30296
|
1 |
%
|
|
2 |
\begin{isabellebody}%
|
|
3 |
\def\isabellecontext{Logic}%
|
|
4 |
%
|
|
5 |
\isadelimtheory
|
|
6 |
%
|
|
7 |
\endisadelimtheory
|
|
8 |
%
|
|
9 |
\isatagtheory
|
|
10 |
\isacommand{theory}\isamarkupfalse%
|
|
11 |
\ Logic\isanewline
|
|
12 |
\isakeyword{imports}\ Base\isanewline
|
|
13 |
\isakeyword{begin}%
|
|
14 |
\endisatagtheory
|
|
15 |
{\isafoldtheory}%
|
|
16 |
%
|
|
17 |
\isadelimtheory
|
|
18 |
%
|
|
19 |
\endisadelimtheory
|
|
20 |
%
|
|
21 |
\isamarkupchapter{Primitive logic \label{ch:logic}%
|
|
22 |
}
|
|
23 |
\isamarkuptrue%
|
|
24 |
%
|
|
25 |
\begin{isamarkuptext}%
|
|
26 |
The logical foundations of Isabelle/Isar are that of the Pure logic,
|
|
27 |
which has been introduced as a Natural Deduction framework in
|
|
28 |
\cite{paulson700}. This is essentially the same logic as ``\isa{{\isasymlambda}HOL}'' in the more abstract setting of Pure Type Systems (PTS)
|
|
29 |
\cite{Barendregt-Geuvers:2001}, although there are some key
|
|
30 |
differences in the specific treatment of simple types in
|
|
31 |
Isabelle/Pure.
|
|
32 |
|
|
33 |
Following type-theoretic parlance, the Pure logic consists of three
|
|
34 |
levels of \isa{{\isasymlambda}}-calculus with corresponding arrows, \isa{{\isasymRightarrow}} for syntactic function space (terms depending on terms), \isa{{\isasymAnd}} for universal quantification (proofs depending on terms), and
|
|
35 |
\isa{{\isasymLongrightarrow}} for implication (proofs depending on proofs).
|
|
36 |
|
|
37 |
Derivations are relative to a logical theory, which declares type
|
|
38 |
constructors, constants, and axioms. Theory declarations support
|
|
39 |
schematic polymorphism, which is strictly speaking outside the
|
|
40 |
logic.\footnote{This is the deeper logical reason, why the theory
|
|
41 |
context \isa{{\isasymTheta}} is separate from the proof context \isa{{\isasymGamma}}
|
|
42 |
of the core calculus.}%
|
|
43 |
\end{isamarkuptext}%
|
|
44 |
\isamarkuptrue%
|
|
45 |
%
|
|
46 |
\isamarkupsection{Types \label{sec:types}%
|
|
47 |
}
|
|
48 |
\isamarkuptrue%
|
|
49 |
%
|
|
50 |
\begin{isamarkuptext}%
|
|
51 |
The language of types is an uninterpreted order-sorted first-order
|
|
52 |
algebra; types are qualified by ordered type classes.
|
|
53 |
|
|
54 |
\medskip A \emph{type class} is an abstract syntactic entity
|
|
55 |
declared in the theory context. The \emph{subclass relation} \isa{c\isactrlisub {\isadigit{1}}\ {\isasymsubseteq}\ c\isactrlisub {\isadigit{2}}} is specified by stating an acyclic
|
|
56 |
generating relation; the transitive closure is maintained
|
|
57 |
internally. The resulting relation is an ordering: reflexive,
|
|
58 |
transitive, and antisymmetric.
|
|
59 |
|
|
60 |
A \emph{sort} is a list of type classes written as \isa{s\ {\isacharequal}\ {\isacharbraceleft}c\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ c\isactrlisub m{\isacharbraceright}}, which represents symbolic
|
|
61 |
intersection. Notationally, the curly braces are omitted for
|
|
62 |
singleton intersections, i.e.\ any class \isa{c} may be read as
|
|
63 |
a sort \isa{{\isacharbraceleft}c{\isacharbraceright}}. The ordering on type classes is extended to
|
|
64 |
sorts according to the meaning of intersections: \isa{{\isacharbraceleft}c\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}\ c\isactrlisub m{\isacharbraceright}\ {\isasymsubseteq}\ {\isacharbraceleft}d\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ d\isactrlisub n{\isacharbraceright}} iff
|
|
65 |
\isa{{\isasymforall}j{\isachardot}\ {\isasymexists}i{\isachardot}\ c\isactrlisub i\ {\isasymsubseteq}\ d\isactrlisub j}. The empty intersection
|
|
66 |
\isa{{\isacharbraceleft}{\isacharbraceright}} refers to the universal sort, which is the largest
|
|
67 |
element wrt.\ the sort order. The intersections of all (finitely
|
|
68 |
many) classes declared in the current theory are the minimal
|
|
69 |
elements wrt.\ the sort order.
|
|
70 |
|
|
71 |
\medskip A \emph{fixed type variable} is a pair of a basic name
|
|
72 |
(starting with a \isa{{\isacharprime}} character) and a sort constraint, e.g.\
|
|
73 |
\isa{{\isacharparenleft}{\isacharprime}a{\isacharcomma}\ s{\isacharparenright}} which is usually printed as \isa{{\isasymalpha}\isactrlisub s}.
|
|
74 |
A \emph{schematic type variable} is a pair of an indexname and a
|
|
75 |
sort constraint, e.g.\ \isa{{\isacharparenleft}{\isacharparenleft}{\isacharprime}a{\isacharcomma}\ {\isadigit{0}}{\isacharparenright}{\isacharcomma}\ s{\isacharparenright}} which is usually
|
|
76 |
printed as \isa{{\isacharquery}{\isasymalpha}\isactrlisub s}.
|
|
77 |
|
|
78 |
Note that \emph{all} syntactic components contribute to the identity
|
|
79 |
of type variables, including the sort constraint. The core logic
|
|
80 |
handles type variables with the same name but different sorts as
|
|
81 |
different, although some outer layers of the system make it hard to
|
|
82 |
produce anything like this.
|
|
83 |
|
|
84 |
A \emph{type constructor} \isa{{\isasymkappa}} is a \isa{k}-ary operator
|
|
85 |
on types declared in the theory. Type constructor application is
|
|
86 |
written postfix as \isa{{\isacharparenleft}{\isasymalpha}\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlisub k{\isacharparenright}{\isasymkappa}}. For
|
|
87 |
\isa{k\ {\isacharequal}\ {\isadigit{0}}} the argument tuple is omitted, e.g.\ \isa{prop}
|
|
88 |
instead of \isa{{\isacharparenleft}{\isacharparenright}prop}. For \isa{k\ {\isacharequal}\ {\isadigit{1}}} the parentheses
|
|
89 |
are omitted, e.g.\ \isa{{\isasymalpha}\ list} instead of \isa{{\isacharparenleft}{\isasymalpha}{\isacharparenright}list}.
|
|
90 |
Further notation is provided for specific constructors, notably the
|
|
91 |
right-associative infix \isa{{\isasymalpha}\ {\isasymRightarrow}\ {\isasymbeta}} instead of \isa{{\isacharparenleft}{\isasymalpha}{\isacharcomma}\ {\isasymbeta}{\isacharparenright}fun}.
|
|
92 |
|
|
93 |
A \emph{type} is defined inductively over type variables and type
|
|
94 |
constructors as follows: \isa{{\isasymtau}\ {\isacharequal}\ {\isasymalpha}\isactrlisub s\ {\isacharbar}\ {\isacharquery}{\isasymalpha}\isactrlisub s\ {\isacharbar}\ {\isacharparenleft}{\isasymtau}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymtau}\isactrlsub k{\isacharparenright}{\isasymkappa}}.
|
|
95 |
|
|
96 |
A \emph{type abbreviation} is a syntactic definition \isa{{\isacharparenleft}\isactrlvec {\isasymalpha}{\isacharparenright}{\isasymkappa}\ {\isacharequal}\ {\isasymtau}} of an arbitrary type expression \isa{{\isasymtau}} over
|
|
97 |
variables \isa{\isactrlvec {\isasymalpha}}. Type abbreviations appear as type
|
|
98 |
constructors in the syntax, but are expanded before entering the
|
|
99 |
logical core.
|
|
100 |
|
|
101 |
A \emph{type arity} declares the image behavior of a type
|
|
102 |
constructor wrt.\ the algebra of sorts: \isa{{\isasymkappa}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}s\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ s\isactrlisub k{\isacharparenright}s} means that \isa{{\isacharparenleft}{\isasymtau}\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymtau}\isactrlisub k{\isacharparenright}{\isasymkappa}} is
|
|
103 |
of sort \isa{s} if every argument type \isa{{\isasymtau}\isactrlisub i} is
|
|
104 |
of sort \isa{s\isactrlisub i}. Arity declarations are implicitly
|
|
105 |
completed, i.e.\ \isa{{\isasymkappa}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}\isactrlvec s{\isacharparenright}c} entails \isa{{\isasymkappa}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}\isactrlvec s{\isacharparenright}c{\isacharprime}} for any \isa{c{\isacharprime}\ {\isasymsupseteq}\ c}.
|
|
106 |
|
|
107 |
\medskip The sort algebra is always maintained as \emph{coregular},
|
|
108 |
which means that type arities are consistent with the subclass
|
|
109 |
relation: for any type constructor \isa{{\isasymkappa}}, and classes \isa{c\isactrlisub {\isadigit{1}}\ {\isasymsubseteq}\ c\isactrlisub {\isadigit{2}}}, and arities \isa{{\isasymkappa}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}\isactrlvec s\isactrlisub {\isadigit{1}}{\isacharparenright}c\isactrlisub {\isadigit{1}}} and \isa{{\isasymkappa}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}\isactrlvec s\isactrlisub {\isadigit{2}}{\isacharparenright}c\isactrlisub {\isadigit{2}}} holds \isa{\isactrlvec s\isactrlisub {\isadigit{1}}\ {\isasymsubseteq}\ \isactrlvec s\isactrlisub {\isadigit{2}}} component-wise.
|
|
110 |
|
|
111 |
The key property of a coregular order-sorted algebra is that sort
|
|
112 |
constraints can be solved in a most general fashion: for each type
|
|
113 |
constructor \isa{{\isasymkappa}} and sort \isa{s} there is a most general
|
|
114 |
vector of argument sorts \isa{{\isacharparenleft}s\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ s\isactrlisub k{\isacharparenright}} such
|
|
115 |
that a type scheme \isa{{\isacharparenleft}{\isasymalpha}\isactrlbsub s\isactrlisub {\isadigit{1}}\isactrlesub {\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlbsub s\isactrlisub k\isactrlesub {\isacharparenright}{\isasymkappa}} is of sort \isa{s}.
|
|
116 |
Consequently, type unification has most general solutions (modulo
|
|
117 |
equivalence of sorts), so type-inference produces primary types as
|
|
118 |
expected \cite{nipkow-prehofer}.%
|
|
119 |
\end{isamarkuptext}%
|
|
120 |
\isamarkuptrue%
|
|
121 |
%
|
|
122 |
\isadelimmlref
|
|
123 |
%
|
|
124 |
\endisadelimmlref
|
|
125 |
%
|
|
126 |
\isatagmlref
|
|
127 |
%
|
|
128 |
\begin{isamarkuptext}%
|
|
129 |
\begin{mldecls}
|
|
130 |
\indexdef{}{ML type}{class}\verb|type class| \\
|
|
131 |
\indexdef{}{ML type}{sort}\verb|type sort| \\
|
|
132 |
\indexdef{}{ML type}{arity}\verb|type arity| \\
|
|
133 |
\indexdef{}{ML type}{typ}\verb|type typ| \\
|
|
134 |
\indexdef{}{ML}{map\_atyps}\verb|map_atyps: (typ -> typ) -> typ -> typ| \\
|
|
135 |
\indexdef{}{ML}{fold\_atyps}\verb|fold_atyps: (typ -> 'a -> 'a) -> typ -> 'a -> 'a| \\
|
|
136 |
\end{mldecls}
|
|
137 |
\begin{mldecls}
|
|
138 |
\indexdef{}{ML}{Sign.subsort}\verb|Sign.subsort: theory -> sort * sort -> bool| \\
|
|
139 |
\indexdef{}{ML}{Sign.of\_sort}\verb|Sign.of_sort: theory -> typ * sort -> bool| \\
|
30355
|
140 |
\indexdef{}{ML}{Sign.add\_types}\verb|Sign.add_types: (binding * int * mixfix) list -> theory -> theory| \\
|
30296
|
141 |
\indexdef{}{ML}{Sign.add\_tyabbrs\_i}\verb|Sign.add_tyabbrs_i: |\isasep\isanewline%
|
30355
|
142 |
\verb| (binding * string list * typ * mixfix) list -> theory -> theory| \\
|
|
143 |
\indexdef{}{ML}{Sign.primitive\_class}\verb|Sign.primitive_class: binding * class list -> theory -> theory| \\
|
30296
|
144 |
\indexdef{}{ML}{Sign.primitive\_classrel}\verb|Sign.primitive_classrel: class * class -> theory -> theory| \\
|
|
145 |
\indexdef{}{ML}{Sign.primitive\_arity}\verb|Sign.primitive_arity: arity -> theory -> theory| \\
|
|
146 |
\end{mldecls}
|
|
147 |
|
|
148 |
\begin{description}
|
|
149 |
|
|
150 |
\item \verb|class| represents type classes; this is an alias for
|
|
151 |
\verb|string|.
|
|
152 |
|
|
153 |
\item \verb|sort| represents sorts; this is an alias for
|
|
154 |
\verb|class list|.
|
|
155 |
|
|
156 |
\item \verb|arity| represents type arities; this is an alias for
|
|
157 |
triples of the form \isa{{\isacharparenleft}{\isasymkappa}{\isacharcomma}\ \isactrlvec s{\isacharcomma}\ s{\isacharparenright}} for \isa{{\isasymkappa}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}\isactrlvec s{\isacharparenright}s} described above.
|
|
158 |
|
|
159 |
\item \verb|typ| represents types; this is a datatype with
|
|
160 |
constructors \verb|TFree|, \verb|TVar|, \verb|Type|.
|
|
161 |
|
|
162 |
\item \verb|map_atyps|~\isa{f\ {\isasymtau}} applies the mapping \isa{f}
|
|
163 |
to all atomic types (\verb|TFree|, \verb|TVar|) occurring in \isa{{\isasymtau}}.
|
|
164 |
|
|
165 |
\item \verb|fold_atyps|~\isa{f\ {\isasymtau}} iterates the operation \isa{f} over all occurrences of atomic types (\verb|TFree|, \verb|TVar|)
|
|
166 |
in \isa{{\isasymtau}}; the type structure is traversed from left to right.
|
|
167 |
|
|
168 |
\item \verb|Sign.subsort|~\isa{thy\ {\isacharparenleft}s\isactrlisub {\isadigit{1}}{\isacharcomma}\ s\isactrlisub {\isadigit{2}}{\isacharparenright}}
|
|
169 |
tests the subsort relation \isa{s\isactrlisub {\isadigit{1}}\ {\isasymsubseteq}\ s\isactrlisub {\isadigit{2}}}.
|
|
170 |
|
|
171 |
\item \verb|Sign.of_sort|~\isa{thy\ {\isacharparenleft}{\isasymtau}{\isacharcomma}\ s{\isacharparenright}} tests whether type
|
|
172 |
\isa{{\isasymtau}} is of sort \isa{s}.
|
|
173 |
|
|
174 |
\item \verb|Sign.add_types|~\isa{{\isacharbrackleft}{\isacharparenleft}{\isasymkappa}{\isacharcomma}\ k{\isacharcomma}\ mx{\isacharparenright}{\isacharcomma}\ {\isasymdots}{\isacharbrackright}} declares a new
|
|
175 |
type constructors \isa{{\isasymkappa}} with \isa{k} arguments and
|
|
176 |
optional mixfix syntax.
|
|
177 |
|
|
178 |
\item \verb|Sign.add_tyabbrs_i|~\isa{{\isacharbrackleft}{\isacharparenleft}{\isasymkappa}{\isacharcomma}\ \isactrlvec {\isasymalpha}{\isacharcomma}\ {\isasymtau}{\isacharcomma}\ mx{\isacharparenright}{\isacharcomma}\ {\isasymdots}{\isacharbrackright}}
|
|
179 |
defines a new type abbreviation \isa{{\isacharparenleft}\isactrlvec {\isasymalpha}{\isacharparenright}{\isasymkappa}\ {\isacharequal}\ {\isasymtau}} with
|
|
180 |
optional mixfix syntax.
|
|
181 |
|
|
182 |
\item \verb|Sign.primitive_class|~\isa{{\isacharparenleft}c{\isacharcomma}\ {\isacharbrackleft}c\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ c\isactrlisub n{\isacharbrackright}{\isacharparenright}} declares a new class \isa{c}, together with class
|
|
183 |
relations \isa{c\ {\isasymsubseteq}\ c\isactrlisub i}, for \isa{i\ {\isacharequal}\ {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ n}.
|
|
184 |
|
|
185 |
\item \verb|Sign.primitive_classrel|~\isa{{\isacharparenleft}c\isactrlisub {\isadigit{1}}{\isacharcomma}\ c\isactrlisub {\isadigit{2}}{\isacharparenright}} declares the class relation \isa{c\isactrlisub {\isadigit{1}}\ {\isasymsubseteq}\ c\isactrlisub {\isadigit{2}}}.
|
|
186 |
|
|
187 |
\item \verb|Sign.primitive_arity|~\isa{{\isacharparenleft}{\isasymkappa}{\isacharcomma}\ \isactrlvec s{\isacharcomma}\ s{\isacharparenright}} declares
|
|
188 |
the arity \isa{{\isasymkappa}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}\isactrlvec s{\isacharparenright}s}.
|
|
189 |
|
|
190 |
\end{description}%
|
|
191 |
\end{isamarkuptext}%
|
|
192 |
\isamarkuptrue%
|
|
193 |
%
|
|
194 |
\endisatagmlref
|
|
195 |
{\isafoldmlref}%
|
|
196 |
%
|
|
197 |
\isadelimmlref
|
|
198 |
%
|
|
199 |
\endisadelimmlref
|
|
200 |
%
|
|
201 |
\isamarkupsection{Terms \label{sec:terms}%
|
|
202 |
}
|
|
203 |
\isamarkuptrue%
|
|
204 |
%
|
|
205 |
\begin{isamarkuptext}%
|
|
206 |
The language of terms is that of simply-typed \isa{{\isasymlambda}}-calculus
|
|
207 |
with de-Bruijn indices for bound variables (cf.\ \cite{debruijn72}
|
|
208 |
or \cite{paulson-ml2}), with the types being determined by the
|
|
209 |
corresponding binders. In contrast, free variables and constants
|
|
210 |
are have an explicit name and type in each occurrence.
|
|
211 |
|
|
212 |
\medskip A \emph{bound variable} is a natural number \isa{b},
|
|
213 |
which accounts for the number of intermediate binders between the
|
|
214 |
variable occurrence in the body and its binding position. For
|
|
215 |
example, the de-Bruijn term \isa{{\isasymlambda}\isactrlbsub nat\isactrlesub {\isachardot}\ {\isasymlambda}\isactrlbsub nat\isactrlesub {\isachardot}\ {\isadigit{1}}\ {\isacharplus}\ {\isadigit{0}}} would
|
|
216 |
correspond to \isa{{\isasymlambda}x\isactrlbsub nat\isactrlesub {\isachardot}\ {\isasymlambda}y\isactrlbsub nat\isactrlesub {\isachardot}\ x\ {\isacharplus}\ y} in a named
|
|
217 |
representation. Note that a bound variable may be represented by
|
|
218 |
different de-Bruijn indices at different occurrences, depending on
|
|
219 |
the nesting of abstractions.
|
|
220 |
|
|
221 |
A \emph{loose variable} is a bound variable that is outside the
|
|
222 |
scope of local binders. The types (and names) for loose variables
|
|
223 |
can be managed as a separate context, that is maintained as a stack
|
|
224 |
of hypothetical binders. The core logic operates on closed terms,
|
|
225 |
without any loose variables.
|
|
226 |
|
|
227 |
A \emph{fixed variable} is a pair of a basic name and a type, e.g.\
|
|
228 |
\isa{{\isacharparenleft}x{\isacharcomma}\ {\isasymtau}{\isacharparenright}} which is usually printed \isa{x\isactrlisub {\isasymtau}}. A
|
|
229 |
\emph{schematic variable} is a pair of an indexname and a type,
|
|
230 |
e.g.\ \isa{{\isacharparenleft}{\isacharparenleft}x{\isacharcomma}\ {\isadigit{0}}{\isacharparenright}{\isacharcomma}\ {\isasymtau}{\isacharparenright}} which is usually printed as \isa{{\isacharquery}x\isactrlisub {\isasymtau}}.
|
|
231 |
|
|
232 |
\medskip A \emph{constant} is a pair of a basic name and a type,
|
|
233 |
e.g.\ \isa{{\isacharparenleft}c{\isacharcomma}\ {\isasymtau}{\isacharparenright}} which is usually printed as \isa{c\isactrlisub {\isasymtau}}. Constants are declared in the context as polymorphic
|
|
234 |
families \isa{c\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}}, meaning that all substitution instances
|
|
235 |
\isa{c\isactrlisub {\isasymtau}} for \isa{{\isasymtau}\ {\isacharequal}\ {\isasymsigma}{\isasymvartheta}} are valid.
|
|
236 |
|
|
237 |
The vector of \emph{type arguments} of constant \isa{c\isactrlisub {\isasymtau}}
|
|
238 |
wrt.\ the declaration \isa{c\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}} is defined as the codomain of
|
|
239 |
the matcher \isa{{\isasymvartheta}\ {\isacharequal}\ {\isacharbraceleft}{\isacharquery}{\isasymalpha}\isactrlisub {\isadigit{1}}\ {\isasymmapsto}\ {\isasymtau}\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isacharquery}{\isasymalpha}\isactrlisub n\ {\isasymmapsto}\ {\isasymtau}\isactrlisub n{\isacharbraceright}} presented in canonical order \isa{{\isacharparenleft}{\isasymtau}\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymtau}\isactrlisub n{\isacharparenright}}. Within a given theory context,
|
|
240 |
there is a one-to-one correspondence between any constant \isa{c\isactrlisub {\isasymtau}} and the application \isa{c{\isacharparenleft}{\isasymtau}\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymtau}\isactrlisub n{\isacharparenright}} of its type arguments. For example, with \isa{plus\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ {\isasymRightarrow}\ {\isasymalpha}\ {\isasymRightarrow}\ {\isasymalpha}}, the instance \isa{plus\isactrlbsub nat\ {\isasymRightarrow}\ nat\ {\isasymRightarrow}\ nat\isactrlesub } corresponds to \isa{plus{\isacharparenleft}nat{\isacharparenright}}.
|
|
241 |
|
|
242 |
Constant declarations \isa{c\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}} may contain sort constraints
|
|
243 |
for type variables in \isa{{\isasymsigma}}. These are observed by
|
|
244 |
type-inference as expected, but \emph{ignored} by the core logic.
|
|
245 |
This means the primitive logic is able to reason with instances of
|
|
246 |
polymorphic constants that the user-level type-checker would reject
|
|
247 |
due to violation of type class restrictions.
|
|
248 |
|
|
249 |
\medskip An \emph{atomic} term is either a variable or constant. A
|
|
250 |
\emph{term} is defined inductively over atomic terms, with
|
|
251 |
abstraction and application as follows: \isa{t\ {\isacharequal}\ b\ {\isacharbar}\ x\isactrlisub {\isasymtau}\ {\isacharbar}\ {\isacharquery}x\isactrlisub {\isasymtau}\ {\isacharbar}\ c\isactrlisub {\isasymtau}\ {\isacharbar}\ {\isasymlambda}\isactrlisub {\isasymtau}{\isachardot}\ t\ {\isacharbar}\ t\isactrlisub {\isadigit{1}}\ t\isactrlisub {\isadigit{2}}}.
|
|
252 |
Parsing and printing takes care of converting between an external
|
|
253 |
representation with named bound variables. Subsequently, we shall
|
|
254 |
use the latter notation instead of internal de-Bruijn
|
|
255 |
representation.
|
|
256 |
|
|
257 |
The inductive relation \isa{t\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}} assigns a (unique) type to a
|
|
258 |
term according to the structure of atomic terms, abstractions, and
|
|
259 |
applicatins:
|
|
260 |
\[
|
|
261 |
\infer{\isa{a\isactrlisub {\isasymtau}\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}}}{}
|
|
262 |
\qquad
|
|
263 |
\infer{\isa{{\isacharparenleft}{\isasymlambda}x\isactrlsub {\isasymtau}{\isachardot}\ t{\isacharparenright}\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymsigma}}}{\isa{t\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}}}
|
|
264 |
\qquad
|
|
265 |
\infer{\isa{t\ u\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}}}{\isa{t\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymsigma}} & \isa{u\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}}}
|
|
266 |
\]
|
|
267 |
A \emph{well-typed term} is a term that can be typed according to these rules.
|
|
268 |
|
|
269 |
Typing information can be omitted: type-inference is able to
|
|
270 |
reconstruct the most general type of a raw term, while assigning
|
|
271 |
most general types to all of its variables and constants.
|
|
272 |
Type-inference depends on a context of type constraints for fixed
|
|
273 |
variables, and declarations for polymorphic constants.
|
|
274 |
|
|
275 |
The identity of atomic terms consists both of the name and the type
|
|
276 |
component. This means that different variables \isa{x\isactrlbsub {\isasymtau}\isactrlisub {\isadigit{1}}\isactrlesub } and \isa{x\isactrlbsub {\isasymtau}\isactrlisub {\isadigit{2}}\isactrlesub } may become the same after type
|
|
277 |
instantiation. Some outer layers of the system make it hard to
|
|
278 |
produce variables of the same name, but different types. In
|
|
279 |
contrast, mixed instances of polymorphic constants occur frequently.
|
|
280 |
|
|
281 |
\medskip The \emph{hidden polymorphism} of a term \isa{t\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}}
|
|
282 |
is the set of type variables occurring in \isa{t}, but not in
|
|
283 |
\isa{{\isasymsigma}}. This means that the term implicitly depends on type
|
|
284 |
arguments that are not accounted in the result type, i.e.\ there are
|
|
285 |
different type instances \isa{t{\isasymvartheta}\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}} and \isa{t{\isasymvartheta}{\isacharprime}\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}} with the same type. This slightly
|
|
286 |
pathological situation notoriously demands additional care.
|
|
287 |
|
|
288 |
\medskip A \emph{term abbreviation} is a syntactic definition \isa{c\isactrlisub {\isasymsigma}\ {\isasymequiv}\ t} of a closed term \isa{t} of type \isa{{\isasymsigma}},
|
|
289 |
without any hidden polymorphism. A term abbreviation looks like a
|
|
290 |
constant in the syntax, but is expanded before entering the logical
|
|
291 |
core. Abbreviations are usually reverted when printing terms, using
|
|
292 |
\isa{t\ {\isasymrightarrow}\ c\isactrlisub {\isasymsigma}} as rules for higher-order rewriting.
|
|
293 |
|
|
294 |
\medskip Canonical operations on \isa{{\isasymlambda}}-terms include \isa{{\isasymalpha}{\isasymbeta}{\isasymeta}}-conversion: \isa{{\isasymalpha}}-conversion refers to capture-free
|
|
295 |
renaming of bound variables; \isa{{\isasymbeta}}-conversion contracts an
|
|
296 |
abstraction applied to an argument term, substituting the argument
|
|
297 |
in the body: \isa{{\isacharparenleft}{\isasymlambda}x{\isachardot}\ b{\isacharparenright}a} becomes \isa{b{\isacharbrackleft}a{\isacharslash}x{\isacharbrackright}}; \isa{{\isasymeta}}-conversion contracts vacuous application-abstraction: \isa{{\isasymlambda}x{\isachardot}\ f\ x} becomes \isa{f}, provided that the bound variable
|
|
298 |
does not occur in \isa{f}.
|
|
299 |
|
|
300 |
Terms are normally treated modulo \isa{{\isasymalpha}}-conversion, which is
|
|
301 |
implicit in the de-Bruijn representation. Names for bound variables
|
|
302 |
in abstractions are maintained separately as (meaningless) comments,
|
|
303 |
mostly for parsing and printing. Full \isa{{\isasymalpha}{\isasymbeta}{\isasymeta}}-conversion is
|
|
304 |
commonplace in various standard operations (\secref{sec:obj-rules})
|
|
305 |
that are based on higher-order unification and matching.%
|
|
306 |
\end{isamarkuptext}%
|
|
307 |
\isamarkuptrue%
|
|
308 |
%
|
|
309 |
\isadelimmlref
|
|
310 |
%
|
|
311 |
\endisadelimmlref
|
|
312 |
%
|
|
313 |
\isatagmlref
|
|
314 |
%
|
|
315 |
\begin{isamarkuptext}%
|
|
316 |
\begin{mldecls}
|
|
317 |
\indexdef{}{ML type}{term}\verb|type term| \\
|
|
318 |
\indexdef{}{ML}{op aconv}\verb|op aconv: term * term -> bool| \\
|
|
319 |
\indexdef{}{ML}{map\_types}\verb|map_types: (typ -> typ) -> term -> term| \\
|
|
320 |
\indexdef{}{ML}{fold\_types}\verb|fold_types: (typ -> 'a -> 'a) -> term -> 'a -> 'a| \\
|
|
321 |
\indexdef{}{ML}{map\_aterms}\verb|map_aterms: (term -> term) -> term -> term| \\
|
|
322 |
\indexdef{}{ML}{fold\_aterms}\verb|fold_aterms: (term -> 'a -> 'a) -> term -> 'a -> 'a| \\
|
|
323 |
\end{mldecls}
|
|
324 |
\begin{mldecls}
|
|
325 |
\indexdef{}{ML}{fastype\_of}\verb|fastype_of: term -> typ| \\
|
|
326 |
\indexdef{}{ML}{lambda}\verb|lambda: term -> term -> term| \\
|
|
327 |
\indexdef{}{ML}{betapply}\verb|betapply: term * term -> term| \\
|
|
328 |
\indexdef{}{ML}{Sign.declare\_const}\verb|Sign.declare_const: Properties.T -> (binding * typ) * mixfix ->|\isasep\isanewline%
|
|
329 |
\verb| theory -> term * theory| \\
|
|
330 |
\indexdef{}{ML}{Sign.add\_abbrev}\verb|Sign.add_abbrev: string -> Properties.T -> binding * term ->|\isasep\isanewline%
|
|
331 |
\verb| theory -> (term * term) * theory| \\
|
|
332 |
\indexdef{}{ML}{Sign.const\_typargs}\verb|Sign.const_typargs: theory -> string * typ -> typ list| \\
|
|
333 |
\indexdef{}{ML}{Sign.const\_instance}\verb|Sign.const_instance: theory -> string * typ list -> typ| \\
|
|
334 |
\end{mldecls}
|
|
335 |
|
|
336 |
\begin{description}
|
|
337 |
|
|
338 |
\item \verb|term| represents de-Bruijn terms, with comments in
|
|
339 |
abstractions, and explicitly named free variables and constants;
|
|
340 |
this is a datatype with constructors \verb|Bound|, \verb|Free|, \verb|Var|, \verb|Const|, \verb|Abs|, \verb|op $|.
|
|
341 |
|
|
342 |
\item \isa{t}~\verb|aconv|~\isa{u} checks \isa{{\isasymalpha}}-equivalence of two terms. This is the basic equality relation
|
|
343 |
on type \verb|term|; raw datatype equality should only be used
|
|
344 |
for operations related to parsing or printing!
|
|
345 |
|
|
346 |
\item \verb|map_types|~\isa{f\ t} applies the mapping \isa{f} to all types occurring in \isa{t}.
|
|
347 |
|
|
348 |
\item \verb|fold_types|~\isa{f\ t} iterates the operation \isa{f} over all occurrences of types in \isa{t}; the term
|
|
349 |
structure is traversed from left to right.
|
|
350 |
|
|
351 |
\item \verb|map_aterms|~\isa{f\ t} applies the mapping \isa{f}
|
|
352 |
to all atomic terms (\verb|Bound|, \verb|Free|, \verb|Var|, \verb|Const|) occurring in \isa{t}.
|
|
353 |
|
|
354 |
\item \verb|fold_aterms|~\isa{f\ t} iterates the operation \isa{f} over all occurrences of atomic terms (\verb|Bound|, \verb|Free|,
|
|
355 |
\verb|Var|, \verb|Const|) in \isa{t}; the term structure is
|
|
356 |
traversed from left to right.
|
|
357 |
|
|
358 |
\item \verb|fastype_of|~\isa{t} determines the type of a
|
|
359 |
well-typed term. This operation is relatively slow, despite the
|
|
360 |
omission of any sanity checks.
|
|
361 |
|
|
362 |
\item \verb|lambda|~\isa{a\ b} produces an abstraction \isa{{\isasymlambda}a{\isachardot}\ b}, where occurrences of the atomic term \isa{a} in the
|
|
363 |
body \isa{b} are replaced by bound variables.
|
|
364 |
|
|
365 |
\item \verb|betapply|~\isa{{\isacharparenleft}t{\isacharcomma}\ u{\isacharparenright}} produces an application \isa{t\ u}, with topmost \isa{{\isasymbeta}}-conversion if \isa{t} is an
|
|
366 |
abstraction.
|
|
367 |
|
|
368 |
\item \verb|Sign.declare_const|~\isa{properties\ {\isacharparenleft}{\isacharparenleft}c{\isacharcomma}\ {\isasymsigma}{\isacharparenright}{\isacharcomma}\ mx{\isacharparenright}}
|
|
369 |
declares a new constant \isa{c\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}} with optional mixfix
|
|
370 |
syntax.
|
|
371 |
|
|
372 |
\item \verb|Sign.add_abbrev|~\isa{print{\isacharunderscore}mode\ properties\ {\isacharparenleft}c{\isacharcomma}\ t{\isacharparenright}}
|
|
373 |
introduces a new term abbreviation \isa{c\ {\isasymequiv}\ t}.
|
|
374 |
|
|
375 |
\item \verb|Sign.const_typargs|~\isa{thy\ {\isacharparenleft}c{\isacharcomma}\ {\isasymtau}{\isacharparenright}} and \verb|Sign.const_instance|~\isa{thy\ {\isacharparenleft}c{\isacharcomma}\ {\isacharbrackleft}{\isasymtau}\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymtau}\isactrlisub n{\isacharbrackright}{\isacharparenright}}
|
|
376 |
convert between two representations of polymorphic constants: full
|
|
377 |
type instance vs.\ compact type arguments form.
|
|
378 |
|
|
379 |
\end{description}%
|
|
380 |
\end{isamarkuptext}%
|
|
381 |
\isamarkuptrue%
|
|
382 |
%
|
|
383 |
\endisatagmlref
|
|
384 |
{\isafoldmlref}%
|
|
385 |
%
|
|
386 |
\isadelimmlref
|
|
387 |
%
|
|
388 |
\endisadelimmlref
|
|
389 |
%
|
|
390 |
\isamarkupsection{Theorems \label{sec:thms}%
|
|
391 |
}
|
|
392 |
\isamarkuptrue%
|
|
393 |
%
|
|
394 |
\begin{isamarkuptext}%
|
|
395 |
A \emph{proposition} is a well-typed term of type \isa{prop}, a
|
|
396 |
\emph{theorem} is a proven proposition (depending on a context of
|
|
397 |
hypotheses and the background theory). Primitive inferences include
|
|
398 |
plain Natural Deduction rules for the primary connectives \isa{{\isasymAnd}} and \isa{{\isasymLongrightarrow}} of the framework. There is also a builtin
|
|
399 |
notion of equality/equivalence \isa{{\isasymequiv}}.%
|
|
400 |
\end{isamarkuptext}%
|
|
401 |
\isamarkuptrue%
|
|
402 |
%
|
|
403 |
\isamarkupsubsection{Primitive connectives and rules \label{sec:prim-rules}%
|
|
404 |
}
|
|
405 |
\isamarkuptrue%
|
|
406 |
%
|
|
407 |
\begin{isamarkuptext}%
|
|
408 |
The theory \isa{Pure} contains constant declarations for the
|
|
409 |
primitive connectives \isa{{\isasymAnd}}, \isa{{\isasymLongrightarrow}}, and \isa{{\isasymequiv}} of
|
|
410 |
the logical framework, see \figref{fig:pure-connectives}. The
|
|
411 |
derivability judgment \isa{A\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ A\isactrlisub n\ {\isasymturnstile}\ B} is
|
|
412 |
defined inductively by the primitive inferences given in
|
|
413 |
\figref{fig:prim-rules}, with the global restriction that the
|
|
414 |
hypotheses must \emph{not} contain any schematic variables. The
|
|
415 |
builtin equality is conceptually axiomatized as shown in
|
|
416 |
\figref{fig:pure-equality}, although the implementation works
|
|
417 |
directly with derived inferences.
|
|
418 |
|
|
419 |
\begin{figure}[htb]
|
|
420 |
\begin{center}
|
|
421 |
\begin{tabular}{ll}
|
|
422 |
\isa{all\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}{\isasymalpha}\ {\isasymRightarrow}\ prop{\isacharparenright}\ {\isasymRightarrow}\ prop} & universal quantification (binder \isa{{\isasymAnd}}) \\
|
|
423 |
\isa{{\isasymLongrightarrow}\ {\isacharcolon}{\isacharcolon}\ prop\ {\isasymRightarrow}\ prop\ {\isasymRightarrow}\ prop} & implication (right associative infix) \\
|
|
424 |
\isa{{\isasymequiv}\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ {\isasymRightarrow}\ {\isasymalpha}\ {\isasymRightarrow}\ prop} & equality relation (infix) \\
|
|
425 |
\end{tabular}
|
|
426 |
\caption{Primitive connectives of Pure}\label{fig:pure-connectives}
|
|
427 |
\end{center}
|
|
428 |
\end{figure}
|
|
429 |
|
|
430 |
\begin{figure}[htb]
|
|
431 |
\begin{center}
|
|
432 |
\[
|
|
433 |
\infer[\isa{{\isacharparenleft}axiom{\isacharparenright}}]{\isa{{\isasymturnstile}\ A}}{\isa{A\ {\isasymin}\ {\isasymTheta}}}
|
|
434 |
\qquad
|
|
435 |
\infer[\isa{{\isacharparenleft}assume{\isacharparenright}}]{\isa{A\ {\isasymturnstile}\ A}}{}
|
|
436 |
\]
|
|
437 |
\[
|
|
438 |
\infer[\isa{{\isacharparenleft}{\isasymAnd}{\isacharunderscore}intro{\isacharparenright}}]{\isa{{\isasymGamma}\ {\isasymturnstile}\ {\isasymAnd}x{\isachardot}\ b{\isacharbrackleft}x{\isacharbrackright}}}{\isa{{\isasymGamma}\ {\isasymturnstile}\ b{\isacharbrackleft}x{\isacharbrackright}} & \isa{x\ {\isasymnotin}\ {\isasymGamma}}}
|
|
439 |
\qquad
|
|
440 |
\infer[\isa{{\isacharparenleft}{\isasymAnd}{\isacharunderscore}elim{\isacharparenright}}]{\isa{{\isasymGamma}\ {\isasymturnstile}\ b{\isacharbrackleft}a{\isacharbrackright}}}{\isa{{\isasymGamma}\ {\isasymturnstile}\ {\isasymAnd}x{\isachardot}\ b{\isacharbrackleft}x{\isacharbrackright}}}
|
|
441 |
\]
|
|
442 |
\[
|
|
443 |
\infer[\isa{{\isacharparenleft}{\isasymLongrightarrow}{\isacharunderscore}intro{\isacharparenright}}]{\isa{{\isasymGamma}\ {\isacharminus}\ A\ {\isasymturnstile}\ A\ {\isasymLongrightarrow}\ B}}{\isa{{\isasymGamma}\ {\isasymturnstile}\ B}}
|
|
444 |
\qquad
|
|
445 |
\infer[\isa{{\isacharparenleft}{\isasymLongrightarrow}{\isacharunderscore}elim{\isacharparenright}}]{\isa{{\isasymGamma}\isactrlsub {\isadigit{1}}\ {\isasymunion}\ {\isasymGamma}\isactrlsub {\isadigit{2}}\ {\isasymturnstile}\ B}}{\isa{{\isasymGamma}\isactrlsub {\isadigit{1}}\ {\isasymturnstile}\ A\ {\isasymLongrightarrow}\ B} & \isa{{\isasymGamma}\isactrlsub {\isadigit{2}}\ {\isasymturnstile}\ A}}
|
|
446 |
\]
|
|
447 |
\caption{Primitive inferences of Pure}\label{fig:prim-rules}
|
|
448 |
\end{center}
|
|
449 |
\end{figure}
|
|
450 |
|
|
451 |
\begin{figure}[htb]
|
|
452 |
\begin{center}
|
|
453 |
\begin{tabular}{ll}
|
|
454 |
\isa{{\isasymturnstile}\ {\isacharparenleft}{\isasymlambda}x{\isachardot}\ b{\isacharbrackleft}x{\isacharbrackright}{\isacharparenright}\ a\ {\isasymequiv}\ b{\isacharbrackleft}a{\isacharbrackright}} & \isa{{\isasymbeta}}-conversion \\
|
|
455 |
\isa{{\isasymturnstile}\ x\ {\isasymequiv}\ x} & reflexivity \\
|
|
456 |
\isa{{\isasymturnstile}\ x\ {\isasymequiv}\ y\ {\isasymLongrightarrow}\ P\ x\ {\isasymLongrightarrow}\ P\ y} & substitution \\
|
|
457 |
\isa{{\isasymturnstile}\ {\isacharparenleft}{\isasymAnd}x{\isachardot}\ f\ x\ {\isasymequiv}\ g\ x{\isacharparenright}\ {\isasymLongrightarrow}\ f\ {\isasymequiv}\ g} & extensionality \\
|
|
458 |
\isa{{\isasymturnstile}\ {\isacharparenleft}A\ {\isasymLongrightarrow}\ B{\isacharparenright}\ {\isasymLongrightarrow}\ {\isacharparenleft}B\ {\isasymLongrightarrow}\ A{\isacharparenright}\ {\isasymLongrightarrow}\ A\ {\isasymequiv}\ B} & logical equivalence \\
|
|
459 |
\end{tabular}
|
|
460 |
\caption{Conceptual axiomatization of Pure equality}\label{fig:pure-equality}
|
|
461 |
\end{center}
|
|
462 |
\end{figure}
|
|
463 |
|
|
464 |
The introduction and elimination rules for \isa{{\isasymAnd}} and \isa{{\isasymLongrightarrow}} are analogous to formation of dependently typed \isa{{\isasymlambda}}-terms representing the underlying proof objects. Proof terms
|
|
465 |
are irrelevant in the Pure logic, though; they cannot occur within
|
|
466 |
propositions. The system provides a runtime option to record
|
|
467 |
explicit proof terms for primitive inferences. Thus all three
|
|
468 |
levels of \isa{{\isasymlambda}}-calculus become explicit: \isa{{\isasymRightarrow}} for
|
|
469 |
terms, and \isa{{\isasymAnd}{\isacharslash}{\isasymLongrightarrow}} for proofs (cf.\
|
|
470 |
\cite{Berghofer-Nipkow:2000:TPHOL}).
|
|
471 |
|
|
472 |
Observe that locally fixed parameters (as in \isa{{\isasymAnd}{\isacharunderscore}intro}) need
|
|
473 |
not be recorded in the hypotheses, because the simple syntactic
|
|
474 |
types of Pure are always inhabitable. ``Assumptions'' \isa{x\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}} for type-membership are only present as long as some \isa{x\isactrlisub {\isasymtau}} occurs in the statement body.\footnote{This is the key
|
|
475 |
difference to ``\isa{{\isasymlambda}HOL}'' in the PTS framework
|
|
476 |
\cite{Barendregt-Geuvers:2001}, where hypotheses \isa{x\ {\isacharcolon}\ A} are
|
|
477 |
treated uniformly for propositions and types.}
|
|
478 |
|
|
479 |
\medskip The axiomatization of a theory is implicitly closed by
|
|
480 |
forming all instances of type and term variables: \isa{{\isasymturnstile}\ A{\isasymvartheta}} holds for any substitution instance of an axiom
|
|
481 |
\isa{{\isasymturnstile}\ A}. By pushing substitutions through derivations
|
|
482 |
inductively, we also get admissible \isa{generalize} and \isa{instance} rules as shown in \figref{fig:subst-rules}.
|
|
483 |
|
|
484 |
\begin{figure}[htb]
|
|
485 |
\begin{center}
|
|
486 |
\[
|
|
487 |
\infer{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}{\isacharquery}{\isasymalpha}{\isacharbrackright}}}{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}{\isasymalpha}{\isacharbrackright}} & \isa{{\isasymalpha}\ {\isasymnotin}\ {\isasymGamma}}}
|
|
488 |
\quad
|
|
489 |
\infer[\quad\isa{{\isacharparenleft}generalize{\isacharparenright}}]{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}{\isacharquery}x{\isacharbrackright}}}{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}x{\isacharbrackright}} & \isa{x\ {\isasymnotin}\ {\isasymGamma}}}
|
|
490 |
\]
|
|
491 |
\[
|
|
492 |
\infer{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}{\isasymtau}{\isacharbrackright}}}{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}{\isacharquery}{\isasymalpha}{\isacharbrackright}}}
|
|
493 |
\quad
|
|
494 |
\infer[\quad\isa{{\isacharparenleft}instantiate{\isacharparenright}}]{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}t{\isacharbrackright}}}{\isa{{\isasymGamma}\ {\isasymturnstile}\ B{\isacharbrackleft}{\isacharquery}x{\isacharbrackright}}}
|
|
495 |
\]
|
|
496 |
\caption{Admissible substitution rules}\label{fig:subst-rules}
|
|
497 |
\end{center}
|
|
498 |
\end{figure}
|
|
499 |
|
|
500 |
Note that \isa{instantiate} does not require an explicit
|
|
501 |
side-condition, because \isa{{\isasymGamma}} may never contain schematic
|
|
502 |
variables.
|
|
503 |
|
|
504 |
In principle, variables could be substituted in hypotheses as well,
|
|
505 |
but this would disrupt the monotonicity of reasoning: deriving
|
|
506 |
\isa{{\isasymGamma}{\isasymvartheta}\ {\isasymturnstile}\ B{\isasymvartheta}} from \isa{{\isasymGamma}\ {\isasymturnstile}\ B} is
|
|
507 |
correct, but \isa{{\isasymGamma}{\isasymvartheta}\ {\isasymsupseteq}\ {\isasymGamma}} does not necessarily hold:
|
|
508 |
the result belongs to a different proof context.
|
|
509 |
|
|
510 |
\medskip An \emph{oracle} is a function that produces axioms on the
|
|
511 |
fly. Logically, this is an instance of the \isa{axiom} rule
|
|
512 |
(\figref{fig:prim-rules}), but there is an operational difference.
|
|
513 |
The system always records oracle invocations within derivations of
|
|
514 |
theorems by a unique tag.
|
|
515 |
|
|
516 |
Axiomatizations should be limited to the bare minimum, typically as
|
|
517 |
part of the initial logical basis of an object-logic formalization.
|
|
518 |
Later on, theories are usually developed in a strictly definitional
|
|
519 |
fashion, by stating only certain equalities over new constants.
|
|
520 |
|
|
521 |
A \emph{simple definition} consists of a constant declaration \isa{c\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}} together with an axiom \isa{{\isasymturnstile}\ c\ {\isasymequiv}\ t}, where \isa{t\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}} is a closed term without any hidden polymorphism. The RHS
|
|
522 |
may depend on further defined constants, but not \isa{c} itself.
|
|
523 |
Definitions of functions may be presented as \isa{c\ \isactrlvec x\ {\isasymequiv}\ t} instead of the puristic \isa{c\ {\isasymequiv}\ {\isasymlambda}\isactrlvec x{\isachardot}\ t}.
|
|
524 |
|
|
525 |
An \emph{overloaded definition} consists of a collection of axioms
|
|
526 |
for the same constant, with zero or one equations \isa{c{\isacharparenleft}{\isacharparenleft}\isactrlvec {\isasymalpha}{\isacharparenright}{\isasymkappa}{\isacharparenright}\ {\isasymequiv}\ t} for each type constructor \isa{{\isasymkappa}} (for
|
|
527 |
distinct variables \isa{\isactrlvec {\isasymalpha}}). The RHS may mention
|
|
528 |
previously defined constants as above, or arbitrary constants \isa{d{\isacharparenleft}{\isasymalpha}\isactrlisub i{\isacharparenright}} for some \isa{{\isasymalpha}\isactrlisub i} projected from \isa{\isactrlvec {\isasymalpha}}. Thus overloaded definitions essentially work by
|
|
529 |
primitive recursion over the syntactic structure of a single type
|
|
530 |
argument.%
|
|
531 |
\end{isamarkuptext}%
|
|
532 |
\isamarkuptrue%
|
|
533 |
%
|
|
534 |
\isadelimmlref
|
|
535 |
%
|
|
536 |
\endisadelimmlref
|
|
537 |
%
|
|
538 |
\isatagmlref
|
|
539 |
%
|
|
540 |
\begin{isamarkuptext}%
|
|
541 |
\begin{mldecls}
|
|
542 |
\indexdef{}{ML type}{ctyp}\verb|type ctyp| \\
|
|
543 |
\indexdef{}{ML type}{cterm}\verb|type cterm| \\
|
|
544 |
\indexdef{}{ML}{Thm.ctyp\_of}\verb|Thm.ctyp_of: theory -> typ -> ctyp| \\
|
|
545 |
\indexdef{}{ML}{Thm.cterm\_of}\verb|Thm.cterm_of: theory -> term -> cterm| \\
|
|
546 |
\end{mldecls}
|
|
547 |
\begin{mldecls}
|
|
548 |
\indexdef{}{ML type}{thm}\verb|type thm| \\
|
|
549 |
\indexdef{}{ML}{proofs}\verb|proofs: int ref| \\
|
|
550 |
\indexdef{}{ML}{Thm.assume}\verb|Thm.assume: cterm -> thm| \\
|
|
551 |
\indexdef{}{ML}{Thm.forall\_intr}\verb|Thm.forall_intr: cterm -> thm -> thm| \\
|
|
552 |
\indexdef{}{ML}{Thm.forall\_elim}\verb|Thm.forall_elim: cterm -> thm -> thm| \\
|
|
553 |
\indexdef{}{ML}{Thm.implies\_intr}\verb|Thm.implies_intr: cterm -> thm -> thm| \\
|
|
554 |
\indexdef{}{ML}{Thm.implies\_elim}\verb|Thm.implies_elim: thm -> thm -> thm| \\
|
|
555 |
\indexdef{}{ML}{Thm.generalize}\verb|Thm.generalize: string list * string list -> int -> thm -> thm| \\
|
|
556 |
\indexdef{}{ML}{Thm.instantiate}\verb|Thm.instantiate: (ctyp * ctyp) list * (cterm * cterm) list -> thm -> thm| \\
|
|
557 |
\indexdef{}{ML}{Thm.axiom}\verb|Thm.axiom: theory -> string -> thm| \\
|
|
558 |
\indexdef{}{ML}{Thm.add\_oracle}\verb|Thm.add_oracle: binding * ('a -> cterm) -> theory|\isasep\isanewline%
|
|
559 |
\verb| -> (string * ('a -> thm)) * theory| \\
|
|
560 |
\end{mldecls}
|
|
561 |
\begin{mldecls}
|
|
562 |
\indexdef{}{ML}{Theory.add\_axioms\_i}\verb|Theory.add_axioms_i: (binding * term) list -> theory -> theory| \\
|
|
563 |
\indexdef{}{ML}{Theory.add\_deps}\verb|Theory.add_deps: string -> string * typ -> (string * typ) list -> theory -> theory| \\
|
|
564 |
\indexdef{}{ML}{Theory.add\_defs\_i}\verb|Theory.add_defs_i: bool -> bool -> (binding * term) list -> theory -> theory| \\
|
|
565 |
\end{mldecls}
|
|
566 |
|
|
567 |
\begin{description}
|
|
568 |
|
|
569 |
\item \verb|ctyp| and \verb|cterm| represent certified types
|
|
570 |
and terms, respectively. These are abstract datatypes that
|
|
571 |
guarantee that its values have passed the full well-formedness (and
|
|
572 |
well-typedness) checks, relative to the declarations of type
|
|
573 |
constructors, constants etc. in the theory.
|
|
574 |
|
|
575 |
\item \verb|Thm.ctyp_of|~\isa{thy\ {\isasymtau}} and \verb|Thm.cterm_of|~\isa{thy\ t} explicitly checks types and terms,
|
|
576 |
respectively. This also involves some basic normalizations, such
|
|
577 |
expansion of type and term abbreviations from the theory context.
|
|
578 |
|
|
579 |
Re-certification is relatively slow and should be avoided in tight
|
|
580 |
reasoning loops. There are separate operations to decompose
|
|
581 |
certified entities (including actual theorems).
|
|
582 |
|
|
583 |
\item \verb|thm| represents proven propositions. This is an
|
|
584 |
abstract datatype that guarantees that its values have been
|
|
585 |
constructed by basic principles of the \verb|Thm| module.
|
|
586 |
Every \verb|thm| value contains a sliding back-reference to the
|
|
587 |
enclosing theory, cf.\ \secref{sec:context-theory}.
|
|
588 |
|
|
589 |
\item \verb|proofs| determines the detail of proof recording within
|
|
590 |
\verb|thm| values: \verb|0| records only the names of oracles,
|
|
591 |
\verb|1| records oracle names and propositions, \verb|2| additionally
|
|
592 |
records full proof terms. Officially named theorems that contribute
|
|
593 |
to a result are always recorded.
|
|
594 |
|
|
595 |
\item \verb|Thm.assume|, \verb|Thm.forall_intr|, \verb|Thm.forall_elim|, \verb|Thm.implies_intr|, and \verb|Thm.implies_elim|
|
|
596 |
correspond to the primitive inferences of \figref{fig:prim-rules}.
|
|
597 |
|
|
598 |
\item \verb|Thm.generalize|~\isa{{\isacharparenleft}\isactrlvec {\isasymalpha}{\isacharcomma}\ \isactrlvec x{\isacharparenright}}
|
|
599 |
corresponds to the \isa{generalize} rules of
|
|
600 |
\figref{fig:subst-rules}. Here collections of type and term
|
|
601 |
variables are generalized simultaneously, specified by the given
|
|
602 |
basic names.
|
|
603 |
|
|
604 |
\item \verb|Thm.instantiate|~\isa{{\isacharparenleft}\isactrlvec {\isasymalpha}\isactrlisub s{\isacharcomma}\ \isactrlvec x\isactrlisub {\isasymtau}{\isacharparenright}} corresponds to the \isa{instantiate} rules
|
|
605 |
of \figref{fig:subst-rules}. Type variables are substituted before
|
|
606 |
term variables. Note that the types in \isa{\isactrlvec x\isactrlisub {\isasymtau}}
|
|
607 |
refer to the instantiated versions.
|
|
608 |
|
|
609 |
\item \verb|Thm.axiom|~\isa{thy\ name} retrieves a named
|
|
610 |
axiom, cf.\ \isa{axiom} in \figref{fig:prim-rules}.
|
|
611 |
|
|
612 |
\item \verb|Thm.add_oracle|~\isa{{\isacharparenleft}binding{\isacharcomma}\ oracle{\isacharparenright}} produces a named
|
|
613 |
oracle rule, essentially generating arbitrary axioms on the fly,
|
|
614 |
cf.\ \isa{axiom} in \figref{fig:prim-rules}.
|
|
615 |
|
|
616 |
\item \verb|Theory.add_axioms_i|~\isa{{\isacharbrackleft}{\isacharparenleft}name{\isacharcomma}\ A{\isacharparenright}{\isacharcomma}\ {\isasymdots}{\isacharbrackright}} declares
|
|
617 |
arbitrary propositions as axioms.
|
|
618 |
|
|
619 |
\item \verb|Theory.add_deps|~\isa{name\ c\isactrlisub {\isasymtau}\ \isactrlvec d\isactrlisub {\isasymsigma}} declares dependencies of a named specification
|
|
620 |
for constant \isa{c\isactrlisub {\isasymtau}}, relative to existing
|
|
621 |
specifications for constants \isa{\isactrlvec d\isactrlisub {\isasymsigma}}.
|
|
622 |
|
|
623 |
\item \verb|Theory.add_defs_i|~\isa{unchecked\ overloaded\ {\isacharbrackleft}{\isacharparenleft}name{\isacharcomma}\ c\ \isactrlvec x\ {\isasymequiv}\ t{\isacharparenright}{\isacharcomma}\ {\isasymdots}{\isacharbrackright}} states a definitional axiom for an existing
|
|
624 |
constant \isa{c}. Dependencies are recorded (cf.\ \verb|Theory.add_deps|), unless the \isa{unchecked} option is set.
|
|
625 |
|
|
626 |
\end{description}%
|
|
627 |
\end{isamarkuptext}%
|
|
628 |
\isamarkuptrue%
|
|
629 |
%
|
|
630 |
\endisatagmlref
|
|
631 |
{\isafoldmlref}%
|
|
632 |
%
|
|
633 |
\isadelimmlref
|
|
634 |
%
|
|
635 |
\endisadelimmlref
|
|
636 |
%
|
|
637 |
\isamarkupsubsection{Auxiliary definitions%
|
|
638 |
}
|
|
639 |
\isamarkuptrue%
|
|
640 |
%
|
|
641 |
\begin{isamarkuptext}%
|
|
642 |
Theory \isa{Pure} provides a few auxiliary definitions, see
|
|
643 |
\figref{fig:pure-aux}. These special constants are normally not
|
|
644 |
exposed to the user, but appear in internal encodings.
|
|
645 |
|
|
646 |
\begin{figure}[htb]
|
|
647 |
\begin{center}
|
|
648 |
\begin{tabular}{ll}
|
|
649 |
\isa{conjunction\ {\isacharcolon}{\isacharcolon}\ prop\ {\isasymRightarrow}\ prop\ {\isasymRightarrow}\ prop} & (infix \isa{{\isacharampersand}}) \\
|
|
650 |
\isa{{\isasymturnstile}\ A\ {\isacharampersand}\ B\ {\isasymequiv}\ {\isacharparenleft}{\isasymAnd}C{\isachardot}\ {\isacharparenleft}A\ {\isasymLongrightarrow}\ B\ {\isasymLongrightarrow}\ C{\isacharparenright}\ {\isasymLongrightarrow}\ C{\isacharparenright}} \\[1ex]
|
|
651 |
\isa{prop\ {\isacharcolon}{\isacharcolon}\ prop\ {\isasymRightarrow}\ prop} & (prefix \isa{{\isacharhash}}, suppressed) \\
|
|
652 |
\isa{{\isacharhash}A\ {\isasymequiv}\ A} \\[1ex]
|
|
653 |
\isa{term\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ {\isasymRightarrow}\ prop} & (prefix \isa{TERM}) \\
|
|
654 |
\isa{term\ x\ {\isasymequiv}\ {\isacharparenleft}{\isasymAnd}A{\isachardot}\ A\ {\isasymLongrightarrow}\ A{\isacharparenright}} \\[1ex]
|
|
655 |
\isa{TYPE\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ itself} & (prefix \isa{TYPE}) \\
|
|
656 |
\isa{{\isacharparenleft}unspecified{\isacharparenright}} \\
|
|
657 |
\end{tabular}
|
|
658 |
\caption{Definitions of auxiliary connectives}\label{fig:pure-aux}
|
|
659 |
\end{center}
|
|
660 |
\end{figure}
|
|
661 |
|
|
662 |
Derived conjunction rules include introduction \isa{A\ {\isasymLongrightarrow}\ B\ {\isasymLongrightarrow}\ A\ {\isacharampersand}\ B}, and destructions \isa{A\ {\isacharampersand}\ B\ {\isasymLongrightarrow}\ A} and \isa{A\ {\isacharampersand}\ B\ {\isasymLongrightarrow}\ B}.
|
|
663 |
Conjunction allows to treat simultaneous assumptions and conclusions
|
|
664 |
uniformly. For example, multiple claims are intermediately
|
|
665 |
represented as explicit conjunction, but this is refined into
|
|
666 |
separate sub-goals before the user continues the proof; the final
|
|
667 |
result is projected into a list of theorems (cf.\
|
|
668 |
\secref{sec:tactical-goals}).
|
|
669 |
|
|
670 |
The \isa{prop} marker (\isa{{\isacharhash}}) makes arbitrarily complex
|
|
671 |
propositions appear as atomic, without changing the meaning: \isa{{\isasymGamma}\ {\isasymturnstile}\ A} and \isa{{\isasymGamma}\ {\isasymturnstile}\ {\isacharhash}A} are interchangeable. See
|
|
672 |
\secref{sec:tactical-goals} for specific operations.
|
|
673 |
|
|
674 |
The \isa{term} marker turns any well-typed term into a derivable
|
|
675 |
proposition: \isa{{\isasymturnstile}\ TERM\ t} holds unconditionally. Although
|
|
676 |
this is logically vacuous, it allows to treat terms and proofs
|
|
677 |
uniformly, similar to a type-theoretic framework.
|
|
678 |
|
|
679 |
The \isa{TYPE} constructor is the canonical representative of
|
|
680 |
the unspecified type \isa{{\isasymalpha}\ itself}; it essentially injects the
|
|
681 |
language of types into that of terms. There is specific notation
|
|
682 |
\isa{TYPE{\isacharparenleft}{\isasymtau}{\isacharparenright}} for \isa{TYPE\isactrlbsub {\isasymtau}\ itself\isactrlesub }.
|
|
683 |
Although being devoid of any particular meaning, the \isa{TYPE{\isacharparenleft}{\isasymtau}{\isacharparenright}} accounts for the type \isa{{\isasymtau}} within the term
|
|
684 |
language. In particular, \isa{TYPE{\isacharparenleft}{\isasymalpha}{\isacharparenright}} may be used as formal
|
|
685 |
argument in primitive definitions, in order to circumvent hidden
|
|
686 |
polymorphism (cf.\ \secref{sec:terms}). For example, \isa{c\ TYPE{\isacharparenleft}{\isasymalpha}{\isacharparenright}\ {\isasymequiv}\ A{\isacharbrackleft}{\isasymalpha}{\isacharbrackright}} defines \isa{c\ {\isacharcolon}{\isacharcolon}\ {\isasymalpha}\ itself\ {\isasymRightarrow}\ prop} in terms of
|
|
687 |
a proposition \isa{A} that depends on an additional type
|
|
688 |
argument, which is essentially a predicate on types.%
|
|
689 |
\end{isamarkuptext}%
|
|
690 |
\isamarkuptrue%
|
|
691 |
%
|
|
692 |
\isadelimmlref
|
|
693 |
%
|
|
694 |
\endisadelimmlref
|
|
695 |
%
|
|
696 |
\isatagmlref
|
|
697 |
%
|
|
698 |
\begin{isamarkuptext}%
|
|
699 |
\begin{mldecls}
|
|
700 |
\indexdef{}{ML}{Conjunction.intr}\verb|Conjunction.intr: thm -> thm -> thm| \\
|
|
701 |
\indexdef{}{ML}{Conjunction.elim}\verb|Conjunction.elim: thm -> thm * thm| \\
|
|
702 |
\indexdef{}{ML}{Drule.mk\_term}\verb|Drule.mk_term: cterm -> thm| \\
|
|
703 |
\indexdef{}{ML}{Drule.dest\_term}\verb|Drule.dest_term: thm -> cterm| \\
|
|
704 |
\indexdef{}{ML}{Logic.mk\_type}\verb|Logic.mk_type: typ -> term| \\
|
|
705 |
\indexdef{}{ML}{Logic.dest\_type}\verb|Logic.dest_type: term -> typ| \\
|
|
706 |
\end{mldecls}
|
|
707 |
|
|
708 |
\begin{description}
|
|
709 |
|
|
710 |
\item \verb|Conjunction.intr| derives \isa{A\ {\isacharampersand}\ B} from \isa{A} and \isa{B}.
|
|
711 |
|
|
712 |
\item \verb|Conjunction.elim| derives \isa{A} and \isa{B}
|
|
713 |
from \isa{A\ {\isacharampersand}\ B}.
|
|
714 |
|
|
715 |
\item \verb|Drule.mk_term| derives \isa{TERM\ t}.
|
|
716 |
|
|
717 |
\item \verb|Drule.dest_term| recovers term \isa{t} from \isa{TERM\ t}.
|
|
718 |
|
|
719 |
\item \verb|Logic.mk_type|~\isa{{\isasymtau}} produces the term \isa{TYPE{\isacharparenleft}{\isasymtau}{\isacharparenright}}.
|
|
720 |
|
|
721 |
\item \verb|Logic.dest_type|~\isa{TYPE{\isacharparenleft}{\isasymtau}{\isacharparenright}} recovers the type
|
|
722 |
\isa{{\isasymtau}}.
|
|
723 |
|
|
724 |
\end{description}%
|
|
725 |
\end{isamarkuptext}%
|
|
726 |
\isamarkuptrue%
|
|
727 |
%
|
|
728 |
\endisatagmlref
|
|
729 |
{\isafoldmlref}%
|
|
730 |
%
|
|
731 |
\isadelimmlref
|
|
732 |
%
|
|
733 |
\endisadelimmlref
|
|
734 |
%
|
|
735 |
\isamarkupsection{Object-level rules \label{sec:obj-rules}%
|
|
736 |
}
|
|
737 |
\isamarkuptrue%
|
|
738 |
%
|
|
739 |
\begin{isamarkuptext}%
|
|
740 |
The primitive inferences covered so far mostly serve foundational
|
|
741 |
purposes. User-level reasoning usually works via object-level rules
|
|
742 |
that are represented as theorems of Pure. Composition of rules
|
|
743 |
involves \emph{backchaining}, \emph{higher-order unification} modulo
|
|
744 |
\isa{{\isasymalpha}{\isasymbeta}{\isasymeta}}-conversion of \isa{{\isasymlambda}}-terms, and so-called
|
|
745 |
\emph{lifting} of rules into a context of \isa{{\isasymAnd}} and \isa{{\isasymLongrightarrow}} connectives. Thus the full power of higher-order Natural
|
|
746 |
Deduction in Isabelle/Pure becomes readily available.%
|
|
747 |
\end{isamarkuptext}%
|
|
748 |
\isamarkuptrue%
|
|
749 |
%
|
|
750 |
\isamarkupsubsection{Hereditary Harrop Formulae%
|
|
751 |
}
|
|
752 |
\isamarkuptrue%
|
|
753 |
%
|
|
754 |
\begin{isamarkuptext}%
|
|
755 |
The idea of object-level rules is to model Natural Deduction
|
|
756 |
inferences in the style of Gentzen \cite{Gentzen:1935}, but we allow
|
|
757 |
arbitrary nesting similar to \cite{extensions91}. The most basic
|
|
758 |
rule format is that of a \emph{Horn Clause}:
|
|
759 |
\[
|
|
760 |
\infer{\isa{A}}{\isa{A\isactrlsub {\isadigit{1}}} & \isa{{\isasymdots}} & \isa{A\isactrlsub n}}
|
|
761 |
\]
|
|
762 |
where \isa{A{\isacharcomma}\ A\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ A\isactrlsub n} are atomic propositions
|
|
763 |
of the framework, usually of the form \isa{Trueprop\ B}, where
|
|
764 |
\isa{B} is a (compound) object-level statement. This
|
|
765 |
object-level inference corresponds to an iterated implication in
|
|
766 |
Pure like this:
|
|
767 |
\[
|
|
768 |
\isa{A\isactrlsub {\isadigit{1}}\ {\isasymLongrightarrow}\ {\isasymdots}\ A\isactrlsub n\ {\isasymLongrightarrow}\ A}
|
|
769 |
\]
|
|
770 |
As an example consider conjunction introduction: \isa{A\ {\isasymLongrightarrow}\ B\ {\isasymLongrightarrow}\ A\ {\isasymand}\ B}. Any parameters occurring in such rule statements are
|
|
771 |
conceptionally treated as arbitrary:
|
|
772 |
\[
|
|
773 |
\isa{{\isasymAnd}x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub m{\isachardot}\ A\isactrlsub {\isadigit{1}}\ x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub m\ {\isasymLongrightarrow}\ {\isasymdots}\ A\isactrlsub n\ x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub m\ {\isasymLongrightarrow}\ A\ x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub m}
|
|
774 |
\]
|
|
775 |
|
|
776 |
Nesting of rules means that the positions of \isa{A\isactrlsub i} may
|
|
777 |
again hold compound rules, not just atomic propositions.
|
|
778 |
Propositions of this format are called \emph{Hereditary Harrop
|
|
779 |
Formulae} in the literature \cite{Miller:1991}. Here we give an
|
|
780 |
inductive characterization as follows:
|
|
781 |
|
|
782 |
\medskip
|
|
783 |
\begin{tabular}{ll}
|
|
784 |
\isa{\isactrlbold x} & set of variables \\
|
|
785 |
\isa{\isactrlbold A} & set of atomic propositions \\
|
|
786 |
\isa{\isactrlbold H\ \ {\isacharequal}\ \ {\isasymAnd}\isactrlbold x\isactrlsup {\isacharasterisk}{\isachardot}\ \isactrlbold H\isactrlsup {\isacharasterisk}\ {\isasymLongrightarrow}\ \isactrlbold A} & set of Hereditary Harrop Formulas \\
|
|
787 |
\end{tabular}
|
|
788 |
\medskip
|
|
789 |
|
|
790 |
\noindent Thus we essentially impose nesting levels on propositions
|
|
791 |
formed from \isa{{\isasymAnd}} and \isa{{\isasymLongrightarrow}}. At each level there is a
|
|
792 |
prefix of parameters and compound premises, concluding an atomic
|
|
793 |
proposition. Typical examples are \isa{{\isasymlongrightarrow}}-introduction \isa{{\isacharparenleft}A\ {\isasymLongrightarrow}\ B{\isacharparenright}\ {\isasymLongrightarrow}\ A\ {\isasymlongrightarrow}\ B} or mathematical induction \isa{P\ {\isadigit{0}}\ {\isasymLongrightarrow}\ {\isacharparenleft}{\isasymAnd}n{\isachardot}\ P\ n\ {\isasymLongrightarrow}\ P\ {\isacharparenleft}Suc\ n{\isacharparenright}{\isacharparenright}\ {\isasymLongrightarrow}\ P\ n}. Even deeper nesting occurs in well-founded
|
|
794 |
induction \isa{{\isacharparenleft}{\isasymAnd}x{\isachardot}\ {\isacharparenleft}{\isasymAnd}y{\isachardot}\ y\ {\isasymprec}\ x\ {\isasymLongrightarrow}\ P\ y{\isacharparenright}\ {\isasymLongrightarrow}\ P\ x{\isacharparenright}\ {\isasymLongrightarrow}\ P\ x}, but this
|
|
795 |
already marks the limit of rule complexity seen in practice.
|
|
796 |
|
|
797 |
\medskip Regular user-level inferences in Isabelle/Pure always
|
|
798 |
maintain the following canonical form of results:
|
|
799 |
|
|
800 |
\begin{itemize}
|
|
801 |
|
|
802 |
\item Normalization by \isa{{\isacharparenleft}A\ {\isasymLongrightarrow}\ {\isacharparenleft}{\isasymAnd}x{\isachardot}\ B\ x{\isacharparenright}{\isacharparenright}\ {\isasymequiv}\ {\isacharparenleft}{\isasymAnd}x{\isachardot}\ A\ {\isasymLongrightarrow}\ B\ x{\isacharparenright}},
|
|
803 |
which is a theorem of Pure, means that quantifiers are pushed in
|
|
804 |
front of implication at each level of nesting. The normal form is a
|
|
805 |
Hereditary Harrop Formula.
|
|
806 |
|
|
807 |
\item The outermost prefix of parameters is represented via
|
|
808 |
schematic variables: instead of \isa{{\isasymAnd}\isactrlvec x{\isachardot}\ \isactrlvec H\ \isactrlvec x\ {\isasymLongrightarrow}\ A\ \isactrlvec x} we have \isa{\isactrlvec H\ {\isacharquery}\isactrlvec x\ {\isasymLongrightarrow}\ A\ {\isacharquery}\isactrlvec x}.
|
|
809 |
Note that this representation looses information about the order of
|
|
810 |
parameters, and vacuous quantifiers vanish automatically.
|
|
811 |
|
|
812 |
\end{itemize}%
|
|
813 |
\end{isamarkuptext}%
|
|
814 |
\isamarkuptrue%
|
|
815 |
%
|
|
816 |
\isadelimmlref
|
|
817 |
%
|
|
818 |
\endisadelimmlref
|
|
819 |
%
|
|
820 |
\isatagmlref
|
|
821 |
%
|
|
822 |
\begin{isamarkuptext}%
|
|
823 |
\begin{mldecls}
|
|
824 |
\indexdef{}{ML}{MetaSimplifier.norm\_hhf}\verb|MetaSimplifier.norm_hhf: thm -> thm| \\
|
|
825 |
\end{mldecls}
|
|
826 |
|
|
827 |
\begin{description}
|
|
828 |
|
|
829 |
\item \verb|MetaSimplifier.norm_hhf|~\isa{thm} normalizes the given
|
|
830 |
theorem according to the canonical form specified above. This is
|
|
831 |
occasionally helpful to repair some low-level tools that do not
|
|
832 |
handle Hereditary Harrop Formulae properly.
|
|
833 |
|
|
834 |
\end{description}%
|
|
835 |
\end{isamarkuptext}%
|
|
836 |
\isamarkuptrue%
|
|
837 |
%
|
|
838 |
\endisatagmlref
|
|
839 |
{\isafoldmlref}%
|
|
840 |
%
|
|
841 |
\isadelimmlref
|
|
842 |
%
|
|
843 |
\endisadelimmlref
|
|
844 |
%
|
|
845 |
\isamarkupsubsection{Rule composition%
|
|
846 |
}
|
|
847 |
\isamarkuptrue%
|
|
848 |
%
|
|
849 |
\begin{isamarkuptext}%
|
|
850 |
The rule calculus of Isabelle/Pure provides two main inferences:
|
|
851 |
\hyperlink{inference.resolution}{\mbox{\isa{resolution}}} (i.e.\ back-chaining of rules) and
|
|
852 |
\hyperlink{inference.assumption}{\mbox{\isa{assumption}}} (i.e.\ closing a branch), both modulo
|
|
853 |
higher-order unification. There are also combined variants, notably
|
|
854 |
\hyperlink{inference.elim-resolution}{\mbox{\isa{elim{\isacharunderscore}resolution}}} and \hyperlink{inference.dest-resolution}{\mbox{\isa{dest{\isacharunderscore}resolution}}}.
|
|
855 |
|
|
856 |
To understand the all-important \hyperlink{inference.resolution}{\mbox{\isa{resolution}}} principle,
|
|
857 |
we first consider raw \indexdef{}{inference}{composition}\hypertarget{inference.composition}{\hyperlink{inference.composition}{\mbox{\isa{composition}}}} (modulo
|
|
858 |
higher-order unification with substitution \isa{{\isasymvartheta}}):
|
|
859 |
\[
|
|
860 |
\infer[(\indexdef{}{inference}{composition}\hypertarget{inference.composition}{\hyperlink{inference.composition}{\mbox{\isa{composition}}}})]{\isa{\isactrlvec A{\isasymvartheta}\ {\isasymLongrightarrow}\ C{\isasymvartheta}}}
|
|
861 |
{\isa{\isactrlvec A\ {\isasymLongrightarrow}\ B} & \isa{B{\isacharprime}\ {\isasymLongrightarrow}\ C} & \isa{B{\isasymvartheta}\ {\isacharequal}\ B{\isacharprime}{\isasymvartheta}}}
|
|
862 |
\]
|
|
863 |
Here the conclusion of the first rule is unified with the premise of
|
|
864 |
the second; the resulting rule instance inherits the premises of the
|
|
865 |
first and conclusion of the second. Note that \isa{C} can again
|
|
866 |
consist of iterated implications. We can also permute the premises
|
|
867 |
of the second rule back-and-forth in order to compose with \isa{B{\isacharprime}} in any position (subsequently we shall always refer to
|
|
868 |
position 1 w.l.o.g.).
|
|
869 |
|
|
870 |
In \hyperlink{inference.composition}{\mbox{\isa{composition}}} the internal structure of the common
|
|
871 |
part \isa{B} and \isa{B{\isacharprime}} is not taken into account. For
|
|
872 |
proper \hyperlink{inference.resolution}{\mbox{\isa{resolution}}} we require \isa{B} to be atomic,
|
|
873 |
and explicitly observe the structure \isa{{\isasymAnd}\isactrlvec x{\isachardot}\ \isactrlvec H\ \isactrlvec x\ {\isasymLongrightarrow}\ B{\isacharprime}\ \isactrlvec x} of the premise of the second rule. The
|
|
874 |
idea is to adapt the first rule by ``lifting'' it into this context,
|
|
875 |
by means of iterated application of the following inferences:
|
|
876 |
\[
|
|
877 |
\infer[(\indexdef{}{inference}{imp\_lift}\hypertarget{inference.imp-lift}{\hyperlink{inference.imp-lift}{\mbox{\isa{imp{\isacharunderscore}lift}}}})]{\isa{{\isacharparenleft}\isactrlvec H\ {\isasymLongrightarrow}\ \isactrlvec A{\isacharparenright}\ {\isasymLongrightarrow}\ {\isacharparenleft}\isactrlvec H\ {\isasymLongrightarrow}\ B{\isacharparenright}}}{\isa{\isactrlvec A\ {\isasymLongrightarrow}\ B}}
|
|
878 |
\]
|
|
879 |
\[
|
|
880 |
\infer[(\indexdef{}{inference}{all\_lift}\hypertarget{inference.all-lift}{\hyperlink{inference.all-lift}{\mbox{\isa{all{\isacharunderscore}lift}}}})]{\isa{{\isacharparenleft}{\isasymAnd}\isactrlvec x{\isachardot}\ \isactrlvec A\ {\isacharparenleft}{\isacharquery}\isactrlvec a\ \isactrlvec x{\isacharparenright}{\isacharparenright}\ {\isasymLongrightarrow}\ {\isacharparenleft}{\isasymAnd}\isactrlvec x{\isachardot}\ B\ {\isacharparenleft}{\isacharquery}\isactrlvec a\ \isactrlvec x{\isacharparenright}{\isacharparenright}}}{\isa{\isactrlvec A\ {\isacharquery}\isactrlvec a\ {\isasymLongrightarrow}\ B\ {\isacharquery}\isactrlvec a}}
|
|
881 |
\]
|
|
882 |
By combining raw composition with lifting, we get full \hyperlink{inference.resolution}{\mbox{\isa{resolution}}} as follows:
|
|
883 |
\[
|
|
884 |
\infer[(\indexdef{}{inference}{resolution}\hypertarget{inference.resolution}{\hyperlink{inference.resolution}{\mbox{\isa{resolution}}}})]
|
|
885 |
{\isa{{\isacharparenleft}{\isasymAnd}\isactrlvec x{\isachardot}\ \isactrlvec H\ \isactrlvec x\ {\isasymLongrightarrow}\ \isactrlvec A\ {\isacharparenleft}{\isacharquery}\isactrlvec a\ \isactrlvec x{\isacharparenright}{\isacharparenright}{\isasymvartheta}\ {\isasymLongrightarrow}\ C{\isasymvartheta}}}
|
|
886 |
{\begin{tabular}{l}
|
|
887 |
\isa{\isactrlvec A\ {\isacharquery}\isactrlvec a\ {\isasymLongrightarrow}\ B\ {\isacharquery}\isactrlvec a} \\
|
|
888 |
\isa{{\isacharparenleft}{\isasymAnd}\isactrlvec x{\isachardot}\ \isactrlvec H\ \isactrlvec x\ {\isasymLongrightarrow}\ B{\isacharprime}\ \isactrlvec x{\isacharparenright}\ {\isasymLongrightarrow}\ C} \\
|
|
889 |
\isa{{\isacharparenleft}{\isasymlambda}\isactrlvec x{\isachardot}\ B\ {\isacharparenleft}{\isacharquery}\isactrlvec a\ \isactrlvec x{\isacharparenright}{\isacharparenright}{\isasymvartheta}\ {\isacharequal}\ B{\isacharprime}{\isasymvartheta}} \\
|
|
890 |
\end{tabular}}
|
|
891 |
\]
|
|
892 |
|
|
893 |
Continued resolution of rules allows to back-chain a problem towards
|
|
894 |
more and sub-problems. Branches are closed either by resolving with
|
|
895 |
a rule of 0 premises, or by producing a ``short-circuit'' within a
|
|
896 |
solved situation (again modulo unification):
|
|
897 |
\[
|
|
898 |
\infer[(\indexdef{}{inference}{assumption}\hypertarget{inference.assumption}{\hyperlink{inference.assumption}{\mbox{\isa{assumption}}}})]{\isa{C{\isasymvartheta}}}
|
|
899 |
{\isa{{\isacharparenleft}{\isasymAnd}\isactrlvec x{\isachardot}\ \isactrlvec H\ \isactrlvec x\ {\isasymLongrightarrow}\ A\ \isactrlvec x{\isacharparenright}\ {\isasymLongrightarrow}\ C} & \isa{A{\isasymvartheta}\ {\isacharequal}\ H\isactrlsub i{\isasymvartheta}}~~\text{(for some~\isa{i})}}
|
|
900 |
\]
|
|
901 |
|
|
902 |
FIXME \indexdef{}{inference}{elim\_resolution}\hypertarget{inference.elim-resolution}{\hyperlink{inference.elim-resolution}{\mbox{\isa{elim{\isacharunderscore}resolution}}}}, \indexdef{}{inference}{dest\_resolution}\hypertarget{inference.dest-resolution}{\hyperlink{inference.dest-resolution}{\mbox{\isa{dest{\isacharunderscore}resolution}}}}%
|
|
903 |
\end{isamarkuptext}%
|
|
904 |
\isamarkuptrue%
|
|
905 |
%
|
|
906 |
\isadelimmlref
|
|
907 |
%
|
|
908 |
\endisadelimmlref
|
|
909 |
%
|
|
910 |
\isatagmlref
|
|
911 |
%
|
|
912 |
\begin{isamarkuptext}%
|
|
913 |
\begin{mldecls}
|
|
914 |
\indexdef{}{ML}{op RS}\verb|op RS: thm * thm -> thm| \\
|
|
915 |
\indexdef{}{ML}{op OF}\verb|op OF: thm * thm list -> thm| \\
|
|
916 |
\end{mldecls}
|
|
917 |
|
|
918 |
\begin{description}
|
|
919 |
|
|
920 |
\item \isa{rule\isactrlsub {\isadigit{1}}\ RS\ rule\isactrlsub {\isadigit{2}}} resolves \isa{rule\isactrlsub {\isadigit{1}}} with \isa{rule\isactrlsub {\isadigit{2}}} according to the
|
|
921 |
\hyperlink{inference.resolution}{\mbox{\isa{resolution}}} principle explained above. Note that the
|
|
922 |
corresponding attribute in the Isar language is called \hyperlink{attribute.THEN}{\mbox{\isa{THEN}}}.
|
|
923 |
|
|
924 |
\item \isa{rule\ OF\ rules} resolves a list of rules with the
|
|
925 |
first rule, addressing its premises \isa{{\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ length\ rules}
|
|
926 |
(operating from last to first). This means the newly emerging
|
|
927 |
premises are all concatenated, without interfering. Also note that
|
|
928 |
compared to \isa{RS}, the rule argument order is swapped: \isa{rule\isactrlsub {\isadigit{1}}\ RS\ rule\isactrlsub {\isadigit{2}}\ {\isacharequal}\ rule\isactrlsub {\isadigit{2}}\ OF\ {\isacharbrackleft}rule\isactrlsub {\isadigit{1}}{\isacharbrackright}}.
|
|
929 |
|
|
930 |
\end{description}%
|
|
931 |
\end{isamarkuptext}%
|
|
932 |
\isamarkuptrue%
|
|
933 |
%
|
|
934 |
\endisatagmlref
|
|
935 |
{\isafoldmlref}%
|
|
936 |
%
|
|
937 |
\isadelimmlref
|
|
938 |
%
|
|
939 |
\endisadelimmlref
|
|
940 |
%
|
|
941 |
\isadelimtheory
|
|
942 |
%
|
|
943 |
\endisadelimtheory
|
|
944 |
%
|
|
945 |
\isatagtheory
|
|
946 |
\isacommand{end}\isamarkupfalse%
|
|
947 |
%
|
|
948 |
\endisatagtheory
|
|
949 |
{\isafoldtheory}%
|
|
950 |
%
|
|
951 |
\isadelimtheory
|
|
952 |
%
|
|
953 |
\endisadelimtheory
|
|
954 |
\isanewline
|
|
955 |
\end{isabellebody}%
|
|
956 |
%%% Local Variables:
|
|
957 |
%%% mode: latex
|
|
958 |
%%% TeX-master: "root"
|
|
959 |
%%% End:
|