| 
43158
 | 
     1  | 
(* Author: Tobias Nipkow *)
  | 
| 
 | 
     2  | 
  | 
| 
 | 
     3  | 
theory Sec_Typing imports Sec_Type_Expr
  | 
| 
 | 
     4  | 
begin
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
subsection "Syntax Directed Typing"
  | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
inductive sec_type :: "nat \<Rightarrow> com \<Rightarrow> bool" ("(_/ \<turnstile> _)" [0,0] 50) where
 | 
| 
 | 
     9  | 
Skip:
  | 
| 
 | 
    10  | 
  "l \<turnstile> SKIP" |
  | 
| 
 | 
    11  | 
Assign:
  | 
| 
 | 
    12  | 
  "\<lbrakk> sec x \<ge> sec_aexp a;  sec x \<ge> l \<rbrakk> \<Longrightarrow> l \<turnstile> x ::= a" |
  | 
| 
47818
 | 
    13  | 
Seq:
  | 
| 
43158
 | 
    14  | 
  "\<lbrakk> l \<turnstile> c\<^isub>1;  l \<turnstile> c\<^isub>2 \<rbrakk> \<Longrightarrow> l \<turnstile> c\<^isub>1;c\<^isub>2" |
  | 
| 
 | 
    15  | 
If:
  | 
| 
 | 
    16  | 
  "\<lbrakk> max (sec_bexp b) l \<turnstile> c\<^isub>1;  max (sec_bexp b) l \<turnstile> c\<^isub>2 \<rbrakk> \<Longrightarrow> l \<turnstile> IF b THEN c\<^isub>1 ELSE c\<^isub>2" |
  | 
| 
 | 
    17  | 
While:
  | 
| 
 | 
    18  | 
  "max (sec_bexp b) l \<turnstile> c \<Longrightarrow> l \<turnstile> WHILE b DO c"
  | 
| 
 | 
    19  | 
  | 
| 
 | 
    20  | 
code_pred (expected_modes: i => i => bool) sec_type .
  | 
| 
 | 
    21  | 
  | 
| 
 | 
    22  | 
value "0 \<turnstile> IF Less (V ''x1'') (V ''x'') THEN ''x1'' ::= N 0 ELSE SKIP"
  | 
| 
 | 
    23  | 
value "1 \<turnstile> IF Less (V ''x1'') (V ''x'') THEN ''x''  ::= N 0 ELSE SKIP"
  | 
| 
 | 
    24  | 
value "2 \<turnstile> IF Less (V ''x1'') (V ''x'') THEN ''x1'' ::= N 0 ELSE SKIP"
  | 
| 
 | 
    25  | 
  | 
| 
 | 
    26  | 
inductive_cases [elim!]:
  | 
| 
 | 
    27  | 
  "l \<turnstile> x ::= a"  "l \<turnstile> c\<^isub>1;c\<^isub>2"  "l \<turnstile> IF b THEN c\<^isub>1 ELSE c\<^isub>2"  "l \<turnstile> WHILE b DO c"
  | 
| 
 | 
    28  | 
  | 
| 
 | 
    29  | 
  | 
| 
 | 
    30  | 
text{* An important property: anti-monotonicity. *}
 | 
| 
 | 
    31  | 
  | 
| 
 | 
    32  | 
lemma anti_mono: "\<lbrakk> l \<turnstile> c;  l' \<le> l \<rbrakk> \<Longrightarrow> l' \<turnstile> c"
  | 
| 
45015
 | 
    33  | 
apply(induction arbitrary: l' rule: sec_type.induct)
  | 
| 
43158
 | 
    34  | 
apply (metis sec_type.intros(1))
  | 
| 
 | 
    35  | 
apply (metis le_trans sec_type.intros(2))
  | 
| 
 | 
    36  | 
apply (metis sec_type.intros(3))
  | 
| 
 | 
    37  | 
apply (metis If le_refl sup_mono sup_nat_def)
  | 
| 
 | 
    38  | 
apply (metis While le_refl sup_mono sup_nat_def)
  | 
| 
 | 
    39  | 
done
  | 
| 
 | 
    40  | 
  | 
| 
 | 
    41  | 
lemma confinement: "\<lbrakk> (c,s) \<Rightarrow> t;  l \<turnstile> c \<rbrakk> \<Longrightarrow> s = t (< l)"
  | 
| 
45015
 | 
    42  | 
proof(induction rule: big_step_induct)
  | 
| 
43158
 | 
    43  | 
  case Skip thus ?case by simp
  | 
| 
 | 
    44  | 
next
  | 
| 
 | 
    45  | 
  case Assign thus ?case by auto
  | 
| 
 | 
    46  | 
next
  | 
| 
47818
 | 
    47  | 
  case Seq thus ?case by auto
  | 
| 
43158
 | 
    48  | 
next
  | 
| 
 | 
    49  | 
  case (IfTrue b s c1)
  | 
| 
 | 
    50  | 
  hence "max (sec_bexp b) l \<turnstile> c1" by auto
  | 
| 
 | 
    51  | 
  hence "l \<turnstile> c1" by (metis le_maxI2 anti_mono)
  | 
| 
45015
 | 
    52  | 
  thus ?case using IfTrue.IH by metis
  | 
| 
43158
 | 
    53  | 
next
  | 
| 
 | 
    54  | 
  case (IfFalse b s c2)
  | 
| 
 | 
    55  | 
  hence "max (sec_bexp b) l \<turnstile> c2" by auto
  | 
| 
 | 
    56  | 
  hence "l \<turnstile> c2" by (metis le_maxI2 anti_mono)
  | 
| 
45015
 | 
    57  | 
  thus ?case using IfFalse.IH by metis
  | 
| 
43158
 | 
    58  | 
next
  | 
| 
 | 
    59  | 
  case WhileFalse thus ?case by auto
  | 
| 
 | 
    60  | 
next
  | 
| 
 | 
    61  | 
  case (WhileTrue b s1 c)
  | 
| 
 | 
    62  | 
  hence "max (sec_bexp b) l \<turnstile> c" by auto
  | 
| 
 | 
    63  | 
  hence "l \<turnstile> c" by (metis le_maxI2 anti_mono)
  | 
| 
 | 
    64  | 
  thus ?case using WhileTrue by metis
  | 
| 
 | 
    65  | 
qed
  | 
| 
 | 
    66  | 
  | 
| 
 | 
    67  | 
  | 
| 
 | 
    68  | 
theorem noninterference:
  | 
| 
 | 
    69  | 
  "\<lbrakk> (c,s) \<Rightarrow> s'; (c,t) \<Rightarrow> t';  0 \<turnstile> c;  s = t (\<le> l) \<rbrakk>
  | 
| 
 | 
    70  | 
   \<Longrightarrow> s' = t' (\<le> l)"
  | 
| 
45015
 | 
    71  | 
proof(induction arbitrary: t t' rule: big_step_induct)
  | 
| 
43158
 | 
    72  | 
  case Skip thus ?case by auto
  | 
| 
 | 
    73  | 
next
  | 
| 
 | 
    74  | 
  case (Assign x a s)
  | 
| 
 | 
    75  | 
  have [simp]: "t' = t(x := aval a t)" using Assign by auto
  | 
| 
 | 
    76  | 
  have "sec x >= sec_aexp a" using `0 \<turnstile> x ::= a` by auto
  | 
| 
 | 
    77  | 
  show ?case
  | 
| 
 | 
    78  | 
  proof auto
  | 
| 
 | 
    79  | 
    assume "sec x \<le> l"
  | 
| 
 | 
    80  | 
    with `sec x >= sec_aexp a` have "sec_aexp a \<le> l" by arith
  | 
| 
 | 
    81  | 
    thus "aval a s = aval a t"
  | 
| 
 | 
    82  | 
      by (rule aval_eq_if_eq_le[OF `s = t (\<le> l)`])
  | 
| 
 | 
    83  | 
  next
  | 
| 
 | 
    84  | 
    fix y assume "y \<noteq> x" "sec y \<le> l"
  | 
| 
 | 
    85  | 
    thus "s y = t y" using `s = t (\<le> l)` by simp
  | 
| 
 | 
    86  | 
  qed
  | 
| 
 | 
    87  | 
next
  | 
| 
47818
 | 
    88  | 
  case Seq thus ?case by blast
  | 
| 
43158
 | 
    89  | 
next
  | 
| 
 | 
    90  | 
  case (IfTrue b s c1 s' c2)
  | 
| 
 | 
    91  | 
  have "sec_bexp b \<turnstile> c1" "sec_bexp b \<turnstile> c2" using IfTrue.prems(2) by auto
  | 
| 
 | 
    92  | 
  show ?case
  | 
| 
 | 
    93  | 
  proof cases
  | 
| 
 | 
    94  | 
    assume "sec_bexp b \<le> l"
  | 
| 
 | 
    95  | 
    hence "s = t (\<le> sec_bexp b)" using `s = t (\<le> l)` by auto
  | 
| 
 | 
    96  | 
    hence "bval b t" using `bval b s` by(simp add: bval_eq_if_eq_le)
  | 
| 
45015
 | 
    97  | 
    with IfTrue.IH IfTrue.prems(1,3) `sec_bexp b \<turnstile> c1`  anti_mono
  | 
| 
43158
 | 
    98  | 
    show ?thesis by auto
  | 
| 
 | 
    99  | 
  next
  | 
| 
 | 
   100  | 
    assume "\<not> sec_bexp b \<le> l"
  | 
| 
 | 
   101  | 
    have 1: "sec_bexp b \<turnstile> IF b THEN c1 ELSE c2"
  | 
| 
 | 
   102  | 
      by(rule sec_type.intros)(simp_all add: `sec_bexp b \<turnstile> c1` `sec_bexp b \<turnstile> c2`)
  | 
| 
45823
 | 
   103  | 
    from confinement[OF IfTrue.hyps(2) `sec_bexp b \<turnstile> c1`] `\<not> sec_bexp b \<le> l`
  | 
| 
43158
 | 
   104  | 
    have "s = s' (\<le> l)" by auto
  | 
| 
 | 
   105  | 
    moreover
  | 
| 
 | 
   106  | 
    from confinement[OF IfTrue.prems(1) 1] `\<not> sec_bexp b \<le> l`
  | 
| 
 | 
   107  | 
    have "t = t' (\<le> l)" by auto
  | 
| 
 | 
   108  | 
    ultimately show "s' = t' (\<le> l)" using `s = t (\<le> l)` by auto
  | 
| 
 | 
   109  | 
  qed
  | 
| 
 | 
   110  | 
next
  | 
| 
 | 
   111  | 
  case (IfFalse b s c2 s' c1)
  | 
| 
 | 
   112  | 
  have "sec_bexp b \<turnstile> c1" "sec_bexp b \<turnstile> c2" using IfFalse.prems(2) by auto
  | 
| 
 | 
   113  | 
  show ?case
  | 
| 
 | 
   114  | 
  proof cases
  | 
| 
 | 
   115  | 
    assume "sec_bexp b \<le> l"
  | 
| 
 | 
   116  | 
    hence "s = t (\<le> sec_bexp b)" using `s = t (\<le> l)` by auto
  | 
| 
 | 
   117  | 
    hence "\<not> bval b t" using `\<not> bval b s` by(simp add: bval_eq_if_eq_le)
  | 
| 
45015
 | 
   118  | 
    with IfFalse.IH IfFalse.prems(1,3) `sec_bexp b \<turnstile> c2` anti_mono
  | 
| 
43158
 | 
   119  | 
    show ?thesis by auto
  | 
| 
 | 
   120  | 
  next
  | 
| 
 | 
   121  | 
    assume "\<not> sec_bexp b \<le> l"
  | 
| 
 | 
   122  | 
    have 1: "sec_bexp b \<turnstile> IF b THEN c1 ELSE c2"
  | 
| 
 | 
   123  | 
      by(rule sec_type.intros)(simp_all add: `sec_bexp b \<turnstile> c1` `sec_bexp b \<turnstile> c2`)
  | 
| 
 | 
   124  | 
    from confinement[OF big_step.IfFalse[OF IfFalse(1,2)] 1] `\<not> sec_bexp b \<le> l`
  | 
| 
 | 
   125  | 
    have "s = s' (\<le> l)" by auto
  | 
| 
 | 
   126  | 
    moreover
  | 
| 
 | 
   127  | 
    from confinement[OF IfFalse.prems(1) 1] `\<not> sec_bexp b \<le> l`
  | 
| 
 | 
   128  | 
    have "t = t' (\<le> l)" by auto
  | 
| 
 | 
   129  | 
    ultimately show "s' = t' (\<le> l)" using `s = t (\<le> l)` by auto
  | 
| 
 | 
   130  | 
  qed
  | 
| 
 | 
   131  | 
next
  | 
| 
 | 
   132  | 
  case (WhileFalse b s c)
  | 
| 
 | 
   133  | 
  have "sec_bexp b \<turnstile> c" using WhileFalse.prems(2) by auto
  | 
| 
 | 
   134  | 
  show ?case
  | 
| 
 | 
   135  | 
  proof cases
  | 
| 
 | 
   136  | 
    assume "sec_bexp b \<le> l"
  | 
| 
 | 
   137  | 
    hence "s = t (\<le> sec_bexp b)" using `s = t (\<le> l)` by auto
  | 
| 
 | 
   138  | 
    hence "\<not> bval b t" using `\<not> bval b s` by(simp add: bval_eq_if_eq_le)
  | 
| 
 | 
   139  | 
    with WhileFalse.prems(1,3) show ?thesis by auto
  | 
| 
 | 
   140  | 
  next
  | 
| 
 | 
   141  | 
    assume "\<not> sec_bexp b \<le> l"
  | 
| 
 | 
   142  | 
    have 1: "sec_bexp b \<turnstile> WHILE b DO c"
  | 
| 
 | 
   143  | 
      by(rule sec_type.intros)(simp_all add: `sec_bexp b \<turnstile> c`)
  | 
| 
 | 
   144  | 
    from confinement[OF WhileFalse.prems(1) 1] `\<not> sec_bexp b \<le> l`
  | 
| 
 | 
   145  | 
    have "t = t' (\<le> l)" by auto
  | 
| 
 | 
   146  | 
    thus "s = t' (\<le> l)" using `s = t (\<le> l)` by auto
  | 
| 
 | 
   147  | 
  qed
  | 
| 
 | 
   148  | 
next
  | 
| 
 | 
   149  | 
  case (WhileTrue b s1 c s2 s3 t1 t3)
  | 
| 
 | 
   150  | 
  let ?w = "WHILE b DO c"
  | 
| 
 | 
   151  | 
  have "sec_bexp b \<turnstile> c" using WhileTrue.prems(2) by auto
  | 
| 
 | 
   152  | 
  show ?case
  | 
| 
 | 
   153  | 
  proof cases
  | 
| 
 | 
   154  | 
    assume "sec_bexp b \<le> l"
  | 
| 
 | 
   155  | 
    hence "s1 = t1 (\<le> sec_bexp b)" using `s1 = t1 (\<le> l)` by auto
  | 
| 
 | 
   156  | 
    hence "bval b t1"
  | 
| 
 | 
   157  | 
      using `bval b s1` by(simp add: bval_eq_if_eq_le)
  | 
| 
 | 
   158  | 
    then obtain t2 where "(c,t1) \<Rightarrow> t2" "(?w,t2) \<Rightarrow> t3"
  | 
| 
 | 
   159  | 
      using `(?w,t1) \<Rightarrow> t3` by auto
  | 
| 
45015
 | 
   160  | 
    from WhileTrue.IH(2)[OF `(?w,t2) \<Rightarrow> t3` `0 \<turnstile> ?w`
  | 
| 
 | 
   161  | 
      WhileTrue.IH(1)[OF `(c,t1) \<Rightarrow> t2` anti_mono[OF `sec_bexp b \<turnstile> c`]
  | 
| 
43158
 | 
   162  | 
        `s1 = t1 (\<le> l)`]]
  | 
| 
 | 
   163  | 
    show ?thesis by simp
  | 
| 
 | 
   164  | 
  next
  | 
| 
 | 
   165  | 
    assume "\<not> sec_bexp b \<le> l"
  | 
| 
 | 
   166  | 
    have 1: "sec_bexp b \<turnstile> ?w" by(rule sec_type.intros)(simp_all add: `sec_bexp b \<turnstile> c`)
  | 
| 
45015
 | 
   167  | 
    from confinement[OF big_step.WhileTrue[OF WhileTrue.hyps] 1] `\<not> sec_bexp b \<le> l`
  | 
| 
43158
 | 
   168  | 
    have "s1 = s3 (\<le> l)" by auto
  | 
| 
 | 
   169  | 
    moreover
  | 
| 
 | 
   170  | 
    from confinement[OF WhileTrue.prems(1) 1] `\<not> sec_bexp b \<le> l`
  | 
| 
 | 
   171  | 
    have "t1 = t3 (\<le> l)" by auto
  | 
| 
 | 
   172  | 
    ultimately show "s3 = t3 (\<le> l)" using `s1 = t1 (\<le> l)` by auto
  | 
| 
 | 
   173  | 
  qed
  | 
| 
 | 
   174  | 
qed
  | 
| 
 | 
   175  | 
  | 
| 
 | 
   176  | 
  | 
| 
 | 
   177  | 
subsection "The Standard Typing System"
  | 
| 
 | 
   178  | 
  | 
| 
 | 
   179  | 
text{* The predicate @{prop"l \<turnstile> c"} is nicely intuitive and executable. The
 | 
| 
 | 
   180  | 
standard formulation, however, is slightly different, replacing the maximum
  | 
| 
 | 
   181  | 
computation by an antimonotonicity rule. We introduce the standard system now
  | 
| 
 | 
   182  | 
and show the equivalence with our formulation. *}
  | 
| 
 | 
   183  | 
  | 
| 
 | 
   184  | 
inductive sec_type' :: "nat \<Rightarrow> com \<Rightarrow> bool" ("(_/ \<turnstile>'' _)" [0,0] 50) where
 | 
| 
 | 
   185  | 
Skip':
  | 
| 
 | 
   186  | 
  "l \<turnstile>' SKIP" |
  | 
| 
 | 
   187  | 
Assign':
  | 
| 
 | 
   188  | 
  "\<lbrakk> sec x \<ge> sec_aexp a; sec x \<ge> l \<rbrakk> \<Longrightarrow> l \<turnstile>' x ::= a" |
  | 
| 
47818
 | 
   189  | 
Seq':
  | 
| 
43158
 | 
   190  | 
  "\<lbrakk> l \<turnstile>' c\<^isub>1;  l \<turnstile>' c\<^isub>2 \<rbrakk> \<Longrightarrow> l \<turnstile>' c\<^isub>1;c\<^isub>2" |
  | 
| 
 | 
   191  | 
If':
  | 
| 
 | 
   192  | 
  "\<lbrakk> sec_bexp b \<le> l;  l \<turnstile>' c\<^isub>1;  l \<turnstile>' c\<^isub>2 \<rbrakk> \<Longrightarrow> l \<turnstile>' IF b THEN c\<^isub>1 ELSE c\<^isub>2" |
  | 
| 
 | 
   193  | 
While':
  | 
| 
 | 
   194  | 
  "\<lbrakk> sec_bexp b \<le> l;  l \<turnstile>' c \<rbrakk> \<Longrightarrow> l \<turnstile>' WHILE b DO c" |
  | 
| 
 | 
   195  | 
anti_mono':
  | 
| 
 | 
   196  | 
  "\<lbrakk> l \<turnstile>' c;  l' \<le> l \<rbrakk> \<Longrightarrow> l' \<turnstile>' c"
  | 
| 
 | 
   197  | 
  | 
| 
 | 
   198  | 
lemma sec_type_sec_type': "l \<turnstile> c \<Longrightarrow> l \<turnstile>' c"
  | 
| 
45015
 | 
   199  | 
apply(induction rule: sec_type.induct)
  | 
| 
43158
 | 
   200  | 
apply (metis Skip')
  | 
| 
 | 
   201  | 
apply (metis Assign')
  | 
| 
47818
 | 
   202  | 
apply (metis Seq')
  | 
| 
43158
 | 
   203  | 
apply (metis min_max.inf_sup_ord(3) min_max.sup_absorb2 nat_le_linear If' anti_mono')
  | 
| 
 | 
   204  | 
by (metis less_or_eq_imp_le min_max.sup_absorb1 min_max.sup_absorb2 nat_le_linear While' anti_mono')
  | 
| 
 | 
   205  | 
  | 
| 
 | 
   206  | 
  | 
| 
 | 
   207  | 
lemma sec_type'_sec_type: "l \<turnstile>' c \<Longrightarrow> l \<turnstile> c"
  | 
| 
45015
 | 
   208  | 
apply(induction rule: sec_type'.induct)
  | 
| 
43158
 | 
   209  | 
apply (metis Skip)
  | 
| 
 | 
   210  | 
apply (metis Assign)
  | 
| 
47818
 | 
   211  | 
apply (metis Seq)
  | 
| 
43158
 | 
   212  | 
apply (metis min_max.sup_absorb2 If)
  | 
| 
 | 
   213  | 
apply (metis min_max.sup_absorb2 While)
  | 
| 
 | 
   214  | 
by (metis anti_mono)
  | 
| 
 | 
   215  | 
  | 
| 
 | 
   216  | 
subsection "A Bottom-Up Typing System"
  | 
| 
 | 
   217  | 
  | 
| 
 | 
   218  | 
inductive sec_type2 :: "com \<Rightarrow> level \<Rightarrow> bool" ("(\<turnstile> _ : _)" [0,0] 50) where
 | 
| 
 | 
   219  | 
Skip2:
  | 
| 
 | 
   220  | 
  "\<turnstile> SKIP : l" |
  | 
| 
 | 
   221  | 
Assign2:
  | 
| 
 | 
   222  | 
  "sec x \<ge> sec_aexp a \<Longrightarrow> \<turnstile> x ::= a : sec x" |
  | 
| 
47818
 | 
   223  | 
Seq2:
  | 
| 
43158
 | 
   224  | 
  "\<lbrakk> \<turnstile> c\<^isub>1 : l\<^isub>1;  \<turnstile> c\<^isub>2 : l\<^isub>2 \<rbrakk> \<Longrightarrow> \<turnstile> c\<^isub>1;c\<^isub>2 : min l\<^isub>1 l\<^isub>2 " |
  | 
| 
 | 
   225  | 
If2:
  | 
| 
 | 
   226  | 
  "\<lbrakk> sec_bexp b \<le> min l\<^isub>1 l\<^isub>2;  \<turnstile> c\<^isub>1 : l\<^isub>1;  \<turnstile> c\<^isub>2 : l\<^isub>2 \<rbrakk>
  | 
| 
 | 
   227  | 
  \<Longrightarrow> \<turnstile> IF b THEN c\<^isub>1 ELSE c\<^isub>2 : min l\<^isub>1 l\<^isub>2" |
  | 
| 
 | 
   228  | 
While2:
  | 
| 
 | 
   229  | 
  "\<lbrakk> sec_bexp b \<le> l;  \<turnstile> c : l \<rbrakk> \<Longrightarrow> \<turnstile> WHILE b DO c : l"
  | 
| 
 | 
   230  | 
  | 
| 
 | 
   231  | 
  | 
| 
 | 
   232  | 
lemma sec_type2_sec_type': "\<turnstile> c : l \<Longrightarrow> l \<turnstile>' c"
  | 
| 
45015
 | 
   233  | 
apply(induction rule: sec_type2.induct)
  | 
| 
43158
 | 
   234  | 
apply (metis Skip')
  | 
| 
 | 
   235  | 
apply (metis Assign' eq_imp_le)
  | 
| 
47818
 | 
   236  | 
apply (metis Seq' anti_mono' min_max.inf.commute min_max.inf_le2)
  | 
| 
43158
 | 
   237  | 
apply (metis If' anti_mono' min_max.inf_absorb2 min_max.le_iff_inf nat_le_linear)
  | 
| 
 | 
   238  | 
by (metis While')
  | 
| 
 | 
   239  | 
  | 
| 
 | 
   240  | 
lemma sec_type'_sec_type2: "l \<turnstile>' c \<Longrightarrow> \<exists> l' \<ge> l. \<turnstile> c : l'"
  | 
| 
45015
 | 
   241  | 
apply(induction rule: sec_type'.induct)
  | 
| 
43158
 | 
   242  | 
apply (metis Skip2 le_refl)
  | 
| 
 | 
   243  | 
apply (metis Assign2)
  | 
| 
47818
 | 
   244  | 
apply (metis Seq2 min_max.inf_greatest)
  | 
| 
43158
 | 
   245  | 
apply (metis If2 inf_greatest inf_nat_def le_trans)
  | 
| 
 | 
   246  | 
apply (metis While2 le_trans)
  | 
| 
 | 
   247  | 
by (metis le_trans)
  | 
| 
 | 
   248  | 
  | 
| 
 | 
   249  | 
end
  |