq]) 1); | |
| 292 | by (etac disjE 1); | |
| 293 | by (asm_simp_tac (simpset() addsimps [mod_less]) 2); | |
| 7059 | 294 | by (asm_simp_tac (simpset() addsimps [Suc_diff_le, diff_less, | 
| 5415 | 295 | le_mod_geq]) 1); | 
| 3366 | 296 | qed "mod_Suc"; | 
| 297 | ||
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 298 | Goal "0<n ==> m mod n < n"; | 
| 3366 | 299 | by (res_inst_tac [("n","m")] less_induct 1);
 | 
| 5498 | 300 | by (case_tac "na<n" 1); | 
| 301 | (*case n le na*) | |
| 302 | by (asm_full_simp_tac (simpset() addsimps [mod_geq, diff_less]) 2); | |
| 3366 | 303 | (*case na<n*) | 
| 5498 | 304 | by (asm_simp_tac (simpset() addsimps [mod_less]) 1); | 
| 3366 | 305 | qed "mod_less_divisor"; | 
| 306 | ||
| 307 | ||
| 308 | (** Evens and Odds **) | |
| 309 | ||
| 310 | (*With less_zeroE, causes case analysis on b<2*) | |
| 311 | AddSEs [less_SucE]; | |
| 312 | ||
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 313 | Goal "b<2 ==> (k mod 2 = b) | (k mod 2 = (if b=1 then 0 else 1))"; | 
| 3366 | 314 | by (subgoal_tac "k mod 2 < 2" 1); | 
| 4089 | 315 | by (asm_simp_tac (simpset() addsimps [mod_less_divisor]) 2); | 
| 4686 | 316 | by (Asm_simp_tac 1); | 
| 4356 | 317 | by Safe_tac; | 
| 3366 | 318 | qed "mod2_cases"; | 
| 319 | ||
| 5069 | 320 | Goal "Suc(Suc(m)) mod 2 = m mod 2"; | 
| 3366 | 321 | by (subgoal_tac "m mod 2 < 2" 1); | 
| 4089 | 322 | by (asm_simp_tac (simpset() addsimps [mod_less_divisor]) 2); | 
| 3724 | 323 | by Safe_tac; | 
| 4089 | 324 | by (ALLGOALS (asm_simp_tac (simpset() addsimps [mod_Suc]))); | 
| 3366 | 325 | qed "mod2_Suc_Suc"; | 
| 326 | Addsimps [mod2_Suc_Suc]; | |
| 327 | ||
| 5069 | 328 | Goal "(0 < m mod 2) = (m mod 2 = 1)"; | 
| 3366 | 329 | by (subgoal_tac "m mod 2 < 2" 1); | 
| 4089 | 330 | by (asm_simp_tac (simpset() addsimps [mod_less_divisor]) 2); | 
| 4477 
b3e5857d8d99
New Auto_tac (by Oheimb), and new syntax (without parens), and expandshort
 paulson parents: 
4423diff
changeset | 331 | by Auto_tac; | 
| 4356 | 332 | qed "mod2_gr_0"; | 
| 333 | Addsimps [mod2_gr_0]; | |
| 334 | ||
| 5069 | 335 | Goal "(m+m) mod 2 = 0"; | 
| 3366 | 336 | by (induct_tac "m" 1); | 
| 4089 | 337 | by (simp_tac (simpset() addsimps [mod_less]) 1); | 
| 3427 
e7cef2081106
Removed a few redundant additions of simprules or classical rules
 paulson parents: 
3366diff
changeset | 338 | by (Asm_simp_tac 1); | 
| 4385 | 339 | qed "mod2_add_self_eq_0"; | 
| 340 | Addsimps [mod2_add_self_eq_0]; | |
| 341 | ||
| 5069 | 342 | Goal "((m+m)+n) mod 2 = n mod 2"; | 
| 4385 | 343 | by (induct_tac "m" 1); | 
| 344 | by (simp_tac (simpset() addsimps [mod_less]) 1); | |
| 345 | by (Asm_simp_tac 1); | |
| 3366 | 346 | qed "mod2_add_self"; | 
| 347 | Addsimps [mod2_add_self]; | |
| 348 | ||
| 5498 | 349 | (*Restore the default*) | 
| 3366 | 350 | Delrules [less_SucE]; | 
| 351 | ||
| 352 | (*** More division laws ***) | |
| 353 | ||
| 7007 | 354 | Goal "0<n ==> (m*n) div n = m"; | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 355 | by (cut_inst_tac [("m", "m*n"),("n","n")] mod_div_equality 1);
 | 
| 4089 | 356 | by (asm_full_simp_tac (simpset() addsimps [mod_mult_self_is_0]) 1); | 
| 3366 | 357 | qed "div_mult_self_is_m"; | 
| 7082 | 358 | |
| 359 | Goal "0<n ==> (n*m) div n = m"; | |
| 360 | by (asm_simp_tac (simpset() addsimps [mult_commute, div_mult_self_is_m]) 1); | |
| 361 | qed "div_mult_self1_is_m"; | |
| 362 | Addsimps [div_mult_self_is_m, div_mult_self1_is_m]; | |
| 3366 | 363 | |
| 364 | (*Cancellation law for division*) | |
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 365 | Goal "0<k ==> (k*m) div (k*n) = m div n"; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 366 | by (div_undefined_case_tac "n=0" 1); | 
| 3366 | 367 | by (res_inst_tac [("n","m")] less_induct 1);
 | 
| 368 | by (case_tac "na<n" 1); | |
| 4089 | 369 | by (asm_simp_tac (simpset() addsimps [div_less, zero_less_mult_iff, | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 370 | mult_less_mono2]) 1); | 
| 3366 | 371 | by (subgoal_tac "~ k*na < k*n" 1); | 
| 372 | by (asm_simp_tac | |
| 4089 | 373 | (simpset() addsimps [zero_less_mult_iff, div_geq, | 
| 5415 | 374 | diff_mult_distrib2 RS sym, diff_less]) 1); | 
| 4089 | 375 | by (asm_full_simp_tac (simpset() addsimps [not_less_iff_le, | 
| 3366 | 376 | le_refl RS mult_le_mono]) 1); | 
| 377 | qed "div_cancel"; | |
| 378 | Addsimps [div_cancel]; | |
| 379 | ||
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 380 | (*mod_mult_distrib2 above is the counterpart for remainder*) | 
| 3366 | 381 | |
| 382 | ||
| 383 | (************************************************) | |
| 384 | (** Divides Relation **) | |
| 385 | (************************************************) | |
| 386 | ||
| 5069 | 387 | Goalw [dvd_def] "m dvd 0"; | 
| 4089 | 388 | by (blast_tac (claset() addIs [mult_0_right RS sym]) 1); | 
| 3366 | 389 | qed "dvd_0_right"; | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 390 | AddIffs [dvd_0_right]; | 
| 3366 | 391 | |
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 392 | Goalw [dvd_def] "0 dvd m ==> m = 0"; | 
| 6865 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 paulson parents: 
6073diff
changeset | 393 | by Auto_tac; | 
| 3366 | 394 | qed "dvd_0_left"; | 
| 395 | ||
| 5069 | 396 | Goalw [dvd_def] "1 dvd k"; | 
| 3366 | 397 | by (Simp_tac 1); | 
| 398 | qed "dvd_1_left"; | |
| 399 | AddIffs [dvd_1_left]; | |
| 400 | ||
| 6865 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 paulson parents: 
6073diff
changeset | 401 | Goalw [dvd_def] "m dvd (m::nat)"; | 
| 4089 | 402 | by (blast_tac (claset() addIs [mult_1_right RS sym]) 1); | 
| 3366 | 403 | qed "dvd_refl"; | 
| 404 | Addsimps [dvd_refl]; | |
| 405 | ||
| 6865 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 paulson parents: 
6073diff
changeset | 406 | Goalw [dvd_def] "[| m dvd n; n dvd p |] ==> m dvd (p::nat)"; | 
| 4089 | 407 | by (blast_tac (claset() addIs [mult_assoc] ) 1); | 
| 3366 | 408 | qed "dvd_trans"; | 
| 409 | ||
| 6865 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 paulson parents: 
6073diff
changeset | 410 | Goalw [dvd_def] "[| m dvd n; n dvd m |] ==> m = (n::nat)"; | 
| 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 paulson parents: 
6073diff
changeset | 411 | by (force_tac (claset() addDs [mult_eq_self_implies_10], | 
| 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 paulson parents: 
6073diff
changeset | 412 | simpset() addsimps [mult_assoc, mult_eq_1_iff]) 1); | 
| 3366 | 413 | qed "dvd_anti_sym"; | 
| 414 | ||
| 6865 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 paulson parents: 
6073diff
changeset | 415 | Goalw [dvd_def] "[| k dvd m; k dvd n |] ==> k dvd (m+n :: nat)"; | 
| 4089 | 416 | by (blast_tac (claset() addIs [add_mult_distrib2 RS sym]) 1); | 
| 3366 | 417 | qed "dvd_add"; | 
| 418 | ||
| 6865 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 paulson parents: 
6073diff
changeset | 419 | Goalw [dvd_def] "[| k dvd m; k dvd n |] ==> k dvd (m-n :: nat)"; | 
| 4089 | 420 | by (blast_tac (claset() addIs [diff_mult_distrib2 RS sym]) 1); | 
| 3366 | 421 | qed "dvd_diff"; | 
| 422 | ||
| 6865 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 paulson parents: 
6073diff
changeset | 423 | Goal "[| k dvd (m-n); k dvd n; n<=m |] ==> k dvd (m::nat)"; | 
| 3457 | 424 | by (etac (not_less_iff_le RS iffD2 RS add_diff_inverse RS subst) 1); | 
| 4089 | 425 | by (blast_tac (claset() addIs [dvd_add]) 1); | 
| 3366 | 426 | qed "dvd_diffD"; | 
| 427 | ||
| 6865 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 paulson parents: 
6073diff
changeset | 428 | Goalw [dvd_def] "k dvd n ==> k dvd (m*n :: nat)"; | 
| 4089 | 429 | by (blast_tac (claset() addIs [mult_left_commute]) 1); | 
| 3366 | 430 | qed "dvd_mult"; | 
| 431 | ||
| 6865 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 paulson parents: 
6073diff
changeset | 432 | Goal "k dvd m ==> k dvd (m*n :: nat)"; | 
| 3366 | 433 | by (stac mult_commute 1); | 
| 434 | by (etac dvd_mult 1); | |
| 435 | qed "dvd_mult2"; | |
| 436 | ||
| 437 | (* k dvd (m*k) *) | |
| 438 | AddIffs [dvd_refl RS dvd_mult, dvd_refl RS dvd_mult2]; | |
| 439 | ||
| 7493 | 440 | Goal "k dvd (n + k) = k dvd (n::nat)"; | 
| 7499 | 441 | by (rtac iffI 1); | 
| 442 | by (etac dvd_add 2); | |
| 443 | by (rtac dvd_refl 2); | |
| 7493 | 444 | by (subgoal_tac "n = (n+k)-k" 1); | 
| 445 | by (Simp_tac 2); | |
| 7499 | 446 | by (etac ssubst 1); | 
| 447 | by (etac dvd_diff 1); | |
| 448 | by (rtac dvd_refl 1); | |
| 7493 | 449 | qed "dvd_reduce"; | 
| 450 | ||
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 451 | Goalw [dvd_def] "[| f dvd m; f dvd n; 0<n |] ==> f dvd (m mod n)"; | 
| 3718 | 452 | by (Clarify_tac 1); | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 453 | by (Full_simp_tac 1); | 
| 3366 | 454 | by (res_inst_tac | 
| 455 |     [("x", "(((k div ka)*ka + k mod ka) - ((f*k) div (f*ka)) * ka)")] 
 | |
| 456 | exI 1); | |
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 457 | by (asm_simp_tac | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 458 | (simpset() addsimps [diff_mult_distrib2, mod_mult_distrib2 RS sym, | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 459 | add_mult_distrib2]) 1); | 
| 3366 | 460 | qed "dvd_mod"; | 
| 461 | ||
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 462 | Goal "[| (k::nat) dvd (m mod n); k dvd n |] ==> k dvd m"; | 
| 3366 | 463 | by (subgoal_tac "k dvd ((m div n)*n + m mod n)" 1); | 
| 4089 | 464 | by (asm_simp_tac (simpset() addsimps [dvd_add, dvd_mult]) 2); | 
| 4356 | 465 | by (asm_full_simp_tac (simpset() addsimps [mod_div_equality]) 1); | 
| 3366 | 466 | qed "dvd_mod_imp_dvd"; | 
| 467 | ||
| 6865 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 paulson parents: 
6073diff
changeset | 468 | Goalw [dvd_def] "!!k::nat. [| (k*m) dvd (k*n); 0<k |] ==> m dvd n"; | 
| 3366 | 469 | by (etac exE 1); | 
| 4089 | 470 | by (asm_full_simp_tac (simpset() addsimps mult_ac) 1); | 
| 3366 | 471 | by (Blast_tac 1); | 
| 472 | qed "dvd_mult_cancel"; | |
| 473 | ||
| 6865 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 paulson parents: 
6073diff
changeset | 474 | Goalw [dvd_def] "[| i dvd m; j dvd n|] ==> (i*j) dvd (m*n :: nat)"; | 
| 3718 | 475 | by (Clarify_tac 1); | 
| 3366 | 476 | by (res_inst_tac [("x","k*ka")] exI 1);
 | 
| 4089 | 477 | by (asm_simp_tac (simpset() addsimps mult_ac) 1); | 
| 3366 | 478 | qed "mult_dvd_mono"; | 
| 479 | ||
| 6865 
5577ffe4c2f1
now div and mod are overloaded; dvd is polymorphic
 paulson parents: 
6073diff
changeset | 480 | Goalw [dvd_def] "(i*j :: nat) dvd k ==> i dvd k"; | 
| 4089 | 481 | by (full_simp_tac (simpset() addsimps [mult_assoc]) 1); | 
| 3366 | 482 | by (Blast_tac 1); | 
| 483 | qed "dvd_mult_left"; | |
| 484 | ||
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 485 | Goalw [dvd_def] "[| k dvd n; 0 < n |] ==> k <= n"; | 
| 3718 | 486 | by (Clarify_tac 1); | 
| 4089 | 487 | by (ALLGOALS (full_simp_tac (simpset() addsimps [zero_less_mult_iff]))); | 
| 3457 | 488 | by (etac conjE 1); | 
| 489 | by (rtac le_trans 1); | |
| 490 | by (rtac (le_refl RS mult_le_mono) 2); | |
| 3366 | 491 | by (etac Suc_leI 2); | 
| 492 | by (Simp_tac 1); | |
| 493 | qed "dvd_imp_le"; | |
| 494 | ||
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 495 | Goalw [dvd_def] "(k dvd n) = (n mod k = 0)"; | 
| 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 496 | by (div_undefined_case_tac "k=0" 1); | 
| 3724 | 497 | by Safe_tac; | 
| 5143 
b94cd208f073
Removal of leading "\!\!..." from most Goal commands
 paulson parents: 
5069diff
changeset | 498 | by (asm_simp_tac (simpset() addsimps [mult_commute]) 1); | 
| 7029 
08d4eb8500dd
new division laws taking advantage of (m div 0) = 0 and (m mod 0) = m
 paulson parents: 
7007diff
changeset | 499 | by (res_inst_tac [("t","n"),("n1","k")] (mod_div_equality RS subst) 1);
 | 
| 3366 | 500 | by (stac mult_commute 1); | 
| 501 | by (Asm_simp_tac 1); | |
| 502 | qed "dvd_eq_mod_eq_0"; |