author | clasohm |
Tue, 09 Nov 1993 13:21:41 +0100 | |
changeset 97 | dd350da66c2c |
parent 67 | 8380bc0adde7 |
child 230 | ec8a2b6aa8a7 |
permissions | -rw-r--r-- |
0 | 1 |
(* Title: tctical |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 |
Copyright 1993 University of Cambridge |
|
5 |
||
6 |
Tacticals |
|
7 |
*) |
|
8 |
||
9 |
infix 1 THEN THEN' THEN_BEST_FIRST; |
|
10 |
infix 0 ORELSE APPEND INTLEAVE ORELSE' APPEND' INTLEAVE'; |
|
11 |
||
12 |
||
13 |
signature TACTICAL = |
|
14 |
sig |
|
15 |
structure Thm : THM |
|
16 |
local open Thm in |
|
17 |
datatype tactic = Tactic of thm -> thm Sequence.seq |
|
18 |
val all_tac: tactic |
|
19 |
val ALLGOALS: (int -> tactic) -> tactic |
|
20 |
val APPEND: tactic * tactic -> tactic |
|
21 |
val APPEND': ('a -> tactic) * ('a -> tactic) -> 'a -> tactic |
|
22 |
val BEST_FIRST: (thm -> bool) * (thm -> int) -> tactic -> tactic |
|
23 |
val BREADTH_FIRST: (thm -> bool) -> tactic -> tactic |
|
24 |
val CHANGED: tactic -> tactic |
|
25 |
val COND: (thm -> bool) -> tactic -> tactic -> tactic |
|
26 |
val DEPTH_FIRST: (thm -> bool) -> tactic -> tactic |
|
27 |
val DEPTH_SOLVE: tactic -> tactic |
|
28 |
val DEPTH_SOLVE_1: tactic -> tactic |
|
29 |
val DETERM: tactic -> tactic |
|
30 |
val EVERY: tactic list -> tactic |
|
31 |
val EVERY': ('a -> tactic) list -> 'a -> tactic |
|
32 |
val EVERY1: (int -> tactic) list -> tactic |
|
33 |
val FILTER: (thm -> bool) -> tactic -> tactic |
|
34 |
val FIRST: tactic list -> tactic |
|
35 |
val FIRST': ('a -> tactic) list -> 'a -> tactic |
|
36 |
val FIRST1: (int -> tactic) list -> tactic |
|
37 |
val FIRSTGOAL: (int -> tactic) -> tactic |
|
38 |
val goals_limit: int ref |
|
39 |
val has_fewer_prems: int -> thm -> bool |
|
40 |
val IF_UNSOLVED: tactic -> tactic |
|
41 |
val INTLEAVE: tactic * tactic -> tactic |
|
42 |
val INTLEAVE': ('a -> tactic) * ('a -> tactic) -> 'a -> tactic |
|
43 |
val METAHYPS: (thm list -> tactic) -> int -> tactic |
|
44 |
val no_tac: tactic |
|
45 |
val ORELSE: tactic * tactic -> tactic |
|
46 |
val ORELSE': ('a -> tactic) * ('a -> tactic) -> 'a -> tactic |
|
47 |
val pause_tac: tactic |
|
48 |
val print_tac: tactic |
|
49 |
val REPEAT1: tactic -> tactic |
|
50 |
val REPEAT: tactic -> tactic |
|
51 |
val REPEAT_DETERM: tactic -> tactic |
|
52 |
val REPEAT_FIRST: (int -> tactic) -> tactic |
|
53 |
val REPEAT_SOME: (int -> tactic) -> tactic |
|
54 |
val SELECT_GOAL: tactic -> int -> tactic |
|
55 |
val SOMEGOAL: (int -> tactic) -> tactic |
|
56 |
val STATE: (thm -> tactic) -> tactic |
|
57 |
val strip_context: term -> (string * typ) list * term list * term |
|
58 |
val SUBGOAL: ((term*int) -> tactic) -> int -> tactic |
|
59 |
val tapply: tactic * thm -> thm Sequence.seq |
|
60 |
val THEN: tactic * tactic -> tactic |
|
61 |
val THEN': ('a -> tactic) * ('a -> tactic) -> 'a -> tactic |
|
62 |
val THEN_BEST_FIRST: tactic * ((thm->bool) * (thm->int) * tactic) -> tactic |
|
63 |
val traced_tac: (thm -> (thm * thm Sequence.seq) option) -> tactic |
|
64 |
val tracify: bool ref -> tactic -> thm -> thm Sequence.seq |
|
65 |
val trace_BEST_FIRST: bool ref |
|
66 |
val trace_DEPTH_FIRST: bool ref |
|
67 |
val trace_REPEAT: bool ref |
|
68 |
val TRY: tactic -> tactic |
|
69 |
val TRYALL: (int -> tactic) -> tactic |
|
70 |
end |
|
71 |
end; |
|
72 |
||
73 |
||
74 |
functor TacticalFun (structure Logic: LOGIC and Drule: DRULE) : TACTICAL = |
|
75 |
struct |
|
76 |
structure Thm = Drule.Thm; |
|
77 |
structure Sequence = Thm.Sequence; |
|
78 |
structure Sign = Thm.Sign; |
|
79 |
local open Drule Thm |
|
80 |
in |
|
81 |
||
82 |
(**** Tactics ****) |
|
83 |
||
84 |
(*A tactic maps a proof tree to a sequence of proof trees: |
|
85 |
if length of sequence = 0 then the tactic does not apply; |
|
86 |
if length > 1 then backtracking on the alternatives can occur.*) |
|
87 |
||
88 |
datatype tactic = Tactic of thm -> thm Sequence.seq; |
|
89 |
||
90 |
fun tapply(Tactic tf, state) = tf (state); |
|
91 |
||
92 |
(*Makes a tactic from one that uses the components of the state.*) |
|
93 |
fun STATE tacfun = Tactic (fn state => tapply(tacfun state, state)); |
|
94 |
||
95 |
||
96 |
(*** LCF-style tacticals ***) |
|
97 |
||
98 |
(*the tactical THEN performs one tactic followed by another*) |
|
99 |
fun (Tactic tf1) THEN (Tactic tf2) = |
|
100 |
Tactic (fn state => Sequence.flats (Sequence.maps tf2 (tf1 state))); |
|
101 |
||
102 |
||
103 |
(*The tactical ORELSE uses the first tactic that returns a nonempty sequence. |
|
104 |
Like in LCF, ORELSE commits to either tac1 or tac2 immediately. |
|
105 |
Does not backtrack to tac2 if tac1 was initially chosen. *) |
|
106 |
fun (Tactic tf1) ORELSE (Tactic tf2) = |
|
107 |
Tactic (fn state => |
|
108 |
case Sequence.pull(tf1 state) of |
|
109 |
None => tf2 state |
|
110 |
| sequencecell => Sequence.seqof(fn()=> sequencecell)); |
|
111 |
||
112 |
||
113 |
(*The tactical APPEND combines the results of two tactics. |
|
114 |
Like ORELSE, but allows backtracking on both tac1 and tac2. |
|
115 |
The tactic tac2 is not applied until needed.*) |
|
116 |
fun (Tactic tf1) APPEND (Tactic tf2) = |
|
117 |
Tactic (fn state => Sequence.append(tf1 state, |
|
118 |
Sequence.seqof(fn()=> Sequence.pull (tf2 state)))); |
|
119 |
||
120 |
(*Like APPEND, but interleaves results of tac1 and tac2.*) |
|
121 |
fun (Tactic tf1) INTLEAVE (Tactic tf2) = |
|
122 |
Tactic (fn state => Sequence.interleave(tf1 state, |
|
123 |
Sequence.seqof(fn()=> Sequence.pull (tf2 state)))); |
|
124 |
||
125 |
(*Versions for combining tactic-valued functions, as in |
|
126 |
SOMEGOAL (resolve_tac rls THEN' assume_tac) *) |
|
127 |
fun tac1 THEN' tac2 = fn x => tac1 x THEN tac2 x; |
|
128 |
fun tac1 ORELSE' tac2 = fn x => tac1 x ORELSE tac2 x; |
|
129 |
fun tac1 APPEND' tac2 = fn x => tac1 x APPEND tac2 x; |
|
130 |
fun tac1 INTLEAVE' tac2 = fn x => tac1 x INTLEAVE tac2 x; |
|
131 |
||
132 |
(*passes all proofs through unchanged; identity of THEN*) |
|
133 |
val all_tac = Tactic (fn state => Sequence.single state); |
|
134 |
||
135 |
(*passes no proofs through; identity of ORELSE and APPEND*) |
|
136 |
val no_tac = Tactic (fn state => Sequence.null); |
|
137 |
||
138 |
||
139 |
(*Make a tactic deterministic by chopping the tail of the proof sequence*) |
|
140 |
fun DETERM (Tactic tf) = Tactic (fn state => |
|
141 |
case Sequence.pull (tf state) of |
|
142 |
None => Sequence.null |
|
143 |
| Some(x,_) => Sequence.cons(x, Sequence.null)); |
|
144 |
||
145 |
||
146 |
(*Conditional tactical: testfun controls which tactic to use next. |
|
147 |
Beware: due to eager evaluation, both thentac and elsetac are evaluated.*) |
|
148 |
fun COND testfun (Tactic thenf) (Tactic elsef) = Tactic (fn prf => |
|
149 |
if testfun prf then thenf prf else elsef prf); |
|
150 |
||
151 |
(*Do the tactic or else do nothing*) |
|
152 |
fun TRY tac = tac ORELSE all_tac; |
|
153 |
||
154 |
||
155 |
(*** List-oriented tactics ***) |
|
156 |
||
157 |
(* EVERY [tac1,...,tacn] equals tac1 THEN ... THEN tacn *) |
|
158 |
fun EVERY tacs = foldr (op THEN) (tacs, all_tac); |
|
159 |
||
160 |
(* EVERY' [tf1,...,tfn] i equals tf1 i THEN ... THEN tfn i *) |
|
161 |
fun EVERY' tfs = foldr (op THEN') (tfs, K all_tac); |
|
162 |
||
163 |
(*Apply every tactic to 1*) |
|
164 |
fun EVERY1 tfs = EVERY' tfs 1; |
|
165 |
||
166 |
(* FIRST [tac1,...,tacn] equals tac1 ORELSE ... ORELSE tacn *) |
|
167 |
fun FIRST tacs = foldr (op ORELSE) (tacs, no_tac); |
|
168 |
||
169 |
(* FIRST' [tf1,...,tfn] i equals tf1 i ORELSE ... ORELSE tfn i *) |
|
170 |
fun FIRST' tfs = foldr (op ORELSE') (tfs, K no_tac); |
|
171 |
||
172 |
(*Apply first tactic to 1*) |
|
173 |
fun FIRST1 tfs = FIRST' tfs 1; |
|
174 |
||
175 |
||
176 |
(*** Tracing tactics ***) |
|
177 |
||
178 |
(*Max number of goals to print -- set by user*) |
|
179 |
val goals_limit = ref 10; |
|
180 |
||
181 |
(*Print the current proof state and pass it on.*) |
|
67 | 182 |
val print_tac = Tactic |
183 |
(fn state => |
|
184 |
(!print_goals_ref (!goals_limit) state; Sequence.single state)); |
|
0 | 185 |
|
186 |
(*Pause until a line is typed -- if non-empty then fail. *) |
|
187 |
val pause_tac = Tactic (fn state => |
|
188 |
(prs"** Press RETURN to continue: "; |
|
189 |
if input(std_in,1) = "\n" then Sequence.single state |
|
190 |
else (prs"Goodbye\n"; Sequence.null))); |
|
191 |
||
192 |
exception TRACE_EXIT of thm |
|
193 |
and TRACE_QUIT; |
|
194 |
||
195 |
(*Handle all tracing commands for current state and tactic *) |
|
196 |
fun exec_trace_command flag (tf, state) = |
|
197 |
case input_line(std_in) of |
|
198 |
"\n" => tf state |
|
199 |
| "f\n" => Sequence.null |
|
200 |
| "o\n" => (flag:=false; tf state) |
|
201 |
| "x\n" => (prs"Exiting now\n"; raise (TRACE_EXIT state)) |
|
202 |
| "quit\n" => raise TRACE_QUIT |
|
203 |
| _ => (prs |
|
204 |
"Type RETURN to continue or...\n\ |
|
205 |
\ f - to fail here\n\ |
|
206 |
\ o - to switch tracing off\n\ |
|
207 |
\ x - to exit at this point\n\ |
|
208 |
\ quit - to abort this tracing run\n\ |
|
209 |
\** Well? " ; exec_trace_command flag (tf, state)); |
|
210 |
||
211 |
||
212 |
(*Extract from a tactic, a thm->thm seq function that handles tracing*) |
|
213 |
fun tracify flag (Tactic tf) state = |
|
67 | 214 |
if !flag then (!print_goals_ref (!goals_limit) state; |
0 | 215 |
prs"** Press RETURN to continue: "; |
216 |
exec_trace_command flag (tf,state)) |
|
217 |
else tf state; |
|
218 |
||
219 |
(*Create a tactic whose outcome is given by seqf, handling TRACE_EXIT*) |
|
220 |
fun traced_tac seqf = Tactic (fn st => |
|
221 |
Sequence.seqof (fn()=> seqf st |
|
222 |
handle TRACE_EXIT st' => Some(st', Sequence.null))); |
|
223 |
||
224 |
||
225 |
(*Tracing flags*) |
|
226 |
val trace_REPEAT= ref false |
|
227 |
and trace_DEPTH_FIRST = ref false |
|
228 |
and trace_BEST_FIRST = ref false; |
|
229 |
||
230 |
(*Deterministic REPEAT: only retains the first outcome; |
|
231 |
uses less space than REPEAT; tail recursive*) |
|
232 |
fun REPEAT_DETERM tac = |
|
233 |
let val tf = tracify trace_REPEAT tac |
|
234 |
fun drep st = |
|
235 |
case Sequence.pull(tf st) of |
|
236 |
None => Some(st, Sequence.null) |
|
237 |
| Some(st',_) => drep st' |
|
238 |
in traced_tac drep end; |
|
239 |
||
240 |
(*General REPEAT: maintains a stack of alternatives; tail recursive*) |
|
241 |
fun REPEAT tac = |
|
242 |
let val tf = tracify trace_REPEAT tac |
|
243 |
fun rep qs st = |
|
244 |
case Sequence.pull(tf st) of |
|
245 |
None => Some(st, Sequence.seqof(fn()=> repq qs)) |
|
246 |
| Some(st',q) => rep (q::qs) st' |
|
247 |
and repq [] = None |
|
248 |
| repq(q::qs) = case Sequence.pull q of |
|
249 |
None => repq qs |
|
250 |
| Some(st,q) => rep (q::qs) st |
|
251 |
in traced_tac (rep []) end; |
|
252 |
||
253 |
(*Repeat 1 or more times*) |
|
254 |
fun REPEAT1 tac = tac THEN REPEAT tac; |
|
255 |
||
256 |
||
257 |
(** Search tacticals **) |
|
258 |
||
259 |
(*Seaarches "satp" reports proof tree as satisfied*) |
|
260 |
fun DEPTH_FIRST satp tac = |
|
261 |
let val tf = tracify trace_DEPTH_FIRST tac |
|
262 |
fun depth [] = None |
|
263 |
| depth(q::qs) = |
|
264 |
case Sequence.pull q of |
|
265 |
None => depth qs |
|
266 |
| Some(st,stq) => |
|
267 |
if satp st then Some(st, Sequence.seqof(fn()=> depth(stq::qs))) |
|
268 |
else depth (tf st :: stq :: qs) |
|
269 |
in traced_tac (fn st => depth([Sequence.single st])) end; |
|
270 |
||
271 |
||
272 |
(*Predicate: Does the rule have fewer than n premises?*) |
|
273 |
fun has_fewer_prems n rule = (nprems_of rule < n); |
|
274 |
||
275 |
(*Apply a tactic if subgoals remain, else do nothing.*) |
|
276 |
val IF_UNSOLVED = COND (has_fewer_prems 1) all_tac; |
|
277 |
||
278 |
(*Tactical to reduce the number of premises by 1. |
|
279 |
If no subgoals then it must fail! *) |
|
280 |
fun DEPTH_SOLVE_1 tac = STATE |
|
281 |
(fn state => |
|
282 |
(case nprems_of state of |
|
283 |
0 => no_tac |
|
284 |
| n => DEPTH_FIRST (has_fewer_prems n) tac)); |
|
285 |
||
286 |
(*Uses depth-first search to solve ALL subgoals*) |
|
287 |
val DEPTH_SOLVE = DEPTH_FIRST (has_fewer_prems 1); |
|
288 |
||
289 |
(*** Best-first search ***) |
|
290 |
||
291 |
(*Insertion into priority queue of states *) |
|
292 |
fun insert (nth: int*thm, []) = [nth] |
|
293 |
| insert ((m,th), (n,th')::nths) = |
|
294 |
if n<m then (n,th') :: insert ((m,th), nths) |
|
295 |
else if n=m andalso eq_thm(th,th') |
|
296 |
then (n,th')::nths |
|
297 |
else (m,th)::(n,th')::nths; |
|
298 |
||
299 |
(*For creating output sequence*) |
|
300 |
fun some_of_list [] = None |
|
301 |
| some_of_list (x::l) = Some (x, Sequence.seqof (fn () => some_of_list l)); |
|
302 |
||
303 |
||
304 |
(* Best-first search for a state that satisfies satp (incl initial state) |
|
305 |
Function sizef estimates size of problem remaining (smaller means better). |
|
306 |
tactic tf0 sets up the initial priority queue, which is searched by tac. *) |
|
307 |
fun (Tactic tf0) THEN_BEST_FIRST (satp, sizef, tac) = |
|
308 |
let val tf = tracify trace_BEST_FIRST tac |
|
309 |
fun pairsize th = (sizef th, th); |
|
310 |
fun bfs (news,nprfs) = |
|
311 |
(case partition satp news of |
|
312 |
([],nonsats) => next(foldr insert |
|
313 |
(map pairsize nonsats, nprfs)) |
|
314 |
| (sats,_) => some_of_list sats) |
|
315 |
and next [] = None |
|
316 |
| next ((n,prf)::nprfs) = |
|
317 |
(if !trace_BEST_FIRST |
|
318 |
then writeln("state size = " ^ string_of_int n ^ |
|
319 |
" queue length =" ^ string_of_int (length nprfs)) |
|
320 |
else (); |
|
321 |
bfs (Sequence.list_of_s (tf prf), nprfs)) |
|
322 |
fun tf st = bfs (Sequence.list_of_s (tf0 st), []) |
|
323 |
in traced_tac tf end; |
|
324 |
||
325 |
(*Ordinary best-first search, with no initial tactic*) |
|
326 |
fun BEST_FIRST (satp,sizef) tac = all_tac THEN_BEST_FIRST (satp,sizef,tac); |
|
327 |
||
328 |
(*Breadth-first search to satisfy satpred (including initial state) |
|
329 |
SLOW -- SHOULD NOT USE APPEND!*) |
|
330 |
fun BREADTH_FIRST satpred (Tactic tf) = |
|
331 |
let val tacf = Sequence.list_of_s o tf; |
|
332 |
fun bfs prfs = |
|
333 |
(case partition satpred prfs of |
|
334 |
([],[]) => [] |
|
335 |
| ([],nonsats) => |
|
336 |
(prs("breadth=" ^ string_of_int(length nonsats) ^ "\n"); |
|
337 |
bfs (flat (map tacf nonsats))) |
|
338 |
| (sats,_) => sats) |
|
339 |
in Tactic (fn state => Sequence.s_of_list (bfs [state])) end; |
|
340 |
||
341 |
||
342 |
(** Filtering tacticals **) |
|
343 |
||
344 |
(*Returns all states satisfying the predicate*) |
|
345 |
fun FILTER pred (Tactic tf) = Tactic |
|
346 |
(fn state => Sequence.filters pred (tf state)); |
|
347 |
||
348 |
(*Returns all changed states*) |
|
349 |
fun CHANGED (Tactic tf) = |
|
350 |
Tactic (fn state => |
|
351 |
let fun diff st = not (eq_thm(state,st)) |
|
352 |
in Sequence.filters diff (tf state) |
|
353 |
end ); |
|
354 |
||
355 |
||
356 |
(*** Tacticals based on subgoal numbering ***) |
|
357 |
||
358 |
(*For n subgoals, performs tf(n) THEN ... THEN tf(1) |
|
359 |
Essential to work backwards since tf(i) may add/delete subgoals at i. *) |
|
360 |
fun ALLGOALS tf = |
|
361 |
let fun tac 0 = all_tac |
|
362 |
| tac n = tf(n) THEN tac(n-1) |
|
363 |
in Tactic(fn state => tapply(tac(nprems_of state), state)) end; |
|
364 |
||
365 |
(*For n subgoals, performs tf(n) ORELSE ... ORELSE tf(1) *) |
|
366 |
fun SOMEGOAL tf = |
|
367 |
let fun tac 0 = no_tac |
|
368 |
| tac n = tf(n) ORELSE tac(n-1) |
|
369 |
in Tactic(fn state => tapply(tac(nprems_of state), state)) end; |
|
370 |
||
371 |
(*For n subgoals, performs tf(1) ORELSE ... ORELSE tf(n). |
|
372 |
More appropriate than SOMEGOAL in some cases.*) |
|
373 |
fun FIRSTGOAL tf = |
|
374 |
let fun tac (i,n) = if i>n then no_tac else tf(i) ORELSE tac (i+1,n) |
|
375 |
in Tactic(fn state => tapply(tac(1, nprems_of state), state)) end; |
|
376 |
||
377 |
(*Repeatedly solve some using tf. *) |
|
378 |
fun REPEAT_SOME tf = REPEAT1 (SOMEGOAL (REPEAT1 o tf)); |
|
379 |
||
380 |
(*Repeatedly solve the first possible subgoal using tf. *) |
|
381 |
fun REPEAT_FIRST tf = REPEAT1 (FIRSTGOAL (REPEAT1 o tf)); |
|
382 |
||
383 |
(*For n subgoals, tries to apply tf to n,...1 *) |
|
384 |
fun TRYALL tf = ALLGOALS (TRY o tf); |
|
385 |
||
386 |
||
387 |
(*Make a tactic for subgoal i, if there is one. *) |
|
388 |
fun SUBGOAL goalfun i = Tactic(fn state => |
|
389 |
case drop(i-1, prems_of state) of |
|
390 |
[] => Sequence.null |
|
391 |
| prem::_ => tapply(goalfun (prem,i), state)); |
|
392 |
||
393 |
(*Tactical for restricting the effect of a tactic to subgoal i. |
|
394 |
Works by making a new state from subgoal i, applying tf to it, and |
|
395 |
composing the resulting metathm with the original state. |
|
396 |
The "main goal" of the new state will not be atomic, some tactics may fail! |
|
397 |
DOES NOT work if tactic affects the main goal other than by instantiation.*) |
|
398 |
||
31
eb01df4ffe66
tctical/dummy_quant_rl: specifies type prop to avoid the type variable
lcp
parents:
0
diff
changeset
|
399 |
(* (!!x. PROP ?V) ==> PROP ?V ; contains NO TYPE VARIABLES.*) |
0 | 400 |
val dummy_quant_rl = |
401 |
standard (forall_elim_var 0 (assume |
|
31
eb01df4ffe66
tctical/dummy_quant_rl: specifies type prop to avoid the type variable
lcp
parents:
0
diff
changeset
|
402 |
(Sign.read_cterm Sign.pure ("!!x::prop. PROP V",propT)))); |
0 | 403 |
|
404 |
(* Prevent the subgoal's assumptions from becoming additional subgoals in the |
|
405 |
new proof state by enclosing them by a universal quantification *) |
|
406 |
fun protect_subgoal state i = |
|
31
eb01df4ffe66
tctical/dummy_quant_rl: specifies type prop to avoid the type variable
lcp
parents:
0
diff
changeset
|
407 |
case Sequence.chop (1, bicompose false (false,dummy_quant_rl,1) i state) of |
0 | 408 |
([state'],_) => state' |
31
eb01df4ffe66
tctical/dummy_quant_rl: specifies type prop to avoid the type variable
lcp
parents:
0
diff
changeset
|
409 |
| _ => error"SELECT_GOAL -- impossible error???"; |
0 | 410 |
|
411 |
(*Does the work of SELECT_GOAL. *) |
|
412 |
fun select (Tactic tf) state i = |
|
413 |
let val prem::_ = drop(i-1, prems_of state) |
|
414 |
val st0 = trivial (Sign.cterm_of (#sign(rep_thm state)) prem); |
|
415 |
fun next st = bicompose false (false, st, nprems_of st) i state |
|
416 |
in Sequence.flats (Sequence.maps next (tf st0)) |
|
417 |
end; |
|
418 |
||
419 |
fun SELECT_GOAL tac i = Tactic (fn state => |
|
420 |
case (i, drop(i-1, prems_of state)) of |
|
421 |
(_,[]) => Sequence.null |
|
31
eb01df4ffe66
tctical/dummy_quant_rl: specifies type prop to avoid the type variable
lcp
parents:
0
diff
changeset
|
422 |
| (1,[_]) => tapply(tac,state) (*If i=1 and only one subgoal do nothing!*) |
0 | 423 |
| (_, (Const("==>",_)$_$_) :: _) => select tac (protect_subgoal state i) i |
424 |
| (_, _::_) => select tac state i); |
|
425 |
||
426 |
||
427 |
(*Strips assumptions in goal yielding ( [x1,...,xm], [H1,...,Hn], B ) |
|
428 |
H1,...,Hn are the hypotheses; x1...xm are variants of the parameters. |
|
429 |
Main difference from strip_assums concerns parameters: |
|
430 |
it replaces the bound variables by free variables. *) |
|
431 |
fun strip_context_aux (params, Hs, Const("==>", _) $ H $ B) = |
|
432 |
strip_context_aux (params, H::Hs, B) |
|
433 |
| strip_context_aux (params, Hs, Const("all",_)$Abs(a,T,t)) = |
|
434 |
let val (b,u) = variant_abs(a,T,t) |
|
435 |
in strip_context_aux ((b,T)::params, Hs, u) end |
|
436 |
| strip_context_aux (params, Hs, B) = (rev params, rev Hs, B); |
|
437 |
||
438 |
fun strip_context A = strip_context_aux ([],[],A); |
|
439 |
||
440 |
||
441 |
(**** METAHYPS -- tactical for using hypotheses as meta-level assumptions |
|
442 |
METAHYPS (fn prems => tac (prems)) i |
|
443 |
||
444 |
converts subgoal i, of the form !!x1...xm. [| A1;...;An] ==> A into a new |
|
445 |
proof state A==>A, supplying A1,...,An as meta-level assumptions (in |
|
446 |
"prems"). The parameters x1,...,xm become free variables. If the |
|
447 |
resulting proof state is [| B1;...;Bk] ==> C (possibly assuming A1,...,An) |
|
448 |
then it is lifted back into the original context, yielding k subgoals. |
|
449 |
||
450 |
Replaces unknowns in the context by Frees having the prefix METAHYP_ |
|
451 |
New unknowns in [| B1;...;Bk] ==> C are lifted over x1,...,xm. |
|
452 |
DOES NOT HANDLE TYPE UNKNOWNS. |
|
453 |
****) |
|
454 |
||
455 |
local |
|
456 |
open Logic |
|
457 |
||
458 |
(*Left-to-right replacements: ctpairs = [...,(vi,ti),...]. |
|
459 |
Instantiates distinct free variables by terms of same type.*) |
|
460 |
fun free_instantiate ctpairs = |
|
461 |
forall_elim_list (map snd ctpairs) o forall_intr_list (map fst ctpairs); |
|
462 |
||
463 |
fun free_of s ((a,i), T) = |
|
464 |
Free(s ^ (case i of 0 => a | _ => a ^ "_" ^ string_of_int i), |
|
465 |
T) |
|
466 |
||
467 |
fun mk_inst (var as Var(v,T)) = (var, free_of "METAHYP1_" (v,T)) |
|
468 |
in |
|
469 |
||
470 |
fun metahyps_aux_tac tacf (prem,i) = Tactic (fn state => |
|
471 |
let val {sign,maxidx,...} = rep_thm state |
|
472 |
val cterm = Sign.cterm_of sign |
|
473 |
(*find all vars in the hyps -- should find tvars also!*) |
|
474 |
val hyps_vars = foldr add_term_vars (strip_assums_hyp prem, []) |
|
475 |
val insts = map mk_inst hyps_vars |
|
476 |
(*replace the hyps_vars by Frees*) |
|
477 |
val prem' = subst_atomic insts prem |
|
478 |
val (params,hyps,concl) = strip_context prem' |
|
479 |
val fparams = map Free params |
|
480 |
val cparams = map cterm fparams |
|
481 |
and chyps = map cterm hyps |
|
482 |
val hypths = map assume chyps |
|
483 |
fun swap_ctpair (t,u) = (cterm u, cterm t) |
|
484 |
(*Subgoal variables: make Free; lift type over params*) |
|
485 |
fun mk_subgoal_inst concl_vars (var as Var(v,T)) = |
|
486 |
if var mem concl_vars |
|
487 |
then (var, true, free_of "METAHYP2_" (v,T)) |
|
488 |
else (var, false, |
|
489 |
free_of "METAHYP2_" (v, map #2 params --->T)) |
|
490 |
(*Instantiate subgoal vars by Free applied to params*) |
|
491 |
fun mk_ctpair (t,in_concl,u) = |
|
492 |
if in_concl then (cterm t, cterm u) |
|
493 |
else (cterm t, cterm (list_comb (u,fparams))) |
|
494 |
(*Restore Vars with higher type and index*) |
|
495 |
fun mk_subgoal_swap_ctpair |
|
496 |
(t as Var((a,i),_), in_concl, u as Free(_,U)) = |
|
497 |
if in_concl then (cterm u, cterm t) |
|
498 |
else (cterm u, cterm(Var((a, i+maxidx), U))) |
|
499 |
(*Embed B in the original context of params and hyps*) |
|
500 |
fun embed B = list_all_free (params, list_implies (hyps, B)) |
|
501 |
(*Strip the context using elimination rules*) |
|
502 |
fun elim Bhyp = implies_elim_list (forall_elim_list cparams Bhyp) hypths |
|
503 |
(*Embed an ff pair in the original params*) |
|
504 |
fun embed_ff(t,u) = |
|
505 |
mk_flexpair (list_abs_free (params, t), list_abs_free (params, u)) |
|
506 |
(*Remove parameter abstractions from the ff pairs*) |
|
507 |
fun elim_ff ff = flexpair_abs_elim_list cparams ff |
|
508 |
(*A form of lifting that discharges assumptions.*) |
|
509 |
fun relift st = |
|
510 |
let val prop = #prop(rep_thm st) |
|
511 |
val subgoal_vars = (*Vars introduced in the subgoals*) |
|
512 |
foldr add_term_vars (strip_imp_prems prop, []) |
|
513 |
and concl_vars = add_term_vars (strip_imp_concl prop, []) |
|
514 |
val subgoal_insts = map (mk_subgoal_inst concl_vars) subgoal_vars |
|
515 |
val st' = instantiate ([], map mk_ctpair subgoal_insts) st |
|
516 |
val emBs = map (cterm o embed) (prems_of st') |
|
517 |
and ffs = map (cterm o embed_ff) (tpairs_of st') |
|
518 |
val Cth = implies_elim_list st' |
|
519 |
(map (elim_ff o assume) ffs @ |
|
520 |
map (elim o assume) emBs) |
|
521 |
in (*restore the unknowns to the hypotheses*) |
|
522 |
free_instantiate (map swap_ctpair insts @ |
|
523 |
map mk_subgoal_swap_ctpair subgoal_insts) |
|
524 |
(*discharge assumptions from state in same order*) |
|
525 |
(implies_intr_list (ffs@emBs) |
|
526 |
(forall_intr_list cparams (implies_intr_list chyps Cth))) |
|
527 |
end |
|
528 |
val subprems = map (forall_elim_vars 0) hypths |
|
529 |
and st0 = trivial (cterm concl) |
|
530 |
(*function to replace the current subgoal*) |
|
531 |
fun next st = bicompose false (false, relift st, nprems_of st) |
|
532 |
i state |
|
533 |
in Sequence.flats (Sequence.maps next (tapply(tacf subprems, st0))) |
|
534 |
end); |
|
535 |
end; |
|
536 |
||
537 |
fun METAHYPS tacf = SUBGOAL (metahyps_aux_tac tacf); |
|
538 |
||
539 |
end; |
|
540 |
end; |