| author | wenzelm | 
| Fri, 12 Jul 2013 16:19:05 +0200 | |
| changeset 52622 | e0ff1625e96d | 
| parent 50419 | 3177d0374701 | 
| child 53015 | a1119cf551e8 | 
| permissions | -rw-r--r-- | 
| 42067 | 1 | (* Title: HOL/Probability/Information.thy | 
| 2 | Author: Johannes Hölzl, TU München | |
| 3 | Author: Armin Heller, TU München | |
| 4 | *) | |
| 5 | ||
| 6 | header {*Information theory*}
 | |
| 7 | ||
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 8 | theory Information | 
| 41413 
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
 wenzelm parents: 
41095diff
changeset | 9 | imports | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 10 | Independent_Family | 
| 43556 
0d78c8d31d0d
move conditional expectation to its own theory file
 hoelzl parents: 
43340diff
changeset | 11 | Radon_Nikodym | 
| 41413 
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
 wenzelm parents: 
41095diff
changeset | 12 | "~~/src/HOL/Library/Convex" | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 13 | begin | 
| 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 14 | |
| 39097 | 15 | lemma log_le: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> x \<le> y \<Longrightarrow> log a x \<le> log a y" | 
| 16 | by (subst log_le_cancel_iff) auto | |
| 17 | ||
| 18 | lemma log_less: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> x < y \<Longrightarrow> log a x < log a y" | |
| 19 | by (subst log_less_cancel_iff) auto | |
| 20 | ||
| 21 | lemma setsum_cartesian_product': | |
| 22 | "(\<Sum>x\<in>A \<times> B. f x) = (\<Sum>x\<in>A. setsum (\<lambda>y. f (x, y)) B)" | |
| 23 | unfolding setsum_cartesian_product by simp | |
| 24 | ||
| 25 | lemma split_pairs: | |
| 40859 | 26 | "((A, B) = X) \<longleftrightarrow> (fst X = A \<and> snd X = B)" and | 
| 27 | "(X = (A, B)) \<longleftrightarrow> (fst X = A \<and> snd X = B)" by auto | |
| 38656 | 28 | |
| 29 | section "Information theory" | |
| 30 | ||
| 40859 | 31 | locale information_space = prob_space + | 
| 38656 | 32 | fixes b :: real assumes b_gt_1: "1 < b" | 
| 33 | ||
| 40859 | 34 | context information_space | 
| 38656 | 35 | begin | 
| 36 | ||
| 40859 | 37 | text {* Introduce some simplification rules for logarithm of base @{term b}. *}
 | 
| 38 | ||
| 39 | lemma log_neg_const: | |
| 40 | assumes "x \<le> 0" | |
| 41 | shows "log b x = log b 0" | |
| 36624 | 42 | proof - | 
| 40859 | 43 |   { fix u :: real
 | 
| 44 | have "x \<le> 0" by fact | |
| 45 | also have "0 < exp u" | |
| 46 | using exp_gt_zero . | |
| 47 | finally have "exp u \<noteq> x" | |
| 48 | by auto } | |
| 49 | then show "log b x = log b 0" | |
| 50 | by (simp add: log_def ln_def) | |
| 38656 | 51 | qed | 
| 52 | ||
| 40859 | 53 | lemma log_mult_eq: | 
| 54 | "log b (A * B) = (if 0 < A * B then log b \<bar>A\<bar> + log b \<bar>B\<bar> else log b 0)" | |
| 55 | using log_mult[of b "\<bar>A\<bar>" "\<bar>B\<bar>"] b_gt_1 log_neg_const[of "A * B"] | |
| 56 | by (auto simp: zero_less_mult_iff mult_le_0_iff) | |
| 38656 | 57 | |
| 40859 | 58 | lemma log_inverse_eq: | 
| 59 | "log b (inverse B) = (if 0 < B then - log b B else log b 0)" | |
| 60 | using log_inverse[of b B] log_neg_const[of "inverse B"] b_gt_1 by simp | |
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 61 | |
| 40859 | 62 | lemma log_divide_eq: | 
| 63 | "log b (A / B) = (if 0 < A * B then log b \<bar>A\<bar> - log b \<bar>B\<bar> else log b 0)" | |
| 64 | unfolding divide_inverse log_mult_eq log_inverse_eq abs_inverse | |
| 65 | by (auto simp: zero_less_mult_iff mult_le_0_iff) | |
| 38656 | 66 | |
| 40859 | 67 | lemmas log_simps = log_mult_eq log_inverse_eq log_divide_eq | 
| 38656 | 68 | |
| 69 | end | |
| 70 | ||
| 39097 | 71 | subsection "Kullback$-$Leibler divergence" | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 72 | |
| 39097 | 73 | text {* The Kullback$-$Leibler divergence is also known as relative entropy or
 | 
| 74 | Kullback$-$Leibler distance. *} | |
| 75 | ||
| 76 | definition | |
| 47694 | 77 | "entropy_density b M N = log b \<circ> real \<circ> RN_deriv M N" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 78 | |
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 79 | definition | 
| 47694 | 80 | "KL_divergence b M N = integral\<^isup>L N (entropy_density b M N)" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 81 | |
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 82 | lemma (in information_space) measurable_entropy_density: | 
| 47694 | 83 | assumes ac: "absolutely_continuous M N" "sets N = events" | 
| 84 | shows "entropy_density b M N \<in> borel_measurable M" | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 85 | proof - | 
| 47694 | 86 | from borel_measurable_RN_deriv[OF ac] b_gt_1 show ?thesis | 
| 50003 | 87 | unfolding entropy_density_def by auto | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 88 | qed | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 89 | |
| 50003 | 90 | lemma borel_measurable_RN_deriv_density[measurable (raw)]: | 
| 91 | "f \<in> borel_measurable M \<Longrightarrow> RN_deriv M (density M f) \<in> borel_measurable M" | |
| 92 | using borel_measurable_RN_deriv_density[of "\<lambda>x. max 0 (f x )" M] | |
| 93 | by (simp add: density_max_0[symmetric]) | |
| 94 | ||
| 47694 | 95 | lemma (in sigma_finite_measure) KL_density: | 
| 96 | fixes f :: "'a \<Rightarrow> real" | |
| 97 | assumes "1 < b" | |
| 98 | assumes f: "f \<in> borel_measurable M" "AE x in M. 0 \<le> f x" | |
| 99 | shows "KL_divergence b M (density M f) = (\<integral>x. f x * log b (f x) \<partial>M)" | |
| 100 | unfolding KL_divergence_def | |
| 101 | proof (subst integral_density) | |
| 102 | show "entropy_density b M (density M (\<lambda>x. ereal (f x))) \<in> borel_measurable M" | |
| 49776 | 103 | using f | 
| 50003 | 104 | by (auto simp: comp_def entropy_density_def) | 
| 47694 | 105 | have "density M (RN_deriv M (density M f)) = density M f" | 
| 106 | using f by (intro density_RN_deriv_density) auto | |
| 107 | then have eq: "AE x in M. RN_deriv M (density M f) x = f x" | |
| 108 | using f | |
| 109 | by (intro density_unique) | |
| 110 | (auto intro!: borel_measurable_log borel_measurable_RN_deriv_density simp: RN_deriv_density_nonneg) | |
| 111 | show "(\<integral>x. f x * entropy_density b M (density M (\<lambda>x. ereal (f x))) x \<partial>M) = (\<integral>x. f x * log b (f x) \<partial>M)" | |
| 112 | apply (intro integral_cong_AE) | |
| 113 | using eq | |
| 114 | apply eventually_elim | |
| 115 | apply (auto simp: entropy_density_def) | |
| 116 | done | |
| 117 | qed fact+ | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 118 | |
| 47694 | 119 | lemma (in sigma_finite_measure) KL_density_density: | 
| 120 | fixes f g :: "'a \<Rightarrow> real" | |
| 121 | assumes "1 < b" | |
| 122 | assumes f: "f \<in> borel_measurable M" "AE x in M. 0 \<le> f x" | |
| 123 | assumes g: "g \<in> borel_measurable M" "AE x in M. 0 \<le> g x" | |
| 124 | assumes ac: "AE x in M. f x = 0 \<longrightarrow> g x = 0" | |
| 125 | shows "KL_divergence b (density M f) (density M g) = (\<integral>x. g x * log b (g x / f x) \<partial>M)" | |
| 126 | proof - | |
| 127 | interpret Mf: sigma_finite_measure "density M f" | |
| 128 | using f by (subst sigma_finite_iff_density_finite) auto | |
| 129 | have "KL_divergence b (density M f) (density M g) = | |
| 130 | KL_divergence b (density M f) (density (density M f) (\<lambda>x. g x / f x))" | |
| 131 | using f g ac by (subst density_density_divide) simp_all | |
| 132 | also have "\<dots> = (\<integral>x. (g x / f x) * log b (g x / f x) \<partial>density M f)" | |
| 133 | using f g `1 < b` by (intro Mf.KL_density) (auto simp: AE_density divide_nonneg_nonneg) | |
| 134 | also have "\<dots> = (\<integral>x. g x * log b (g x / f x) \<partial>M)" | |
| 135 | using ac f g `1 < b` by (subst integral_density) (auto intro!: integral_cong_AE) | |
| 136 | finally show ?thesis . | |
| 137 | qed | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 138 | |
| 47694 | 139 | lemma (in information_space) KL_gt_0: | 
| 140 | fixes D :: "'a \<Rightarrow> real" | |
| 141 | assumes "prob_space (density M D)" | |
| 142 | assumes D: "D \<in> borel_measurable M" "AE x in M. 0 \<le> D x" | |
| 143 | assumes int: "integrable M (\<lambda>x. D x * log b (D x))" | |
| 144 | assumes A: "density M D \<noteq> M" | |
| 145 | shows "0 < KL_divergence b M (density M D)" | |
| 146 | proof - | |
| 147 | interpret N: prob_space "density M D" by fact | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 148 | |
| 47694 | 149 | obtain A where "A \<in> sets M" "emeasure (density M D) A \<noteq> emeasure M A" | 
| 150 | using measure_eqI[of "density M D" M] `density M D \<noteq> M` by auto | |
| 151 | ||
| 152 |   let ?D_set = "{x\<in>space M. D x \<noteq> 0}"
 | |
| 153 | have [simp, intro]: "?D_set \<in> sets M" | |
| 154 | using D by auto | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 155 | |
| 43920 | 156 | have D_neg: "(\<integral>\<^isup>+ x. ereal (- D x) \<partial>M) = 0" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 157 | using D by (subst positive_integral_0_iff_AE) auto | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 158 | |
| 47694 | 159 | have "(\<integral>\<^isup>+ x. ereal (D x) \<partial>M) = emeasure (density M D) (space M)" | 
| 160 | using D by (simp add: emeasure_density cong: positive_integral_cong) | |
| 43920 | 161 | then have D_pos: "(\<integral>\<^isup>+ x. ereal (D x) \<partial>M) = 1" | 
| 47694 | 162 | using N.emeasure_space_1 by simp | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 163 | |
| 47694 | 164 | have "integrable M D" "integral\<^isup>L M D = 1" | 
| 165 | using D D_pos D_neg unfolding integrable_def lebesgue_integral_def by simp_all | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 166 | |
| 47694 | 167 | have "0 \<le> 1 - measure M ?D_set" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 168 | using prob_le_1 by (auto simp: field_simps) | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 169 | also have "\<dots> = (\<integral> x. D x - indicator ?D_set x \<partial>M)" | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 170 | using `integrable M D` `integral\<^isup>L M D = 1` | 
| 47694 | 171 | by (simp add: emeasure_eq_measure) | 
| 172 | also have "\<dots> < (\<integral> x. D x * (ln b * log b (D x)) \<partial>M)" | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 173 | proof (rule integral_less_AE) | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 174 | show "integrable M (\<lambda>x. D x - indicator ?D_set x)" | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 175 | using `integrable M D` | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 176 | by (intro integral_diff integral_indicator) auto | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 177 | next | 
| 47694 | 178 | from integral_cmult(1)[OF int, of "ln b"] | 
| 179 | show "integrable M (\<lambda>x. D x * (ln b * log b (D x)))" | |
| 180 | by (simp add: ac_simps) | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 181 | next | 
| 47694 | 182 |     show "emeasure M {x\<in>space M. D x \<noteq> 1 \<and> D x \<noteq> 0} \<noteq> 0"
 | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 183 | proof | 
| 47694 | 184 |       assume eq_0: "emeasure M {x\<in>space M. D x \<noteq> 1 \<and> D x \<noteq> 0} = 0"
 | 
| 185 | then have disj: "AE x in M. D x = 1 \<or> D x = 0" | |
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50003diff
changeset | 186 | using D(1) by (auto intro!: AE_I[OF subset_refl] sets.sets_Collect) | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 187 | |
| 47694 | 188 |       have "emeasure M {x\<in>space M. D x = 1} = (\<integral>\<^isup>+ x. indicator {x\<in>space M. D x = 1} x \<partial>M)"
 | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 189 | using D(1) by auto | 
| 47694 | 190 | also have "\<dots> = (\<integral>\<^isup>+ x. ereal (D x) \<partial>M)" | 
| 43920 | 191 | using disj by (auto intro!: positive_integral_cong_AE simp: indicator_def one_ereal_def) | 
| 47694 | 192 | finally have "AE x in M. D x = 1" | 
| 193 | using D D_pos by (intro AE_I_eq_1) auto | |
| 43920 | 194 | then have "(\<integral>\<^isup>+x. indicator A x\<partial>M) = (\<integral>\<^isup>+x. ereal (D x) * indicator A x\<partial>M)" | 
| 195 | by (intro positive_integral_cong_AE) (auto simp: one_ereal_def[symmetric]) | |
| 47694 | 196 | also have "\<dots> = density M D A" | 
| 197 | using `A \<in> sets M` D by (simp add: emeasure_density) | |
| 198 | finally show False using `A \<in> sets M` `emeasure (density M D) A \<noteq> emeasure M A` by simp | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 199 | qed | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 200 |     show "{x\<in>space M. D x \<noteq> 1 \<and> D x \<noteq> 0} \<in> sets M"
 | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50003diff
changeset | 201 | using D(1) by (auto intro: sets.sets_Collect_conj) | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 202 | |
| 47694 | 203 |     show "AE t in M. t \<in> {x\<in>space M. D x \<noteq> 1 \<and> D x \<noteq> 0} \<longrightarrow>
 | 
| 204 | D t - indicator ?D_set t \<noteq> D t * (ln b * log b (D t))" | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 205 | using D(2) | 
| 47694 | 206 | proof (eventually_elim, safe) | 
| 207 | fix t assume Dt: "t \<in> space M" "D t \<noteq> 1" "D t \<noteq> 0" "0 \<le> D t" | |
| 208 | and eq: "D t - indicator ?D_set t = D t * (ln b * log b (D t))" | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 209 | |
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 210 | have "D t - 1 = D t - indicator ?D_set t" | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 211 | using Dt by simp | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 212 | also note eq | 
| 47694 | 213 | also have "D t * (ln b * log b (D t)) = - D t * ln (1 / D t)" | 
| 214 | using b_gt_1 `D t \<noteq> 0` `0 \<le> D t` | |
| 215 | by (simp add: log_def ln_div less_le) | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 216 | finally have "ln (1 / D t) = 1 / D t - 1" | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 217 | using `D t \<noteq> 0` by (auto simp: field_simps) | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 218 | from ln_eq_minus_one[OF _ this] `D t \<noteq> 0` `0 \<le> D t` `D t \<noteq> 1` | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 219 | show False by auto | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 220 | qed | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 221 | |
| 47694 | 222 | show "AE t in M. D t - indicator ?D_set t \<le> D t * (ln b * log b (D t))" | 
| 223 | using D(2) AE_space | |
| 224 | proof eventually_elim | |
| 225 | fix t assume "t \<in> space M" "0 \<le> D t" | |
| 226 | show "D t - indicator ?D_set t \<le> D t * (ln b * log b (D t))" | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 227 | proof cases | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 228 | assume asm: "D t \<noteq> 0" | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 229 | then have "0 < D t" using `0 \<le> D t` by auto | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 230 | then have "0 < 1 / D t" by auto | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 231 | have "D t - indicator ?D_set t \<le> - D t * (1 / D t - 1)" | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 232 | using asm `t \<in> space M` by (simp add: field_simps) | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 233 | also have "- D t * (1 / D t - 1) \<le> - D t * ln (1 / D t)" | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 234 | using ln_le_minus_one `0 < 1 / D t` by (intro mult_left_mono_neg) auto | 
| 47694 | 235 | also have "\<dots> = D t * (ln b * log b (D t))" | 
| 236 | using `0 < D t` b_gt_1 | |
| 237 | by (simp_all add: log_def ln_div) | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 238 | finally show ?thesis by simp | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 239 | qed simp | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 240 | qed | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 241 | qed | 
| 47694 | 242 | also have "\<dots> = (\<integral> x. ln b * (D x * log b (D x)) \<partial>M)" | 
| 243 | by (simp add: ac_simps) | |
| 244 | also have "\<dots> = ln b * (\<integral> x. D x * log b (D x) \<partial>M)" | |
| 245 | using int by (rule integral_cmult) | |
| 246 | finally show ?thesis | |
| 247 | using b_gt_1 D by (subst KL_density) (auto simp: zero_less_mult_iff) | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 248 | qed | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 249 | |
| 47694 | 250 | lemma (in sigma_finite_measure) KL_same_eq_0: "KL_divergence b M M = 0" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 251 | proof - | 
| 47694 | 252 | have "AE x in M. 1 = RN_deriv M M x" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 253 | proof (rule RN_deriv_unique) | 
| 47694 | 254 | show "(\<lambda>x. 1) \<in> borel_measurable M" "AE x in M. 0 \<le> (1 :: ereal)" by auto | 
| 255 | show "density M (\<lambda>x. 1) = M" | |
| 256 | apply (auto intro!: measure_eqI emeasure_density) | |
| 257 | apply (subst emeasure_density) | |
| 258 | apply auto | |
| 259 | done | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 260 | qed | 
| 47694 | 261 | then have "AE x in M. log b (real (RN_deriv M M x)) = 0" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 262 | by (elim AE_mp) simp | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 263 | from integral_cong_AE[OF this] | 
| 47694 | 264 | have "integral\<^isup>L M (entropy_density b M M) = 0" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 265 | by (simp add: entropy_density_def comp_def) | 
| 47694 | 266 | then show "KL_divergence b M M = 0" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 267 | unfolding KL_divergence_def | 
| 47694 | 268 | by auto | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 269 | qed | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 270 | |
| 47694 | 271 | lemma (in information_space) KL_eq_0_iff_eq: | 
| 272 | fixes D :: "'a \<Rightarrow> real" | |
| 273 | assumes "prob_space (density M D)" | |
| 274 | assumes D: "D \<in> borel_measurable M" "AE x in M. 0 \<le> D x" | |
| 275 | assumes int: "integrable M (\<lambda>x. D x * log b (D x))" | |
| 276 | shows "KL_divergence b M (density M D) = 0 \<longleftrightarrow> density M D = M" | |
| 277 | using KL_same_eq_0[of b] KL_gt_0[OF assms] | |
| 278 | by (auto simp: less_le) | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 279 | |
| 47694 | 280 | lemma (in information_space) KL_eq_0_iff_eq_ac: | 
| 281 | fixes D :: "'a \<Rightarrow> real" | |
| 282 | assumes "prob_space N" | |
| 283 | assumes ac: "absolutely_continuous M N" "sets N = sets M" | |
| 284 | assumes int: "integrable N (entropy_density b M N)" | |
| 285 | shows "KL_divergence b M N = 0 \<longleftrightarrow> N = M" | |
| 41833 
563bea92b2c0
add lemma KL_divergence_vimage, mutual_information_generic
 hoelzl parents: 
41689diff
changeset | 286 | proof - | 
| 47694 | 287 | interpret N: prob_space N by fact | 
| 288 | have "finite_measure N" by unfold_locales | |
| 289 | from real_RN_deriv[OF this ac] guess D . note D = this | |
| 290 | ||
| 291 | have "N = density M (RN_deriv M N)" | |
| 292 | using ac by (rule density_RN_deriv[symmetric]) | |
| 293 | also have "\<dots> = density M D" | |
| 294 | using borel_measurable_RN_deriv[OF ac] D by (auto intro!: density_cong) | |
| 295 | finally have N: "N = density M D" . | |
| 41833 
563bea92b2c0
add lemma KL_divergence_vimage, mutual_information_generic
 hoelzl parents: 
41689diff
changeset | 296 | |
| 47694 | 297 | from absolutely_continuous_AE[OF ac(2,1) D(2)] D b_gt_1 ac measurable_entropy_density | 
| 298 | have "integrable N (\<lambda>x. log b (D x))" | |
| 299 | by (intro integrable_cong_AE[THEN iffD2, OF _ _ _ int]) | |
| 300 | (auto simp: N entropy_density_def) | |
| 301 | with D b_gt_1 have "integrable M (\<lambda>x. D x * log b (D x))" | |
| 302 | by (subst integral_density(2)[symmetric]) (auto simp: N[symmetric] comp_def) | |
| 303 | with `prob_space N` D show ?thesis | |
| 304 | unfolding N | |
| 305 | by (intro KL_eq_0_iff_eq) auto | |
| 41833 
563bea92b2c0
add lemma KL_divergence_vimage, mutual_information_generic
 hoelzl parents: 
41689diff
changeset | 306 | qed | 
| 
563bea92b2c0
add lemma KL_divergence_vimage, mutual_information_generic
 hoelzl parents: 
41689diff
changeset | 307 | |
| 47694 | 308 | lemma (in information_space) KL_nonneg: | 
| 309 | assumes "prob_space (density M D)" | |
| 310 | assumes D: "D \<in> borel_measurable M" "AE x in M. 0 \<le> D x" | |
| 311 | assumes int: "integrable M (\<lambda>x. D x * log b (D x))" | |
| 312 | shows "0 \<le> KL_divergence b M (density M D)" | |
| 313 | using KL_gt_0[OF assms] by (cases "density M D = M") (auto simp: KL_same_eq_0) | |
| 40859 | 314 | |
| 47694 | 315 | lemma (in sigma_finite_measure) KL_density_density_nonneg: | 
| 316 | fixes f g :: "'a \<Rightarrow> real" | |
| 317 | assumes "1 < b" | |
| 318 | assumes f: "f \<in> borel_measurable M" "AE x in M. 0 \<le> f x" "prob_space (density M f)" | |
| 319 | assumes g: "g \<in> borel_measurable M" "AE x in M. 0 \<le> g x" "prob_space (density M g)" | |
| 320 | assumes ac: "AE x in M. f x = 0 \<longrightarrow> g x = 0" | |
| 321 | assumes int: "integrable M (\<lambda>x. g x * log b (g x / f x))" | |
| 322 | shows "0 \<le> KL_divergence b (density M f) (density M g)" | |
| 323 | proof - | |
| 324 | interpret Mf: prob_space "density M f" by fact | |
| 325 | interpret Mf: information_space "density M f" b by default fact | |
| 326 | have eq: "density (density M f) (\<lambda>x. g x / f x) = density M g" (is "?DD = _") | |
| 327 | using f g ac by (subst density_density_divide) simp_all | |
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 328 | |
| 47694 | 329 | have "0 \<le> KL_divergence b (density M f) (density (density M f) (\<lambda>x. g x / f x))" | 
| 330 | proof (rule Mf.KL_nonneg) | |
| 331 | show "prob_space ?DD" unfolding eq by fact | |
| 332 | from f g show "(\<lambda>x. g x / f x) \<in> borel_measurable (density M f)" | |
| 333 | by auto | |
| 334 | show "AE x in density M f. 0 \<le> g x / f x" | |
| 335 | using f g by (auto simp: AE_density divide_nonneg_nonneg) | |
| 336 | show "integrable (density M f) (\<lambda>x. g x / f x * log b (g x / f x))" | |
| 337 | using `1 < b` f g ac | |
| 338 | by (subst integral_density) | |
| 339 | (auto intro!: integrable_cong_AE[THEN iffD2, OF _ _ _ int] measurable_If) | |
| 340 | qed | |
| 341 | also have "\<dots> = KL_divergence b (density M f) (density M g)" | |
| 342 | using f g ac by (subst density_density_divide) simp_all | |
| 343 | finally show ?thesis . | |
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 344 | qed | 
| 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 345 | |
| 49803 | 346 | subsection {* Finite Entropy *}
 | 
| 347 | ||
| 348 | definition (in information_space) | |
| 349 | "finite_entropy S X f \<longleftrightarrow> distributed M S X f \<and> integrable S (\<lambda>x. f x * log b (f x))" | |
| 350 | ||
| 351 | lemma (in information_space) finite_entropy_simple_function: | |
| 352 | assumes X: "simple_function M X" | |
| 353 |   shows "finite_entropy (count_space (X`space M)) X (\<lambda>a. measure M {x \<in> space M. X x = a})"
 | |
| 354 | unfolding finite_entropy_def | |
| 355 | proof | |
| 356 | have [simp]: "finite (X ` space M)" | |
| 357 | using X by (auto simp: simple_function_def) | |
| 358 | then show "integrable (count_space (X ` space M)) | |
| 359 |      (\<lambda>x. prob {xa \<in> space M. X xa = x} * log b (prob {xa \<in> space M. X xa = x}))"
 | |
| 360 | by (rule integrable_count_space) | |
| 361 |   have d: "distributed M (count_space (X ` space M)) X (\<lambda>x. ereal (if x \<in> X`space M then prob {xa \<in> space M. X xa = x} else 0))"
 | |
| 362 | by (rule distributed_simple_function_superset[OF X]) (auto intro!: arg_cong[where f=prob]) | |
| 363 |   show "distributed M (count_space (X ` space M)) X (\<lambda>x. ereal (prob {xa \<in> space M. X xa = x}))"
 | |
| 364 | by (rule distributed_cong_density[THEN iffD1, OF _ _ _ d]) auto | |
| 365 | qed | |
| 366 | ||
| 367 | lemma distributed_transform_AE: | |
| 368 | assumes T: "T \<in> measurable P Q" "absolutely_continuous Q (distr P Q T)" | |
| 369 | assumes g: "distributed M Q Y g" | |
| 370 | shows "AE x in P. 0 \<le> g (T x)" | |
| 371 | using g | |
| 372 | apply (subst AE_distr_iff[symmetric, OF T(1)]) | |
| 50003 | 373 | apply simp | 
| 49803 | 374 | apply (rule absolutely_continuous_AE[OF _ T(2)]) | 
| 375 | apply simp | |
| 376 | apply (simp add: distributed_AE) | |
| 377 | done | |
| 378 | ||
| 379 | lemma ac_fst: | |
| 380 | assumes "sigma_finite_measure T" | |
| 381 | shows "absolutely_continuous S (distr (S \<Otimes>\<^isub>M T) S fst)" | |
| 382 | proof - | |
| 383 | interpret sigma_finite_measure T by fact | |
| 384 |   { fix A assume "A \<in> sets S" "emeasure S A = 0"
 | |
| 385 | moreover then have "fst -` A \<inter> space (S \<Otimes>\<^isub>M T) = A \<times> space T" | |
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50003diff
changeset | 386 | by (auto simp: space_pair_measure dest!: sets.sets_into_space) | 
| 49803 | 387 | ultimately have "emeasure (S \<Otimes>\<^isub>M T) (fst -` A \<inter> space (S \<Otimes>\<^isub>M T)) = 0" | 
| 388 | by (simp add: emeasure_pair_measure_Times) } | |
| 389 | then show ?thesis | |
| 390 | unfolding absolutely_continuous_def | |
| 391 | apply (auto simp: null_sets_distr_iff) | |
| 392 | apply (auto simp: null_sets_def intro!: measurable_sets) | |
| 393 | done | |
| 394 | qed | |
| 395 | ||
| 396 | lemma ac_snd: | |
| 397 | assumes "sigma_finite_measure T" | |
| 398 | shows "absolutely_continuous T (distr (S \<Otimes>\<^isub>M T) T snd)" | |
| 399 | proof - | |
| 400 | interpret sigma_finite_measure T by fact | |
| 401 |   { fix A assume "A \<in> sets T" "emeasure T A = 0"
 | |
| 402 | moreover then have "snd -` A \<inter> space (S \<Otimes>\<^isub>M T) = space S \<times> A" | |
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50003diff
changeset | 403 | by (auto simp: space_pair_measure dest!: sets.sets_into_space) | 
| 49803 | 404 | ultimately have "emeasure (S \<Otimes>\<^isub>M T) (snd -` A \<inter> space (S \<Otimes>\<^isub>M T)) = 0" | 
| 405 | by (simp add: emeasure_pair_measure_Times) } | |
| 406 | then show ?thesis | |
| 407 | unfolding absolutely_continuous_def | |
| 408 | apply (auto simp: null_sets_distr_iff) | |
| 409 | apply (auto simp: null_sets_def intro!: measurable_sets) | |
| 410 | done | |
| 411 | qed | |
| 412 | ||
| 413 | lemma distributed_integrable: | |
| 414 | "distributed M N X f \<Longrightarrow> g \<in> borel_measurable N \<Longrightarrow> | |
| 415 | integrable N (\<lambda>x. f x * g x) \<longleftrightarrow> integrable M (\<lambda>x. g (X x))" | |
| 50003 | 416 | by (auto simp: distributed_real_AE | 
| 49803 | 417 | distributed_distr_eq_density[symmetric] integral_density[symmetric] integrable_distr_eq) | 
| 418 | ||
| 419 | lemma distributed_transform_integrable: | |
| 420 | assumes Px: "distributed M N X Px" | |
| 421 | assumes "distributed M P Y Py" | |
| 422 | assumes Y: "Y = (\<lambda>x. T (X x))" and T: "T \<in> measurable N P" and f: "f \<in> borel_measurable P" | |
| 423 | shows "integrable P (\<lambda>x. Py x * f x) \<longleftrightarrow> integrable N (\<lambda>x. Px x * f (T x))" | |
| 424 | proof - | |
| 425 | have "integrable P (\<lambda>x. Py x * f x) \<longleftrightarrow> integrable M (\<lambda>x. f (Y x))" | |
| 426 | by (rule distributed_integrable) fact+ | |
| 427 | also have "\<dots> \<longleftrightarrow> integrable M (\<lambda>x. f (T (X x)))" | |
| 428 | using Y by simp | |
| 429 | also have "\<dots> \<longleftrightarrow> integrable N (\<lambda>x. Px x * f (T x))" | |
| 430 | using measurable_comp[OF T f] Px by (intro distributed_integrable[symmetric]) (auto simp: comp_def) | |
| 431 | finally show ?thesis . | |
| 432 | qed | |
| 433 | ||
| 434 | lemma integrable_cong_AE_imp: "integrable M g \<Longrightarrow> f \<in> borel_measurable M \<Longrightarrow> (AE x in M. g x = f x) \<Longrightarrow> integrable M f" | |
| 435 | using integrable_cong_AE by blast | |
| 436 | ||
| 437 | lemma (in information_space) finite_entropy_integrable: | |
| 438 | "finite_entropy S X Px \<Longrightarrow> integrable S (\<lambda>x. Px x * log b (Px x))" | |
| 439 | unfolding finite_entropy_def by auto | |
| 440 | ||
| 441 | lemma (in information_space) finite_entropy_distributed: | |
| 442 | "finite_entropy S X Px \<Longrightarrow> distributed M S X Px" | |
| 443 | unfolding finite_entropy_def by auto | |
| 444 | ||
| 445 | lemma (in information_space) finite_entropy_integrable_transform: | |
| 446 | assumes Fx: "finite_entropy S X Px" | |
| 447 | assumes Fy: "distributed M T Y Py" | |
| 448 | and "X = (\<lambda>x. f (Y x))" | |
| 449 | and "f \<in> measurable T S" | |
| 450 | shows "integrable T (\<lambda>x. Py x * log b (Px (f x)))" | |
| 451 | using assms unfolding finite_entropy_def | |
| 452 | using distributed_transform_integrable[of M T Y Py S X Px f "\<lambda>x. log b (Px x)"] | |
| 50003 | 453 | by auto | 
| 49803 | 454 | |
| 39097 | 455 | subsection {* Mutual Information *}
 | 
| 456 | ||
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 457 | definition (in prob_space) | 
| 38656 | 458 | "mutual_information b S T X Y = | 
| 47694 | 459 | KL_divergence b (distr M S X \<Otimes>\<^isub>M distr M T Y) (distr M (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x)))" | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 460 | |
| 47694 | 461 | lemma (in information_space) mutual_information_indep_vars: | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 462 | fixes S T X Y | 
| 47694 | 463 | defines "P \<equiv> distr M S X \<Otimes>\<^isub>M distr M T Y" | 
| 464 | defines "Q \<equiv> distr M (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x))" | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 465 | shows "indep_var S X T Y \<longleftrightarrow> | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 466 | (random_variable S X \<and> random_variable T Y \<and> | 
| 47694 | 467 | absolutely_continuous P Q \<and> integrable Q (entropy_density b P Q) \<and> | 
| 468 | mutual_information b S T X Y = 0)" | |
| 469 | unfolding indep_var_distribution_eq | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 470 | proof safe | 
| 50003 | 471 | assume rv[measurable]: "random_variable S X" "random_variable T Y" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 472 | |
| 47694 | 473 | interpret X: prob_space "distr M S X" | 
| 474 | by (rule prob_space_distr) fact | |
| 475 | interpret Y: prob_space "distr M T Y" | |
| 476 | by (rule prob_space_distr) fact | |
| 477 | interpret XY: pair_prob_space "distr M S X" "distr M T Y" by default | |
| 478 | interpret P: information_space P b unfolding P_def by default (rule b_gt_1) | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 479 | |
| 47694 | 480 | interpret Q: prob_space Q unfolding Q_def | 
| 50003 | 481 | by (rule prob_space_distr) simp | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 482 | |
| 47694 | 483 |   { assume "distr M S X \<Otimes>\<^isub>M distr M T Y = distr M (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x))"
 | 
| 484 | then have [simp]: "Q = P" unfolding Q_def P_def by simp | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 485 | |
| 47694 | 486 | show ac: "absolutely_continuous P Q" by (simp add: absolutely_continuous_def) | 
| 487 | then have ed: "entropy_density b P Q \<in> borel_measurable P" | |
| 488 | by (rule P.measurable_entropy_density) simp | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 489 | |
| 47694 | 490 | have "AE x in P. 1 = RN_deriv P Q x" | 
| 491 | proof (rule P.RN_deriv_unique) | |
| 492 | show "density P (\<lambda>x. 1) = Q" | |
| 493 | unfolding `Q = P` by (intro measure_eqI) (auto simp: emeasure_density) | |
| 494 | qed auto | |
| 495 | then have ae_0: "AE x in P. entropy_density b P Q x = 0" | |
| 496 | by eventually_elim (auto simp: entropy_density_def) | |
| 497 | then have "integrable P (entropy_density b P Q) \<longleftrightarrow> integrable Q (\<lambda>x. 0)" | |
| 498 | using ed unfolding `Q = P` by (intro integrable_cong_AE) auto | |
| 499 | then show "integrable Q (entropy_density b P Q)" by simp | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 500 | |
| 47694 | 501 | show "mutual_information b S T X Y = 0" | 
| 502 | unfolding mutual_information_def KL_divergence_def P_def[symmetric] Q_def[symmetric] `Q = P` | |
| 503 | using ae_0 by (simp cong: integral_cong_AE) } | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 504 | |
| 47694 | 505 |   { assume ac: "absolutely_continuous P Q"
 | 
| 506 | assume int: "integrable Q (entropy_density b P Q)" | |
| 507 | assume I_eq_0: "mutual_information b S T X Y = 0" | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 508 | |
| 47694 | 509 | have eq: "Q = P" | 
| 510 | proof (rule P.KL_eq_0_iff_eq_ac[THEN iffD1]) | |
| 511 | show "prob_space Q" by unfold_locales | |
| 512 | show "absolutely_continuous P Q" by fact | |
| 513 | show "integrable Q (entropy_density b P Q)" by fact | |
| 514 | show "sets Q = sets P" by (simp add: P_def Q_def sets_pair_measure) | |
| 515 | show "KL_divergence b P Q = 0" | |
| 516 | using I_eq_0 unfolding mutual_information_def by (simp add: P_def Q_def) | |
| 517 | qed | |
| 518 | then show "distr M S X \<Otimes>\<^isub>M distr M T Y = distr M (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x))" | |
| 519 | unfolding P_def Q_def .. } | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 520 | qed | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 521 | |
| 40859 | 522 | abbreviation (in information_space) | 
| 523 |   mutual_information_Pow ("\<I>'(_ ; _')") where
 | |
| 47694 | 524 | "\<I>(X ; Y) \<equiv> mutual_information b (count_space (X`space M)) (count_space (Y`space M)) X Y" | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 525 | |
| 47694 | 526 | lemma (in information_space) | 
| 527 | fixes Pxy :: "'b \<times> 'c \<Rightarrow> real" and Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real" | |
| 49803 | 528 | assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" | 
| 529 | assumes Fx: "finite_entropy S X Px" and Fy: "finite_entropy T Y Py" | |
| 530 | assumes Fxy: "finite_entropy (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x)) Pxy" | |
| 531 | defines "f \<equiv> \<lambda>x. Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x)))" | |
| 532 | shows mutual_information_distr': "mutual_information b S T X Y = integral\<^isup>L (S \<Otimes>\<^isub>M T) f" (is "?M = ?R") | |
| 533 | and mutual_information_nonneg': "0 \<le> mutual_information b S T X Y" | |
| 534 | proof - | |
| 535 | have Px: "distributed M S X Px" | |
| 536 | using Fx by (auto simp: finite_entropy_def) | |
| 537 | have Py: "distributed M T Y Py" | |
| 538 | using Fy by (auto simp: finite_entropy_def) | |
| 539 | have Pxy: "distributed M (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x)) Pxy" | |
| 540 | using Fxy by (auto simp: finite_entropy_def) | |
| 541 | ||
| 542 | have X: "random_variable S X" | |
| 50003 | 543 | using Px by auto | 
| 49803 | 544 | have Y: "random_variable T Y" | 
| 50003 | 545 | using Py by auto | 
| 49803 | 546 | interpret S: sigma_finite_measure S by fact | 
| 547 | interpret T: sigma_finite_measure T by fact | |
| 548 | interpret ST: pair_sigma_finite S T .. | |
| 549 | interpret X: prob_space "distr M S X" using X by (rule prob_space_distr) | |
| 550 | interpret Y: prob_space "distr M T Y" using Y by (rule prob_space_distr) | |
| 551 | interpret XY: pair_prob_space "distr M S X" "distr M T Y" .. | |
| 552 | let ?P = "S \<Otimes>\<^isub>M T" | |
| 553 | let ?D = "distr M ?P (\<lambda>x. (X x, Y x))" | |
| 554 | ||
| 555 |   { fix A assume "A \<in> sets S"
 | |
| 556 | with X Y have "emeasure (distr M S X) A = emeasure ?D (A \<times> space T)" | |
| 557 | by (auto simp: emeasure_distr measurable_Pair measurable_space | |
| 558 | intro!: arg_cong[where f="emeasure M"]) } | |
| 559 | note marginal_eq1 = this | |
| 560 |   { fix A assume "A \<in> sets T"
 | |
| 561 | with X Y have "emeasure (distr M T Y) A = emeasure ?D (space S \<times> A)" | |
| 562 | by (auto simp: emeasure_distr measurable_Pair measurable_space | |
| 563 | intro!: arg_cong[where f="emeasure M"]) } | |
| 564 | note marginal_eq2 = this | |
| 565 | ||
| 566 | have eq: "(\<lambda>x. ereal (Px (fst x) * Py (snd x))) = (\<lambda>(x, y). ereal (Px x) * ereal (Py y))" | |
| 567 | by auto | |
| 568 | ||
| 569 | have distr_eq: "distr M S X \<Otimes>\<^isub>M distr M T Y = density ?P (\<lambda>x. ereal (Px (fst x) * Py (snd x)))" | |
| 570 | unfolding Px(1)[THEN distributed_distr_eq_density] Py(1)[THEN distributed_distr_eq_density] eq | |
| 571 | proof (subst pair_measure_density) | |
| 572 | show "(\<lambda>x. ereal (Px x)) \<in> borel_measurable S" "(\<lambda>y. ereal (Py y)) \<in> borel_measurable T" | |
| 573 | "AE x in S. 0 \<le> ereal (Px x)" "AE y in T. 0 \<le> ereal (Py y)" | |
| 574 | using Px Py by (auto simp: distributed_def) | |
| 575 | show "sigma_finite_measure (density T Py)" unfolding Py(1)[THEN distributed_distr_eq_density, symmetric] .. | |
| 576 | qed (fact | simp)+ | |
| 577 | ||
| 578 | have M: "?M = KL_divergence b (density ?P (\<lambda>x. ereal (Px (fst x) * Py (snd x)))) (density ?P (\<lambda>x. ereal (Pxy x)))" | |
| 579 | unfolding mutual_information_def distr_eq Pxy(1)[THEN distributed_distr_eq_density] .. | |
| 580 | ||
| 581 | from Px Py have f: "(\<lambda>x. Px (fst x) * Py (snd x)) \<in> borel_measurable ?P" | |
| 582 | by (intro borel_measurable_times) (auto intro: distributed_real_measurable measurable_fst'' measurable_snd'') | |
| 583 | have PxPy_nonneg: "AE x in ?P. 0 \<le> Px (fst x) * Py (snd x)" | |
| 584 | proof (rule ST.AE_pair_measure) | |
| 585 |     show "{x \<in> space ?P. 0 \<le> Px (fst x) * Py (snd x)} \<in> sets ?P"
 | |
| 586 | using f by auto | |
| 587 | show "AE x in S. AE y in T. 0 \<le> Px (fst (x, y)) * Py (snd (x, y))" | |
| 588 | using Px Py by (auto simp: zero_le_mult_iff dest!: distributed_real_AE) | |
| 589 | qed | |
| 590 | ||
| 591 | have "(AE x in ?P. Px (fst x) = 0 \<longrightarrow> Pxy x = 0)" | |
| 592 | by (rule subdensity_real[OF measurable_fst Pxy Px]) auto | |
| 593 | moreover | |
| 594 | have "(AE x in ?P. Py (snd x) = 0 \<longrightarrow> Pxy x = 0)" | |
| 595 | by (rule subdensity_real[OF measurable_snd Pxy Py]) auto | |
| 596 | ultimately have ac: "AE x in ?P. Px (fst x) * Py (snd x) = 0 \<longrightarrow> Pxy x = 0" | |
| 597 | by eventually_elim auto | |
| 598 | ||
| 599 | show "?M = ?R" | |
| 600 | unfolding M f_def | |
| 601 | using b_gt_1 f PxPy_nonneg Pxy[THEN distributed_real_measurable] Pxy[THEN distributed_real_AE] ac | |
| 602 | by (rule ST.KL_density_density) | |
| 603 | ||
| 604 | have X: "X = fst \<circ> (\<lambda>x. (X x, Y x))" and Y: "Y = snd \<circ> (\<lambda>x. (X x, Y x))" | |
| 605 | by auto | |
| 606 | ||
| 607 | have "integrable (S \<Otimes>\<^isub>M T) (\<lambda>x. Pxy x * log b (Pxy x) - Pxy x * log b (Px (fst x)) - Pxy x * log b (Py (snd x)))" | |
| 608 | using finite_entropy_integrable[OF Fxy] | |
| 609 | using finite_entropy_integrable_transform[OF Fx Pxy, of fst] | |
| 610 | using finite_entropy_integrable_transform[OF Fy Pxy, of snd] | |
| 611 | by simp | |
| 612 | moreover have "f \<in> borel_measurable (S \<Otimes>\<^isub>M T)" | |
| 613 | unfolding f_def using Px Py Pxy | |
| 614 | by (auto intro: distributed_real_measurable measurable_fst'' measurable_snd'' | |
| 615 | intro!: borel_measurable_times borel_measurable_log borel_measurable_divide) | |
| 616 | ultimately have int: "integrable (S \<Otimes>\<^isub>M T) f" | |
| 617 | apply (rule integrable_cong_AE_imp) | |
| 618 | using | |
| 619 | distributed_transform_AE[OF measurable_fst ac_fst, of T, OF T Px] | |
| 620 | distributed_transform_AE[OF measurable_snd ac_snd, of _ _ _ _ S, OF T Py] | |
| 621 | subdensity_real[OF measurable_fst Pxy Px X] | |
| 622 | subdensity_real[OF measurable_snd Pxy Py Y] | |
| 623 | distributed_real_AE[OF Pxy] | |
| 624 | by eventually_elim | |
| 625 | (auto simp: f_def log_divide_eq log_mult_eq field_simps zero_less_mult_iff mult_nonneg_nonneg) | |
| 626 | ||
| 627 | show "0 \<le> ?M" unfolding M | |
| 628 | proof (rule ST.KL_density_density_nonneg | |
| 629 | [OF b_gt_1 f PxPy_nonneg _ Pxy[THEN distributed_real_measurable] Pxy[THEN distributed_real_AE] _ ac int[unfolded f_def]]) | |
| 630 | show "prob_space (density (S \<Otimes>\<^isub>M T) (\<lambda>x. ereal (Pxy x))) " | |
| 631 | unfolding distributed_distr_eq_density[OF Pxy, symmetric] | |
| 632 | using distributed_measurable[OF Pxy] by (rule prob_space_distr) | |
| 633 | show "prob_space (density (S \<Otimes>\<^isub>M T) (\<lambda>x. ereal (Px (fst x) * Py (snd x))))" | |
| 634 | unfolding distr_eq[symmetric] by unfold_locales | |
| 635 | qed | |
| 636 | qed | |
| 637 | ||
| 638 | ||
| 639 | lemma (in information_space) | |
| 640 | fixes Pxy :: "'b \<times> 'c \<Rightarrow> real" and Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real" | |
| 47694 | 641 | assumes "sigma_finite_measure S" "sigma_finite_measure T" | 
| 642 | assumes Px: "distributed M S X Px" and Py: "distributed M T Y Py" | |
| 643 | assumes Pxy: "distributed M (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x)) Pxy" | |
| 644 | defines "f \<equiv> \<lambda>x. Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x)))" | |
| 645 | shows mutual_information_distr: "mutual_information b S T X Y = integral\<^isup>L (S \<Otimes>\<^isub>M T) f" (is "?M = ?R") | |
| 646 | and mutual_information_nonneg: "integrable (S \<Otimes>\<^isub>M T) f \<Longrightarrow> 0 \<le> mutual_information b S T X Y" | |
| 40859 | 647 | proof - | 
| 47694 | 648 | have X: "random_variable S X" | 
| 649 | using Px by (auto simp: distributed_def) | |
| 650 | have Y: "random_variable T Y" | |
| 651 | using Py by (auto simp: distributed_def) | |
| 652 | interpret S: sigma_finite_measure S by fact | |
| 653 | interpret T: sigma_finite_measure T by fact | |
| 654 | interpret ST: pair_sigma_finite S T .. | |
| 655 | interpret X: prob_space "distr M S X" using X by (rule prob_space_distr) | |
| 656 | interpret Y: prob_space "distr M T Y" using Y by (rule prob_space_distr) | |
| 657 | interpret XY: pair_prob_space "distr M S X" "distr M T Y" .. | |
| 658 | let ?P = "S \<Otimes>\<^isub>M T" | |
| 659 | let ?D = "distr M ?P (\<lambda>x. (X x, Y x))" | |
| 660 | ||
| 661 |   { fix A assume "A \<in> sets S"
 | |
| 662 | with X Y have "emeasure (distr M S X) A = emeasure ?D (A \<times> space T)" | |
| 663 | by (auto simp: emeasure_distr measurable_Pair measurable_space | |
| 664 | intro!: arg_cong[where f="emeasure M"]) } | |
| 665 | note marginal_eq1 = this | |
| 666 |   { fix A assume "A \<in> sets T"
 | |
| 667 | with X Y have "emeasure (distr M T Y) A = emeasure ?D (space S \<times> A)" | |
| 668 | by (auto simp: emeasure_distr measurable_Pair measurable_space | |
| 669 | intro!: arg_cong[where f="emeasure M"]) } | |
| 670 | note marginal_eq2 = this | |
| 671 | ||
| 672 | have eq: "(\<lambda>x. ereal (Px (fst x) * Py (snd x))) = (\<lambda>(x, y). ereal (Px x) * ereal (Py y))" | |
| 673 | by auto | |
| 674 | ||
| 675 | have distr_eq: "distr M S X \<Otimes>\<^isub>M distr M T Y = density ?P (\<lambda>x. ereal (Px (fst x) * Py (snd x)))" | |
| 676 | unfolding Px(1)[THEN distributed_distr_eq_density] Py(1)[THEN distributed_distr_eq_density] eq | |
| 677 | proof (subst pair_measure_density) | |
| 678 | show "(\<lambda>x. ereal (Px x)) \<in> borel_measurable S" "(\<lambda>y. ereal (Py y)) \<in> borel_measurable T" | |
| 679 | "AE x in S. 0 \<le> ereal (Px x)" "AE y in T. 0 \<le> ereal (Py y)" | |
| 680 | using Px Py by (auto simp: distributed_def) | |
| 681 | show "sigma_finite_measure (density T Py)" unfolding Py(1)[THEN distributed_distr_eq_density, symmetric] .. | |
| 682 | qed (fact | simp)+ | |
| 683 | ||
| 684 | have M: "?M = KL_divergence b (density ?P (\<lambda>x. ereal (Px (fst x) * Py (snd x)))) (density ?P (\<lambda>x. ereal (Pxy x)))" | |
| 685 | unfolding mutual_information_def distr_eq Pxy(1)[THEN distributed_distr_eq_density] .. | |
| 686 | ||
| 687 | from Px Py have f: "(\<lambda>x. Px (fst x) * Py (snd x)) \<in> borel_measurable ?P" | |
| 688 | by (intro borel_measurable_times) (auto intro: distributed_real_measurable measurable_fst'' measurable_snd'') | |
| 689 | have PxPy_nonneg: "AE x in ?P. 0 \<le> Px (fst x) * Py (snd x)" | |
| 690 | proof (rule ST.AE_pair_measure) | |
| 691 |     show "{x \<in> space ?P. 0 \<le> Px (fst x) * Py (snd x)} \<in> sets ?P"
 | |
| 692 | using f by auto | |
| 693 | show "AE x in S. AE y in T. 0 \<le> Px (fst (x, y)) * Py (snd (x, y))" | |
| 694 | using Px Py by (auto simp: zero_le_mult_iff dest!: distributed_real_AE) | |
| 695 | qed | |
| 696 | ||
| 697 | have "(AE x in ?P. Px (fst x) = 0 \<longrightarrow> Pxy x = 0)" | |
| 698 | by (rule subdensity_real[OF measurable_fst Pxy Px]) auto | |
| 699 | moreover | |
| 700 | have "(AE x in ?P. Py (snd x) = 0 \<longrightarrow> Pxy x = 0)" | |
| 701 | by (rule subdensity_real[OF measurable_snd Pxy Py]) auto | |
| 702 | ultimately have ac: "AE x in ?P. Px (fst x) * Py (snd x) = 0 \<longrightarrow> Pxy x = 0" | |
| 703 | by eventually_elim auto | |
| 704 | ||
| 705 | show "?M = ?R" | |
| 706 | unfolding M f_def | |
| 707 | using b_gt_1 f PxPy_nonneg Pxy[THEN distributed_real_measurable] Pxy[THEN distributed_real_AE] ac | |
| 708 | by (rule ST.KL_density_density) | |
| 709 | ||
| 710 | assume int: "integrable (S \<Otimes>\<^isub>M T) f" | |
| 711 | show "0 \<le> ?M" unfolding M | |
| 712 | proof (rule ST.KL_density_density_nonneg | |
| 713 | [OF b_gt_1 f PxPy_nonneg _ Pxy[THEN distributed_real_measurable] Pxy[THEN distributed_real_AE] _ ac int[unfolded f_def]]) | |
| 714 | show "prob_space (density (S \<Otimes>\<^isub>M T) (\<lambda>x. ereal (Pxy x))) " | |
| 715 | unfolding distributed_distr_eq_density[OF Pxy, symmetric] | |
| 716 | using distributed_measurable[OF Pxy] by (rule prob_space_distr) | |
| 717 | show "prob_space (density (S \<Otimes>\<^isub>M T) (\<lambda>x. ereal (Px (fst x) * Py (snd x))))" | |
| 718 | unfolding distr_eq[symmetric] by unfold_locales | |
| 40859 | 719 | qed | 
| 720 | qed | |
| 721 | ||
| 722 | lemma (in information_space) | |
| 47694 | 723 | fixes Pxy :: "'b \<times> 'c \<Rightarrow> real" and Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real" | 
| 724 | assumes "sigma_finite_measure S" "sigma_finite_measure T" | |
| 725 | assumes Px: "distributed M S X Px" and Py: "distributed M T Y Py" | |
| 726 | assumes Pxy: "distributed M (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x)) Pxy" | |
| 727 | assumes ae: "AE x in S. AE y in T. Pxy (x, y) = Px x * Py y" | |
| 728 | shows mutual_information_eq_0: "mutual_information b S T X Y = 0" | |
| 36624 | 729 | proof - | 
| 47694 | 730 | interpret S: sigma_finite_measure S by fact | 
| 731 | interpret T: sigma_finite_measure T by fact | |
| 732 | interpret ST: pair_sigma_finite S T .. | |
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 733 | |
| 47694 | 734 | have "AE x in S \<Otimes>\<^isub>M T. Px (fst x) = 0 \<longrightarrow> Pxy x = 0" | 
| 735 | by (rule subdensity_real[OF measurable_fst Pxy Px]) auto | |
| 736 | moreover | |
| 737 | have "AE x in S \<Otimes>\<^isub>M T. Py (snd x) = 0 \<longrightarrow> Pxy x = 0" | |
| 738 | by (rule subdensity_real[OF measurable_snd Pxy Py]) auto | |
| 739 | moreover | |
| 740 | have "AE x in S \<Otimes>\<^isub>M T. Pxy x = Px (fst x) * Py (snd x)" | |
| 741 | using distributed_real_measurable[OF Px] distributed_real_measurable[OF Py] distributed_real_measurable[OF Pxy] | |
| 742 | by (intro ST.AE_pair_measure) (auto simp: ae intro!: measurable_snd'' measurable_fst'') | |
| 743 | ultimately have "AE x in S \<Otimes>\<^isub>M T. Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x))) = 0" | |
| 744 | by eventually_elim simp | |
| 745 | then have "(\<integral>x. Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x))) \<partial>(S \<Otimes>\<^isub>M T)) = (\<integral>x. 0 \<partial>(S \<Otimes>\<^isub>M T))" | |
| 746 | by (rule integral_cong_AE) | |
| 747 | then show ?thesis | |
| 748 | by (subst mutual_information_distr[OF assms(1-5)]) simp | |
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 749 | qed | 
| 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 750 | |
| 47694 | 751 | lemma (in information_space) mutual_information_simple_distributed: | 
| 752 | assumes X: "simple_distributed M X Px" and Y: "simple_distributed M Y Py" | |
| 753 | assumes XY: "simple_distributed M (\<lambda>x. (X x, Y x)) Pxy" | |
| 754 | shows "\<I>(X ; Y) = (\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x))`space M. Pxy (x, y) * log b (Pxy (x, y) / (Px x * Py y)))" | |
| 755 | proof (subst mutual_information_distr[OF _ _ simple_distributed[OF X] simple_distributed[OF Y] simple_distributed_joint[OF XY]]) | |
| 756 | note fin = simple_distributed_joint_finite[OF XY, simp] | |
| 757 | show "sigma_finite_measure (count_space (X ` space M))" | |
| 758 | by (simp add: sigma_finite_measure_count_space_finite) | |
| 759 | show "sigma_finite_measure (count_space (Y ` space M))" | |
| 760 | by (simp add: sigma_finite_measure_count_space_finite) | |
| 761 | let ?Pxy = "\<lambda>x. (if x \<in> (\<lambda>x. (X x, Y x)) ` space M then Pxy x else 0)" | |
| 762 | let ?f = "\<lambda>x. ?Pxy x * log b (?Pxy x / (Px (fst x) * Py (snd x)))" | |
| 763 | have "\<And>x. ?f x = (if x \<in> (\<lambda>x. (X x, Y x)) ` space M then Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x))) else 0)" | |
| 764 | by auto | |
| 765 | with fin show "(\<integral> x. ?f x \<partial>(count_space (X ` space M) \<Otimes>\<^isub>M count_space (Y ` space M))) = | |
| 766 | (\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x)) ` space M. Pxy (x, y) * log b (Pxy (x, y) / (Px x * Py y)))" | |
| 767 | by (auto simp add: pair_measure_count_space lebesgue_integral_count_space_finite setsum_cases split_beta' | |
| 768 | intro!: setsum_cong) | |
| 769 | qed | |
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 770 | |
| 47694 | 771 | lemma (in information_space) | 
| 772 | fixes Pxy :: "'b \<times> 'c \<Rightarrow> real" and Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real" | |
| 773 | assumes Px: "simple_distributed M X Px" and Py: "simple_distributed M Y Py" | |
| 774 | assumes Pxy: "simple_distributed M (\<lambda>x. (X x, Y x)) Pxy" | |
| 775 | assumes ae: "\<forall>x\<in>space M. Pxy (X x, Y x) = Px (X x) * Py (Y x)" | |
| 776 | shows mutual_information_eq_0_simple: "\<I>(X ; Y) = 0" | |
| 777 | proof (subst mutual_information_simple_distributed[OF Px Py Pxy]) | |
| 778 | have "(\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x)) ` space M. Pxy (x, y) * log b (Pxy (x, y) / (Px x * Py y))) = | |
| 779 | (\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x)) ` space M. 0)" | |
| 780 | by (intro setsum_cong) (auto simp: ae) | |
| 781 | then show "(\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x)) ` space M. | |
| 782 | Pxy (x, y) * log b (Pxy (x, y) / (Px x * Py y))) = 0" by simp | |
| 783 | qed | |
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 784 | |
| 39097 | 785 | subsection {* Entropy *}
 | 
| 786 | ||
| 47694 | 787 | definition (in prob_space) entropy :: "real \<Rightarrow> 'b measure \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> real" where
 | 
| 788 | "entropy b S X = - KL_divergence b S (distr M S X)" | |
| 789 | ||
| 40859 | 790 | abbreviation (in information_space) | 
| 791 |   entropy_Pow ("\<H>'(_')") where
 | |
| 47694 | 792 | "\<H>(X) \<equiv> entropy b (count_space (X`space M)) X" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41833diff
changeset | 793 | |
| 49791 | 794 | lemma (in prob_space) distributed_RN_deriv: | 
| 795 | assumes X: "distributed M S X Px" | |
| 796 | shows "AE x in S. RN_deriv S (density S Px) x = Px x" | |
| 797 | proof - | |
| 798 | note D = distributed_measurable[OF X] distributed_borel_measurable[OF X] distributed_AE[OF X] | |
| 799 | interpret X: prob_space "distr M S X" | |
| 800 | using D(1) by (rule prob_space_distr) | |
| 801 | ||
| 802 | have sf: "sigma_finite_measure (distr M S X)" by default | |
| 803 | show ?thesis | |
| 804 | using D | |
| 805 | apply (subst eq_commute) | |
| 806 | apply (intro RN_deriv_unique_sigma_finite) | |
| 807 | apply (auto intro: divide_nonneg_nonneg measure_nonneg | |
| 808 | simp: distributed_distr_eq_density[symmetric, OF X] sf) | |
| 809 | done | |
| 810 | qed | |
| 811 | ||
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 812 | lemma (in information_space) | 
| 47694 | 813 | fixes X :: "'a \<Rightarrow> 'b" | 
| 49785 | 814 | assumes X: "distributed M MX X f" | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 815 | shows entropy_distr: "entropy b MX X = - (\<integral>x. f x * log b (f x) \<partial>MX)" (is ?eq) | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 816 | proof - | 
| 49785 | 817 | note D = distributed_measurable[OF X] distributed_borel_measurable[OF X] distributed_AE[OF X] | 
| 49791 | 818 | note ae = distributed_RN_deriv[OF X] | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 819 | |
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 820 | have ae_eq: "AE x in distr M MX X. log b (real (RN_deriv MX (distr M MX X) x)) = | 
| 49785 | 821 | log b (f x)" | 
| 822 | unfolding distributed_distr_eq_density[OF X] | |
| 823 | apply (subst AE_density) | |
| 824 | using D apply simp | |
| 825 | using ae apply eventually_elim | |
| 826 | apply auto | |
| 827 | done | |
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 828 | |
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 829 | have int_eq: "- (\<integral> x. log b (f x) \<partial>distr M MX X) = - (\<integral> x. f x * log b (f x) \<partial>MX)" | 
| 49785 | 830 | unfolding distributed_distr_eq_density[OF X] | 
| 831 | using D | |
| 832 | by (subst integral_density) | |
| 833 | (auto simp: borel_measurable_ereal_iff) | |
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 834 | |
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 835 | show ?eq | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 836 | unfolding entropy_def KL_divergence_def entropy_density_def comp_def | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 837 | apply (subst integral_cong_AE) | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 838 | apply (rule ae_eq) | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 839 | apply (rule int_eq) | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 840 | done | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 841 | qed | 
| 49785 | 842 | |
| 49786 | 843 | lemma (in prob_space) distributed_imp_emeasure_nonzero: | 
| 844 | assumes X: "distributed M MX X Px" | |
| 845 |   shows "emeasure MX {x \<in> space MX. Px x \<noteq> 0} \<noteq> 0"
 | |
| 846 | proof | |
| 847 | note Px = distributed_borel_measurable[OF X] distributed_AE[OF X] | |
| 848 | interpret X: prob_space "distr M MX X" | |
| 849 | using distributed_measurable[OF X] by (rule prob_space_distr) | |
| 850 | ||
| 851 |   assume "emeasure MX {x \<in> space MX. Px x \<noteq> 0} = 0"
 | |
| 852 | with Px have "AE x in MX. Px x = 0" | |
| 853 | by (intro AE_I[OF subset_refl]) (auto simp: borel_measurable_ereal_iff) | |
| 854 | moreover | |
| 855 | from X.emeasure_space_1 have "(\<integral>\<^isup>+x. Px x \<partial>MX) = 1" | |
| 856 | unfolding distributed_distr_eq_density[OF X] using Px | |
| 857 | by (subst (asm) emeasure_density) | |
| 858 | (auto simp: borel_measurable_ereal_iff intro!: integral_cong cong: positive_integral_cong) | |
| 859 | ultimately show False | |
| 860 | by (simp add: positive_integral_cong_AE) | |
| 861 | qed | |
| 862 | ||
| 863 | lemma (in information_space) entropy_le: | |
| 864 | fixes Px :: "'b \<Rightarrow> real" and MX :: "'b measure" | |
| 865 | assumes X: "distributed M MX X Px" | |
| 866 |   and fin: "emeasure MX {x \<in> space MX. Px x \<noteq> 0} \<noteq> \<infinity>"
 | |
| 867 | and int: "integrable MX (\<lambda>x. - Px x * log b (Px x))" | |
| 868 |   shows "entropy b MX X \<le> log b (measure MX {x \<in> space MX. Px x \<noteq> 0})"
 | |
| 869 | proof - | |
| 870 | note Px = distributed_borel_measurable[OF X] distributed_AE[OF X] | |
| 871 | interpret X: prob_space "distr M MX X" | |
| 872 | using distributed_measurable[OF X] by (rule prob_space_distr) | |
| 873 | ||
| 874 |   have " - log b (measure MX {x \<in> space MX. Px x \<noteq> 0}) = 
 | |
| 875 |     - log b (\<integral> x. indicator {x \<in> space MX. Px x \<noteq> 0} x \<partial>MX)"
 | |
| 876 | using Px fin | |
| 877 | by (subst integral_indicator) (auto simp: measure_def borel_measurable_ereal_iff) | |
| 878 |   also have "- log b (\<integral> x. indicator {x \<in> space MX. Px x \<noteq> 0} x \<partial>MX) = - log b (\<integral> x. 1 / Px x \<partial>distr M MX X)"
 | |
| 879 | unfolding distributed_distr_eq_density[OF X] using Px | |
| 880 | apply (intro arg_cong[where f="log b"] arg_cong[where f=uminus]) | |
| 881 | by (subst integral_density) (auto simp: borel_measurable_ereal_iff intro!: integral_cong) | |
| 882 | also have "\<dots> \<le> (\<integral> x. - log b (1 / Px x) \<partial>distr M MX X)" | |
| 883 |   proof (rule X.jensens_inequality[of "\<lambda>x. 1 / Px x" "{0<..}" 0 1 "\<lambda>x. - log b x"])
 | |
| 884 |     show "AE x in distr M MX X. 1 / Px x \<in> {0<..}"
 | |
| 885 | unfolding distributed_distr_eq_density[OF X] | |
| 886 | using Px by (auto simp: AE_density) | |
| 887 |     have [simp]: "\<And>x. x \<in> space MX \<Longrightarrow> ereal (if Px x = 0 then 0 else 1) = indicator {x \<in> space MX. Px x \<noteq> 0} x"
 | |
| 888 | by (auto simp: one_ereal_def) | |
| 889 | have "(\<integral>\<^isup>+ x. max 0 (ereal (- (if Px x = 0 then 0 else 1))) \<partial>MX) = (\<integral>\<^isup>+ x. 0 \<partial>MX)" | |
| 890 | by (intro positive_integral_cong) (auto split: split_max) | |
| 891 | then show "integrable (distr M MX X) (\<lambda>x. 1 / Px x)" | |
| 892 | unfolding distributed_distr_eq_density[OF X] using Px | |
| 893 | by (auto simp: positive_integral_density integrable_def borel_measurable_ereal_iff fin positive_integral_max_0 | |
| 894 | cong: positive_integral_cong) | |
| 895 | have "integrable MX (\<lambda>x. Px x * log b (1 / Px x)) = | |
| 896 | integrable MX (\<lambda>x. - Px x * log b (Px x))" | |
| 897 | using Px | |
| 898 | by (intro integrable_cong_AE) | |
| 899 | (auto simp: borel_measurable_ereal_iff log_divide_eq | |
| 900 | intro!: measurable_If) | |
| 901 | then show "integrable (distr M MX X) (\<lambda>x. - log b (1 / Px x))" | |
| 902 | unfolding distributed_distr_eq_density[OF X] | |
| 903 | using Px int | |
| 904 | by (subst integral_density) (auto simp: borel_measurable_ereal_iff) | |
| 905 | qed (auto simp: minus_log_convex[OF b_gt_1]) | |
| 906 | also have "\<dots> = (\<integral> x. log b (Px x) \<partial>distr M MX X)" | |
| 907 | unfolding distributed_distr_eq_density[OF X] using Px | |
| 908 | by (intro integral_cong_AE) (auto simp: AE_density log_divide_eq) | |
| 909 | also have "\<dots> = - entropy b MX X" | |
| 910 | unfolding distributed_distr_eq_density[OF X] using Px | |
| 911 | by (subst entropy_distr[OF X]) (auto simp: borel_measurable_ereal_iff integral_density) | |
| 912 | finally show ?thesis | |
| 913 | by simp | |
| 914 | qed | |
| 915 | ||
| 916 | lemma (in information_space) entropy_le_space: | |
| 917 | fixes Px :: "'b \<Rightarrow> real" and MX :: "'b measure" | |
| 918 | assumes X: "distributed M MX X Px" | |
| 919 | and fin: "finite_measure MX" | |
| 920 | and int: "integrable MX (\<lambda>x. - Px x * log b (Px x))" | |
| 921 | shows "entropy b MX X \<le> log b (measure MX (space MX))" | |
| 922 | proof - | |
| 923 | note Px = distributed_borel_measurable[OF X] distributed_AE[OF X] | |
| 924 | interpret finite_measure MX by fact | |
| 925 |   have "entropy b MX X \<le> log b (measure MX {x \<in> space MX. Px x \<noteq> 0})"
 | |
| 926 | using int X by (intro entropy_le) auto | |
| 927 | also have "\<dots> \<le> log b (measure MX (space MX))" | |
| 928 | using Px distributed_imp_emeasure_nonzero[OF X] | |
| 929 | by (intro log_le) | |
| 930 | (auto intro!: borel_measurable_ereal_iff finite_measure_mono b_gt_1 | |
| 931 | less_le[THEN iffD2] measure_nonneg simp: emeasure_eq_measure) | |
| 932 | finally show ?thesis . | |
| 933 | qed | |
| 934 | ||
| 47694 | 935 | lemma (in information_space) entropy_uniform: | 
| 49785 | 936 | assumes X: "distributed M MX X (\<lambda>x. indicator A x / measure MX A)" (is "distributed _ _ _ ?f") | 
| 47694 | 937 | shows "entropy b MX X = log b (measure MX A)" | 
| 49785 | 938 | proof (subst entropy_distr[OF X]) | 
| 939 | have [simp]: "emeasure MX A \<noteq> \<infinity>" | |
| 940 | using uniform_distributed_params[OF X] by (auto simp add: measure_def) | |
| 941 | have eq: "(\<integral> x. indicator A x / measure MX A * log b (indicator A x / measure MX A) \<partial>MX) = | |
| 942 | (\<integral> x. (- log b (measure MX A) / measure MX A) * indicator A x \<partial>MX)" | |
| 943 | using measure_nonneg[of MX A] uniform_distributed_params[OF X] | |
| 944 | by (auto intro!: integral_cong split: split_indicator simp: log_divide_eq) | |
| 945 | show "- (\<integral> x. indicator A x / measure MX A * log b (indicator A x / measure MX A) \<partial>MX) = | |
| 946 | log b (measure MX A)" | |
| 947 | unfolding eq using uniform_distributed_params[OF X] | |
| 948 | by (subst lebesgue_integral_cmult) (auto simp: measure_def) | |
| 949 | qed | |
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 950 | |
| 47694 | 951 | lemma (in information_space) entropy_simple_distributed: | 
| 49786 | 952 | "simple_distributed M X f \<Longrightarrow> \<H>(X) = - (\<Sum>x\<in>X`space M. f x * log b (f x))" | 
| 953 | by (subst entropy_distr[OF simple_distributed]) | |
| 954 | (auto simp add: lebesgue_integral_count_space_finite) | |
| 39097 | 955 | |
| 40859 | 956 | lemma (in information_space) entropy_le_card_not_0: | 
| 47694 | 957 | assumes X: "simple_distributed M X f" | 
| 958 |   shows "\<H>(X) \<le> log b (card (X ` space M \<inter> {x. f x \<noteq> 0}))"
 | |
| 39097 | 959 | proof - | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 960 | let ?X = "count_space (X`space M)" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 961 |   have "\<H>(X) \<le> log b (measure ?X {x \<in> space ?X. f x \<noteq> 0})"
 | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 962 | by (rule entropy_le[OF simple_distributed[OF X]]) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 963 | (simp_all add: simple_distributed_finite[OF X] subset_eq integrable_count_space emeasure_count_space) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 964 |   also have "measure ?X {x \<in> space ?X. f x \<noteq> 0} = card (X ` space M \<inter> {x. f x \<noteq> 0})"
 | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 965 | by (simp_all add: simple_distributed_finite[OF X] subset_eq emeasure_count_space measure_def Int_def) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 966 | finally show ?thesis . | 
| 39097 | 967 | qed | 
| 968 | ||
| 40859 | 969 | lemma (in information_space) entropy_le_card: | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 970 | assumes X: "simple_distributed M X f" | 
| 40859 | 971 | shows "\<H>(X) \<le> log b (real (card (X ` space M)))" | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 972 | proof - | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 973 | let ?X = "count_space (X`space M)" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 974 | have "\<H>(X) \<le> log b (measure ?X (space ?X))" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 975 | by (rule entropy_le_space[OF simple_distributed[OF X]]) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 976 | (simp_all add: simple_distributed_finite[OF X] subset_eq integrable_count_space emeasure_count_space finite_measure_count_space) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 977 | also have "measure ?X (space ?X) = card (X ` space M)" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 978 | by (simp_all add: simple_distributed_finite[OF X] subset_eq emeasure_count_space measure_def) | 
| 39097 | 979 | finally show ?thesis . | 
| 980 | qed | |
| 981 | ||
| 982 | subsection {* Conditional Mutual Information *}
 | |
| 983 | ||
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 984 | definition (in prob_space) | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 985 | "conditional_mutual_information b MX MY MZ X Y Z \<equiv> | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 986 | mutual_information b MX (MY \<Otimes>\<^isub>M MZ) X (\<lambda>x. (Y x, Z x)) - | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 987 | mutual_information b MX MZ X Z" | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 988 | |
| 40859 | 989 | abbreviation (in information_space) | 
| 990 |   conditional_mutual_information_Pow ("\<I>'( _ ; _ | _ ')") where
 | |
| 36624 | 991 | "\<I>(X ; Y | Z) \<equiv> conditional_mutual_information b | 
| 47694 | 992 | (count_space (X ` space M)) (count_space (Y ` space M)) (count_space (Z ` space M)) X Y Z" | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 993 | |
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 994 | lemma (in information_space) | 
| 47694 | 995 | assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" and P: "sigma_finite_measure P" | 
| 50003 | 996 | assumes Px[measurable]: "distributed M S X Px" | 
| 997 | assumes Pz[measurable]: "distributed M P Z Pz" | |
| 998 | assumes Pyz[measurable]: "distributed M (T \<Otimes>\<^isub>M P) (\<lambda>x. (Y x, Z x)) Pyz" | |
| 999 | assumes Pxz[measurable]: "distributed M (S \<Otimes>\<^isub>M P) (\<lambda>x. (X x, Z x)) Pxz" | |
| 1000 | assumes Pxyz[measurable]: "distributed M (S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P) (\<lambda>x. (X x, Y x, Z x)) Pxyz" | |
| 47694 | 1001 | assumes I1: "integrable (S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Px x * Pyz (y, z))))" | 
| 1002 | assumes I2: "integrable (S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxz (x, z) / (Px x * Pz z)))" | |
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1003 | shows conditional_mutual_information_generic_eq: "conditional_mutual_information b S T P X Y Z | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1004 | = (\<integral>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Pxz (x, z) * (Pyz (y,z) / Pz z))) \<partial>(S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P))" (is "?eq") | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1005 | and conditional_mutual_information_generic_nonneg: "0 \<le> conditional_mutual_information b S T P X Y Z" (is "?nonneg") | 
| 40859 | 1006 | proof - | 
| 47694 | 1007 | interpret S: sigma_finite_measure S by fact | 
| 1008 | interpret T: sigma_finite_measure T by fact | |
| 1009 | interpret P: sigma_finite_measure P by fact | |
| 1010 | interpret TP: pair_sigma_finite T P .. | |
| 1011 | interpret SP: pair_sigma_finite S P .. | |
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1012 | interpret ST: pair_sigma_finite S T .. | 
| 47694 | 1013 | interpret SPT: pair_sigma_finite "S \<Otimes>\<^isub>M P" T .. | 
| 1014 | interpret STP: pair_sigma_finite S "T \<Otimes>\<^isub>M P" .. | |
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1015 | interpret TPS: pair_sigma_finite "T \<Otimes>\<^isub>M P" S .. | 
| 47694 | 1016 | have TP: "sigma_finite_measure (T \<Otimes>\<^isub>M P)" .. | 
| 1017 | have SP: "sigma_finite_measure (S \<Otimes>\<^isub>M P)" .. | |
| 1018 | have YZ: "random_variable (T \<Otimes>\<^isub>M P) (\<lambda>x. (Y x, Z x))" | |
| 1019 | using Pyz by (simp add: distributed_measurable) | |
| 1020 | ||
| 1021 | from Pxz Pxyz have distr_eq: "distr M (S \<Otimes>\<^isub>M P) (\<lambda>x. (X x, Z x)) = | |
| 1022 | distr (distr M (S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P) (\<lambda>x. (X x, Y x, Z x))) (S \<Otimes>\<^isub>M P) (\<lambda>(x, y, z). (x, z))" | |
| 50003 | 1023 | by (simp add: comp_def distr_distr) | 
| 40859 | 1024 | |
| 47694 | 1025 | have "mutual_information b S P X Z = | 
| 1026 | (\<integral>x. Pxz x * log b (Pxz x / (Px (fst x) * Pz (snd x))) \<partial>(S \<Otimes>\<^isub>M P))" | |
| 1027 | by (rule mutual_information_distr[OF S P Px Pz Pxz]) | |
| 1028 | also have "\<dots> = (\<integral>(x,y,z). Pxyz (x,y,z) * log b (Pxz (x,z) / (Px x * Pz z)) \<partial>(S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P))" | |
| 1029 | using b_gt_1 Pxz Px Pz | |
| 50003 | 1030 | by (subst distributed_transform_integral[OF Pxyz Pxz, where T="\<lambda>(x, y, z). (x, z)"]) (auto simp: split_beta') | 
| 47694 | 1031 | finally have mi_eq: | 
| 1032 | "mutual_information b S P X Z = (\<integral>(x,y,z). Pxyz (x,y,z) * log b (Pxz (x,z) / (Px x * Pz z)) \<partial>(S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P))" . | |
| 1033 | ||
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1034 | have ae1: "AE x in S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P. Px (fst x) = 0 \<longrightarrow> Pxyz x = 0" | 
| 47694 | 1035 | by (intro subdensity_real[of fst, OF _ Pxyz Px]) auto | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1036 | moreover have ae2: "AE x in S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P. Pz (snd (snd x)) = 0 \<longrightarrow> Pxyz x = 0" | 
| 50003 | 1037 | by (intro subdensity_real[of "\<lambda>x. snd (snd x)", OF _ Pxyz Pz]) auto | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1038 | moreover have ae3: "AE x in S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P. Pxz (fst x, snd (snd x)) = 0 \<longrightarrow> Pxyz x = 0" | 
| 50003 | 1039 | by (intro subdensity_real[of "\<lambda>x. (fst x, snd (snd x))", OF _ Pxyz Pxz]) auto | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1040 | moreover have ae4: "AE x in S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P. Pyz (snd x) = 0 \<longrightarrow> Pxyz x = 0" | 
| 50003 | 1041 | by (intro subdensity_real[of snd, OF _ Pxyz Pyz]) auto | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1042 | moreover have ae5: "AE x in S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P. 0 \<le> Px (fst x)" | 
| 50003 | 1043 | using Px by (intro STP.AE_pair_measure) (auto simp: comp_def dest: distributed_real_AE) | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1044 | moreover have ae6: "AE x in S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P. 0 \<le> Pyz (snd x)" | 
| 50003 | 1045 | using Pyz by (intro STP.AE_pair_measure) (auto simp: comp_def dest: distributed_real_AE) | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1046 | moreover have ae7: "AE x in S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P. 0 \<le> Pz (snd (snd x))" | 
| 50003 | 1047 | using Pz Pz[THEN distributed_real_measurable] | 
| 1048 | by (auto intro!: TP.AE_pair_measure STP.AE_pair_measure AE_I2[of S] dest: distributed_real_AE) | |
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1049 | moreover have ae8: "AE x in S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P. 0 \<le> Pxz (fst x, snd (snd x))" | 
| 47694 | 1050 | using Pxz[THEN distributed_real_AE, THEN SP.AE_pair] | 
| 50003 | 1051 | by (auto intro!: TP.AE_pair_measure STP.AE_pair_measure) | 
| 47694 | 1052 | moreover note Pxyz[THEN distributed_real_AE] | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1053 | ultimately have ae: "AE x in S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P. | 
| 47694 | 1054 | Pxyz x * log b (Pxyz x / (Px (fst x) * Pyz (snd x))) - | 
| 1055 | Pxyz x * log b (Pxz (fst x, snd (snd x)) / (Px (fst x) * Pz (snd (snd x)))) = | |
| 1056 | Pxyz x * log b (Pxyz x * Pz (snd (snd x)) / (Pxz (fst x, snd (snd x)) * Pyz (snd x))) " | |
| 1057 | proof eventually_elim | |
| 1058 | case (goal1 x) | |
| 1059 | show ?case | |
| 40859 | 1060 | proof cases | 
| 47694 | 1061 | assume "Pxyz x \<noteq> 0" | 
| 1062 | with goal1 have "0 < Px (fst x)" "0 < Pz (snd (snd x))" "0 < Pxz (fst x, snd (snd x))" "0 < Pyz (snd x)" "0 < Pxyz x" | |
| 1063 | by auto | |
| 1064 | then show ?thesis | |
| 1065 | using b_gt_1 by (simp add: log_simps mult_pos_pos less_imp_le field_simps) | |
| 40859 | 1066 | qed simp | 
| 1067 | qed | |
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1068 | with I1 I2 show ?eq | 
| 40859 | 1069 | unfolding conditional_mutual_information_def | 
| 47694 | 1070 | apply (subst mi_eq) | 
| 1071 | apply (subst mutual_information_distr[OF S TP Px Pyz Pxyz]) | |
| 1072 | apply (subst integral_diff(2)[symmetric]) | |
| 1073 | apply (auto intro!: integral_cong_AE simp: split_beta' simp del: integral_diff) | |
| 1074 | done | |
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1075 | |
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1076 | let ?P = "density (S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P) Pxyz" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1077 | interpret P: prob_space ?P | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1078 | unfolding distributed_distr_eq_density[OF Pxyz, symmetric] | 
| 50003 | 1079 | by (rule prob_space_distr) simp | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1080 | |
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1081 | let ?Q = "density (T \<Otimes>\<^isub>M P) Pyz" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1082 | interpret Q: prob_space ?Q | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1083 | unfolding distributed_distr_eq_density[OF Pyz, symmetric] | 
| 50003 | 1084 | by (rule prob_space_distr) simp | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1085 | |
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1086 | let ?f = "\<lambda>(x, y, z). Pxz (x, z) * (Pyz (y, z) / Pz z) / Pxyz (x, y, z)" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1087 | |
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1088 | from subdensity_real[of snd, OF _ Pyz Pz] | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1089 | have aeX1: "AE x in T \<Otimes>\<^isub>M P. Pz (snd x) = 0 \<longrightarrow> Pyz x = 0" by (auto simp: comp_def) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1090 | have aeX2: "AE x in T \<Otimes>\<^isub>M P. 0 \<le> Pz (snd x)" | 
| 50003 | 1091 | using Pz by (intro TP.AE_pair_measure) (auto simp: comp_def dest: distributed_real_AE) | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1092 | |
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1093 | have aeX3: "AE y in T \<Otimes>\<^isub>M P. (\<integral>\<^isup>+ x. ereal (Pxz (x, snd y)) \<partial>S) = ereal (Pz (snd y))" | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 1094 | using Pz distributed_marginal_eq_joint2[OF P S Pz Pxz] | 
| 50003 | 1095 | by (intro TP.AE_pair_measure) (auto dest: distributed_real_AE) | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1096 | |
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1097 | have "(\<integral>\<^isup>+ x. ?f x \<partial>?P) \<le> (\<integral>\<^isup>+ (x, y, z). Pxz (x, z) * (Pyz (y, z) / Pz z) \<partial>(S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P))" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1098 | apply (subst positive_integral_density) | 
| 50003 | 1099 | apply simp | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1100 | apply (rule distributed_AE[OF Pxyz]) | 
| 50003 | 1101 | apply auto [] | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1102 | apply (rule positive_integral_mono_AE) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1103 | using ae5 ae6 ae7 ae8 | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1104 | apply eventually_elim | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1105 | apply (auto intro!: divide_nonneg_nonneg mult_nonneg_nonneg) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1106 | done | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1107 | also have "\<dots> = (\<integral>\<^isup>+(y, z). \<integral>\<^isup>+ x. ereal (Pxz (x, z)) * ereal (Pyz (y, z) / Pz z) \<partial>S \<partial>T \<Otimes>\<^isub>M P)" | 
| 50003 | 1108 | by (subst STP.positive_integral_snd_measurable[symmetric]) (auto simp add: split_beta') | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1109 | also have "\<dots> = (\<integral>\<^isup>+x. ereal (Pyz x) * 1 \<partial>T \<Otimes>\<^isub>M P)" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1110 | apply (rule positive_integral_cong_AE) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1111 | using aeX1 aeX2 aeX3 distributed_AE[OF Pyz] AE_space | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1112 | apply eventually_elim | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1113 | proof (case_tac x, simp del: times_ereal.simps add: space_pair_measure) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1114 | fix a b assume "Pz b = 0 \<longrightarrow> Pyz (a, b) = 0" "0 \<le> Pz b" "a \<in> space T \<and> b \<in> space P" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1115 | "(\<integral>\<^isup>+ x. ereal (Pxz (x, b)) \<partial>S) = ereal (Pz b)" "0 \<le> Pyz (a, b)" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1116 | then show "(\<integral>\<^isup>+ x. ereal (Pxz (x, b)) * ereal (Pyz (a, b) / Pz b) \<partial>S) = ereal (Pyz (a, b))" | 
| 50003 | 1117 | by (subst positive_integral_multc) | 
| 1118 | (auto intro!: divide_nonneg_nonneg split: prod.split) | |
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1119 | qed | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1120 | also have "\<dots> = 1" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1121 | using Q.emeasure_space_1 distributed_AE[OF Pyz] distributed_distr_eq_density[OF Pyz] | 
| 50003 | 1122 | by (subst positive_integral_density[symmetric]) auto | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1123 | finally have le1: "(\<integral>\<^isup>+ x. ?f x \<partial>?P) \<le> 1" . | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1124 | also have "\<dots> < \<infinity>" by simp | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1125 | finally have fin: "(\<integral>\<^isup>+ x. ?f x \<partial>?P) \<noteq> \<infinity>" by simp | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1126 | |
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1127 | have pos: "(\<integral>\<^isup>+ x. ?f x \<partial>?P) \<noteq> 0" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1128 | apply (subst positive_integral_density) | 
| 50003 | 1129 | apply simp | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1130 | apply (rule distributed_AE[OF Pxyz]) | 
| 50003 | 1131 | apply auto [] | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1132 | apply (simp add: split_beta') | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1133 | proof | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1134 | let ?g = "\<lambda>x. ereal (if Pxyz x = 0 then 0 else Pxz (fst x, snd (snd x)) * Pyz (snd x) / Pz (snd (snd x)))" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1135 | assume "(\<integral>\<^isup>+ x. ?g x \<partial>(S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P)) = 0" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1136 | then have "AE x in S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P. ?g x \<le> 0" | 
| 50003 | 1137 | by (intro positive_integral_0_iff_AE[THEN iffD1]) auto | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1138 | then have "AE x in S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P. Pxyz x = 0" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1139 | using ae1 ae2 ae3 ae4 ae5 ae6 ae7 ae8 Pxyz[THEN distributed_real_AE] | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1140 | by eventually_elim (auto split: split_if_asm simp: mult_le_0_iff divide_le_0_iff) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1141 | then have "(\<integral>\<^isup>+ x. ereal (Pxyz x) \<partial>S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P) = 0" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1142 | by (subst positive_integral_cong_AE[of _ "\<lambda>x. 0"]) auto | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1143 | with P.emeasure_space_1 show False | 
| 50003 | 1144 | by (subst (asm) emeasure_density) (auto cong: positive_integral_cong) | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1145 | qed | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1146 | |
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1147 | have neg: "(\<integral>\<^isup>+ x. - ?f x \<partial>?P) = 0" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1148 | apply (rule positive_integral_0_iff_AE[THEN iffD2]) | 
| 50003 | 1149 | apply simp | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1150 | apply (subst AE_density) | 
| 50003 | 1151 | apply simp | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1152 | using ae5 ae6 ae7 ae8 | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1153 | apply eventually_elim | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1154 | apply (auto intro!: mult_nonneg_nonneg divide_nonneg_nonneg) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1155 | done | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1156 | |
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1157 | have I3: "integrable (S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Pxz (x, z) * (Pyz (y,z) / Pz z))))" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1158 | apply (rule integrable_cong_AE[THEN iffD1, OF _ _ _ integral_diff(1)[OF I1 I2]]) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1159 | using ae | 
| 50003 | 1160 | apply (auto simp: split_beta') | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1161 | done | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1162 | |
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1163 | have "- log b 1 \<le> - log b (integral\<^isup>L ?P ?f)" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1164 | proof (intro le_imp_neg_le log_le[OF b_gt_1]) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1165 | show "0 < integral\<^isup>L ?P ?f" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1166 | using neg pos fin positive_integral_positive[of ?P ?f] | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1167 | by (cases "(\<integral>\<^isup>+ x. ?f x \<partial>?P)") (auto simp add: lebesgue_integral_def less_le split_beta') | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1168 | show "integral\<^isup>L ?P ?f \<le> 1" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1169 | using neg le1 fin positive_integral_positive[of ?P ?f] | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1170 | by (cases "(\<integral>\<^isup>+ x. ?f x \<partial>?P)") (auto simp add: lebesgue_integral_def split_beta' one_ereal_def) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1171 | qed | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1172 | also have "- log b (integral\<^isup>L ?P ?f) \<le> (\<integral> x. - log b (?f x) \<partial>?P)" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1173 |   proof (rule P.jensens_inequality[where a=0 and b=1 and I="{0<..}"])
 | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1174 |     show "AE x in ?P. ?f x \<in> {0<..}"
 | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1175 | unfolding AE_density[OF distributed_borel_measurable[OF Pxyz]] | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1176 | using ae1 ae2 ae3 ae4 ae5 ae6 ae7 ae8 Pxyz[THEN distributed_real_AE] | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1177 | by eventually_elim (auto simp: divide_pos_pos mult_pos_pos) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1178 | show "integrable ?P ?f" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1179 | unfolding integrable_def | 
| 50003 | 1180 | using fin neg by (auto simp: split_beta') | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1181 | show "integrable ?P (\<lambda>x. - log b (?f x))" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1182 | apply (subst integral_density) | 
| 50003 | 1183 | apply simp | 
| 1184 | apply (auto intro!: distributed_real_AE[OF Pxyz]) [] | |
| 1185 | apply simp | |
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1186 | apply (rule integrable_cong_AE[THEN iffD1, OF _ _ _ I3]) | 
| 50003 | 1187 | apply simp | 
| 1188 | apply simp | |
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1189 | using ae1 ae2 ae3 ae4 ae5 ae6 ae7 ae8 Pxyz[THEN distributed_real_AE] | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1190 | apply eventually_elim | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1191 | apply (auto simp: log_divide_eq log_mult_eq zero_le_mult_iff zero_less_mult_iff zero_less_divide_iff field_simps) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1192 | done | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1193 | qed (auto simp: b_gt_1 minus_log_convex) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1194 | also have "\<dots> = conditional_mutual_information b S T P X Y Z" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1195 | unfolding `?eq` | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1196 | apply (subst integral_density) | 
| 50003 | 1197 | apply simp | 
| 1198 | apply (auto intro!: distributed_real_AE[OF Pxyz]) [] | |
| 1199 | apply simp | |
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1200 | apply (intro integral_cong_AE) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1201 | using ae1 ae2 ae3 ae4 ae5 ae6 ae7 ae8 Pxyz[THEN distributed_real_AE] | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1202 | apply eventually_elim | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1203 | apply (auto simp: log_divide_eq zero_less_mult_iff zero_less_divide_iff field_simps) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1204 | done | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1205 | finally show ?nonneg | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1206 | by simp | 
| 40859 | 1207 | qed | 
| 1208 | ||
| 49803 | 1209 | lemma (in information_space) | 
| 1210 | fixes Px :: "_ \<Rightarrow> real" | |
| 1211 | assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" and P: "sigma_finite_measure P" | |
| 1212 | assumes Fx: "finite_entropy S X Px" | |
| 1213 | assumes Fz: "finite_entropy P Z Pz" | |
| 1214 | assumes Fyz: "finite_entropy (T \<Otimes>\<^isub>M P) (\<lambda>x. (Y x, Z x)) Pyz" | |
| 1215 | assumes Fxz: "finite_entropy (S \<Otimes>\<^isub>M P) (\<lambda>x. (X x, Z x)) Pxz" | |
| 1216 | assumes Fxyz: "finite_entropy (S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P) (\<lambda>x. (X x, Y x, Z x)) Pxyz" | |
| 1217 | shows conditional_mutual_information_generic_eq': "conditional_mutual_information b S T P X Y Z | |
| 1218 | = (\<integral>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Pxz (x, z) * (Pyz (y,z) / Pz z))) \<partial>(S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P))" (is "?eq") | |
| 1219 | and conditional_mutual_information_generic_nonneg': "0 \<le> conditional_mutual_information b S T P X Y Z" (is "?nonneg") | |
| 1220 | proof - | |
| 50003 | 1221 | note Px = Fx[THEN finite_entropy_distributed, measurable] | 
| 1222 | note Pz = Fz[THEN finite_entropy_distributed, measurable] | |
| 1223 | note Pyz = Fyz[THEN finite_entropy_distributed, measurable] | |
| 1224 | note Pxz = Fxz[THEN finite_entropy_distributed, measurable] | |
| 1225 | note Pxyz = Fxyz[THEN finite_entropy_distributed, measurable] | |
| 49803 | 1226 | |
| 1227 | interpret S: sigma_finite_measure S by fact | |
| 1228 | interpret T: sigma_finite_measure T by fact | |
| 1229 | interpret P: sigma_finite_measure P by fact | |
| 1230 | interpret TP: pair_sigma_finite T P .. | |
| 1231 | interpret SP: pair_sigma_finite S P .. | |
| 1232 | interpret ST: pair_sigma_finite S T .. | |
| 1233 | interpret SPT: pair_sigma_finite "S \<Otimes>\<^isub>M P" T .. | |
| 1234 | interpret STP: pair_sigma_finite S "T \<Otimes>\<^isub>M P" .. | |
| 1235 | interpret TPS: pair_sigma_finite "T \<Otimes>\<^isub>M P" S .. | |
| 1236 | have TP: "sigma_finite_measure (T \<Otimes>\<^isub>M P)" .. | |
| 1237 | have SP: "sigma_finite_measure (S \<Otimes>\<^isub>M P)" .. | |
| 1238 | ||
| 1239 | from Pxz Pxyz have distr_eq: "distr M (S \<Otimes>\<^isub>M P) (\<lambda>x. (X x, Z x)) = | |
| 1240 | distr (distr M (S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P) (\<lambda>x. (X x, Y x, Z x))) (S \<Otimes>\<^isub>M P) (\<lambda>(x, y, z). (x, z))" | |
| 50003 | 1241 | by (simp add: distr_distr comp_def) | 
| 49803 | 1242 | |
| 1243 | have "mutual_information b S P X Z = | |
| 1244 | (\<integral>x. Pxz x * log b (Pxz x / (Px (fst x) * Pz (snd x))) \<partial>(S \<Otimes>\<^isub>M P))" | |
| 1245 | by (rule mutual_information_distr[OF S P Px Pz Pxz]) | |
| 1246 | also have "\<dots> = (\<integral>(x,y,z). Pxyz (x,y,z) * log b (Pxz (x,z) / (Px x * Pz z)) \<partial>(S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P))" | |
| 1247 | using b_gt_1 Pxz Px Pz | |
| 1248 | by (subst distributed_transform_integral[OF Pxyz Pxz, where T="\<lambda>(x, y, z). (x, z)"]) | |
| 50003 | 1249 | (auto simp: split_beta') | 
| 49803 | 1250 | finally have mi_eq: | 
| 1251 | "mutual_information b S P X Z = (\<integral>(x,y,z). Pxyz (x,y,z) * log b (Pxz (x,z) / (Px x * Pz z)) \<partial>(S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P))" . | |
| 1252 | ||
| 1253 | have ae1: "AE x in S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P. Px (fst x) = 0 \<longrightarrow> Pxyz x = 0" | |
| 1254 | by (intro subdensity_real[of fst, OF _ Pxyz Px]) auto | |
| 1255 | moreover have ae2: "AE x in S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P. Pz (snd (snd x)) = 0 \<longrightarrow> Pxyz x = 0" | |
| 50003 | 1256 | by (intro subdensity_real[of "\<lambda>x. snd (snd x)", OF _ Pxyz Pz]) auto | 
| 49803 | 1257 | moreover have ae3: "AE x in S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P. Pxz (fst x, snd (snd x)) = 0 \<longrightarrow> Pxyz x = 0" | 
| 50003 | 1258 | by (intro subdensity_real[of "\<lambda>x. (fst x, snd (snd x))", OF _ Pxyz Pxz]) auto | 
| 49803 | 1259 | moreover have ae4: "AE x in S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P. Pyz (snd x) = 0 \<longrightarrow> Pxyz x = 0" | 
| 50003 | 1260 | by (intro subdensity_real[of snd, OF _ Pxyz Pyz]) auto | 
| 49803 | 1261 | moreover have ae5: "AE x in S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P. 0 \<le> Px (fst x)" | 
| 50003 | 1262 | using Px by (intro STP.AE_pair_measure) (auto dest: distributed_real_AE) | 
| 49803 | 1263 | moreover have ae6: "AE x in S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P. 0 \<le> Pyz (snd x)" | 
| 50003 | 1264 | using Pyz by (intro STP.AE_pair_measure) (auto dest: distributed_real_AE) | 
| 49803 | 1265 | moreover have ae7: "AE x in S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P. 0 \<le> Pz (snd (snd x))" | 
| 50003 | 1266 | using Pz Pz[THEN distributed_real_measurable] by (auto intro!: TP.AE_pair_measure STP.AE_pair_measure AE_I2[of S] dest: distributed_real_AE) | 
| 49803 | 1267 | moreover have ae8: "AE x in S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P. 0 \<le> Pxz (fst x, snd (snd x))" | 
| 1268 | using Pxz[THEN distributed_real_AE, THEN SP.AE_pair] | |
| 1269 | by (auto intro!: TP.AE_pair_measure STP.AE_pair_measure simp: comp_def) | |
| 1270 | moreover note ae9 = Pxyz[THEN distributed_real_AE] | |
| 1271 | ultimately have ae: "AE x in S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P. | |
| 1272 | Pxyz x * log b (Pxyz x / (Px (fst x) * Pyz (snd x))) - | |
| 1273 | Pxyz x * log b (Pxz (fst x, snd (snd x)) / (Px (fst x) * Pz (snd (snd x)))) = | |
| 1274 | Pxyz x * log b (Pxyz x * Pz (snd (snd x)) / (Pxz (fst x, snd (snd x)) * Pyz (snd x))) " | |
| 1275 | proof eventually_elim | |
| 1276 | case (goal1 x) | |
| 1277 | show ?case | |
| 1278 | proof cases | |
| 1279 | assume "Pxyz x \<noteq> 0" | |
| 1280 | with goal1 have "0 < Px (fst x)" "0 < Pz (snd (snd x))" "0 < Pxz (fst x, snd (snd x))" "0 < Pyz (snd x)" "0 < Pxyz x" | |
| 1281 | by auto | |
| 1282 | then show ?thesis | |
| 1283 | using b_gt_1 by (simp add: log_simps mult_pos_pos less_imp_le field_simps) | |
| 1284 | qed simp | |
| 1285 | qed | |
| 1286 | ||
| 1287 | have "integrable (S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P) | |
| 1288 | (\<lambda>x. Pxyz x * log b (Pxyz x) - Pxyz x * log b (Px (fst x)) - Pxyz x * log b (Pyz (snd x)))" | |
| 1289 | using finite_entropy_integrable[OF Fxyz] | |
| 1290 | using finite_entropy_integrable_transform[OF Fx Pxyz, of fst] | |
| 1291 | using finite_entropy_integrable_transform[OF Fyz Pxyz, of snd] | |
| 1292 | by simp | |
| 1293 | moreover have "(\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Px x * Pyz (y, z)))) \<in> borel_measurable (S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P)" | |
| 50003 | 1294 | using Pxyz Px Pyz by simp | 
| 49803 | 1295 | ultimately have I1: "integrable (S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Px x * Pyz (y, z))))" | 
| 1296 | apply (rule integrable_cong_AE_imp) | |
| 1297 | using ae1 ae4 ae5 ae6 ae9 | |
| 1298 | by eventually_elim | |
| 1299 | (auto simp: log_divide_eq log_mult_eq mult_nonneg_nonneg field_simps zero_less_mult_iff) | |
| 1300 | ||
| 1301 | have "integrable (S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P) | |
| 1302 | (\<lambda>x. Pxyz x * log b (Pxz (fst x, snd (snd x))) - Pxyz x * log b (Px (fst x)) - Pxyz x * log b (Pz (snd (snd x))))" | |
| 1303 | using finite_entropy_integrable_transform[OF Fxz Pxyz, of "\<lambda>x. (fst x, snd (snd x))"] | |
| 1304 | using finite_entropy_integrable_transform[OF Fx Pxyz, of fst] | |
| 1305 | using finite_entropy_integrable_transform[OF Fz Pxyz, of "snd \<circ> snd"] | |
| 50003 | 1306 | by simp | 
| 49803 | 1307 | moreover have "(\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxz (x, z) / (Px x * Pz z))) \<in> borel_measurable (S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P)" | 
| 1308 | using Pxyz Px Pz | |
| 50003 | 1309 | by auto | 
| 49803 | 1310 | ultimately have I2: "integrable (S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxz (x, z) / (Px x * Pz z)))" | 
| 1311 | apply (rule integrable_cong_AE_imp) | |
| 1312 | using ae1 ae2 ae3 ae4 ae5 ae6 ae7 ae8 ae9 | |
| 1313 | by eventually_elim | |
| 1314 | (auto simp: log_divide_eq log_mult_eq mult_nonneg_nonneg field_simps zero_less_mult_iff) | |
| 1315 | ||
| 1316 | from ae I1 I2 show ?eq | |
| 1317 | unfolding conditional_mutual_information_def | |
| 1318 | apply (subst mi_eq) | |
| 1319 | apply (subst mutual_information_distr[OF S TP Px Pyz Pxyz]) | |
| 1320 | apply (subst integral_diff(2)[symmetric]) | |
| 1321 | apply (auto intro!: integral_cong_AE simp: split_beta' simp del: integral_diff) | |
| 1322 | done | |
| 1323 | ||
| 1324 | let ?P = "density (S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P) Pxyz" | |
| 1325 | interpret P: prob_space ?P | |
| 50003 | 1326 | unfolding distributed_distr_eq_density[OF Pxyz, symmetric] by (rule prob_space_distr) simp | 
| 49803 | 1327 | |
| 1328 | let ?Q = "density (T \<Otimes>\<^isub>M P) Pyz" | |
| 1329 | interpret Q: prob_space ?Q | |
| 50003 | 1330 | unfolding distributed_distr_eq_density[OF Pyz, symmetric] by (rule prob_space_distr) simp | 
| 49803 | 1331 | |
| 1332 | let ?f = "\<lambda>(x, y, z). Pxz (x, z) * (Pyz (y, z) / Pz z) / Pxyz (x, y, z)" | |
| 1333 | ||
| 1334 | from subdensity_real[of snd, OF _ Pyz Pz] | |
| 1335 | have aeX1: "AE x in T \<Otimes>\<^isub>M P. Pz (snd x) = 0 \<longrightarrow> Pyz x = 0" by (auto simp: comp_def) | |
| 1336 | have aeX2: "AE x in T \<Otimes>\<^isub>M P. 0 \<le> Pz (snd x)" | |
| 50003 | 1337 | using Pz by (intro TP.AE_pair_measure) (auto dest: distributed_real_AE) | 
| 49803 | 1338 | |
| 1339 | have aeX3: "AE y in T \<Otimes>\<^isub>M P. (\<integral>\<^isup>+ x. ereal (Pxz (x, snd y)) \<partial>S) = ereal (Pz (snd y))" | |
| 1340 | using Pz distributed_marginal_eq_joint2[OF P S Pz Pxz] | |
| 50003 | 1341 | by (intro TP.AE_pair_measure) (auto dest: distributed_real_AE) | 
| 49803 | 1342 | have "(\<integral>\<^isup>+ x. ?f x \<partial>?P) \<le> (\<integral>\<^isup>+ (x, y, z). Pxz (x, z) * (Pyz (y, z) / Pz z) \<partial>(S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P))" | 
| 1343 | apply (subst positive_integral_density) | |
| 1344 | apply (rule distributed_borel_measurable[OF Pxyz]) | |
| 1345 | apply (rule distributed_AE[OF Pxyz]) | |
| 50003 | 1346 | apply simp | 
| 49803 | 1347 | apply (rule positive_integral_mono_AE) | 
| 1348 | using ae5 ae6 ae7 ae8 | |
| 1349 | apply eventually_elim | |
| 1350 | apply (auto intro!: divide_nonneg_nonneg mult_nonneg_nonneg) | |
| 1351 | done | |
| 1352 | also have "\<dots> = (\<integral>\<^isup>+(y, z). \<integral>\<^isup>+ x. ereal (Pxz (x, z)) * ereal (Pyz (y, z) / Pz z) \<partial>S \<partial>T \<Otimes>\<^isub>M P)" | |
| 1353 | by (subst STP.positive_integral_snd_measurable[symmetric]) | |
| 50003 | 1354 | (auto simp add: split_beta') | 
| 49803 | 1355 | also have "\<dots> = (\<integral>\<^isup>+x. ereal (Pyz x) * 1 \<partial>T \<Otimes>\<^isub>M P)" | 
| 1356 | apply (rule positive_integral_cong_AE) | |
| 1357 | using aeX1 aeX2 aeX3 distributed_AE[OF Pyz] AE_space | |
| 1358 | apply eventually_elim | |
| 1359 | proof (case_tac x, simp del: times_ereal.simps add: space_pair_measure) | |
| 1360 | fix a b assume "Pz b = 0 \<longrightarrow> Pyz (a, b) = 0" "0 \<le> Pz b" "a \<in> space T \<and> b \<in> space P" | |
| 1361 | "(\<integral>\<^isup>+ x. ereal (Pxz (x, b)) \<partial>S) = ereal (Pz b)" "0 \<le> Pyz (a, b)" | |
| 1362 | then show "(\<integral>\<^isup>+ x. ereal (Pxz (x, b)) * ereal (Pyz (a, b) / Pz b) \<partial>S) = ereal (Pyz (a, b))" | |
| 50003 | 1363 | by (subst positive_integral_multc) (auto intro!: divide_nonneg_nonneg) | 
| 49803 | 1364 | qed | 
| 1365 | also have "\<dots> = 1" | |
| 1366 | using Q.emeasure_space_1 distributed_AE[OF Pyz] distributed_distr_eq_density[OF Pyz] | |
| 50003 | 1367 | by (subst positive_integral_density[symmetric]) auto | 
| 49803 | 1368 | finally have le1: "(\<integral>\<^isup>+ x. ?f x \<partial>?P) \<le> 1" . | 
| 1369 | also have "\<dots> < \<infinity>" by simp | |
| 1370 | finally have fin: "(\<integral>\<^isup>+ x. ?f x \<partial>?P) \<noteq> \<infinity>" by simp | |
| 1371 | ||
| 1372 | have pos: "(\<integral>\<^isup>+ x. ?f x \<partial>?P) \<noteq> 0" | |
| 1373 | apply (subst positive_integral_density) | |
| 50003 | 1374 | apply simp | 
| 49803 | 1375 | apply (rule distributed_AE[OF Pxyz]) | 
| 50003 | 1376 | apply simp | 
| 49803 | 1377 | apply (simp add: split_beta') | 
| 1378 | proof | |
| 1379 | let ?g = "\<lambda>x. ereal (if Pxyz x = 0 then 0 else Pxz (fst x, snd (snd x)) * Pyz (snd x) / Pz (snd (snd x)))" | |
| 1380 | assume "(\<integral>\<^isup>+ x. ?g x \<partial>(S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P)) = 0" | |
| 1381 | then have "AE x in S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P. ?g x \<le> 0" | |
| 50003 | 1382 | by (intro positive_integral_0_iff_AE[THEN iffD1]) (auto intro!: borel_measurable_ereal measurable_If) | 
| 49803 | 1383 | then have "AE x in S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P. Pxyz x = 0" | 
| 1384 | using ae1 ae2 ae3 ae4 ae5 ae6 ae7 ae8 Pxyz[THEN distributed_real_AE] | |
| 1385 | by eventually_elim (auto split: split_if_asm simp: mult_le_0_iff divide_le_0_iff) | |
| 1386 | then have "(\<integral>\<^isup>+ x. ereal (Pxyz x) \<partial>S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P) = 0" | |
| 1387 | by (subst positive_integral_cong_AE[of _ "\<lambda>x. 0"]) auto | |
| 1388 | with P.emeasure_space_1 show False | |
| 50003 | 1389 | by (subst (asm) emeasure_density) (auto cong: positive_integral_cong) | 
| 49803 | 1390 | qed | 
| 1391 | ||
| 1392 | have neg: "(\<integral>\<^isup>+ x. - ?f x \<partial>?P) = 0" | |
| 1393 | apply (rule positive_integral_0_iff_AE[THEN iffD2]) | |
| 50003 | 1394 | apply (auto simp: split_beta') [] | 
| 49803 | 1395 | apply (subst AE_density) | 
| 50003 | 1396 | apply (auto simp: split_beta') [] | 
| 49803 | 1397 | using ae5 ae6 ae7 ae8 | 
| 1398 | apply eventually_elim | |
| 1399 | apply (auto intro!: mult_nonneg_nonneg divide_nonneg_nonneg) | |
| 1400 | done | |
| 1401 | ||
| 1402 | have I3: "integrable (S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Pxz (x, z) * (Pyz (y,z) / Pz z))))" | |
| 1403 | apply (rule integrable_cong_AE[THEN iffD1, OF _ _ _ integral_diff(1)[OF I1 I2]]) | |
| 1404 | using ae | |
| 50003 | 1405 | apply (auto simp: split_beta') | 
| 49803 | 1406 | done | 
| 1407 | ||
| 1408 | have "- log b 1 \<le> - log b (integral\<^isup>L ?P ?f)" | |
| 1409 | proof (intro le_imp_neg_le log_le[OF b_gt_1]) | |
| 1410 | show "0 < integral\<^isup>L ?P ?f" | |
| 1411 | using neg pos fin positive_integral_positive[of ?P ?f] | |
| 1412 | by (cases "(\<integral>\<^isup>+ x. ?f x \<partial>?P)") (auto simp add: lebesgue_integral_def less_le split_beta') | |
| 1413 | show "integral\<^isup>L ?P ?f \<le> 1" | |
| 1414 | using neg le1 fin positive_integral_positive[of ?P ?f] | |
| 1415 | by (cases "(\<integral>\<^isup>+ x. ?f x \<partial>?P)") (auto simp add: lebesgue_integral_def split_beta' one_ereal_def) | |
| 1416 | qed | |
| 1417 | also have "- log b (integral\<^isup>L ?P ?f) \<le> (\<integral> x. - log b (?f x) \<partial>?P)" | |
| 1418 |   proof (rule P.jensens_inequality[where a=0 and b=1 and I="{0<..}"])
 | |
| 1419 |     show "AE x in ?P. ?f x \<in> {0<..}"
 | |
| 1420 | unfolding AE_density[OF distributed_borel_measurable[OF Pxyz]] | |
| 1421 | using ae1 ae2 ae3 ae4 ae5 ae6 ae7 ae8 Pxyz[THEN distributed_real_AE] | |
| 1422 | by eventually_elim (auto simp: divide_pos_pos mult_pos_pos) | |
| 1423 | show "integrable ?P ?f" | |
| 1424 | unfolding integrable_def | |
| 50003 | 1425 | using fin neg by (auto simp: split_beta') | 
| 49803 | 1426 | show "integrable ?P (\<lambda>x. - log b (?f x))" | 
| 1427 | apply (subst integral_density) | |
| 50003 | 1428 | apply simp | 
| 1429 | apply (auto intro!: distributed_real_AE[OF Pxyz]) [] | |
| 1430 | apply simp | |
| 49803 | 1431 | apply (rule integrable_cong_AE[THEN iffD1, OF _ _ _ I3]) | 
| 50003 | 1432 | apply simp | 
| 1433 | apply simp | |
| 49803 | 1434 | using ae1 ae2 ae3 ae4 ae5 ae6 ae7 ae8 Pxyz[THEN distributed_real_AE] | 
| 1435 | apply eventually_elim | |
| 1436 | apply (auto simp: log_divide_eq log_mult_eq zero_le_mult_iff zero_less_mult_iff zero_less_divide_iff field_simps) | |
| 1437 | done | |
| 1438 | qed (auto simp: b_gt_1 minus_log_convex) | |
| 1439 | also have "\<dots> = conditional_mutual_information b S T P X Y Z" | |
| 1440 | unfolding `?eq` | |
| 1441 | apply (subst integral_density) | |
| 50003 | 1442 | apply simp | 
| 1443 | apply (auto intro!: distributed_real_AE[OF Pxyz]) [] | |
| 1444 | apply simp | |
| 49803 | 1445 | apply (intro integral_cong_AE) | 
| 1446 | using ae1 ae2 ae3 ae4 ae5 ae6 ae7 ae8 Pxyz[THEN distributed_real_AE] | |
| 1447 | apply eventually_elim | |
| 1448 | apply (auto simp: log_divide_eq zero_less_mult_iff zero_less_divide_iff field_simps) | |
| 1449 | done | |
| 1450 | finally show ?nonneg | |
| 1451 | by simp | |
| 1452 | qed | |
| 1453 | ||
| 40859 | 1454 | lemma (in information_space) conditional_mutual_information_eq: | 
| 47694 | 1455 | assumes Pz: "simple_distributed M Z Pz" | 
| 1456 | assumes Pyz: "simple_distributed M (\<lambda>x. (Y x, Z x)) Pyz" | |
| 1457 | assumes Pxz: "simple_distributed M (\<lambda>x. (X x, Z x)) Pxz" | |
| 1458 | assumes Pxyz: "simple_distributed M (\<lambda>x. (X x, Y x, Z x)) Pxyz" | |
| 1459 | shows "\<I>(X ; Y | Z) = | |
| 1460 | (\<Sum>(x, y, z)\<in>(\<lambda>x. (X x, Y x, Z x))`space M. Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Pxz (x, z) * (Pyz (y,z) / Pz z))))" | |
| 1461 | proof (subst conditional_mutual_information_generic_eq[OF _ _ _ _ | |
| 1462 | simple_distributed[OF Pz] simple_distributed_joint[OF Pyz] simple_distributed_joint[OF Pxz] | |
| 1463 | simple_distributed_joint2[OF Pxyz]]) | |
| 1464 | note simple_distributed_joint2_finite[OF Pxyz, simp] | |
| 1465 | show "sigma_finite_measure (count_space (X ` space M))" | |
| 1466 | by (simp add: sigma_finite_measure_count_space_finite) | |
| 1467 | show "sigma_finite_measure (count_space (Y ` space M))" | |
| 1468 | by (simp add: sigma_finite_measure_count_space_finite) | |
| 1469 | show "sigma_finite_measure (count_space (Z ` space M))" | |
| 1470 | by (simp add: sigma_finite_measure_count_space_finite) | |
| 1471 | have "count_space (X ` space M) \<Otimes>\<^isub>M count_space (Y ` space M) \<Otimes>\<^isub>M count_space (Z ` space M) = | |
| 1472 | count_space (X`space M \<times> Y`space M \<times> Z`space M)" | |
| 1473 | (is "?P = ?C") | |
| 1474 | by (simp add: pair_measure_count_space) | |
| 40859 | 1475 | |
| 47694 | 1476 |   let ?Px = "\<lambda>x. measure M (X -` {x} \<inter> space M)"
 | 
| 1477 | have "(\<lambda>x. (X x, Z x)) \<in> measurable M (count_space (X ` space M) \<Otimes>\<^isub>M count_space (Z ` space M))" | |
| 1478 | using simple_distributed_joint[OF Pxz] by (rule distributed_measurable) | |
| 1479 | from measurable_comp[OF this measurable_fst] | |
| 1480 | have "random_variable (count_space (X ` space M)) X" | |
| 1481 | by (simp add: comp_def) | |
| 1482 | then have "simple_function M X" | |
| 50002 
ce0d316b5b44
add measurability prover; add support for Borel sets
 hoelzl parents: 
49999diff
changeset | 1483 | unfolding simple_function_def by (auto simp: measurable_count_space_eq2) | 
| 47694 | 1484 | then have "simple_distributed M X ?Px" | 
| 1485 | by (rule simple_distributedI) auto | |
| 1486 | then show "distributed M (count_space (X ` space M)) X ?Px" | |
| 1487 | by (rule simple_distributed) | |
| 1488 | ||
| 1489 | let ?f = "(\<lambda>x. if x \<in> (\<lambda>x. (X x, Y x, Z x)) ` space M then Pxyz x else 0)" | |
| 1490 | let ?g = "(\<lambda>x. if x \<in> (\<lambda>x. (Y x, Z x)) ` space M then Pyz x else 0)" | |
| 1491 | let ?h = "(\<lambda>x. if x \<in> (\<lambda>x. (X x, Z x)) ` space M then Pxz x else 0)" | |
| 1492 | show | |
| 1493 | "integrable ?P (\<lambda>(x, y, z). ?f (x, y, z) * log b (?f (x, y, z) / (?Px x * ?g (y, z))))" | |
| 1494 | "integrable ?P (\<lambda>(x, y, z). ?f (x, y, z) * log b (?h (x, z) / (?Px x * Pz z)))" | |
| 1495 | by (auto intro!: integrable_count_space simp: pair_measure_count_space) | |
| 1496 | let ?i = "\<lambda>x y z. ?f (x, y, z) * log b (?f (x, y, z) / (?h (x, z) * (?g (y, z) / Pz z)))" | |
| 1497 | let ?j = "\<lambda>x y z. Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Pxz (x, z) * (Pyz (y,z) / Pz z)))" | |
| 1498 | have "(\<lambda>(x, y, z). ?i x y z) = (\<lambda>x. if x \<in> (\<lambda>x. (X x, Y x, Z x)) ` space M then ?j (fst x) (fst (snd x)) (snd (snd x)) else 0)" | |
| 1499 | by (auto intro!: ext) | |
| 1500 | then show "(\<integral> (x, y, z). ?i x y z \<partial>?P) = (\<Sum>(x, y, z)\<in>(\<lambda>x. (X x, Y x, Z x)) ` space M. ?j x y z)" | |
| 1501 | by (auto intro!: setsum_cong simp add: `?P = ?C` lebesgue_integral_count_space_finite simple_distributed_finite setsum_cases split_beta') | |
| 36624 | 1502 | qed | 
| 1503 | ||
| 47694 | 1504 | lemma (in information_space) conditional_mutual_information_nonneg: | 
| 1505 | assumes X: "simple_function M X" and Y: "simple_function M Y" and Z: "simple_function M Z" | |
| 1506 | shows "0 \<le> \<I>(X ; Y | Z)" | |
| 1507 | proof - | |
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1508 | have [simp]: "count_space (X ` space M) \<Otimes>\<^isub>M count_space (Y ` space M) \<Otimes>\<^isub>M count_space (Z ` space M) = | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1509 | count_space (X`space M \<times> Y`space M \<times> Z`space M)" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1510 | by (simp add: pair_measure_count_space X Y Z simple_functionD) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1511 | note sf = sigma_finite_measure_count_space_finite[OF simple_functionD(1)] | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1512 | note sd = simple_distributedI[OF _ refl] | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1513 | note sp = simple_function_Pair | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1514 | show ?thesis | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1515 | apply (rule conditional_mutual_information_generic_nonneg[OF sf[OF X] sf[OF Y] sf[OF Z]]) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1516 | apply (rule simple_distributed[OF sd[OF X]]) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1517 | apply (rule simple_distributed[OF sd[OF Z]]) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1518 | apply (rule simple_distributed_joint[OF sd[OF sp[OF Y Z]]]) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1519 | apply (rule simple_distributed_joint[OF sd[OF sp[OF X Z]]]) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1520 | apply (rule simple_distributed_joint2[OF sd[OF sp[OF X sp[OF Y Z]]]]) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1521 | apply (auto intro!: integrable_count_space simp: X Y Z simple_functionD) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1522 | done | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 1523 | qed | 
| 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 1524 | |
| 39097 | 1525 | subsection {* Conditional Entropy *}
 | 
| 1526 | ||
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 1527 | definition (in prob_space) | 
| 49791 | 1528 | "conditional_entropy b S T X Y = - (\<integral>(x, y). log b (real (RN_deriv (S \<Otimes>\<^isub>M T) (distr M (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x))) (x, y)) / | 
| 1529 | real (RN_deriv T (distr M T Y) y)) \<partial>distr M (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x)))" | |
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 1530 | |
| 40859 | 1531 | abbreviation (in information_space) | 
| 1532 |   conditional_entropy_Pow ("\<H>'(_ | _')") where
 | |
| 47694 | 1533 | "\<H>(X | Y) \<equiv> conditional_entropy b (count_space (X`space M)) (count_space (Y`space M)) X Y" | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 1534 | |
| 49791 | 1535 | lemma (in information_space) conditional_entropy_generic_eq: | 
| 1536 | fixes Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real" | |
| 1537 | assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" | |
| 50003 | 1538 | assumes Py[measurable]: "distributed M T Y Py" | 
| 1539 | assumes Pxy[measurable]: "distributed M (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x)) Pxy" | |
| 49791 | 1540 | shows "conditional_entropy b S T X Y = - (\<integral>(x, y). Pxy (x, y) * log b (Pxy (x, y) / Py y) \<partial>(S \<Otimes>\<^isub>M T))" | 
| 1541 | proof - | |
| 1542 | interpret S: sigma_finite_measure S by fact | |
| 1543 | interpret T: sigma_finite_measure T by fact | |
| 1544 | interpret ST: pair_sigma_finite S T .. | |
| 1545 | ||
| 1546 | have "AE x in density (S \<Otimes>\<^isub>M T) (\<lambda>x. ereal (Pxy x)). Pxy x = real (RN_deriv (S \<Otimes>\<^isub>M T) (distr M (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x))) x)" | |
| 1547 | unfolding AE_density[OF distributed_borel_measurable, OF Pxy] | |
| 1548 | unfolding distributed_distr_eq_density[OF Pxy] | |
| 1549 | using distributed_RN_deriv[OF Pxy] | |
| 1550 | by auto | |
| 1551 | moreover | |
| 1552 | have "AE x in density (S \<Otimes>\<^isub>M T) (\<lambda>x. ereal (Pxy x)). Py (snd x) = real (RN_deriv T (distr M T Y) (snd x))" | |
| 1553 | unfolding AE_density[OF distributed_borel_measurable, OF Pxy] | |
| 1554 | unfolding distributed_distr_eq_density[OF Py] | |
| 1555 | apply (rule ST.AE_pair_measure) | |
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50003diff
changeset | 1556 | apply (auto intro!: sets.sets_Collect borel_measurable_eq measurable_compose[OF _ distributed_real_measurable[OF Py]] | 
| 49791 | 1557 | distributed_real_measurable[OF Pxy] distributed_real_AE[OF Py] | 
| 1558 | borel_measurable_real_of_ereal measurable_compose[OF _ borel_measurable_RN_deriv_density]) | |
| 1559 | using distributed_RN_deriv[OF Py] | |
| 1560 | apply auto | |
| 1561 | done | |
| 1562 | ultimately | |
| 1563 | have "conditional_entropy b S T X Y = - (\<integral>x. Pxy x * log b (Pxy x / Py (snd x)) \<partial>(S \<Otimes>\<^isub>M T))" | |
| 1564 | unfolding conditional_entropy_def neg_equal_iff_equal | |
| 1565 | apply (subst integral_density(1)[symmetric]) | |
| 1566 | apply (auto simp: distributed_real_measurable[OF Pxy] distributed_real_AE[OF Pxy] | |
| 1567 | measurable_compose[OF _ distributed_real_measurable[OF Py]] | |
| 1568 | distributed_distr_eq_density[OF Pxy] | |
| 1569 | intro!: integral_cong_AE) | |
| 1570 | done | |
| 1571 | then show ?thesis by (simp add: split_beta') | |
| 1572 | qed | |
| 1573 | ||
| 1574 | lemma (in information_space) conditional_entropy_eq_entropy: | |
| 47694 | 1575 | fixes Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real" | 
| 1576 | assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" | |
| 1577 | assumes Py: "distributed M T Y Py" | |
| 1578 | assumes Pxy: "distributed M (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x)) Pxy" | |
| 1579 | assumes I1: "integrable (S \<Otimes>\<^isub>M T) (\<lambda>x. Pxy x * log b (Pxy x))" | |
| 1580 | assumes I2: "integrable (S \<Otimes>\<^isub>M T) (\<lambda>x. Pxy x * log b (Py (snd x)))" | |
| 49791 | 1581 | shows "conditional_entropy b S T X Y = entropy b (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x)) - entropy b T Y" | 
| 40859 | 1582 | proof - | 
| 47694 | 1583 | interpret S: sigma_finite_measure S by fact | 
| 1584 | interpret T: sigma_finite_measure T by fact | |
| 1585 | interpret ST: pair_sigma_finite S T .. | |
| 1586 | ||
| 1587 | have "entropy b T Y = - (\<integral>y. Py y * log b (Py y) \<partial>T)" | |
| 49786 | 1588 | by (rule entropy_distr[OF Py]) | 
| 47694 | 1589 | also have "\<dots> = - (\<integral>(x,y). Pxy (x,y) * log b (Py y) \<partial>(S \<Otimes>\<^isub>M T))" | 
| 1590 | using b_gt_1 Py[THEN distributed_real_measurable] | |
| 1591 | by (subst distributed_transform_integral[OF Pxy Py, where T=snd]) (auto intro!: integral_cong) | |
| 1592 | finally have e_eq: "entropy b T Y = - (\<integral>(x,y). Pxy (x,y) * log b (Py y) \<partial>(S \<Otimes>\<^isub>M T))" . | |
| 49791 | 1593 | |
| 49790 
6b9b9ebba47d
remove unneeded assumption from conditional_entropy_generic_eq
 hoelzl parents: 
49788diff
changeset | 1594 | have ae2: "AE x in S \<Otimes>\<^isub>M T. Py (snd x) = 0 \<longrightarrow> Pxy x = 0" | 
| 47694 | 1595 | by (intro subdensity_real[of snd, OF _ Pxy Py]) (auto intro: measurable_Pair) | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 1596 | moreover have ae4: "AE x in S \<Otimes>\<^isub>M T. 0 \<le> Py (snd x)" | 
| 47694 | 1597 | using Py by (intro ST.AE_pair_measure) (auto simp: comp_def intro!: measurable_snd'' dest: distributed_real_AE distributed_real_measurable) | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 1598 | moreover note ae5 = Pxy[THEN distributed_real_AE] | 
| 49791 | 1599 | ultimately have "AE x in S \<Otimes>\<^isub>M T. 0 \<le> Pxy x \<and> 0 \<le> Py (snd x) \<and> | 
| 49790 
6b9b9ebba47d
remove unneeded assumption from conditional_entropy_generic_eq
 hoelzl parents: 
49788diff
changeset | 1600 | (Pxy x = 0 \<or> (Pxy x \<noteq> 0 \<longrightarrow> 0 < Pxy x \<and> 0 < Py (snd x)))" | 
| 47694 | 1601 | by eventually_elim auto | 
| 49791 | 1602 | then have ae: "AE x in S \<Otimes>\<^isub>M T. | 
| 47694 | 1603 | Pxy x * log b (Pxy x) - Pxy x * log b (Py (snd x)) = Pxy x * log b (Pxy x / Py (snd x))" | 
| 1604 | by eventually_elim (auto simp: log_simps mult_pos_pos field_simps b_gt_1) | |
| 49791 | 1605 | have "conditional_entropy b S T X Y = | 
| 1606 | - (\<integral>x. Pxy x * log b (Pxy x) - Pxy x * log b (Py (snd x)) \<partial>(S \<Otimes>\<^isub>M T))" | |
| 1607 | unfolding conditional_entropy_generic_eq[OF S T Py Pxy] neg_equal_iff_equal | |
| 1608 | apply (intro integral_cong_AE) | |
| 1609 | using ae | |
| 1610 | apply eventually_elim | |
| 1611 | apply auto | |
| 47694 | 1612 | done | 
| 49791 | 1613 | also have "\<dots> = - (\<integral>x. Pxy x * log b (Pxy x) \<partial>(S \<Otimes>\<^isub>M T)) - - (\<integral>x. Pxy x * log b (Py (snd x)) \<partial>(S \<Otimes>\<^isub>M T))" | 
| 1614 | by (simp add: integral_diff[OF I1 I2]) | |
| 1615 | finally show ?thesis | |
| 1616 | unfolding conditional_entropy_generic_eq[OF S T Py Pxy] entropy_distr[OF Pxy] e_eq | |
| 1617 | by (simp add: split_beta') | |
| 1618 | qed | |
| 1619 | ||
| 1620 | lemma (in information_space) conditional_entropy_eq_entropy_simple: | |
| 1621 | assumes X: "simple_function M X" and Y: "simple_function M Y" | |
| 1622 | shows "\<H>(X | Y) = entropy b (count_space (X`space M) \<Otimes>\<^isub>M count_space (Y`space M)) (\<lambda>x. (X x, Y x)) - \<H>(Y)" | |
| 1623 | proof - | |
| 1624 | have "count_space (X ` space M) \<Otimes>\<^isub>M count_space (Y ` space M) = count_space (X`space M \<times> Y`space M)" | |
| 1625 | (is "?P = ?C") using X Y by (simp add: simple_functionD pair_measure_count_space) | |
| 1626 | show ?thesis | |
| 1627 | by (rule conditional_entropy_eq_entropy sigma_finite_measure_count_space_finite | |
| 1628 | simple_functionD X Y simple_distributed simple_distributedI[OF _ refl] | |
| 1629 | simple_distributed_joint simple_function_Pair integrable_count_space)+ | |
| 1630 | (auto simp: `?P = ?C` intro!: integrable_count_space simple_functionD X Y) | |
| 39097 | 1631 | qed | 
| 1632 | ||
| 40859 | 1633 | lemma (in information_space) conditional_entropy_eq: | 
| 49792 
43f49922811d
remove unnecessary assumption from conditional_entropy_eq
 hoelzl parents: 
49791diff
changeset | 1634 | assumes Y: "simple_distributed M Y Py" | 
| 47694 | 1635 | assumes XY: "simple_distributed M (\<lambda>x. (X x, Y x)) Pxy" | 
| 1636 | shows "\<H>(X | Y) = - (\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x)) ` space M. Pxy (x, y) * log b (Pxy (x, y) / Py y))" | |
| 1637 | proof (subst conditional_entropy_generic_eq[OF _ _ | |
| 49790 
6b9b9ebba47d
remove unneeded assumption from conditional_entropy_generic_eq
 hoelzl parents: 
49788diff
changeset | 1638 | simple_distributed[OF Y] simple_distributed_joint[OF XY]]) | 
| 49792 
43f49922811d
remove unnecessary assumption from conditional_entropy_eq
 hoelzl parents: 
49791diff
changeset | 1639 | have "finite ((\<lambda>x. (X x, Y x))`space M)" | 
| 
43f49922811d
remove unnecessary assumption from conditional_entropy_eq
 hoelzl parents: 
49791diff
changeset | 1640 | using XY unfolding simple_distributed_def by auto | 
| 
43f49922811d
remove unnecessary assumption from conditional_entropy_eq
 hoelzl parents: 
49791diff
changeset | 1641 | from finite_imageI[OF this, of fst] | 
| 
43f49922811d
remove unnecessary assumption from conditional_entropy_eq
 hoelzl parents: 
49791diff
changeset | 1642 | have [simp]: "finite (X`space M)" | 
| 
43f49922811d
remove unnecessary assumption from conditional_entropy_eq
 hoelzl parents: 
49791diff
changeset | 1643 | by (simp add: image_compose[symmetric] comp_def) | 
| 47694 | 1644 | note Y[THEN simple_distributed_finite, simp] | 
| 1645 | show "sigma_finite_measure (count_space (X ` space M))" | |
| 1646 | by (simp add: sigma_finite_measure_count_space_finite) | |
| 1647 | show "sigma_finite_measure (count_space (Y ` space M))" | |
| 1648 | by (simp add: sigma_finite_measure_count_space_finite) | |
| 1649 | let ?f = "(\<lambda>x. if x \<in> (\<lambda>x. (X x, Y x)) ` space M then Pxy x else 0)" | |
| 1650 | have "count_space (X ` space M) \<Otimes>\<^isub>M count_space (Y ` space M) = count_space (X`space M \<times> Y`space M)" | |
| 1651 | (is "?P = ?C") | |
| 49792 
43f49922811d
remove unnecessary assumption from conditional_entropy_eq
 hoelzl parents: 
49791diff
changeset | 1652 | using Y by (simp add: simple_distributed_finite pair_measure_count_space) | 
| 47694 | 1653 | have eq: "(\<lambda>(x, y). ?f (x, y) * log b (?f (x, y) / Py y)) = | 
| 1654 | (\<lambda>x. if x \<in> (\<lambda>x. (X x, Y x)) ` space M then Pxy x * log b (Pxy x / Py (snd x)) else 0)" | |
| 1655 | by auto | |
| 49792 
43f49922811d
remove unnecessary assumption from conditional_entropy_eq
 hoelzl parents: 
49791diff
changeset | 1656 | from Y show "- (\<integral> (x, y). ?f (x, y) * log b (?f (x, y) / Py y) \<partial>?P) = | 
| 47694 | 1657 | - (\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x)) ` space M. Pxy (x, y) * log b (Pxy (x, y) / Py y))" | 
| 1658 | by (auto intro!: setsum_cong simp add: `?P = ?C` lebesgue_integral_count_space_finite simple_distributed_finite eq setsum_cases split_beta') | |
| 1659 | qed | |
| 39097 | 1660 | |
| 47694 | 1661 | lemma (in information_space) conditional_mutual_information_eq_conditional_entropy: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 1662 | assumes X: "simple_function M X" and Y: "simple_function M Y" | 
| 47694 | 1663 | shows "\<I>(X ; X | Y) = \<H>(X | Y)" | 
| 1664 | proof - | |
| 1665 |   def Py \<equiv> "\<lambda>x. if x \<in> Y`space M then measure M (Y -` {x} \<inter> space M) else 0"
 | |
| 1666 |   def Pxy \<equiv> "\<lambda>x. if x \<in> (\<lambda>x. (X x, Y x))`space M then measure M ((\<lambda>x. (X x, Y x)) -` {x} \<inter> space M) else 0"
 | |
| 1667 |   def Pxxy \<equiv> "\<lambda>x. if x \<in> (\<lambda>x. (X x, X x, Y x))`space M then measure M ((\<lambda>x. (X x, X x, Y x)) -` {x} \<inter> space M) else 0"
 | |
| 1668 | let ?M = "X`space M \<times> X`space M \<times> Y`space M" | |
| 39097 | 1669 | |
| 47694 | 1670 | note XY = simple_function_Pair[OF X Y] | 
| 1671 | note XXY = simple_function_Pair[OF X XY] | |
| 1672 | have Py: "simple_distributed M Y Py" | |
| 1673 | using Y by (rule simple_distributedI) (auto simp: Py_def) | |
| 1674 | have Pxy: "simple_distributed M (\<lambda>x. (X x, Y x)) Pxy" | |
| 1675 | using XY by (rule simple_distributedI) (auto simp: Pxy_def) | |
| 1676 | have Pxxy: "simple_distributed M (\<lambda>x. (X x, X x, Y x)) Pxxy" | |
| 1677 | using XXY by (rule simple_distributedI) (auto simp: Pxxy_def) | |
| 1678 | have eq: "(\<lambda>x. (X x, X x, Y x)) ` space M = (\<lambda>(x, y). (x, x, y)) ` (\<lambda>x. (X x, Y x)) ` space M" | |
| 1679 | by auto | |
| 1680 | have inj: "\<And>A. inj_on (\<lambda>(x, y). (x, x, y)) A" | |
| 1681 | by (auto simp: inj_on_def) | |
| 1682 | have Pxxy_eq: "\<And>x y. Pxxy (x, x, y) = Pxy (x, y)" | |
| 1683 | by (auto simp: Pxxy_def Pxy_def intro!: arg_cong[where f=prob]) | |
| 1684 | have "AE x in count_space ((\<lambda>x. (X x, Y x))`space M). Py (snd x) = 0 \<longrightarrow> Pxy x = 0" | |
| 1685 | by (intro subdensity_real[of snd, OF _ Pxy[THEN simple_distributed] Py[THEN simple_distributed]]) (auto intro: measurable_Pair) | |
| 1686 | then show ?thesis | |
| 1687 | apply (subst conditional_mutual_information_eq[OF Py Pxy Pxy Pxxy]) | |
| 49792 
43f49922811d
remove unnecessary assumption from conditional_entropy_eq
 hoelzl parents: 
49791diff
changeset | 1688 | apply (subst conditional_entropy_eq[OF Py Pxy]) | 
| 47694 | 1689 | apply (auto intro!: setsum_cong simp: Pxxy_eq setsum_negf[symmetric] eq setsum_reindex[OF inj] | 
| 1690 | log_simps zero_less_mult_iff zero_le_mult_iff field_simps mult_less_0_iff AE_count_space) | |
| 1691 | using Py[THEN simple_distributed, THEN distributed_real_AE] Pxy[THEN simple_distributed, THEN distributed_real_AE] | |
| 49790 
6b9b9ebba47d
remove unneeded assumption from conditional_entropy_generic_eq
 hoelzl parents: 
49788diff
changeset | 1692 | apply (auto simp add: not_le[symmetric] AE_count_space) | 
| 47694 | 1693 | done | 
| 1694 | qed | |
| 1695 | ||
| 1696 | lemma (in information_space) conditional_entropy_nonneg: | |
| 1697 | assumes X: "simple_function M X" and Y: "simple_function M Y" shows "0 \<le> \<H>(X | Y)" | |
| 1698 | using conditional_mutual_information_eq_conditional_entropy[OF X Y] conditional_mutual_information_nonneg[OF X X Y] | |
| 1699 | by simp | |
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 1700 | |
| 39097 | 1701 | subsection {* Equalities *}
 | 
| 1702 | ||
| 47694 | 1703 | lemma (in information_space) mutual_information_eq_entropy_conditional_entropy_distr: | 
| 1704 |   fixes Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real" and Pxy :: "('b \<times> 'c) \<Rightarrow> real"
 | |
| 1705 | assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" | |
| 1706 | assumes Px: "distributed M S X Px" and Py: "distributed M T Y Py" | |
| 1707 | assumes Pxy: "distributed M (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x)) Pxy" | |
| 1708 | assumes Ix: "integrable(S \<Otimes>\<^isub>M T) (\<lambda>x. Pxy x * log b (Px (fst x)))" | |
| 1709 | assumes Iy: "integrable(S \<Otimes>\<^isub>M T) (\<lambda>x. Pxy x * log b (Py (snd x)))" | |
| 1710 | assumes Ixy: "integrable(S \<Otimes>\<^isub>M T) (\<lambda>x. Pxy x * log b (Pxy x))" | |
| 1711 | shows "mutual_information b S T X Y = entropy b S X + entropy b T Y - entropy b (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x))" | |
| 40859 | 1712 | proof - | 
| 47694 | 1713 | have X: "entropy b S X = - (\<integral>x. Pxy x * log b (Px (fst x)) \<partial>(S \<Otimes>\<^isub>M T))" | 
| 1714 | using b_gt_1 Px[THEN distributed_real_measurable] | |
| 49786 | 1715 | apply (subst entropy_distr[OF Px]) | 
| 47694 | 1716 | apply (subst distributed_transform_integral[OF Pxy Px, where T=fst]) | 
| 1717 | apply (auto intro!: integral_cong) | |
| 1718 | done | |
| 1719 | ||
| 1720 | have Y: "entropy b T Y = - (\<integral>x. Pxy x * log b (Py (snd x)) \<partial>(S \<Otimes>\<^isub>M T))" | |
| 1721 | using b_gt_1 Py[THEN distributed_real_measurable] | |
| 49786 | 1722 | apply (subst entropy_distr[OF Py]) | 
| 47694 | 1723 | apply (subst distributed_transform_integral[OF Pxy Py, where T=snd]) | 
| 1724 | apply (auto intro!: integral_cong) | |
| 1725 | done | |
| 1726 | ||
| 1727 | interpret S: sigma_finite_measure S by fact | |
| 1728 | interpret T: sigma_finite_measure T by fact | |
| 1729 | interpret ST: pair_sigma_finite S T .. | |
| 1730 | have ST: "sigma_finite_measure (S \<Otimes>\<^isub>M T)" .. | |
| 1731 | ||
| 1732 | have XY: "entropy b (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x)) = - (\<integral>x. Pxy x * log b (Pxy x) \<partial>(S \<Otimes>\<^isub>M T))" | |
| 49786 | 1733 | by (subst entropy_distr[OF Pxy]) (auto intro!: integral_cong) | 
| 47694 | 1734 | |
| 1735 | have "AE x in S \<Otimes>\<^isub>M T. Px (fst x) = 0 \<longrightarrow> Pxy x = 0" | |
| 1736 | by (intro subdensity_real[of fst, OF _ Pxy Px]) (auto intro: measurable_Pair) | |
| 1737 | moreover have "AE x in S \<Otimes>\<^isub>M T. Py (snd x) = 0 \<longrightarrow> Pxy x = 0" | |
| 1738 | by (intro subdensity_real[of snd, OF _ Pxy Py]) (auto intro: measurable_Pair) | |
| 1739 | moreover have "AE x in S \<Otimes>\<^isub>M T. 0 \<le> Px (fst x)" | |
| 1740 | using Px by (intro ST.AE_pair_measure) (auto simp: comp_def intro!: measurable_fst'' dest: distributed_real_AE distributed_real_measurable) | |
| 1741 | moreover have "AE x in S \<Otimes>\<^isub>M T. 0 \<le> Py (snd x)" | |
| 1742 | using Py by (intro ST.AE_pair_measure) (auto simp: comp_def intro!: measurable_snd'' dest: distributed_real_AE distributed_real_measurable) | |
| 1743 | moreover note Pxy[THEN distributed_real_AE] | |
| 1744 | ultimately have "AE x in S \<Otimes>\<^isub>M T. Pxy x * log b (Pxy x) - Pxy x * log b (Px (fst x)) - Pxy x * log b (Py (snd x)) = | |
| 1745 | Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x)))" | |
| 1746 | (is "AE x in _. ?f x = ?g x") | |
| 1747 | proof eventually_elim | |
| 1748 | case (goal1 x) | |
| 1749 | show ?case | |
| 1750 | proof cases | |
| 1751 | assume "Pxy x \<noteq> 0" | |
| 1752 | with goal1 have "0 < Px (fst x)" "0 < Py (snd x)" "0 < Pxy x" | |
| 1753 | by auto | |
| 1754 | then show ?thesis | |
| 1755 | using b_gt_1 by (simp add: log_simps mult_pos_pos less_imp_le field_simps) | |
| 1756 | qed simp | |
| 1757 | qed | |
| 1758 | ||
| 1759 | have "entropy b S X + entropy b T Y - entropy b (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x)) = integral\<^isup>L (S \<Otimes>\<^isub>M T) ?f" | |
| 1760 | unfolding X Y XY | |
| 1761 | apply (subst integral_diff) | |
| 1762 | apply (intro integral_diff Ixy Ix Iy)+ | |
| 1763 | apply (subst integral_diff) | |
| 1764 | apply (intro integral_diff Ixy Ix Iy)+ | |
| 1765 | apply (simp add: field_simps) | |
| 1766 | done | |
| 1767 | also have "\<dots> = integral\<^isup>L (S \<Otimes>\<^isub>M T) ?g" | |
| 1768 | using `AE x in _. ?f x = ?g x` by (rule integral_cong_AE) | |
| 1769 | also have "\<dots> = mutual_information b S T X Y" | |
| 1770 | by (rule mutual_information_distr[OF S T Px Py Pxy, symmetric]) | |
| 1771 | finally show ?thesis .. | |
| 1772 | qed | |
| 1773 | ||
| 49802 
dd8dffaf84b9
continuous version of mutual_information_eq_entropy_conditional_entropy
 hoelzl parents: 
49792diff
changeset | 1774 | lemma (in information_space) mutual_information_eq_entropy_conditional_entropy': | 
| 
dd8dffaf84b9
continuous version of mutual_information_eq_entropy_conditional_entropy
 hoelzl parents: 
49792diff
changeset | 1775 |   fixes Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real" and Pxy :: "('b \<times> 'c) \<Rightarrow> real"
 | 
| 
dd8dffaf84b9
continuous version of mutual_information_eq_entropy_conditional_entropy
 hoelzl parents: 
49792diff
changeset | 1776 | assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" | 
| 
dd8dffaf84b9
continuous version of mutual_information_eq_entropy_conditional_entropy
 hoelzl parents: 
49792diff
changeset | 1777 | assumes Px: "distributed M S X Px" and Py: "distributed M T Y Py" | 
| 
dd8dffaf84b9
continuous version of mutual_information_eq_entropy_conditional_entropy
 hoelzl parents: 
49792diff
changeset | 1778 | assumes Pxy: "distributed M (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x)) Pxy" | 
| 
dd8dffaf84b9
continuous version of mutual_information_eq_entropy_conditional_entropy
 hoelzl parents: 
49792diff
changeset | 1779 | assumes Ix: "integrable(S \<Otimes>\<^isub>M T) (\<lambda>x. Pxy x * log b (Px (fst x)))" | 
| 
dd8dffaf84b9
continuous version of mutual_information_eq_entropy_conditional_entropy
 hoelzl parents: 
49792diff
changeset | 1780 | assumes Iy: "integrable(S \<Otimes>\<^isub>M T) (\<lambda>x. Pxy x * log b (Py (snd x)))" | 
| 
dd8dffaf84b9
continuous version of mutual_information_eq_entropy_conditional_entropy
 hoelzl parents: 
49792diff
changeset | 1781 | assumes Ixy: "integrable(S \<Otimes>\<^isub>M T) (\<lambda>x. Pxy x * log b (Pxy x))" | 
| 
dd8dffaf84b9
continuous version of mutual_information_eq_entropy_conditional_entropy
 hoelzl parents: 
49792diff
changeset | 1782 | shows "mutual_information b S T X Y = entropy b S X - conditional_entropy b S T X Y" | 
| 
dd8dffaf84b9
continuous version of mutual_information_eq_entropy_conditional_entropy
 hoelzl parents: 
49792diff
changeset | 1783 | using | 
| 
dd8dffaf84b9
continuous version of mutual_information_eq_entropy_conditional_entropy
 hoelzl parents: 
49792diff
changeset | 1784 | mutual_information_eq_entropy_conditional_entropy_distr[OF S T Px Py Pxy Ix Iy Ixy] | 
| 
dd8dffaf84b9
continuous version of mutual_information_eq_entropy_conditional_entropy
 hoelzl parents: 
49792diff
changeset | 1785 | conditional_entropy_eq_entropy[OF S T Py Pxy Ixy Iy] | 
| 
dd8dffaf84b9
continuous version of mutual_information_eq_entropy_conditional_entropy
 hoelzl parents: 
49792diff
changeset | 1786 | by simp | 
| 
dd8dffaf84b9
continuous version of mutual_information_eq_entropy_conditional_entropy
 hoelzl parents: 
49792diff
changeset | 1787 | |
| 47694 | 1788 | lemma (in information_space) mutual_information_eq_entropy_conditional_entropy: | 
| 1789 | assumes sf_X: "simple_function M X" and sf_Y: "simple_function M Y" | |
| 1790 | shows "\<I>(X ; Y) = \<H>(X) - \<H>(X | Y)" | |
| 1791 | proof - | |
| 1792 |   have X: "simple_distributed M X (\<lambda>x. measure M (X -` {x} \<inter> space M))"
 | |
| 1793 | using sf_X by (rule simple_distributedI) auto | |
| 1794 |   have Y: "simple_distributed M Y (\<lambda>x. measure M (Y -` {x} \<inter> space M))"
 | |
| 1795 | using sf_Y by (rule simple_distributedI) auto | |
| 1796 | have sf_XY: "simple_function M (\<lambda>x. (X x, Y x))" | |
| 1797 | using sf_X sf_Y by (rule simple_function_Pair) | |
| 1798 |   then have XY: "simple_distributed M (\<lambda>x. (X x, Y x)) (\<lambda>x. measure M ((\<lambda>x. (X x, Y x)) -` {x} \<inter> space M))"
 | |
| 1799 | by (rule simple_distributedI) auto | |
| 1800 | from simple_distributed_joint_finite[OF this, simp] | |
| 1801 | have eq: "count_space (X ` space M) \<Otimes>\<^isub>M count_space (Y ` space M) = count_space (X ` space M \<times> Y ` space M)" | |
| 1802 | by (simp add: pair_measure_count_space) | |
| 1803 | ||
| 1804 | have "\<I>(X ; Y) = \<H>(X) + \<H>(Y) - entropy b (count_space (X`space M) \<Otimes>\<^isub>M count_space (Y`space M)) (\<lambda>x. (X x, Y x))" | |
| 1805 | using sigma_finite_measure_count_space_finite sigma_finite_measure_count_space_finite simple_distributed[OF X] simple_distributed[OF Y] simple_distributed_joint[OF XY] | |
| 1806 | by (rule mutual_information_eq_entropy_conditional_entropy_distr) (auto simp: eq integrable_count_space) | |
| 1807 | then show ?thesis | |
| 49791 | 1808 | unfolding conditional_entropy_eq_entropy_simple[OF sf_X sf_Y] by simp | 
| 47694 | 1809 | qed | 
| 1810 | ||
| 1811 | lemma (in information_space) mutual_information_nonneg_simple: | |
| 1812 | assumes sf_X: "simple_function M X" and sf_Y: "simple_function M Y" | |
| 1813 | shows "0 \<le> \<I>(X ; Y)" | |
| 1814 | proof - | |
| 1815 |   have X: "simple_distributed M X (\<lambda>x. measure M (X -` {x} \<inter> space M))"
 | |
| 1816 | using sf_X by (rule simple_distributedI) auto | |
| 1817 |   have Y: "simple_distributed M Y (\<lambda>x. measure M (Y -` {x} \<inter> space M))"
 | |
| 1818 | using sf_Y by (rule simple_distributedI) auto | |
| 1819 | ||
| 1820 | have sf_XY: "simple_function M (\<lambda>x. (X x, Y x))" | |
| 1821 | using sf_X sf_Y by (rule simple_function_Pair) | |
| 1822 |   then have XY: "simple_distributed M (\<lambda>x. (X x, Y x)) (\<lambda>x. measure M ((\<lambda>x. (X x, Y x)) -` {x} \<inter> space M))"
 | |
| 1823 | by (rule simple_distributedI) auto | |
| 1824 | ||
| 1825 | from simple_distributed_joint_finite[OF this, simp] | |
| 1826 | have eq: "count_space (X ` space M) \<Otimes>\<^isub>M count_space (Y ` space M) = count_space (X ` space M \<times> Y ` space M)" | |
| 1827 | by (simp add: pair_measure_count_space) | |
| 1828 | ||
| 40859 | 1829 | show ?thesis | 
| 47694 | 1830 | by (rule mutual_information_nonneg[OF _ _ simple_distributed[OF X] simple_distributed[OF Y] simple_distributed_joint[OF XY]]) | 
| 1831 | (simp_all add: eq integrable_count_space sigma_finite_measure_count_space_finite) | |
| 40859 | 1832 | qed | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 1833 | |
| 40859 | 1834 | lemma (in information_space) conditional_entropy_less_eq_entropy: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 1835 | assumes X: "simple_function M X" and Z: "simple_function M Z" | 
| 40859 | 1836 | shows "\<H>(X | Z) \<le> \<H>(X)" | 
| 36624 | 1837 | proof - | 
| 47694 | 1838 | have "0 \<le> \<I>(X ; Z)" using X Z by (rule mutual_information_nonneg_simple) | 
| 1839 | also have "\<I>(X ; Z) = \<H>(X) - \<H>(X | Z)" using mutual_information_eq_entropy_conditional_entropy[OF assms] . | |
| 1840 | finally show ?thesis by auto | |
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 1841 | qed | 
| 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 1842 | |
| 49803 | 1843 | lemma (in information_space) | 
| 1844 |   fixes Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real" and Pxy :: "('b \<times> 'c) \<Rightarrow> real"
 | |
| 1845 | assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" | |
| 1846 | assumes Px: "finite_entropy S X Px" and Py: "finite_entropy T Y Py" | |
| 1847 | assumes Pxy: "finite_entropy (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x)) Pxy" | |
| 1848 | shows "conditional_entropy b S T X Y \<le> entropy b S X" | |
| 1849 | proof - | |
| 1850 | ||
| 1851 | have "0 \<le> mutual_information b S T X Y" | |
| 1852 | by (rule mutual_information_nonneg') fact+ | |
| 1853 | also have "\<dots> = entropy b S X - conditional_entropy b S T X Y" | |
| 1854 | apply (rule mutual_information_eq_entropy_conditional_entropy') | |
| 1855 | using assms | |
| 1856 | by (auto intro!: finite_entropy_integrable finite_entropy_distributed | |
| 1857 | finite_entropy_integrable_transform[OF Px] | |
| 1858 | finite_entropy_integrable_transform[OF Py]) | |
| 1859 | finally show ?thesis by auto | |
| 1860 | qed | |
| 1861 | ||
| 40859 | 1862 | lemma (in information_space) entropy_chain_rule: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 1863 | assumes X: "simple_function M X" and Y: "simple_function M Y" | 
| 40859 | 1864 | shows "\<H>(\<lambda>x. (X x, Y x)) = \<H>(X) + \<H>(Y|X)" | 
| 1865 | proof - | |
| 47694 | 1866 | note XY = simple_distributedI[OF simple_function_Pair[OF X Y] refl] | 
| 1867 | note YX = simple_distributedI[OF simple_function_Pair[OF Y X] refl] | |
| 1868 | note simple_distributed_joint_finite[OF this, simp] | |
| 1869 |   let ?f = "\<lambda>x. prob ((\<lambda>x. (X x, Y x)) -` {x} \<inter> space M)"
 | |
| 1870 |   let ?g = "\<lambda>x. prob ((\<lambda>x. (Y x, X x)) -` {x} \<inter> space M)"
 | |
| 1871 |   let ?h = "\<lambda>x. if x \<in> (\<lambda>x. (Y x, X x)) ` space M then prob ((\<lambda>x. (Y x, X x)) -` {x} \<inter> space M) else 0"
 | |
| 1872 | have "\<H>(\<lambda>x. (X x, Y x)) = - (\<Sum>x\<in>(\<lambda>x. (X x, Y x)) ` space M. ?f x * log b (?f x))" | |
| 1873 | using XY by (rule entropy_simple_distributed) | |
| 1874 | also have "\<dots> = - (\<Sum>x\<in>(\<lambda>(x, y). (y, x)) ` (\<lambda>x. (X x, Y x)) ` space M. ?g x * log b (?g x))" | |
| 1875 | by (subst (2) setsum_reindex) (auto simp: inj_on_def intro!: setsum_cong arg_cong[where f="\<lambda>A. prob A * log b (prob A)"]) | |
| 1876 | also have "\<dots> = - (\<Sum>x\<in>(\<lambda>x. (Y x, X x)) ` space M. ?h x * log b (?h x))" | |
| 1877 | by (auto intro!: setsum_cong) | |
| 1878 | also have "\<dots> = entropy b (count_space (Y ` space M) \<Otimes>\<^isub>M count_space (X ` space M)) (\<lambda>x. (Y x, X x))" | |
| 49786 | 1879 | by (subst entropy_distr[OF simple_distributed_joint[OF YX]]) | 
| 47694 | 1880 | (auto simp: pair_measure_count_space sigma_finite_measure_count_space_finite lebesgue_integral_count_space_finite | 
| 1881 | cong del: setsum_cong intro!: setsum_mono_zero_left) | |
| 1882 | finally have "\<H>(\<lambda>x. (X x, Y x)) = entropy b (count_space (Y ` space M) \<Otimes>\<^isub>M count_space (X ` space M)) (\<lambda>x. (Y x, X x))" . | |
| 1883 | then show ?thesis | |
| 49791 | 1884 | unfolding conditional_entropy_eq_entropy_simple[OF Y X] by simp | 
| 36624 | 1885 | qed | 
| 1886 | ||
| 40859 | 1887 | lemma (in information_space) entropy_partition: | 
| 47694 | 1888 | assumes X: "simple_function M X" | 
| 1889 | shows "\<H>(X) = \<H>(f \<circ> X) + \<H>(X|f \<circ> X)" | |
| 36624 | 1890 | proof - | 
| 47694 | 1891 | note fX = simple_function_compose[OF X, of f] | 
| 1892 | have eq: "(\<lambda>x. ((f \<circ> X) x, X x)) ` space M = (\<lambda>x. (f x, x)) ` X ` space M" by auto | |
| 1893 | have inj: "\<And>A. inj_on (\<lambda>x. (f x, x)) A" | |
| 1894 | by (auto simp: inj_on_def) | |
| 1895 | show ?thesis | |
| 1896 | apply (subst entropy_chain_rule[symmetric, OF fX X]) | |
| 1897 | apply (subst entropy_simple_distributed[OF simple_distributedI[OF simple_function_Pair[OF fX X] refl]]) | |
| 1898 | apply (subst entropy_simple_distributed[OF simple_distributedI[OF X refl]]) | |
| 1899 | unfolding eq | |
| 1900 | apply (subst setsum_reindex[OF inj]) | |
| 1901 | apply (auto intro!: setsum_cong arg_cong[where f="\<lambda>A. prob A * log b (prob A)"]) | |
| 1902 | done | |
| 36624 | 1903 | qed | 
| 1904 | ||
| 40859 | 1905 | corollary (in information_space) entropy_data_processing: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 1906 | assumes X: "simple_function M X" shows "\<H>(f \<circ> X) \<le> \<H>(X)" | 
| 40859 | 1907 | proof - | 
| 47694 | 1908 | note fX = simple_function_compose[OF X, of f] | 
| 1909 | from X have "\<H>(X) = \<H>(f\<circ>X) + \<H>(X|f\<circ>X)" by (rule entropy_partition) | |
| 40859 | 1910 | then show "\<H>(f \<circ> X) \<le> \<H>(X)" | 
| 47694 | 1911 | by (auto intro: conditional_entropy_nonneg[OF X fX]) | 
| 40859 | 1912 | qed | 
| 36624 | 1913 | |
| 40859 | 1914 | corollary (in information_space) entropy_of_inj: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 1915 | assumes X: "simple_function M X" and inj: "inj_on f (X`space M)" | 
| 36624 | 1916 | shows "\<H>(f \<circ> X) = \<H>(X)" | 
| 1917 | proof (rule antisym) | |
| 40859 | 1918 | show "\<H>(f \<circ> X) \<le> \<H>(X)" using entropy_data_processing[OF X] . | 
| 36624 | 1919 | next | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 1920 | have sf: "simple_function M (f \<circ> X)" | 
| 40859 | 1921 | using X by auto | 
| 36624 | 1922 | have "\<H>(X) = \<H>(the_inv_into (X`space M) f \<circ> (f \<circ> X))" | 
| 47694 | 1923 | unfolding o_assoc | 
| 1924 | apply (subst entropy_simple_distributed[OF simple_distributedI[OF X refl]]) | |
| 1925 |     apply (subst entropy_simple_distributed[OF simple_distributedI[OF simple_function_compose[OF X]], where f="\<lambda>x. prob (X -` {x} \<inter> space M)"])
 | |
| 1926 | apply (auto intro!: setsum_cong arg_cong[where f=prob] image_eqI simp: the_inv_into_f_f[OF inj] comp_def) | |
| 1927 | done | |
| 36624 | 1928 | also have "... \<le> \<H>(f \<circ> X)" | 
| 40859 | 1929 | using entropy_data_processing[OF sf] . | 
| 36624 | 1930 | finally show "\<H>(X) \<le> \<H>(f \<circ> X)" . | 
| 1931 | qed | |
| 1932 | ||
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 1933 | end |