| author | wenzelm | 
| Tue, 29 Apr 1997 17:44:26 +0200 | |
| changeset 3069 | de1f64558c01 | 
| parent 3016 | 15763781afb0 | 
| child 3736 | 39ee3d31cfbc | 
| permissions | -rw-r--r-- | 
| 1461 | 1  | 
(* Title: ZF/CardinalArith.ML  | 
| 437 | 2  | 
ID: $Id$  | 
| 1461 | 3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
| 437 | 4  | 
Copyright 1994 University of Cambridge  | 
5  | 
||
6  | 
Cardinal arithmetic -- WITHOUT the Axiom of Choice  | 
|
| 
823
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
7  | 
|
| 846 | 8  | 
Note: Could omit proving the algebraic laws for cardinal addition and  | 
| 
823
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
9  | 
multiplication. On finite cardinals these operations coincide with  | 
| 
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
10  | 
addition and multiplication of natural numbers; on infinite cardinals they  | 
| 846 | 11  | 
coincide with union (maximum). Either way we get most laws for free.  | 
| 437 | 12  | 
*)  | 
13  | 
||
14  | 
open CardinalArith;  | 
|
15  | 
||
16  | 
(*** Cardinal addition ***)  | 
|
17  | 
||
18  | 
(** Cardinal addition is commutative **)  | 
|
19  | 
||
20  | 
goalw CardinalArith.thy [eqpoll_def] "A+B eqpoll B+A";  | 
|
21  | 
by (rtac exI 1);  | 
|
22  | 
by (res_inst_tac [("c", "case(Inr, Inl)"), ("d", "case(Inr, Inl)")] 
 | 
|
23  | 
lam_bijective 1);  | 
|
| 2469 | 24  | 
by (safe_tac (!claset addSEs [sumE]));  | 
25  | 
by (ALLGOALS (Asm_simp_tac));  | 
|
| 760 | 26  | 
qed "sum_commute_eqpoll";  | 
| 437 | 27  | 
|
28  | 
goalw CardinalArith.thy [cadd_def] "i |+| j = j |+| i";  | 
|
29  | 
by (rtac (sum_commute_eqpoll RS cardinal_cong) 1);  | 
|
| 760 | 30  | 
qed "cadd_commute";  | 
| 437 | 31  | 
|
32  | 
(** Cardinal addition is associative **)  | 
|
33  | 
||
34  | 
goalw CardinalArith.thy [eqpoll_def] "(A+B)+C eqpoll A+(B+C)";  | 
|
35  | 
by (rtac exI 1);  | 
|
| 1461 | 36  | 
by (rtac sum_assoc_bij 1);  | 
| 760 | 37  | 
qed "sum_assoc_eqpoll";  | 
| 437 | 38  | 
|
39  | 
(*Unconditional version requires AC*)  | 
|
40  | 
goalw CardinalArith.thy [cadd_def]  | 
|
| 1461 | 41  | 
"!!i j k. [| well_ord(i,ri); well_ord(j,rj); well_ord(k,rk) |] ==> \  | 
| 437 | 42  | 
\ (i |+| j) |+| k = i |+| (j |+| k)";  | 
43  | 
by (rtac cardinal_cong 1);  | 
|
| 
823
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
44  | 
by (rtac ([well_ord_cardinal_eqpoll, eqpoll_refl] MRS sum_eqpoll_cong RS  | 
| 1461 | 45  | 
eqpoll_trans) 1);  | 
| 437 | 46  | 
by (rtac (sum_assoc_eqpoll RS eqpoll_trans) 2);  | 
| 
823
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
47  | 
by (rtac ([eqpoll_refl, well_ord_cardinal_eqpoll] MRS sum_eqpoll_cong RS  | 
| 1461 | 48  | 
eqpoll_sym) 2);  | 
| 484 | 49  | 
by (REPEAT (ares_tac [well_ord_radd] 1));  | 
| 760 | 50  | 
qed "well_ord_cadd_assoc";  | 
| 437 | 51  | 
|
52  | 
(** 0 is the identity for addition **)  | 
|
53  | 
||
54  | 
goalw CardinalArith.thy [eqpoll_def] "0+A eqpoll A";  | 
|
55  | 
by (rtac exI 1);  | 
|
| 846 | 56  | 
by (rtac bij_0_sum 1);  | 
| 760 | 57  | 
qed "sum_0_eqpoll";  | 
| 437 | 58  | 
|
| 484 | 59  | 
goalw CardinalArith.thy [cadd_def] "!!K. Card(K) ==> 0 |+| K = K";  | 
| 2469 | 60  | 
by (asm_simp_tac (!simpset addsimps [sum_0_eqpoll RS cardinal_cong,  | 
| 1461 | 61  | 
Card_cardinal_eq]) 1);  | 
| 760 | 62  | 
qed "cadd_0";  | 
| 437 | 63  | 
|
| 767 | 64  | 
(** Addition by another cardinal **)  | 
65  | 
||
66  | 
goalw CardinalArith.thy [lepoll_def, inj_def] "A lepoll A+B";  | 
|
67  | 
by (res_inst_tac [("x", "lam x:A. Inl(x)")] exI 1);
 | 
|
| 2469 | 68  | 
by (asm_simp_tac (!simpset addsimps [lam_type]) 1);  | 
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
767 
diff
changeset
 | 
69  | 
qed "sum_lepoll_self";  | 
| 767 | 70  | 
|
71  | 
(*Could probably weaken the premises to well_ord(K,r), or removing using AC*)  | 
|
72  | 
goalw CardinalArith.thy [cadd_def]  | 
|
73  | 
"!!K. [| Card(K); Ord(L) |] ==> K le (K |+| L)";  | 
|
74  | 
by (rtac ([Card_cardinal_le, well_ord_lepoll_imp_Card_le] MRS le_trans) 1);  | 
|
75  | 
by (rtac sum_lepoll_self 3);  | 
|
76  | 
by (REPEAT (ares_tac [well_ord_radd, well_ord_Memrel, Card_is_Ord] 1));  | 
|
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
767 
diff
changeset
 | 
77  | 
qed "cadd_le_self";  | 
| 767 | 78  | 
|
79  | 
(** Monotonicity of addition **)  | 
|
80  | 
||
81  | 
goalw CardinalArith.thy [lepoll_def]  | 
|
82  | 
"!!A B C D. [| A lepoll C; B lepoll D |] ==> A + B lepoll C + D";  | 
|
83  | 
by (REPEAT (etac exE 1));  | 
|
84  | 
by (res_inst_tac [("x", "lam z:A+B. case(%w. Inl(f`w), %y. Inr(fa`y), z)")] 
 | 
|
85  | 
exI 1);  | 
|
86  | 
by (res_inst_tac  | 
|
87  | 
      [("d", "case(%w. Inl(converse(f)`w), %y. Inr(converse(fa)`y))")] 
 | 
|
88  | 
lam_injective 1);  | 
|
| 846 | 89  | 
by (typechk_tac ([inj_is_fun, case_type, InlI, InrI] @ ZF_typechecks));  | 
| 
823
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
90  | 
by (etac sumE 1);  | 
| 2469 | 91  | 
by (ALLGOALS (asm_simp_tac (!simpset addsimps [left_inverse])));  | 
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
767 
diff
changeset
 | 
92  | 
qed "sum_lepoll_mono";  | 
| 767 | 93  | 
|
94  | 
goalw CardinalArith.thy [cadd_def]  | 
|
95  | 
"!!K. [| K' le K; L' le L |] ==> (K' |+| L') le (K |+| L)";  | 
|
| 2469 | 96  | 
by (safe_tac (!claset addSDs [le_subset_iff RS iffD1]));  | 
| 
823
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
97  | 
by (rtac well_ord_lepoll_imp_Card_le 1);  | 
| 767 | 98  | 
by (REPEAT (ares_tac [sum_lepoll_mono, subset_imp_lepoll] 2));  | 
99  | 
by (REPEAT (ares_tac [well_ord_radd, well_ord_Memrel] 1));  | 
|
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
767 
diff
changeset
 | 
100  | 
qed "cadd_le_mono";  | 
| 767 | 101  | 
|
| 437 | 102  | 
(** Addition of finite cardinals is "ordinary" addition **)  | 
103  | 
||
104  | 
goalw CardinalArith.thy [eqpoll_def] "succ(A)+B eqpoll succ(A+B)";  | 
|
105  | 
by (rtac exI 1);  | 
|
106  | 
by (res_inst_tac [("c", "%z.if(z=Inl(A),A+B,z)"), 
 | 
|
| 1461 | 107  | 
                  ("d", "%z.if(z=A+B,Inl(A),z)")] 
 | 
| 437 | 108  | 
lam_bijective 1);  | 
109  | 
by (ALLGOALS  | 
|
| 2469 | 110  | 
(asm_simp_tac (!simpset addsimps [succI2, mem_imp_not_eq]  | 
| 1461 | 111  | 
setloop eresolve_tac [sumE,succE])));  | 
| 760 | 112  | 
qed "sum_succ_eqpoll";  | 
| 437 | 113  | 
|
114  | 
(*Pulling the succ(...) outside the |...| requires m, n: nat *)  | 
|
115  | 
(*Unconditional version requires AC*)  | 
|
116  | 
goalw CardinalArith.thy [cadd_def]  | 
|
117  | 
"!!m n. [| Ord(m); Ord(n) |] ==> succ(m) |+| n = |succ(m |+| n)|";  | 
|
118  | 
by (rtac (sum_succ_eqpoll RS cardinal_cong RS trans) 1);  | 
|
119  | 
by (rtac (succ_eqpoll_cong RS cardinal_cong) 1);  | 
|
120  | 
by (rtac (well_ord_cardinal_eqpoll RS eqpoll_sym) 1);  | 
|
121  | 
by (REPEAT (ares_tac [well_ord_radd, well_ord_Memrel] 1));  | 
|
| 760 | 122  | 
qed "cadd_succ_lemma";  | 
| 437 | 123  | 
|
124  | 
val [mnat,nnat] = goal CardinalArith.thy  | 
|
125  | 
"[| m: nat; n: nat |] ==> m |+| n = m#+n";  | 
|
126  | 
by (cut_facts_tac [nnat] 1);  | 
|
127  | 
by (nat_ind_tac "m" [mnat] 1);  | 
|
| 2469 | 128  | 
by (asm_simp_tac (!simpset addsimps [nat_into_Card RS cadd_0]) 1);  | 
129  | 
by (asm_simp_tac (!simpset addsimps [nat_into_Ord, cadd_succ_lemma,  | 
|
| 1461 | 130  | 
nat_into_Card RS Card_cardinal_eq]) 1);  | 
| 760 | 131  | 
qed "nat_cadd_eq_add";  | 
| 437 | 132  | 
|
133  | 
||
134  | 
(*** Cardinal multiplication ***)  | 
|
135  | 
||
136  | 
(** Cardinal multiplication is commutative **)  | 
|
137  | 
||
138  | 
(*Easier to prove the two directions separately*)  | 
|
139  | 
goalw CardinalArith.thy [eqpoll_def] "A*B eqpoll B*A";  | 
|
140  | 
by (rtac exI 1);  | 
|
| 
1090
 
8ab69b3e396b
Changed some definitions and proofs to use pattern-matching.
 
lcp 
parents: 
1075 
diff
changeset
 | 
141  | 
by (res_inst_tac [("c", "%<x,y>.<y,x>"), ("d", "%<x,y>.<y,x>")] 
 | 
| 437 | 142  | 
lam_bijective 1);  | 
| 2469 | 143  | 
by (safe_tac (!claset));  | 
144  | 
by (ALLGOALS (Asm_simp_tac));  | 
|
| 760 | 145  | 
qed "prod_commute_eqpoll";  | 
| 437 | 146  | 
|
147  | 
goalw CardinalArith.thy [cmult_def] "i |*| j = j |*| i";  | 
|
148  | 
by (rtac (prod_commute_eqpoll RS cardinal_cong) 1);  | 
|
| 760 | 149  | 
qed "cmult_commute";  | 
| 437 | 150  | 
|
151  | 
(** Cardinal multiplication is associative **)  | 
|
152  | 
||
153  | 
goalw CardinalArith.thy [eqpoll_def] "(A*B)*C eqpoll A*(B*C)";  | 
|
154  | 
by (rtac exI 1);  | 
|
| 1461 | 155  | 
by (rtac prod_assoc_bij 1);  | 
| 760 | 156  | 
qed "prod_assoc_eqpoll";  | 
| 437 | 157  | 
|
158  | 
(*Unconditional version requires AC*)  | 
|
159  | 
goalw CardinalArith.thy [cmult_def]  | 
|
| 1461 | 160  | 
"!!i j k. [| well_ord(i,ri); well_ord(j,rj); well_ord(k,rk) |] ==> \  | 
| 437 | 161  | 
\ (i |*| j) |*| k = i |*| (j |*| k)";  | 
162  | 
by (rtac cardinal_cong 1);  | 
|
| 
823
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
163  | 
by (rtac ([well_ord_cardinal_eqpoll, eqpoll_refl] MRS prod_eqpoll_cong RS  | 
| 1461 | 164  | 
eqpoll_trans) 1);  | 
| 437 | 165  | 
by (rtac (prod_assoc_eqpoll RS eqpoll_trans) 2);  | 
| 
823
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
166  | 
by (rtac ([eqpoll_refl, well_ord_cardinal_eqpoll] MRS prod_eqpoll_cong RS  | 
| 1461 | 167  | 
eqpoll_sym) 2);  | 
| 484 | 168  | 
by (REPEAT (ares_tac [well_ord_rmult] 1));  | 
| 760 | 169  | 
qed "well_ord_cmult_assoc";  | 
| 437 | 170  | 
|
171  | 
(** Cardinal multiplication distributes over addition **)  | 
|
172  | 
||
173  | 
goalw CardinalArith.thy [eqpoll_def] "(A+B)*C eqpoll (A*C)+(B*C)";  | 
|
174  | 
by (rtac exI 1);  | 
|
| 1461 | 175  | 
by (rtac sum_prod_distrib_bij 1);  | 
| 760 | 176  | 
qed "sum_prod_distrib_eqpoll";  | 
| 437 | 177  | 
|
| 846 | 178  | 
goalw CardinalArith.thy [cadd_def, cmult_def]  | 
| 1461 | 179  | 
"!!i j k. [| well_ord(i,ri); well_ord(j,rj); well_ord(k,rk) |] ==> \  | 
| 846 | 180  | 
\ (i |+| j) |*| k = (i |*| k) |+| (j |*| k)";  | 
181  | 
by (rtac cardinal_cong 1);  | 
|
182  | 
by (rtac ([well_ord_cardinal_eqpoll, eqpoll_refl] MRS prod_eqpoll_cong RS  | 
|
| 1461 | 183  | 
eqpoll_trans) 1);  | 
| 846 | 184  | 
by (rtac (sum_prod_distrib_eqpoll RS eqpoll_trans) 2);  | 
185  | 
by (rtac ([well_ord_cardinal_eqpoll, well_ord_cardinal_eqpoll] MRS sum_eqpoll_cong RS  | 
|
| 1461 | 186  | 
eqpoll_sym) 2);  | 
| 846 | 187  | 
by (REPEAT (ares_tac [well_ord_rmult, well_ord_radd] 1));  | 
188  | 
qed "well_ord_cadd_cmult_distrib";  | 
|
189  | 
||
| 437 | 190  | 
(** Multiplication by 0 yields 0 **)  | 
191  | 
||
192  | 
goalw CardinalArith.thy [eqpoll_def] "0*A eqpoll 0";  | 
|
193  | 
by (rtac exI 1);  | 
|
194  | 
by (rtac lam_bijective 1);  | 
|
| 2469 | 195  | 
by (safe_tac (!claset));  | 
| 760 | 196  | 
qed "prod_0_eqpoll";  | 
| 437 | 197  | 
|
198  | 
goalw CardinalArith.thy [cmult_def] "0 |*| i = 0";  | 
|
| 2469 | 199  | 
by (asm_simp_tac (!simpset addsimps [prod_0_eqpoll RS cardinal_cong,  | 
| 1461 | 200  | 
Card_0 RS Card_cardinal_eq]) 1);  | 
| 760 | 201  | 
qed "cmult_0";  | 
| 437 | 202  | 
|
203  | 
(** 1 is the identity for multiplication **)  | 
|
204  | 
||
205  | 
goalw CardinalArith.thy [eqpoll_def] "{x}*A eqpoll A";
 | 
|
206  | 
by (rtac exI 1);  | 
|
| 846 | 207  | 
by (resolve_tac [singleton_prod_bij RS bij_converse_bij] 1);  | 
| 760 | 208  | 
qed "prod_singleton_eqpoll";  | 
| 437 | 209  | 
|
| 484 | 210  | 
goalw CardinalArith.thy [cmult_def, succ_def] "!!K. Card(K) ==> 1 |*| K = K";  | 
| 2469 | 211  | 
by (asm_simp_tac (!simpset addsimps [prod_singleton_eqpoll RS cardinal_cong,  | 
| 1461 | 212  | 
Card_cardinal_eq]) 1);  | 
| 760 | 213  | 
qed "cmult_1";  | 
| 437 | 214  | 
|
| 767 | 215  | 
(*** Some inequalities for multiplication ***)  | 
216  | 
||
217  | 
goalw CardinalArith.thy [lepoll_def, inj_def] "A lepoll A*A";  | 
|
218  | 
by (res_inst_tac [("x", "lam x:A. <x,x>")] exI 1);
 | 
|
| 2469 | 219  | 
by (simp_tac (!simpset addsimps [lam_type]) 1);  | 
| 767 | 220  | 
qed "prod_square_lepoll";  | 
221  | 
||
| 
823
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
222  | 
(*Could probably weaken the premise to well_ord(K,r), or remove using AC*)  | 
| 767 | 223  | 
goalw CardinalArith.thy [cmult_def] "!!K. Card(K) ==> K le K |*| K";  | 
224  | 
by (rtac le_trans 1);  | 
|
225  | 
by (rtac well_ord_lepoll_imp_Card_le 2);  | 
|
226  | 
by (rtac prod_square_lepoll 3);  | 
|
227  | 
by (REPEAT (ares_tac [well_ord_rmult, well_ord_Memrel, Card_is_Ord] 2));  | 
|
| 2469 | 228  | 
by (asm_simp_tac (!simpset addsimps [le_refl, Card_is_Ord, Card_cardinal_eq]) 1);  | 
| 767 | 229  | 
qed "cmult_square_le";  | 
230  | 
||
231  | 
(** Multiplication by a non-zero cardinal **)  | 
|
232  | 
||
233  | 
goalw CardinalArith.thy [lepoll_def, inj_def] "!!b. b: B ==> A lepoll A*B";  | 
|
234  | 
by (res_inst_tac [("x", "lam x:A. <x,b>")] exI 1);
 | 
|
| 2469 | 235  | 
by (asm_simp_tac (!simpset addsimps [lam_type]) 1);  | 
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
767 
diff
changeset
 | 
236  | 
qed "prod_lepoll_self";  | 
| 767 | 237  | 
|
238  | 
(*Could probably weaken the premises to well_ord(K,r), or removing using AC*)  | 
|
239  | 
goalw CardinalArith.thy [cmult_def]  | 
|
240  | 
"!!K. [| Card(K); Ord(L); 0<L |] ==> K le (K |*| L)";  | 
|
241  | 
by (rtac ([Card_cardinal_le, well_ord_lepoll_imp_Card_le] MRS le_trans) 1);  | 
|
242  | 
by (rtac prod_lepoll_self 3);  | 
|
243  | 
by (REPEAT (ares_tac [well_ord_rmult, well_ord_Memrel, Card_is_Ord, ltD] 1));  | 
|
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
767 
diff
changeset
 | 
244  | 
qed "cmult_le_self";  | 
| 767 | 245  | 
|
246  | 
(** Monotonicity of multiplication **)  | 
|
247  | 
||
248  | 
goalw CardinalArith.thy [lepoll_def]  | 
|
249  | 
"!!A B C D. [| A lepoll C; B lepoll D |] ==> A * B lepoll C * D";  | 
|
250  | 
by (REPEAT (etac exE 1));  | 
|
| 
1090
 
8ab69b3e396b
Changed some definitions and proofs to use pattern-matching.
 
lcp 
parents: 
1075 
diff
changeset
 | 
251  | 
by (res_inst_tac [("x", "lam <w,y>:A*B. <f`w, fa`y>")] exI 1);
 | 
| 
 
8ab69b3e396b
Changed some definitions and proofs to use pattern-matching.
 
lcp 
parents: 
1075 
diff
changeset
 | 
252  | 
by (res_inst_tac [("d", "%<w,y>.<converse(f)`w, converse(fa)`y>")] 
 | 
| 1461 | 253  | 
lam_injective 1);  | 
| 767 | 254  | 
by (typechk_tac (inj_is_fun::ZF_typechecks));  | 
| 
823
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
255  | 
by (etac SigmaE 1);  | 
| 2469 | 256  | 
by (asm_simp_tac (!simpset addsimps [left_inverse]) 1);  | 
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
767 
diff
changeset
 | 
257  | 
qed "prod_lepoll_mono";  | 
| 767 | 258  | 
|
259  | 
goalw CardinalArith.thy [cmult_def]  | 
|
260  | 
"!!K. [| K' le K; L' le L |] ==> (K' |*| L') le (K |*| L)";  | 
|
| 2469 | 261  | 
by (safe_tac (!claset addSDs [le_subset_iff RS iffD1]));  | 
| 
823
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
262  | 
by (rtac well_ord_lepoll_imp_Card_le 1);  | 
| 767 | 263  | 
by (REPEAT (ares_tac [prod_lepoll_mono, subset_imp_lepoll] 2));  | 
264  | 
by (REPEAT (ares_tac [well_ord_rmult, well_ord_Memrel] 1));  | 
|
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
767 
diff
changeset
 | 
265  | 
qed "cmult_le_mono";  | 
| 767 | 266  | 
|
267  | 
(*** Multiplication of finite cardinals is "ordinary" multiplication ***)  | 
|
| 437 | 268  | 
|
269  | 
goalw CardinalArith.thy [eqpoll_def] "succ(A)*B eqpoll B + A*B";  | 
|
270  | 
by (rtac exI 1);  | 
|
| 
1090
 
8ab69b3e396b
Changed some definitions and proofs to use pattern-matching.
 
lcp 
parents: 
1075 
diff
changeset
 | 
271  | 
by (res_inst_tac [("c", "%<x,y>. if(x=A, Inl(y), Inr(<x,y>))"), 
 | 
| 1461 | 272  | 
                  ("d", "case(%y. <A,y>, %z.z)")] 
 | 
| 437 | 273  | 
lam_bijective 1);  | 
| 2469 | 274  | 
by (safe_tac (!claset addSEs [sumE]));  | 
| 437 | 275  | 
by (ALLGOALS  | 
| 2469 | 276  | 
(asm_simp_tac (!simpset addsimps [succI2, if_type, mem_imp_not_eq])));  | 
| 760 | 277  | 
qed "prod_succ_eqpoll";  | 
| 437 | 278  | 
|
279  | 
(*Unconditional version requires AC*)  | 
|
280  | 
goalw CardinalArith.thy [cmult_def, cadd_def]  | 
|
281  | 
"!!m n. [| Ord(m); Ord(n) |] ==> succ(m) |*| n = n |+| (m |*| n)";  | 
|
282  | 
by (rtac (prod_succ_eqpoll RS cardinal_cong RS trans) 1);  | 
|
283  | 
by (rtac (cardinal_cong RS sym) 1);  | 
|
284  | 
by (rtac ([eqpoll_refl, well_ord_cardinal_eqpoll] MRS sum_eqpoll_cong) 1);  | 
|
285  | 
by (REPEAT (ares_tac [well_ord_rmult, well_ord_Memrel] 1));  | 
|
| 760 | 286  | 
qed "cmult_succ_lemma";  | 
| 437 | 287  | 
|
288  | 
val [mnat,nnat] = goal CardinalArith.thy  | 
|
289  | 
"[| m: nat; n: nat |] ==> m |*| n = m#*n";  | 
|
290  | 
by (cut_facts_tac [nnat] 1);  | 
|
291  | 
by (nat_ind_tac "m" [mnat] 1);  | 
|
| 2469 | 292  | 
by (asm_simp_tac (!simpset addsimps [cmult_0]) 1);  | 
293  | 
by (asm_simp_tac (!simpset addsimps [nat_into_Ord, cmult_succ_lemma,  | 
|
| 1461 | 294  | 
nat_cadd_eq_add]) 1);  | 
| 760 | 295  | 
qed "nat_cmult_eq_mult";  | 
| 437 | 296  | 
|
| 
823
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
297  | 
goal CardinalArith.thy "!!m n. Card(n) ==> 2 |*| n = n |+| n";  | 
| 767 | 298  | 
by (asm_simp_tac  | 
| 2925 | 299  | 
(!simpset addsimps [Ord_0, Ord_succ, cmult_0, cmult_succ_lemma,  | 
300  | 
Card_is_Ord,  | 
|
301  | 
			read_instantiate [("j","0")] cadd_commute, cadd_0]) 1);
 | 
|
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
767 
diff
changeset
 | 
302  | 
qed "cmult_2";  | 
| 767 | 303  | 
|
| 437 | 304  | 
|
305  | 
(*** Infinite Cardinals are Limit Ordinals ***)  | 
|
306  | 
||
| 
571
 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 
lcp 
parents: 
523 
diff
changeset
 | 
307  | 
(*This proof is modelled upon one assuming nat<=A, with injection  | 
| 
 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 
lcp 
parents: 
523 
diff
changeset
 | 
308  | 
lam z:cons(u,A). if(z=u, 0, if(z : nat, succ(z), z)) and inverse  | 
| 
 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 
lcp 
parents: 
523 
diff
changeset
 | 
309  | 
%y. if(y:nat, nat_case(u,%z.z,y), y). If f: inj(nat,A) then  | 
| 
 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 
lcp 
parents: 
523 
diff
changeset
 | 
310  | 
range(f) behaves like the natural numbers.*)  | 
| 516 | 311  | 
goalw CardinalArith.thy [lepoll_def]  | 
| 
571
 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 
lcp 
parents: 
523 
diff
changeset
 | 
312  | 
"!!i. nat lepoll A ==> cons(u,A) lepoll A";  | 
| 
 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 
lcp 
parents: 
523 
diff
changeset
 | 
313  | 
by (etac exE 1);  | 
| 516 | 314  | 
by (res_inst_tac [("x",
 | 
| 1461 | 315  | 
"lam z:cons(u,A). if(z=u, f`0, \  | 
| 
571
 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 
lcp 
parents: 
523 
diff
changeset
 | 
316  | 
\ if(z: range(f), f`succ(converse(f)`z), z))")] exI 1);  | 
| 1461 | 317  | 
by (res_inst_tac [("d", "%y. if(y: range(f),    \
 | 
| 
571
 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 
lcp 
parents: 
523 
diff
changeset
 | 
318  | 
\ nat_case(u, %z.f`z, converse(f)`y), y)")]  | 
| 516 | 319  | 
lam_injective 1);  | 
| 2925 | 320  | 
by (fast_tac (!claset addSIs [if_type, nat_succI, apply_type]  | 
321  | 
addIs [inj_is_fun, inj_converse_fun]) 1);  | 
|
| 516 | 322  | 
by (asm_simp_tac  | 
| 2469 | 323  | 
(!simpset addsimps [inj_is_fun RS apply_rangeI,  | 
| 1461 | 324  | 
inj_converse_fun RS apply_rangeI,  | 
325  | 
inj_converse_fun RS apply_funtype,  | 
|
326  | 
left_inverse, right_inverse, nat_0I, nat_succI,  | 
|
327  | 
nat_case_0, nat_case_succ]  | 
|
| 516 | 328  | 
setloop split_tac [expand_if]) 1);  | 
| 760 | 329  | 
qed "nat_cons_lepoll";  | 
| 516 | 330  | 
|
| 
571
 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 
lcp 
parents: 
523 
diff
changeset
 | 
331  | 
goal CardinalArith.thy "!!i. nat lepoll A ==> cons(u,A) eqpoll A";  | 
| 
 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 
lcp 
parents: 
523 
diff
changeset
 | 
332  | 
by (etac (nat_cons_lepoll RS eqpollI) 1);  | 
| 
 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 
lcp 
parents: 
523 
diff
changeset
 | 
333  | 
by (rtac (subset_consI RS subset_imp_lepoll) 1);  | 
| 760 | 334  | 
qed "nat_cons_eqpoll";  | 
| 437 | 335  | 
|
| 
571
 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 
lcp 
parents: 
523 
diff
changeset
 | 
336  | 
(*Specialized version required below*)  | 
| 
 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 
lcp 
parents: 
523 
diff
changeset
 | 
337  | 
goalw CardinalArith.thy [succ_def] "!!i. nat <= A ==> succ(A) eqpoll A";  | 
| 
 
0b03ce5b62f7
ZF/Cardinal: some results moved here from CardinalArith
 
lcp 
parents: 
523 
diff
changeset
 | 
338  | 
by (eresolve_tac [subset_imp_lepoll RS nat_cons_eqpoll] 1);  | 
| 760 | 339  | 
qed "nat_succ_eqpoll";  | 
| 437 | 340  | 
|
| 488 | 341  | 
goalw CardinalArith.thy [InfCard_def] "InfCard(nat)";  | 
| 2925 | 342  | 
by (blast_tac (!claset addIs [Card_nat, le_refl, Card_is_Ord]) 1);  | 
| 760 | 343  | 
qed "InfCard_nat";  | 
| 488 | 344  | 
|
| 484 | 345  | 
goalw CardinalArith.thy [InfCard_def] "!!K. InfCard(K) ==> Card(K)";  | 
| 437 | 346  | 
by (etac conjunct1 1);  | 
| 760 | 347  | 
qed "InfCard_is_Card";  | 
| 437 | 348  | 
|
| 523 | 349  | 
goalw CardinalArith.thy [InfCard_def]  | 
350  | 
"!!K L. [| InfCard(K); Card(L) |] ==> InfCard(K Un L)";  | 
|
| 2469 | 351  | 
by (asm_simp_tac (!simpset addsimps [Card_Un, Un_upper1_le RSN (2,le_trans),  | 
| 1461 | 352  | 
Card_is_Ord]) 1);  | 
| 760 | 353  | 
qed "InfCard_Un";  | 
| 523 | 354  | 
|
| 437 | 355  | 
(*Kunen's Lemma 10.11*)  | 
| 484 | 356  | 
goalw CardinalArith.thy [InfCard_def] "!!K. InfCard(K) ==> Limit(K)";  | 
| 437 | 357  | 
by (etac conjE 1);  | 
| 
823
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
358  | 
by (forward_tac [Card_is_Ord] 1);  | 
| 437 | 359  | 
by (rtac (ltI RS non_succ_LimitI) 1);  | 
360  | 
by (etac ([asm_rl, nat_0I] MRS (le_imp_subset RS subsetD)) 1);  | 
|
| 2469 | 361  | 
by (safe_tac (!claset addSDs [Limit_nat RS Limit_le_succD]));  | 
| 437 | 362  | 
by (rewtac Card_def);  | 
| 
823
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
363  | 
by (dtac trans 1);  | 
| 
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
364  | 
by (etac (le_imp_subset RS nat_succ_eqpoll RS cardinal_cong) 1);  | 
| 3016 | 365  | 
by (etac (Ord_cardinal_le RS lt_trans2 RS lt_irrefl) 1);  | 
| 
823
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
366  | 
by (REPEAT (ares_tac [le_eqI, Ord_cardinal] 1));  | 
| 760 | 367  | 
qed "InfCard_is_Limit";  | 
| 437 | 368  | 
|
369  | 
||
370  | 
(*** An infinite cardinal equals its square (Kunen, Thm 10.12, page 29) ***)  | 
|
371  | 
||
372  | 
(*A general fact about ordermap*)  | 
|
373  | 
goalw Cardinal.thy [eqpoll_def]  | 
|
374  | 
"!!A. [| well_ord(A,r); x:A |] ==> ordermap(A,r)`x eqpoll pred(A,x,r)";  | 
|
375  | 
by (rtac exI 1);  | 
|
| 2469 | 376  | 
by (asm_simp_tac (!simpset addsimps [ordermap_eq_image, well_ord_is_wf]) 1);  | 
| 467 | 377  | 
by (etac (ordermap_bij RS bij_is_inj RS restrict_bij RS bij_converse_bij) 1);  | 
| 437 | 378  | 
by (rtac pred_subset 1);  | 
| 760 | 379  | 
qed "ordermap_eqpoll_pred";  | 
| 437 | 380  | 
|
381  | 
(** Establishing the well-ordering **)  | 
|
382  | 
||
383  | 
goalw CardinalArith.thy [inj_def]  | 
|
| 
1090
 
8ab69b3e396b
Changed some definitions and proofs to use pattern-matching.
 
lcp 
parents: 
1075 
diff
changeset
 | 
384  | 
"!!K. Ord(K) ==> (lam <x,y>:K*K. <x Un y, x, y>) : inj(K*K, K*K*K)";  | 
| 2469 | 385  | 
by (fast_tac (!claset addss (!simpset)  | 
| 1461 | 386  | 
addIs [lam_type, Un_least_lt RS ltD, ltI]) 1);  | 
| 760 | 387  | 
qed "csquare_lam_inj";  | 
| 437 | 388  | 
|
389  | 
goalw CardinalArith.thy [csquare_rel_def]  | 
|
| 484 | 390  | 
"!!K. Ord(K) ==> well_ord(K*K, csquare_rel(K))";  | 
| 437 | 391  | 
by (rtac (csquare_lam_inj RS well_ord_rvimage) 1);  | 
392  | 
by (REPEAT (ares_tac [well_ord_rmult, well_ord_Memrel] 1));  | 
|
| 760 | 393  | 
qed "well_ord_csquare";  | 
| 437 | 394  | 
|
395  | 
(** Characterising initial segments of the well-ordering **)  | 
|
396  | 
||
397  | 
goalw CardinalArith.thy [csquare_rel_def]  | 
|
| 484 | 398  | 
"!!K. [| x<K; y<K; z<K |] ==> \  | 
399  | 
\ <<x,y>, <z,z>> : csquare_rel(K) --> x le z & y le z";  | 
|
| 437 | 400  | 
by (REPEAT (etac ltE 1));  | 
| 2469 | 401  | 
by (asm_simp_tac (!simpset addsimps [rvimage_iff, rmult_iff, Memrel_iff,  | 
| 437 | 402  | 
Un_absorb, Un_least_mem_iff, ltD]) 1);  | 
| 2469 | 403  | 
by (safe_tac (!claset addSEs [mem_irrefl]  | 
| 437 | 404  | 
addSIs [Un_upper1_le, Un_upper2_le]));  | 
| 2469 | 405  | 
by (ALLGOALS (asm_simp_tac (!simpset addsimps [lt_def, succI2, Ord_succ])));  | 
| 
800
 
23f55b829ccb
Limit_csucc: moved to InfDatatype and proved explicitly in
 
lcp 
parents: 
782 
diff
changeset
 | 
406  | 
val csquareD_lemma = result();  | 
| 
 
23f55b829ccb
Limit_csucc: moved to InfDatatype and proved explicitly in
 
lcp 
parents: 
782 
diff
changeset
 | 
407  | 
|
| 
 
23f55b829ccb
Limit_csucc: moved to InfDatatype and proved explicitly in
 
lcp 
parents: 
782 
diff
changeset
 | 
408  | 
bind_thm ("csquareD", csquareD_lemma RS mp);
 | 
| 437 | 409  | 
|
410  | 
goalw CardinalArith.thy [pred_def]  | 
|
| 484 | 411  | 
"!!K. z<K ==> pred(K*K, <z,z>, csquare_rel(K)) <= succ(z)*succ(z)";  | 
| 2469 | 412  | 
by (safe_tac (claset_of"ZF" addSEs [SigmaE])); (*avoids using succCI,...*)  | 
| 437 | 413  | 
by (rtac (csquareD RS conjE) 1);  | 
414  | 
by (rewtac lt_def);  | 
|
415  | 
by (assume_tac 4);  | 
|
| 2925 | 416  | 
by (ALLGOALS Blast_tac);  | 
| 760 | 417  | 
qed "pred_csquare_subset";  | 
| 437 | 418  | 
|
419  | 
goalw CardinalArith.thy [csquare_rel_def]  | 
|
| 
823
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
420  | 
"!!K. [| x<z; y<z; z<K |] ==> <<x,y>, <z,z>> : csquare_rel(K)";  | 
| 484 | 421  | 
by (subgoals_tac ["x<K", "y<K"] 1);  | 
| 437 | 422  | 
by (REPEAT (eresolve_tac [asm_rl, lt_trans] 2));  | 
423  | 
by (REPEAT (etac ltE 1));  | 
|
| 2469 | 424  | 
by (asm_simp_tac (!simpset addsimps [rvimage_iff, rmult_iff, Memrel_iff,  | 
| 2493 | 425  | 
Un_absorb, Un_least_mem_iff, ltD]) 1);  | 
| 760 | 426  | 
qed "csquare_ltI";  | 
| 437 | 427  | 
|
428  | 
(*Part of the traditional proof. UNUSED since it's harder to prove & apply *)  | 
|
429  | 
goalw CardinalArith.thy [csquare_rel_def]  | 
|
| 484 | 430  | 
"!!K. [| x le z; y le z; z<K |] ==> \  | 
431  | 
\ <<x,y>, <z,z>> : csquare_rel(K) | x=z & y=z";  | 
|
432  | 
by (subgoals_tac ["x<K", "y<K"] 1);  | 
|
| 437 | 433  | 
by (REPEAT (eresolve_tac [asm_rl, lt_trans1] 2));  | 
434  | 
by (REPEAT (etac ltE 1));  | 
|
| 2469 | 435  | 
by (asm_simp_tac (!simpset addsimps [rvimage_iff, rmult_iff, Memrel_iff,  | 
| 437 | 436  | 
Un_absorb, Un_least_mem_iff, ltD]) 1);  | 
437  | 
by (REPEAT_FIRST (etac succE));  | 
|
438  | 
by (ALLGOALS  | 
|
| 2469 | 439  | 
(asm_simp_tac (!simpset addsimps [subset_Un_iff RS iff_sym,  | 
| 1461 | 440  | 
subset_Un_iff2 RS iff_sym, OrdmemD])));  | 
| 760 | 441  | 
qed "csquare_or_eqI";  | 
| 437 | 442  | 
|
443  | 
(** The cardinality of initial segments **)  | 
|
444  | 
||
445  | 
goal CardinalArith.thy  | 
|
| 846 | 446  | 
"!!K. [| Limit(K); x<K; y<K; z=succ(x Un y) |] ==> \  | 
| 1461 | 447  | 
\ ordermap(K*K, csquare_rel(K)) ` <x,y> < \  | 
| 484 | 448  | 
\ ordermap(K*K, csquare_rel(K)) ` <z,z>";  | 
449  | 
by (subgoals_tac ["z<K", "well_ord(K*K, csquare_rel(K))"] 1);  | 
|
| 846 | 450  | 
by (etac (Limit_is_Ord RS well_ord_csquare) 2);  | 
| 2925 | 451  | 
by (blast_tac (!claset addSIs [Un_least_lt, Limit_has_succ]) 2);  | 
| 870 | 452  | 
by (rtac (csquare_ltI RS ordermap_mono RS ltI) 1);  | 
| 437 | 453  | 
by (etac well_ord_is_wf 4);  | 
454  | 
by (ALLGOALS  | 
|
| 2925 | 455  | 
(blast_tac (!claset addSIs [Un_upper1_le, Un_upper2_le, Ord_ordermap]  | 
| 437 | 456  | 
addSEs [ltE])));  | 
| 870 | 457  | 
qed "ordermap_z_lt";  | 
| 437 | 458  | 
|
| 484 | 459  | 
(*Kunen: "each <x,y>: K*K has no more than z*z predecessors..." (page 29) *)  | 
| 437 | 460  | 
goalw CardinalArith.thy [cmult_def]  | 
| 846 | 461  | 
"!!K. [| Limit(K); x<K; y<K; z=succ(x Un y) |] ==> \  | 
| 484 | 462  | 
\ | ordermap(K*K, csquare_rel(K)) ` <x,y> | le |succ(z)| |*| |succ(z)|";  | 
| 767 | 463  | 
by (rtac (well_ord_rmult RS well_ord_lepoll_imp_Card_le) 1);  | 
| 437 | 464  | 
by (REPEAT (ares_tac [Ord_cardinal, well_ord_Memrel] 1));  | 
| 484 | 465  | 
by (subgoals_tac ["z<K"] 1);  | 
| 2925 | 466  | 
by (blast_tac (!claset addSIs [Un_least_lt, Limit_has_succ]) 2);  | 
| 1609 | 467  | 
by (rtac (ordermap_z_lt RS leI RS le_imp_lepoll RS lepoll_trans) 1);  | 
| 437 | 468  | 
by (REPEAT_SOME assume_tac);  | 
469  | 
by (rtac (ordermap_eqpoll_pred RS eqpoll_imp_lepoll RS lepoll_trans) 1);  | 
|
| 846 | 470  | 
by (etac (Limit_is_Ord RS well_ord_csquare) 1);  | 
| 2925 | 471  | 
by (blast_tac (!claset addIs [ltD]) 1);  | 
| 437 | 472  | 
by (rtac (pred_csquare_subset RS subset_imp_lepoll RS lepoll_trans) 1 THEN  | 
473  | 
assume_tac 1);  | 
|
474  | 
by (REPEAT_FIRST (etac ltE));  | 
|
475  | 
by (rtac (prod_eqpoll_cong RS eqpoll_sym RS eqpoll_imp_lepoll) 1);  | 
|
476  | 
by (REPEAT_FIRST (etac (Ord_succ RS Ord_cardinal_eqpoll)));  | 
|
| 760 | 477  | 
qed "ordermap_csquare_le";  | 
| 437 | 478  | 
|
| 484 | 479  | 
(*Kunen: "... so the order type <= K" *)  | 
| 437 | 480  | 
goal CardinalArith.thy  | 
| 484 | 481  | 
"!!K. [| InfCard(K); ALL y:K. InfCard(y) --> y |*| y = y |] ==> \  | 
482  | 
\ ordertype(K*K, csquare_rel(K)) le K";  | 
|
| 437 | 483  | 
by (forward_tac [InfCard_is_Card RS Card_is_Ord] 1);  | 
484  | 
by (rtac all_lt_imp_le 1);  | 
|
485  | 
by (assume_tac 1);  | 
|
486  | 
by (etac (well_ord_csquare RS Ord_ordertype) 1);  | 
|
487  | 
by (rtac Card_lt_imp_lt 1);  | 
|
488  | 
by (etac InfCard_is_Card 3);  | 
|
489  | 
by (etac ltE 2 THEN assume_tac 2);  | 
|
| 2469 | 490  | 
by (asm_full_simp_tac (!simpset addsimps [ordertype_unfold]) 1);  | 
491  | 
by (safe_tac (!claset addSEs [ltE]));  | 
|
| 437 | 492  | 
by (subgoals_tac ["Ord(xb)", "Ord(y)"] 1);  | 
493  | 
by (REPEAT (eresolve_tac [asm_rl, Ord_in_Ord] 2));  | 
|
| 846 | 494  | 
by (rtac (InfCard_is_Limit RS ordermap_csquare_le RS lt_trans1) 1 THEN  | 
| 437 | 495  | 
REPEAT (ares_tac [refl] 1 ORELSE etac ltI 1));  | 
496  | 
by (res_inst_tac [("i","xb Un y"), ("j","nat")] Ord_linear2 1  THEN
 | 
|
497  | 
REPEAT (ares_tac [Ord_Un, Ord_nat] 1));  | 
|
498  | 
(*the finite case: xb Un y < nat *)  | 
|
499  | 
by (res_inst_tac [("j", "nat")] lt_trans2 1);
 | 
|
| 2469 | 500  | 
by (asm_full_simp_tac (!simpset addsimps [InfCard_def]) 2);  | 
| 437 | 501  | 
by (asm_full_simp_tac  | 
| 2469 | 502  | 
(!simpset addsimps [lt_def, nat_cmult_eq_mult, nat_succI, mult_type,  | 
| 1461 | 503  | 
nat_into_Card RS Card_cardinal_eq, Ord_nat]) 1);  | 
| 846 | 504  | 
(*case nat le (xb Un y) *)  | 
| 437 | 505  | 
by (asm_full_simp_tac  | 
| 2469 | 506  | 
(!simpset addsimps [le_imp_subset RS nat_succ_eqpoll RS cardinal_cong,  | 
| 1461 | 507  | 
le_succ_iff, InfCard_def, Card_cardinal, Un_least_lt,  | 
508  | 
Ord_Un, ltI, nat_le_cardinal,  | 
|
509  | 
Ord_cardinal_le RS lt_trans1 RS ltD]) 1);  | 
|
| 760 | 510  | 
qed "ordertype_csquare_le";  | 
| 437 | 511  | 
|
512  | 
(*Main result: Kunen's Theorem 10.12*)  | 
|
| 484 | 513  | 
goal CardinalArith.thy "!!K. InfCard(K) ==> K |*| K = K";  | 
| 437 | 514  | 
by (forward_tac [InfCard_is_Card RS Card_is_Ord] 1);  | 
515  | 
by (etac rev_mp 1);  | 
|
| 484 | 516  | 
by (trans_ind_tac "K" [] 1);  | 
| 437 | 517  | 
by (rtac impI 1);  | 
518  | 
by (rtac le_anti_sym 1);  | 
|
519  | 
by (etac (InfCard_is_Card RS cmult_square_le) 2);  | 
|
520  | 
by (rtac (ordertype_csquare_le RSN (2, le_trans)) 1);  | 
|
521  | 
by (assume_tac 2);  | 
|
522  | 
by (assume_tac 2);  | 
|
523  | 
by (asm_simp_tac  | 
|
| 2469 | 524  | 
(!simpset addsimps [cmult_def, Ord_cardinal_le,  | 
| 1461 | 525  | 
well_ord_csquare RS ordermap_bij RS  | 
526  | 
bij_imp_eqpoll RS cardinal_cong,  | 
|
| 437 | 527  | 
well_ord_csquare RS Ord_ordertype]) 1);  | 
| 760 | 528  | 
qed "InfCard_csquare_eq";  | 
| 484 | 529  | 
|
| 767 | 530  | 
(*Corollary for arbitrary well-ordered sets (all sets, assuming AC)*)  | 
| 484 | 531  | 
goal CardinalArith.thy  | 
532  | 
"!!A. [| well_ord(A,r); InfCard(|A|) |] ==> A*A eqpoll A";  | 
|
533  | 
by (resolve_tac [prod_eqpoll_cong RS eqpoll_trans] 1);  | 
|
534  | 
by (REPEAT (etac (well_ord_cardinal_eqpoll RS eqpoll_sym) 1));  | 
|
| 
823
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
535  | 
by (rtac well_ord_cardinal_eqE 1);  | 
| 484 | 536  | 
by (REPEAT (ares_tac [Ord_cardinal, well_ord_rmult, well_ord_Memrel] 1));  | 
| 2469 | 537  | 
by (asm_simp_tac (!simpset addsimps [symmetric cmult_def, InfCard_csquare_eq]) 1);  | 
| 760 | 538  | 
qed "well_ord_InfCard_square_eq";  | 
| 484 | 539  | 
|
| 767 | 540  | 
(** Toward's Kunen's Corollary 10.13 (1) **)  | 
541  | 
||
542  | 
goal CardinalArith.thy "!!K. [| InfCard(K); L le K; 0<L |] ==> K |*| L = K";  | 
|
| 
823
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
543  | 
by (rtac le_anti_sym 1);  | 
| 
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
544  | 
by (etac ltE 2 THEN  | 
| 767 | 545  | 
REPEAT (ares_tac [cmult_le_self, InfCard_is_Card] 2));  | 
546  | 
by (forward_tac [InfCard_is_Card RS Card_is_Ord RS le_refl] 1);  | 
|
547  | 
by (resolve_tac [cmult_le_mono RS le_trans] 1 THEN REPEAT (assume_tac 1));  | 
|
| 2469 | 548  | 
by (asm_simp_tac (!simpset addsimps [InfCard_csquare_eq]) 1);  | 
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
767 
diff
changeset
 | 
549  | 
qed "InfCard_le_cmult_eq";  | 
| 767 | 550  | 
|
551  | 
(*Corollary 10.13 (1), for cardinal multiplication*)  | 
|
552  | 
goal CardinalArith.thy  | 
|
553  | 
"!!K. [| InfCard(K); InfCard(L) |] ==> K |*| L = K Un L";  | 
|
554  | 
by (res_inst_tac [("i","K"),("j","L")] Ord_linear_le 1);
 | 
|
555  | 
by (typechk_tac [InfCard_is_Card, Card_is_Ord]);  | 
|
556  | 
by (resolve_tac [cmult_commute RS ssubst] 1);  | 
|
557  | 
by (resolve_tac [Un_commute RS ssubst] 1);  | 
|
558  | 
by (ALLGOALS  | 
|
559  | 
(asm_simp_tac  | 
|
| 2469 | 560  | 
(!simpset addsimps [InfCard_is_Limit RS Limit_has_0, InfCard_le_cmult_eq,  | 
| 1461 | 561  | 
subset_Un_iff2 RS iffD1, le_imp_subset])));  | 
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
767 
diff
changeset
 | 
562  | 
qed "InfCard_cmult_eq";  | 
| 767 | 563  | 
|
564  | 
(*This proof appear to be the simplest!*)  | 
|
565  | 
goal CardinalArith.thy "!!K. InfCard(K) ==> K |+| K = K";  | 
|
566  | 
by (asm_simp_tac  | 
|
| 2469 | 567  | 
(!simpset addsimps [cmult_2 RS sym, InfCard_is_Card, cmult_commute]) 1);  | 
| 
823
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
568  | 
by (rtac InfCard_le_cmult_eq 1);  | 
| 767 | 569  | 
by (typechk_tac [Ord_0, le_refl, leI]);  | 
570  | 
by (typechk_tac [InfCard_is_Limit, Limit_has_0, Limit_has_succ]);  | 
|
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
767 
diff
changeset
 | 
571  | 
qed "InfCard_cdouble_eq";  | 
| 767 | 572  | 
|
573  | 
(*Corollary 10.13 (1), for cardinal addition*)  | 
|
574  | 
goal CardinalArith.thy "!!K. [| InfCard(K); L le K |] ==> K |+| L = K";  | 
|
| 
823
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
575  | 
by (rtac le_anti_sym 1);  | 
| 
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
576  | 
by (etac ltE 2 THEN  | 
| 767 | 577  | 
REPEAT (ares_tac [cadd_le_self, InfCard_is_Card] 2));  | 
578  | 
by (forward_tac [InfCard_is_Card RS Card_is_Ord RS le_refl] 1);  | 
|
579  | 
by (resolve_tac [cadd_le_mono RS le_trans] 1 THEN REPEAT (assume_tac 1));  | 
|
| 2469 | 580  | 
by (asm_simp_tac (!simpset addsimps [InfCard_cdouble_eq]) 1);  | 
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
767 
diff
changeset
 | 
581  | 
qed "InfCard_le_cadd_eq";  | 
| 767 | 582  | 
|
583  | 
goal CardinalArith.thy  | 
|
584  | 
"!!K. [| InfCard(K); InfCard(L) |] ==> K |+| L = K Un L";  | 
|
585  | 
by (res_inst_tac [("i","K"),("j","L")] Ord_linear_le 1);
 | 
|
586  | 
by (typechk_tac [InfCard_is_Card, Card_is_Ord]);  | 
|
587  | 
by (resolve_tac [cadd_commute RS ssubst] 1);  | 
|
588  | 
by (resolve_tac [Un_commute RS ssubst] 1);  | 
|
589  | 
by (ALLGOALS  | 
|
590  | 
(asm_simp_tac  | 
|
| 2469 | 591  | 
(!simpset addsimps [InfCard_le_cadd_eq,  | 
| 1461 | 592  | 
subset_Un_iff2 RS iffD1, le_imp_subset])));  | 
| 
782
 
200a16083201
added bind_thm for theorems defined by "standard ..."
 
clasohm 
parents: 
767 
diff
changeset
 | 
593  | 
qed "InfCard_cadd_eq";  | 
| 767 | 594  | 
|
595  | 
(*The other part, Corollary 10.13 (2), refers to the cardinality of the set  | 
|
596  | 
of all n-tuples of elements of K. A better version for the Isabelle theory  | 
|
597  | 
might be InfCard(K) ==> |list(K)| = K.  | 
|
598  | 
*)  | 
|
| 484 | 599  | 
|
600  | 
(*** For every cardinal number there exists a greater one  | 
|
601  | 
[Kunen's Theorem 10.16, which would be trivial using AC] ***)  | 
|
602  | 
||
603  | 
goalw CardinalArith.thy [jump_cardinal_def] "Ord(jump_cardinal(K))";  | 
|
604  | 
by (rtac (Ord_is_Transset RSN (2,OrdI)) 1);  | 
|
| 2925 | 605  | 
by (blast_tac (!claset addSIs [Ord_ordertype]) 2);  | 
| 
823
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
606  | 
by (rewtac Transset_def);  | 
| 
1075
 
848bf2e18dff
Modified proofs for new claset primitives.  The problem is that they enforce
 
lcp 
parents: 
989 
diff
changeset
 | 
607  | 
by (safe_tac subset_cs);  | 
| 2469 | 608  | 
by (asm_full_simp_tac (!simpset addsimps [ordertype_pred_unfold]) 1);  | 
609  | 
by (safe_tac (!claset));  | 
|
| 
823
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
610  | 
by (rtac UN_I 1);  | 
| 
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
611  | 
by (rtac ReplaceI 2);  | 
| 2925 | 612  | 
by (ALLGOALS (blast_tac (!claset addIs [well_ord_subset] addSEs [predE])));  | 
| 760 | 613  | 
qed "Ord_jump_cardinal";  | 
| 484 | 614  | 
|
615  | 
(*Allows selective unfolding. Less work than deriving intro/elim rules*)  | 
|
616  | 
goalw CardinalArith.thy [jump_cardinal_def]  | 
|
617  | 
"i : jump_cardinal(K) <-> \  | 
|
618  | 
\ (EX r X. r <= K*K & X <= K & well_ord(X,r) & i = ordertype(X,r))";  | 
|
| 1461 | 619  | 
by (fast_tac subset_cs 1); (*It's vital to avoid reasoning about <=*)  | 
| 760 | 620  | 
qed "jump_cardinal_iff";  | 
| 484 | 621  | 
|
622  | 
(*The easy part of Theorem 10.16: jump_cardinal(K) exceeds K*)  | 
|
623  | 
goal CardinalArith.thy "!!K. Ord(K) ==> K < jump_cardinal(K)";  | 
|
624  | 
by (resolve_tac [Ord_jump_cardinal RSN (2,ltI)] 1);  | 
|
625  | 
by (resolve_tac [jump_cardinal_iff RS iffD2] 1);  | 
|
626  | 
by (REPEAT_FIRST (ares_tac [exI, conjI, well_ord_Memrel]));  | 
|
| 
823
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
627  | 
by (rtac subset_refl 2);  | 
| 2469 | 628  | 
by (asm_simp_tac (!simpset addsimps [Memrel_def, subset_iff]) 1);  | 
629  | 
by (asm_simp_tac (!simpset addsimps [ordertype_Memrel]) 1);  | 
|
| 760 | 630  | 
qed "K_lt_jump_cardinal";  | 
| 484 | 631  | 
|
632  | 
(*The proof by contradiction: the bijection f yields a wellordering of X  | 
|
633  | 
whose ordertype is jump_cardinal(K). *)  | 
|
634  | 
goal CardinalArith.thy  | 
|
| 1461 | 635  | 
"!!K. [| well_ord(X,r); r <= K * K; X <= K; \  | 
636  | 
\ f : bij(ordertype(X,r), jump_cardinal(K)) \  | 
|
637  | 
\ |] ==> jump_cardinal(K) : jump_cardinal(K)";  | 
|
| 484 | 638  | 
by (subgoal_tac "f O ordermap(X,r): bij(X, jump_cardinal(K))" 1);  | 
639  | 
by (REPEAT (ares_tac [comp_bij, ordermap_bij] 2));  | 
|
640  | 
by (resolve_tac [jump_cardinal_iff RS iffD2] 1);  | 
|
641  | 
by (REPEAT_FIRST (resolve_tac [exI, conjI]));  | 
|
642  | 
by (rtac ([rvimage_type, Sigma_mono] MRS subset_trans) 1);  | 
|
643  | 
by (REPEAT (assume_tac 1));  | 
|
644  | 
by (etac (bij_is_inj RS well_ord_rvimage) 1);  | 
|
645  | 
by (rtac (Ord_jump_cardinal RS well_ord_Memrel) 1);  | 
|
646  | 
by (asm_simp_tac  | 
|
| 2469 | 647  | 
(!simpset addsimps [well_ord_Memrel RSN (2, bij_ordertype_vimage),  | 
| 1461 | 648  | 
ordertype_Memrel, Ord_jump_cardinal]) 1);  | 
| 760 | 649  | 
qed "Card_jump_cardinal_lemma";  | 
| 484 | 650  | 
|
651  | 
(*The hard part of Theorem 10.16: jump_cardinal(K) is itself a cardinal*)  | 
|
652  | 
goal CardinalArith.thy "Card(jump_cardinal(K))";  | 
|
653  | 
by (rtac (Ord_jump_cardinal RS CardI) 1);  | 
|
| 
823
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
654  | 
by (rewtac eqpoll_def);  | 
| 2469 | 655  | 
by (safe_tac (!claset addSDs [ltD, jump_cardinal_iff RS iffD1]));  | 
| 484 | 656  | 
by (REPEAT (ares_tac [Card_jump_cardinal_lemma RS mem_irrefl] 1));  | 
| 760 | 657  | 
qed "Card_jump_cardinal";  | 
| 484 | 658  | 
|
659  | 
(*** Basic properties of successor cardinals ***)  | 
|
660  | 
||
661  | 
goalw CardinalArith.thy [csucc_def]  | 
|
662  | 
"!!K. Ord(K) ==> Card(csucc(K)) & K < csucc(K)";  | 
|
663  | 
by (rtac LeastI 1);  | 
|
664  | 
by (REPEAT (ares_tac [conjI, Card_jump_cardinal, K_lt_jump_cardinal,  | 
|
| 1461 | 665  | 
Ord_jump_cardinal] 1));  | 
| 760 | 666  | 
qed "csucc_basic";  | 
| 484 | 667  | 
|
| 
800
 
23f55b829ccb
Limit_csucc: moved to InfDatatype and proved explicitly in
 
lcp 
parents: 
782 
diff
changeset
 | 
668  | 
bind_thm ("Card_csucc", csucc_basic RS conjunct1);
 | 
| 484 | 669  | 
|
| 
800
 
23f55b829ccb
Limit_csucc: moved to InfDatatype and proved explicitly in
 
lcp 
parents: 
782 
diff
changeset
 | 
670  | 
bind_thm ("lt_csucc", csucc_basic RS conjunct2);
 | 
| 484 | 671  | 
|
| 517 | 672  | 
goal CardinalArith.thy "!!K. Ord(K) ==> 0 < csucc(K)";  | 
673  | 
by (resolve_tac [[Ord_0_le, lt_csucc] MRS lt_trans1] 1);  | 
|
674  | 
by (REPEAT (assume_tac 1));  | 
|
| 760 | 675  | 
qed "Ord_0_lt_csucc";  | 
| 517 | 676  | 
|
| 484 | 677  | 
goalw CardinalArith.thy [csucc_def]  | 
678  | 
"!!K L. [| Card(L); K<L |] ==> csucc(K) le L";  | 
|
679  | 
by (rtac Least_le 1);  | 
|
680  | 
by (REPEAT (ares_tac [conjI, Card_is_Ord] 1));  | 
|
| 760 | 681  | 
qed "csucc_le";  | 
| 484 | 682  | 
|
683  | 
goal CardinalArith.thy  | 
|
684  | 
"!!K. [| Ord(i); Card(K) |] ==> i < csucc(K) <-> |i| le K";  | 
|
| 
823
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
685  | 
by (rtac iffI 1);  | 
| 
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
686  | 
by (rtac Card_lt_imp_lt 2);  | 
| 
 
33dc37d46296
Changed succ(1) to 2 in cmult_2; Simplified proof of InfCard_is_Limit
 
lcp 
parents: 
800 
diff
changeset
 | 
687  | 
by (etac lt_trans1 2);  | 
| 484 | 688  | 
by (REPEAT (ares_tac [lt_csucc, Card_csucc, Card_is_Ord] 2));  | 
689  | 
by (resolve_tac [notI RS not_lt_imp_le] 1);  | 
|
690  | 
by (resolve_tac [Card_cardinal RS csucc_le RS lt_trans1 RS lt_irrefl] 1);  | 
|
691  | 
by (assume_tac 1);  | 
|
692  | 
by (resolve_tac [Ord_cardinal_le RS lt_trans1] 1);  | 
|
693  | 
by (REPEAT (ares_tac [Ord_cardinal] 1  | 
|
694  | 
ORELSE eresolve_tac [ltE, Card_is_Ord] 1));  | 
|
| 760 | 695  | 
qed "lt_csucc_iff";  | 
| 484 | 696  | 
|
697  | 
goal CardinalArith.thy  | 
|
698  | 
"!!K' K. [| Card(K'); Card(K) |] ==> K' < csucc(K) <-> K' le K";  | 
|
699  | 
by (asm_simp_tac  | 
|
| 2469 | 700  | 
(!simpset addsimps [lt_csucc_iff, Card_cardinal_eq, Card_is_Ord]) 1);  | 
| 760 | 701  | 
qed "Card_lt_csucc_iff";  | 
| 488 | 702  | 
|
703  | 
goalw CardinalArith.thy [InfCard_def]  | 
|
704  | 
"!!K. InfCard(K) ==> InfCard(csucc(K))";  | 
|
| 2469 | 705  | 
by (asm_simp_tac (!simpset addsimps [Card_csucc, Card_is_Ord,  | 
| 1461 | 706  | 
lt_csucc RS leI RSN (2,le_trans)]) 1);  | 
| 760 | 707  | 
qed "InfCard_csucc";  | 
| 517 | 708  | 
|
| 1609 | 709  | 
|
710  | 
(*** Finite sets ***)  | 
|
711  | 
||
712  | 
goal CardinalArith.thy  | 
|
713  | 
"!!n. n: nat ==> ALL A. A eqpoll n --> A : Fin(A)";  | 
|
| 1622 | 714  | 
by (etac nat_induct 1);  | 
| 2469 | 715  | 
by (simp_tac (!simpset addsimps (eqpoll_0_iff::Fin.intrs)) 1);  | 
716  | 
by (step_tac (!claset) 1);  | 
|
| 1609 | 717  | 
by (subgoal_tac "EX u. u:A" 1);  | 
| 1622 | 718  | 
by (etac exE 1);  | 
| 1609 | 719  | 
by (resolve_tac [Diff_sing_eqpoll RS revcut_rl] 1);  | 
720  | 
by (assume_tac 2);  | 
|
721  | 
by (assume_tac 1);  | 
|
722  | 
by (res_inst_tac [("b", "A")] (cons_Diff RS subst) 1);
 | 
|
723  | 
by (assume_tac 1);  | 
|
724  | 
by (resolve_tac [Fin.consI] 1);  | 
|
| 2925 | 725  | 
by (Blast_tac 1);  | 
726  | 
by (blast_tac (!claset addIs [subset_consI RS Fin_mono RS subsetD]) 1);  | 
|
| 1609 | 727  | 
(*Now for the lemma assumed above*)  | 
| 1622 | 728  | 
by (rewtac eqpoll_def);  | 
| 2925 | 729  | 
by (blast_tac (!claset addIs [bij_converse_bij RS bij_is_fun RS apply_type]) 1);  | 
| 1609 | 730  | 
val lemma = result();  | 
731  | 
||
732  | 
goalw CardinalArith.thy [Finite_def] "!!A. Finite(A) ==> A : Fin(A)";  | 
|
| 2925 | 733  | 
by (blast_tac (!claset addIs [lemma RS spec RS mp]) 1);  | 
| 1609 | 734  | 
qed "Finite_into_Fin";  | 
735  | 
||
736  | 
goal CardinalArith.thy "!!A. A : Fin(U) ==> Finite(A)";  | 
|
| 2469 | 737  | 
by (fast_tac (!claset addSIs [Finite_0, Finite_cons] addEs [Fin.induct]) 1);  | 
| 1609 | 738  | 
qed "Fin_into_Finite";  | 
739  | 
||
740  | 
goal CardinalArith.thy "Finite(A) <-> A : Fin(A)";  | 
|
| 2925 | 741  | 
by (blast_tac (!claset addIs [Finite_into_Fin, Fin_into_Finite]) 1);  | 
| 1609 | 742  | 
qed "Finite_Fin_iff";  | 
743  | 
||
744  | 
goal CardinalArith.thy  | 
|
745  | 
"!!A. [| Finite(A); Finite(B) |] ==> Finite(A Un B)";  | 
|
| 2925 | 746  | 
by (blast_tac (!claset addSIs [Fin_into_Finite, Fin_UnI]  | 
747  | 
addSDs [Finite_into_Fin]  | 
|
748  | 
addIs [Un_upper1 RS Fin_mono RS subsetD,  | 
|
749  | 
Un_upper2 RS Fin_mono RS subsetD]) 1);  | 
|
| 1609 | 750  | 
qed "Finite_Un";  | 
751  | 
||
752  | 
||
753  | 
(** Removing elements from a finite set decreases its cardinality **)  | 
|
754  | 
||
755  | 
goal CardinalArith.thy  | 
|
756  | 
"!!A. A: Fin(U) ==> x~:A --> ~ cons(x,A) lepoll A";  | 
|
| 1622 | 757  | 
by (etac Fin_induct 1);  | 
| 2469 | 758  | 
by (simp_tac (!simpset addsimps [lepoll_0_iff]) 1);  | 
| 1609 | 759  | 
by (subgoal_tac "cons(x,cons(xa,y)) = cons(xa,cons(x,y))" 1);  | 
| 2469 | 760  | 
by (Asm_simp_tac 1);  | 
| 2925 | 761  | 
by (blast_tac (!claset addSDs [cons_lepoll_consD]) 1);  | 
762  | 
by (Blast_tac 1);  | 
|
| 1609 | 763  | 
qed "Fin_imp_not_cons_lepoll";  | 
764  | 
||
765  | 
goal CardinalArith.thy  | 
|
766  | 
"!!a A. [| Finite(A); a~:A |] ==> |cons(a,A)| = succ(|A|)";  | 
|
| 1622 | 767  | 
by (rewtac cardinal_def);  | 
768  | 
by (rtac Least_equality 1);  | 
|
| 1609 | 769  | 
by (fold_tac [cardinal_def]);  | 
| 2469 | 770  | 
by (simp_tac (!simpset addsimps [succ_def]) 1);  | 
| 2925 | 771  | 
by (blast_tac (!claset addIs [cons_eqpoll_cong, well_ord_cardinal_eqpoll]  | 
| 1609 | 772  | 
addSEs [mem_irrefl]  | 
773  | 
addSDs [Finite_imp_well_ord]) 1);  | 
|
| 2925 | 774  | 
by (blast_tac (!claset addIs [Ord_succ, Card_cardinal, Card_is_Ord]) 1);  | 
| 1622 | 775  | 
by (rtac notI 1);  | 
| 1609 | 776  | 
by (resolve_tac [Finite_into_Fin RS Fin_imp_not_cons_lepoll RS mp RS notE] 1);  | 
777  | 
by (assume_tac 1);  | 
|
778  | 
by (assume_tac 1);  | 
|
779  | 
by (eresolve_tac [eqpoll_sym RS eqpoll_imp_lepoll RS lepoll_trans] 1);  | 
|
780  | 
by (eresolve_tac [le_imp_lepoll RS lepoll_trans] 1);  | 
|
| 2925 | 781  | 
by (blast_tac (!claset addIs [well_ord_cardinal_eqpoll RS eqpoll_imp_lepoll]  | 
| 1609 | 782  | 
addSDs [Finite_imp_well_ord]) 1);  | 
783  | 
qed "Finite_imp_cardinal_cons";  | 
|
784  | 
||
785  | 
||
| 1622 | 786  | 
goal CardinalArith.thy "!!a A. [| Finite(A);  a:A |] ==> succ(|A-{a}|) = |A|";
 | 
| 1609 | 787  | 
by (res_inst_tac [("b", "A")] (cons_Diff RS subst) 1);
 | 
788  | 
by (assume_tac 1);  | 
|
| 2469 | 789  | 
by (asm_simp_tac (!simpset addsimps [Finite_imp_cardinal_cons,  | 
| 1622 | 790  | 
Diff_subset RS subset_Finite]) 1);  | 
| 2469 | 791  | 
by (asm_simp_tac (!simpset addsimps [cons_Diff]) 1);  | 
| 1622 | 792  | 
qed "Finite_imp_succ_cardinal_Diff";  | 
793  | 
||
794  | 
goal CardinalArith.thy "!!a A. [| Finite(A);  a:A |] ==> |A-{a}| < |A|";
 | 
|
795  | 
by (rtac succ_leE 1);  | 
|
| 2469 | 796  | 
by (asm_simp_tac (!simpset addsimps [Finite_imp_succ_cardinal_Diff,  | 
| 1622 | 797  | 
Ord_cardinal RS le_refl]) 1);  | 
| 1609 | 798  | 
qed "Finite_imp_cardinal_Diff";  | 
799  | 
||
800  | 
||
801  | 
(** Thanks to Krzysztof Grabczewski **)  | 
|
802  | 
||
803  | 
val nat_implies_well_ord = nat_into_Ord RS well_ord_Memrel;  | 
|
804  | 
||
805  | 
goal CardinalArith.thy "!!m n. [| m:nat; n:nat |] ==> m + n eqpoll m #+ n";  | 
|
806  | 
by (rtac eqpoll_trans 1);  | 
|
807  | 
by (eresolve_tac [nat_implies_well_ord RS (  | 
|
808  | 
nat_implies_well_ord RSN (2,  | 
|
809  | 
well_ord_radd RS well_ord_cardinal_eqpoll)) RS eqpoll_sym] 1  | 
|
810  | 
THEN (assume_tac 1));  | 
|
811  | 
by (eresolve_tac [nat_cadd_eq_add RS subst] 1 THEN (assume_tac 1));  | 
|
| 2469 | 812  | 
by (asm_full_simp_tac (!simpset addsimps [cadd_def, eqpoll_refl]) 1);  | 
| 1609 | 813  | 
qed "nat_sum_eqpoll_sum";  | 
814  | 
||
815  | 
goal Nat.thy "!!m. [| m le n; n:nat |] ==> m:nat";  | 
|
| 2925 | 816  | 
by (blast_tac (!claset addSDs [nat_succI RS (Ord_nat RSN (2, OrdmemD))]  | 
| 1609 | 817  | 
addSEs [ltE]) 1);  | 
818  | 
qed "le_in_nat";  | 
|
819  |