| author | blanchet | 
| Tue, 28 Aug 2012 17:17:41 +0200 | |
| changeset 48978 | dcb486124b6a | 
| parent 48759 | ff570720ba1c | 
| child 49095 | 7df19036392e | 
| permissions | -rw-r--r-- | 
| 47613 | 1  | 
(* Author: Tobias Nipkow *)  | 
2  | 
||
3  | 
theory Abs_Int1  | 
|
4  | 
imports Abs_State  | 
|
5  | 
begin  | 
|
6  | 
||
7  | 
lemma le_iff_le_annos_zip: "C1 \<sqsubseteq> C2 \<longleftrightarrow>  | 
|
8  | 
(\<forall> (a1,a2) \<in> set(zip (annos C1) (annos C2)). a1 \<sqsubseteq> a2) \<and> strip C1 = strip C2"  | 
|
9  | 
by(induct C1 C2 rule: le_acom.induct) (auto simp: size_annos_same2)  | 
|
10  | 
||
11  | 
lemma le_iff_le_annos: "C1 \<sqsubseteq> C2 \<longleftrightarrow>  | 
|
12  | 
strip C1 = strip C2 \<and> (\<forall> i<size(annos C1). annos C1 ! i \<sqsubseteq> annos C2 ! i)"  | 
|
13  | 
by(auto simp add: le_iff_le_annos_zip set_zip) (metis size_annos_same2)  | 
|
14  | 
||
15  | 
||
16  | 
lemma mono_fun_wt[simp]: "wt F X \<Longrightarrow> F \<sqsubseteq> G \<Longrightarrow> x : X \<Longrightarrow> fun F x \<sqsubseteq> fun G x"  | 
|
17  | 
by(simp add: mono_fun wt_st_def)  | 
|
18  | 
||
19  | 
lemma wt_bot[simp]: "wt (bot c) (vars c)"  | 
|
20  | 
by(simp add: wt_acom_def bot_def)  | 
|
21  | 
||
22  | 
lemma wt_acom_simps[simp]: "wt (SKIP {P}) X \<longleftrightarrow> wt P X"
 | 
|
23  | 
  "wt (x ::= e {P}) X \<longleftrightarrow> x : X \<and> vars e \<subseteq> X \<and> wt P X"
 | 
|
24  | 
"wt (C1;C2) X \<longleftrightarrow> wt C1 X \<and> wt C2 X"  | 
|
25  | 
  "wt (IF b THEN C1 ELSE C2 {P}) X \<longleftrightarrow>
 | 
|
26  | 
vars b \<subseteq> X \<and> wt C1 X \<and> wt C2 X \<and> wt P X"  | 
|
27  | 
  "wt ({I} WHILE b DO C {P}) X \<longleftrightarrow>
 | 
|
28  | 
wt I X \<and> vars b \<subseteq> X \<and> wt C X \<and> wt P X"  | 
|
29  | 
by(auto simp add: wt_acom_def)  | 
|
30  | 
||
31  | 
lemma wt_post[simp]: "wt c X \<Longrightarrow> wt (post c) X"  | 
|
32  | 
by(induction c)(auto simp: wt_acom_def)  | 
|
33  | 
||
34  | 
lemma lpfp_inv:  | 
|
35  | 
assumes "lpfp f x0 = Some x" and "\<And>x. P x \<Longrightarrow> P(f x)" and "P(bot x0)"  | 
|
36  | 
shows "P x"  | 
|
37  | 
using assms unfolding lpfp_def pfp_def  | 
|
38  | 
by (metis (lifting) while_option_rule)  | 
|
39  | 
||
40  | 
||
41  | 
subsection "Computable Abstract Interpretation"  | 
|
42  | 
||
43  | 
text{* Abstract interpretation over type @{text st} instead of
 | 
|
44  | 
functions. *}  | 
|
45  | 
||
46  | 
context Gamma  | 
|
47  | 
begin  | 
|
48  | 
||
49  | 
fun aval' :: "aexp \<Rightarrow> 'av st \<Rightarrow> 'av" where  | 
|
50  | 
"aval' (N n) S = num' n" |  | 
|
51  | 
"aval' (V x) S = fun S x" |  | 
|
52  | 
"aval' (Plus a1 a2) S = plus' (aval' a1 S) (aval' a2 S)"  | 
|
53  | 
||
54  | 
lemma aval'_sound: "s : \<gamma>\<^isub>f S \<Longrightarrow> vars a \<subseteq> dom S \<Longrightarrow> aval a s : \<gamma>(aval' a S)"  | 
|
55  | 
by (induction a) (auto simp: gamma_num' gamma_plus' \<gamma>_st_def)  | 
|
56  | 
||
57  | 
end  | 
|
58  | 
||
59  | 
text{* The for-clause (here and elsewhere) only serves the purpose of fixing
 | 
|
60  | 
the name of the type parameter @{typ 'av} which would otherwise be renamed to
 | 
|
61  | 
@{typ 'a}. *}
 | 
|
62  | 
||
63  | 
locale Abs_Int = Gamma where \<gamma>=\<gamma> for \<gamma> :: "'av::SL_top \<Rightarrow> val set"  | 
|
64  | 
begin  | 
|
65  | 
||
66  | 
fun step' :: "'av st option \<Rightarrow> 'av st option acom \<Rightarrow> 'av st option acom" where  | 
|
67  | 
"step' S (SKIP {P}) = (SKIP {S})" |
 | 
|
68  | 
"step' S (x ::= e {P}) =
 | 
|
69  | 
  x ::= e {case S of None \<Rightarrow> None | Some S \<Rightarrow> Some(update S x (aval' e S))}" |
 | 
|
70  | 
"step' S (C1; C2) = step' S C1; step' (post C1) C2" |  | 
|
71  | 
"step' S (IF b THEN C1 ELSE C2 {P}) =
 | 
|
72  | 
  (IF b THEN step' S C1 ELSE step' S C2 {post C1 \<squnion> post C2})" |
 | 
|
73  | 
"step' S ({Inv} WHILE b DO C {P}) =
 | 
|
74  | 
   {S \<squnion> post C} WHILE b DO step' Inv C {Inv}"
 | 
|
75  | 
||
76  | 
definition AI :: "com \<Rightarrow> 'av st option acom option" where  | 
|
77  | 
"AI c = lpfp (step' (top c)) c"  | 
|
78  | 
||
79  | 
||
80  | 
lemma strip_step'[simp]: "strip(step' S C) = strip C"  | 
|
81  | 
by(induct C arbitrary: S) (simp_all add: Let_def)  | 
|
82  | 
||
83  | 
||
84  | 
text{* Soundness: *}
 | 
|
85  | 
||
86  | 
lemma in_gamma_update:  | 
|
87  | 
"\<lbrakk> s : \<gamma>\<^isub>f S; i : \<gamma> a \<rbrakk> \<Longrightarrow> s(x := i) : \<gamma>\<^isub>f(update S x a)"  | 
|
88  | 
by(simp add: \<gamma>_st_def)  | 
|
89  | 
||
90  | 
theorem step_preserves_le:  | 
|
91  | 
"\<lbrakk> S \<subseteq> \<gamma>\<^isub>o S'; C \<le> \<gamma>\<^isub>c C'; wt C' X; wt S' X \<rbrakk> \<Longrightarrow> step S C \<le> \<gamma>\<^isub>c (step' S' C')"  | 
|
92  | 
proof(induction C arbitrary: C' S S')  | 
|
93  | 
case SKIP thus ?case by(auto simp:SKIP_le map_acom_SKIP)  | 
|
94  | 
next  | 
|
95  | 
case Assign thus ?case  | 
|
96  | 
by(fastforce simp: Assign_le map_acom_Assign wt_st_def  | 
|
97  | 
intro: aval'_sound in_gamma_update split: option.splits)  | 
|
98  | 
next  | 
|
| 47818 | 99  | 
case Seq thus ?case apply (auto simp: Seq_le map_acom_Seq)  | 
| 47613 | 100  | 
by (metis le_post post_map_acom wt_post)  | 
101  | 
next  | 
|
102  | 
case (If b C1 C2 P)  | 
|
103  | 
then obtain C1' C2' P' where  | 
|
104  | 
      "C' = IF b THEN C1' ELSE C2' {P'}"
 | 
|
105  | 
"P \<subseteq> \<gamma>\<^isub>o P'" "C1 \<le> \<gamma>\<^isub>c C1'" "C2 \<le> \<gamma>\<^isub>c C2'"  | 
|
106  | 
by (fastforce simp: If_le map_acom_If)  | 
|
107  | 
moreover from this(1) `wt C' X` have wt: "wt C1' X" "wt C2' X"  | 
|
108  | 
by simp_all  | 
|
109  | 
moreover have "post C1 \<subseteq> \<gamma>\<^isub>o(post C1' \<squnion> post C2')"  | 
|
110  | 
by (metis (no_types) `C1 \<le> \<gamma>\<^isub>c C1'` join_ge1 le_post mono_gamma_o order_trans post_map_acom wt wt_post)  | 
|
111  | 
moreover have "post C2 \<subseteq> \<gamma>\<^isub>o(post C1' \<squnion> post C2')"  | 
|
112  | 
by (metis (no_types) `C2 \<le> \<gamma>\<^isub>c C2'` join_ge2 le_post mono_gamma_o order_trans post_map_acom wt wt_post)  | 
|
113  | 
ultimately show ?case using `S \<subseteq> \<gamma>\<^isub>o S'` `wt S' X`  | 
|
114  | 
by (simp add: If.IH subset_iff)  | 
|
115  | 
next  | 
|
116  | 
case (While I b C1 P)  | 
|
117  | 
then obtain C1' I' P' where  | 
|
118  | 
    "C' = {I'} WHILE b DO C1' {P'}"
 | 
|
119  | 
"I \<subseteq> \<gamma>\<^isub>o I'" "P \<subseteq> \<gamma>\<^isub>o P'" "C1 \<le> \<gamma>\<^isub>c C1'"  | 
|
120  | 
by (fastforce simp: map_acom_While While_le)  | 
|
121  | 
moreover from this(1) `wt C' X`  | 
|
122  | 
have wt: "wt C1' X" "wt I' X" by simp_all  | 
|
123  | 
moreover note compat = `wt S' X` wt_post[OF wt(1)]  | 
|
124  | 
moreover have "S \<union> post C1 \<subseteq> \<gamma>\<^isub>o (S' \<squnion> post C1')"  | 
|
125  | 
using `S \<subseteq> \<gamma>\<^isub>o S'` le_post[OF `C1 \<le> \<gamma>\<^isub>c C1'`, simplified]  | 
|
126  | 
by (metis (no_types) join_ge1[OF compat] join_ge2[OF compat] le_sup_iff mono_gamma_o order_trans)  | 
|
127  | 
ultimately show ?case by (simp add: While.IH subset_iff)  | 
|
128  | 
qed  | 
|
129  | 
||
130  | 
lemma wt_step'[simp]:  | 
|
131  | 
"\<lbrakk> wt C X; wt S X \<rbrakk> \<Longrightarrow> wt (step' S C) X"  | 
|
132  | 
proof(induction C arbitrary: S)  | 
|
133  | 
case Assign thus ?case  | 
|
134  | 
by(auto simp: wt_st_def update_def split: option.splits)  | 
|
135  | 
qed auto  | 
|
136  | 
||
137  | 
theorem AI_sound: "AI c = Some C \<Longrightarrow> CS c \<le> \<gamma>\<^isub>c C"  | 
|
138  | 
proof(simp add: CS_def AI_def)  | 
|
139  | 
assume 1: "lpfp (step' (top c)) c = Some C"  | 
|
140  | 
have "wt C (vars c)"  | 
|
141  | 
by(rule lpfp_inv[where P = "%C. wt C (vars c)", OF 1 _ wt_bot])  | 
|
142  | 
(erule wt_step'[OF _ wt_top])  | 
|
143  | 
have 2: "step' (top c) C \<sqsubseteq> C" by(rule lpfpc_pfp[OF 1])  | 
|
144  | 
have 3: "strip (\<gamma>\<^isub>c (step' (top c) C)) = c"  | 
|
145  | 
by(simp add: strip_lpfp[OF _ 1])  | 
|
| 
48759
 
ff570720ba1c
Improved complete lattice formalisation - no more index set.
 
nipkow 
parents: 
47818 
diff
changeset
 | 
146  | 
have "lfp c (step UNIV) \<le> \<gamma>\<^isub>c (step' (top c) C)"  | 
| 47613 | 147  | 
proof(rule lfp_lowerbound[simplified,OF 3])  | 
148  | 
show "step UNIV (\<gamma>\<^isub>c (step' (top c) C)) \<le> \<gamma>\<^isub>c (step' (top c) C)"  | 
|
149  | 
proof(rule step_preserves_le[OF _ _ `wt C (vars c)` wt_top])  | 
|
150  | 
show "UNIV \<subseteq> \<gamma>\<^isub>o (top c)" by simp  | 
|
151  | 
show "\<gamma>\<^isub>c (step' (top c) C) \<le> \<gamma>\<^isub>c C" by(rule mono_gamma_c[OF 2])  | 
|
152  | 
qed  | 
|
153  | 
qed  | 
|
| 
48759
 
ff570720ba1c
Improved complete lattice formalisation - no more index set.
 
nipkow 
parents: 
47818 
diff
changeset
 | 
154  | 
from this 2 show "lfp c (step UNIV) \<le> \<gamma>\<^isub>c C"  | 
| 47613 | 155  | 
by (blast intro: mono_gamma_c order_trans)  | 
156  | 
qed  | 
|
157  | 
||
158  | 
end  | 
|
159  | 
||
160  | 
||
161  | 
subsubsection "Monotonicity"  | 
|
162  | 
||
163  | 
lemma le_join_disj: "wt y X \<Longrightarrow> wt (z::_::SL_top_wt) X \<Longrightarrow> x \<sqsubseteq> y \<or> x \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<squnion> z"  | 
|
164  | 
by (metis join_ge1 join_ge2 preord_class.le_trans)  | 
|
165  | 
||
166  | 
locale Abs_Int_mono = Abs_Int +  | 
|
167  | 
assumes mono_plus': "a1 \<sqsubseteq> b1 \<Longrightarrow> a2 \<sqsubseteq> b2 \<Longrightarrow> plus' a1 a2 \<sqsubseteq> plus' b1 b2"  | 
|
168  | 
begin  | 
|
169  | 
||
170  | 
lemma mono_aval': "S1 \<sqsubseteq> S2 \<Longrightarrow> wt S1 X \<Longrightarrow> vars e \<subseteq> X \<Longrightarrow> aval' e S1 \<sqsubseteq> aval' e S2"  | 
|
171  | 
by(induction e) (auto simp: le_st_def mono_plus' wt_st_def)  | 
|
172  | 
||
173  | 
theorem mono_step': "wt S1 X \<Longrightarrow> wt S2 X \<Longrightarrow> wt C1 X \<Longrightarrow> wt C2 X \<Longrightarrow>  | 
|
174  | 
S1 \<sqsubseteq> S2 \<Longrightarrow> C1 \<sqsubseteq> C2 \<Longrightarrow> step' S1 C1 \<sqsubseteq> step' S2 C2"  | 
|
175  | 
apply(induction C1 C2 arbitrary: S1 S2 rule: le_acom.induct)  | 
|
176  | 
apply (auto simp: Let_def mono_aval' mono_post  | 
|
177  | 
le_join_disj le_join_disj[OF wt_post wt_post]  | 
|
178  | 
split: option.split)  | 
|
179  | 
done  | 
|
180  | 
||
181  | 
lemma mono_step'_top: "wt c (vars c0) \<Longrightarrow> wt c' (vars c0) \<Longrightarrow> c \<sqsubseteq> c' \<Longrightarrow> step' (top c0) c \<sqsubseteq> step' (top c0) c'"  | 
|
182  | 
by (metis wt_top mono_step' preord_class.le_refl)  | 
|
183  | 
||
184  | 
end  | 
|
185  | 
||
186  | 
||
187  | 
subsubsection "Termination"  | 
|
188  | 
||
189  | 
abbreviation sqless (infix "\<sqsubset>" 50) where  | 
|
190  | 
"x \<sqsubset> y == x \<sqsubseteq> y \<and> \<not> y \<sqsubseteq> x"  | 
|
191  | 
||
192  | 
lemma pfp_termination:  | 
|
193  | 
fixes x0 :: "'a::preord" and m :: "'a \<Rightarrow> nat"  | 
|
194  | 
assumes mono: "\<And>x y. I x \<Longrightarrow> I y \<Longrightarrow> x \<sqsubseteq> y \<Longrightarrow> f x \<sqsubseteq> f y"  | 
|
195  | 
and m: "\<And>x y. I x \<Longrightarrow> I y \<Longrightarrow> x \<sqsubset> y \<Longrightarrow> m x > m y"  | 
|
196  | 
and I: "\<And>x y. I x \<Longrightarrow> I(f x)" and "I x0" and "x0 \<sqsubseteq> f x0"  | 
|
197  | 
shows "EX x. pfp f x0 = Some x"  | 
|
198  | 
proof(simp add: pfp_def, rule wf_while_option_Some[where P = "%x. I x & x \<sqsubseteq> f x"])  | 
|
199  | 
  show "wf {(y,x). ((I x \<and> x \<sqsubseteq> f x) \<and> \<not> f x \<sqsubseteq> x) \<and> y = f x}"
 | 
|
200  | 
by(rule wf_subset[OF wf_measure[of m]]) (auto simp: m I)  | 
|
201  | 
next  | 
|
202  | 
show "I x0 \<and> x0 \<sqsubseteq> f x0" using `I x0` `x0 \<sqsubseteq> f x0` by blast  | 
|
203  | 
next  | 
|
204  | 
fix x assume "I x \<and> x \<sqsubseteq> f x" thus "I(f x) \<and> f x \<sqsubseteq> f(f x)"  | 
|
205  | 
by (blast intro: I mono)  | 
|
206  | 
qed  | 
|
207  | 
||
208  | 
lemma lpfp_termination:  | 
|
209  | 
fixes f :: "'a::preord option acom \<Rightarrow> 'a option acom"  | 
|
210  | 
and m :: "'a option acom \<Rightarrow> nat" and I :: "'a option acom \<Rightarrow> bool"  | 
|
211  | 
assumes "\<And>x y. I x \<Longrightarrow> I y \<Longrightarrow> x \<sqsubset> y \<Longrightarrow> m x > m y"  | 
|
212  | 
and "\<And>x y. I x \<Longrightarrow> I y \<Longrightarrow> x \<sqsubseteq> y \<Longrightarrow> f x \<sqsubseteq> f y"  | 
|
213  | 
and "\<And>x y. I x \<Longrightarrow> I(f x)" and "I(bot c)"  | 
|
214  | 
and "\<And>C. strip (f C) = strip C"  | 
|
215  | 
shows "\<exists>c'. lpfp f c = Some c'"  | 
|
216  | 
unfolding lpfp_def  | 
|
217  | 
by(fastforce intro: pfp_termination[where I=I and m=m] assms bot_least  | 
|
218  | 
simp: assms(5))  | 
|
219  | 
||
220  | 
||
221  | 
locale Abs_Int_measure =  | 
|
222  | 
Abs_Int_mono where \<gamma>=\<gamma> for \<gamma> :: "'av::SL_top \<Rightarrow> val set" +  | 
|
223  | 
fixes m :: "'av \<Rightarrow> nat"  | 
|
224  | 
fixes h :: "nat"  | 
|
225  | 
assumes m1: "x \<sqsubseteq> y \<Longrightarrow> m x \<ge> m y"  | 
|
226  | 
assumes m2: "x \<sqsubset> y \<Longrightarrow> m x > m y"  | 
|
227  | 
assumes h: "m x \<le> h"  | 
|
228  | 
begin  | 
|
229  | 
||
230  | 
definition "m_st S = (\<Sum> x \<in> dom S. m(fun S x))"  | 
|
231  | 
||
232  | 
lemma m_st1: "S1 \<sqsubseteq> S2 \<Longrightarrow> m_st S1 \<ge> m_st S2"  | 
|
233  | 
proof(auto simp add: le_st_def m_st_def)  | 
|
234  | 
assume "\<forall>x\<in>dom S2. fun S1 x \<sqsubseteq> fun S2 x"  | 
|
235  | 
hence "\<forall>x\<in>dom S2. m(fun S1 x) \<ge> m(fun S2 x)" by (metis m1)  | 
|
236  | 
thus "(\<Sum>x\<in>dom S2. m (fun S2 x)) \<le> (\<Sum>x\<in>dom S2. m (fun S1 x))"  | 
|
237  | 
by (metis setsum_mono)  | 
|
238  | 
qed  | 
|
239  | 
||
240  | 
lemma m_st2: "finite(dom S1) \<Longrightarrow> S1 \<sqsubset> S2 \<Longrightarrow> m_st S1 > m_st S2"  | 
|
241  | 
proof(auto simp add: le_st_def m_st_def)  | 
|
242  | 
assume "finite(dom S2)" and 0: "\<forall>x\<in>dom S2. fun S1 x \<sqsubseteq> fun S2 x"  | 
|
243  | 
hence 1: "\<forall>x\<in>dom S2. m(fun S1 x) \<ge> m(fun S2 x)" by (metis m1)  | 
|
244  | 
fix x assume "x \<in> dom S2" "\<not> fun S2 x \<sqsubseteq> fun S1 x"  | 
|
245  | 
hence 2: "\<exists>x\<in>dom S2. m(fun S1 x) > m(fun S2 x)" using 0 m2 by blast  | 
|
246  | 
from setsum_strict_mono_ex1[OF `finite(dom S2)` 1 2]  | 
|
247  | 
show "(\<Sum>x\<in>dom S2. m (fun S2 x)) < (\<Sum>x\<in>dom S2. m (fun S1 x))" .  | 
|
248  | 
qed  | 
|
249  | 
||
250  | 
||
251  | 
definition m_o :: "nat \<Rightarrow> 'av st option \<Rightarrow> nat" where  | 
|
252  | 
"m_o d opt = (case opt of None \<Rightarrow> h*d+1 | Some S \<Rightarrow> m_st S)"  | 
|
253  | 
||
254  | 
definition m_c :: "'av st option acom \<Rightarrow> nat" where  | 
|
255  | 
"m_c c = (\<Sum>i<size(annos c). m_o (card(vars(strip c))) (annos c ! i))"  | 
|
256  | 
||
257  | 
lemma m_st_h: "wt x X \<Longrightarrow> finite X \<Longrightarrow> m_st x \<le> h * card X"  | 
|
258  | 
by(simp add: wt_st_def m_st_def)  | 
|
259  | 
(metis nat_mult_commute of_nat_id setsum_bounded[OF h])  | 
|
260  | 
||
261  | 
lemma m_o1: "finite X \<Longrightarrow> wt o1 X \<Longrightarrow> wt o2 X \<Longrightarrow>  | 
|
262  | 
o1 \<sqsubseteq> o2 \<Longrightarrow> m_o (card X) o1 \<ge> m_o (card X) o2"  | 
|
263  | 
proof(induction o1 o2 rule: le_option.induct)  | 
|
264  | 
case 1 thus ?case by (simp add: m_o_def)(metis m_st1)  | 
|
265  | 
next  | 
|
266  | 
case 2 thus ?case  | 
|
267  | 
by(simp add: wt_option_def m_o_def le_SucI m_st_h split: option.splits)  | 
|
268  | 
next  | 
|
269  | 
case 3 thus ?case by simp  | 
|
270  | 
qed  | 
|
271  | 
||
272  | 
lemma m_o2: "finite X \<Longrightarrow> wt o1 X \<Longrightarrow> wt o2 X \<Longrightarrow>  | 
|
273  | 
o1 \<sqsubset> o2 \<Longrightarrow> m_o (card X) o1 > m_o (card X) o2"  | 
|
274  | 
proof(induction o1 o2 rule: le_option.induct)  | 
|
275  | 
case 1 thus ?case by (simp add: m_o_def wt_st_def m_st2)  | 
|
276  | 
next  | 
|
277  | 
case 2 thus ?case  | 
|
278  | 
by(auto simp add: m_o_def le_imp_less_Suc m_st_h)  | 
|
279  | 
next  | 
|
280  | 
case 3 thus ?case by simp  | 
|
281  | 
qed  | 
|
282  | 
||
283  | 
lemma m_c2: "wt c1 (vars(strip c1)) \<Longrightarrow> wt c2 (vars(strip c2)) \<Longrightarrow>  | 
|
284  | 
c1 \<sqsubset> c2 \<Longrightarrow> m_c c1 > m_c c2"  | 
|
285  | 
proof(auto simp add: le_iff_le_annos m_c_def size_annos_same[of c1 c2] wt_acom_def)  | 
|
286  | 
let ?X = "vars(strip c2)"  | 
|
287  | 
let ?n = "card ?X"  | 
|
288  | 
assume V1: "\<forall>a\<in>set(annos c1). wt a ?X"  | 
|
289  | 
and V2: "\<forall>a\<in>set(annos c2). wt a ?X"  | 
|
290  | 
and strip_eq: "strip c1 = strip c2"  | 
|
291  | 
and 0: "\<forall>i<size(annos c2). annos c1 ! i \<sqsubseteq> annos c2 ! i"  | 
|
292  | 
hence 1: "\<forall>i<size(annos c2). m_o ?n (annos c1 ! i) \<ge> m_o ?n (annos c2 ! i)"  | 
|
293  | 
by (auto simp: all_set_conv_all_nth)  | 
|
294  | 
(metis finite_cvars m_o1 size_annos_same2)  | 
|
295  | 
fix i assume "i < size(annos c2)" "\<not> annos c2 ! i \<sqsubseteq> annos c1 ! i"  | 
|
296  | 
hence "m_o ?n (annos c1 ! i) > m_o ?n (annos c2 ! i)" (is "?P i")  | 
|
297  | 
by(metis m_o2[OF finite_cvars] V1 V2 strip_eq nth_mem size_annos_same 0)  | 
|
298  | 
hence 2: "\<exists>i < size(annos c2). ?P i" using `i < size(annos c2)` by blast  | 
|
299  | 
show "(\<Sum>i<size(annos c2). m_o ?n (annos c2 ! i))  | 
|
300  | 
< (\<Sum>i<size(annos c2). m_o ?n (annos c1 ! i))"  | 
|
301  | 
apply(rule setsum_strict_mono_ex1) using 1 2 by (auto)  | 
|
302  | 
qed  | 
|
303  | 
||
304  | 
lemma AI_Some_measure: "\<exists>C. AI c = Some C"  | 
|
305  | 
unfolding AI_def  | 
|
306  | 
apply(rule lpfp_termination[where I = "%C. strip C = c \<and> wt C (vars c)"  | 
|
307  | 
and m="m_c"])  | 
|
308  | 
apply(simp_all add: m_c2 mono_step'_top)  | 
|
309  | 
done  | 
|
310  | 
||
311  | 
end  | 
|
312  | 
||
313  | 
end  |