| author | paulson |
| Sat, 18 May 2002 20:08:17 +0200 | |
| changeset 13163 | e320a52ff711 |
| parent 9395 | 1c9851cdfe9f |
| child 13175 | 81082cfa5618 |
| permissions | -rw-r--r-- |
| 1478 | 1 |
(* Title: ZF/univ.thy |
| 0 | 2 |
ID: $Id$ |
| 1478 | 3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
| 0 | 4 |
Copyright 1992 University of Cambridge |
5 |
||
6 |
The cumulative hierarchy and a small universe for recursive types |
|
7 |
||
8 |
Standard notation for Vset(i) is V(i), but users might want V for a variable |
|
| 516 | 9 |
|
10 |
NOTE: univ(A) could be a translation; would simplify many proofs! |
|
| 6093 | 11 |
But Ind_Syntax.univ refers to the constant "Univ.univ" |
| 0 | 12 |
*) |
13 |
||
| 13163 | 14 |
theory Univ = Epsilon + Sum + Finite + mono: |
| 3923 | 15 |
|
| 13163 | 16 |
constdefs |
17 |
Vfrom :: "[i,i]=>i" |
|
18 |
"Vfrom(A,i) == transrec(i, %x f. A Un (UN y:x. Pow(f`y)))" |
|
| 0 | 19 |
|
| 13163 | 20 |
syntax Vset :: "i=>i" |
| 0 | 21 |
translations |
| 1478 | 22 |
"Vset(x)" == "Vfrom(0,x)" |
| 0 | 23 |
|
| 3923 | 24 |
|
| 13163 | 25 |
constdefs |
26 |
Vrec :: "[i, [i,i]=>i] =>i" |
|
27 |
"Vrec(a,H) == transrec(rank(a), %x g. lam z: Vset(succ(x)). |
|
28 |
H(z, lam w:Vset(x). g`rank(w)`w)) ` a" |
|
29 |
||
30 |
Vrecursor :: "[[i,i]=>i, i] =>i" |
|
31 |
"Vrecursor(H,a) == transrec(rank(a), %x g. lam z: Vset(succ(x)). |
|
32 |
H(lam w:Vset(x). g`rank(w)`w, z)) ` a" |
|
33 |
||
34 |
univ :: "i=>i" |
|
35 |
"univ(A) == Vfrom(A,nat)" |
|
36 |
||
37 |
||
38 |
text{*NOT SUITABLE FOR REWRITING -- RECURSIVE!*}
|
|
39 |
lemma Vfrom: "Vfrom(A,i) = A Un (UN j:i. Pow(Vfrom(A,j)))" |
|
40 |
apply (subst Vfrom_def [THEN def_transrec]) |
|
41 |
apply simp |
|
42 |
done |
|
43 |
||
44 |
subsubsection{* Monotonicity *}
|
|
45 |
||
46 |
lemma Vfrom_mono [rule_format]: |
|
47 |
"A<=B ==> ALL j. i<=j --> Vfrom(A,i) <= Vfrom(B,j)" |
|
48 |
apply (rule_tac a=i in eps_induct) |
|
49 |
apply (rule impI [THEN allI]) |
|
50 |
apply (subst Vfrom) |
|
51 |
apply (subst Vfrom) |
|
52 |
apply (erule Un_mono) |
|
53 |
apply (erule UN_mono, blast) |
|
54 |
done |
|
55 |
||
56 |
||
57 |
subsubsection{* A fundamental equality: Vfrom does not require ordinals! *}
|
|
58 |
||
59 |
lemma Vfrom_rank_subset1: "Vfrom(A,x) <= Vfrom(A,rank(x))" |
|
60 |
apply (rule_tac a=x in eps_induct) |
|
61 |
apply (subst Vfrom) |
|
62 |
apply (subst Vfrom) |
|
63 |
apply (blast intro!: rank_lt [THEN ltD]) |
|
64 |
done |
|
65 |
||
66 |
lemma Vfrom_rank_subset2: "Vfrom(A,rank(x)) <= Vfrom(A,x)" |
|
67 |
apply (rule_tac a=x in eps_induct) |
|
68 |
apply (subst Vfrom) |
|
69 |
apply (subst Vfrom) |
|
70 |
apply (rule subset_refl [THEN Un_mono]) |
|
71 |
apply (rule UN_least) |
|
72 |
txt{*expand rank(x1) = (UN y:x1. succ(rank(y))) in assumptions*}
|
|
73 |
apply (erule rank [THEN equalityD1, THEN subsetD, THEN UN_E]) |
|
74 |
apply (rule subset_trans) |
|
75 |
apply (erule_tac [2] UN_upper) |
|
76 |
apply (rule subset_refl [THEN Vfrom_mono, THEN subset_trans, THEN Pow_mono]) |
|
77 |
apply (erule ltI [THEN le_imp_subset]) |
|
78 |
apply (rule Ord_rank [THEN Ord_succ]) |
|
79 |
apply (erule bspec, assumption) |
|
80 |
done |
|
81 |
||
82 |
lemma Vfrom_rank_eq: "Vfrom(A,rank(x)) = Vfrom(A,x)" |
|
83 |
apply (rule equalityI) |
|
84 |
apply (rule Vfrom_rank_subset2) |
|
85 |
apply (rule Vfrom_rank_subset1) |
|
86 |
done |
|
87 |
||
88 |
||
89 |
subsection{* Basic closure properties *}
|
|
90 |
||
91 |
lemma zero_in_Vfrom: "y:x ==> 0 : Vfrom(A,x)" |
|
92 |
by (subst Vfrom, blast) |
|
93 |
||
94 |
lemma i_subset_Vfrom: "i <= Vfrom(A,i)" |
|
95 |
apply (rule_tac a=i in eps_induct) |
|
96 |
apply (subst Vfrom, blast) |
|
97 |
done |
|
98 |
||
99 |
lemma A_subset_Vfrom: "A <= Vfrom(A,i)" |
|
100 |
apply (subst Vfrom) |
|
101 |
apply (rule Un_upper1) |
|
102 |
done |
|
103 |
||
104 |
lemmas A_into_Vfrom = A_subset_Vfrom [THEN subsetD] |
|
105 |
||
106 |
lemma subset_mem_Vfrom: "a <= Vfrom(A,i) ==> a: Vfrom(A,succ(i))" |
|
107 |
by (subst Vfrom, blast) |
|
108 |
||
109 |
subsubsection{* Finite sets and ordered pairs *}
|
|
110 |
||
111 |
lemma singleton_in_Vfrom: "a: Vfrom(A,i) ==> {a} : Vfrom(A,succ(i))"
|
|
112 |
by (rule subset_mem_Vfrom, safe) |
|
113 |
||
114 |
lemma doubleton_in_Vfrom: |
|
115 |
"[| a: Vfrom(A,i); b: Vfrom(A,i) |] ==> {a,b} : Vfrom(A,succ(i))"
|
|
116 |
by (rule subset_mem_Vfrom, safe) |
|
117 |
||
118 |
lemma Pair_in_Vfrom: |
|
119 |
"[| a: Vfrom(A,i); b: Vfrom(A,i) |] ==> <a,b> : Vfrom(A,succ(succ(i)))" |
|
120 |
apply (unfold Pair_def) |
|
121 |
apply (blast intro: doubleton_in_Vfrom) |
|
122 |
done |
|
123 |
||
124 |
lemma succ_in_Vfrom: "a <= Vfrom(A,i) ==> succ(a) : Vfrom(A,succ(succ(i)))" |
|
125 |
apply (intro subset_mem_Vfrom succ_subsetI, assumption) |
|
126 |
apply (erule subset_trans) |
|
127 |
apply (rule Vfrom_mono [OF subset_refl subset_succI]) |
|
128 |
done |
|
129 |
||
130 |
subsection{* 0, successor and limit equations fof Vfrom *}
|
|
131 |
||
132 |
lemma Vfrom_0: "Vfrom(A,0) = A" |
|
133 |
by (subst Vfrom, blast) |
|
134 |
||
135 |
lemma Vfrom_succ_lemma: "Ord(i) ==> Vfrom(A,succ(i)) = A Un Pow(Vfrom(A,i))" |
|
136 |
apply (rule Vfrom [THEN trans]) |
|
137 |
apply (rule equalityI [THEN subst_context, |
|
138 |
OF _ succI1 [THEN RepFunI, THEN Union_upper]]) |
|
139 |
apply (rule UN_least) |
|
140 |
apply (rule subset_refl [THEN Vfrom_mono, THEN Pow_mono]) |
|
141 |
apply (erule ltI [THEN le_imp_subset]) |
|
142 |
apply (erule Ord_succ) |
|
143 |
done |
|
144 |
||
145 |
lemma Vfrom_succ: "Vfrom(A,succ(i)) = A Un Pow(Vfrom(A,i))" |
|
146 |
apply (rule_tac x1 = "succ (i)" in Vfrom_rank_eq [THEN subst]) |
|
147 |
apply (rule_tac x1 = "i" in Vfrom_rank_eq [THEN subst]) |
|
148 |
apply (subst rank_succ) |
|
149 |
apply (rule Ord_rank [THEN Vfrom_succ_lemma]) |
|
150 |
done |
|
151 |
||
152 |
(*The premise distinguishes this from Vfrom(A,0); allowing X=0 forces |
|
153 |
the conclusion to be Vfrom(A,Union(X)) = A Un (UN y:X. Vfrom(A,y)) *) |
|
154 |
lemma Vfrom_Union: "y:X ==> Vfrom(A,Union(X)) = (UN y:X. Vfrom(A,y))" |
|
155 |
apply (subst Vfrom) |
|
156 |
apply (rule equalityI) |
|
157 |
txt{*first inclusion*}
|
|
158 |
apply (rule Un_least) |
|
159 |
apply (rule A_subset_Vfrom [THEN subset_trans]) |
|
160 |
apply (rule UN_upper, assumption) |
|
161 |
apply (rule UN_least) |
|
162 |
apply (erule UnionE) |
|
163 |
apply (rule subset_trans) |
|
164 |
apply (erule_tac [2] UN_upper, |
|
165 |
subst Vfrom, erule subset_trans [OF UN_upper Un_upper2]) |
|
166 |
txt{*opposite inclusion*}
|
|
167 |
apply (rule UN_least) |
|
168 |
apply (subst Vfrom, blast) |
|
169 |
done |
|
170 |
||
171 |
subsection{* Vfrom applied to Limit ordinals *}
|
|
172 |
||
173 |
(*NB. limit ordinals are non-empty: |
|
174 |
Vfrom(A,0) = A = A Un (UN y:0. Vfrom(A,y)) *) |
|
175 |
lemma Limit_Vfrom_eq: |
|
176 |
"Limit(i) ==> Vfrom(A,i) = (UN y:i. Vfrom(A,y))" |
|
177 |
apply (rule Limit_has_0 [THEN ltD, THEN Vfrom_Union, THEN subst], assumption) |
|
178 |
apply (simp add: Limit_Union_eq) |
|
179 |
done |
|
180 |
||
181 |
lemma Limit_VfromI: "[| a: Vfrom(A,j); Limit(i); j<i |] ==> a : Vfrom(A,i)" |
|
182 |
apply (rule Limit_Vfrom_eq [THEN equalityD2, THEN subsetD], assumption) |
|
183 |
apply (blast intro: ltD) |
|
184 |
done |
|
185 |
||
186 |
lemma Limit_VfromE: |
|
187 |
"[| a: Vfrom(A,i); ~R ==> Limit(i); |
|
188 |
!!x. [| x<i; a: Vfrom(A,x) |] ==> R |
|
189 |
|] ==> R" |
|
190 |
apply (rule classical) |
|
191 |
apply (rule Limit_Vfrom_eq [THEN equalityD1, THEN subsetD, THEN UN_E]) |
|
192 |
prefer 2 apply assumption |
|
193 |
apply blast |
|
194 |
apply (blast intro: ltI Limit_is_Ord) |
|
195 |
done |
|
196 |
||
197 |
lemmas zero_in_VLimit = Limit_has_0 [THEN ltD, THEN zero_in_Vfrom, standard] |
|
198 |
||
199 |
lemma singleton_in_VLimit: |
|
200 |
"[| a: Vfrom(A,i); Limit(i) |] ==> {a} : Vfrom(A,i)"
|
|
201 |
apply (erule Limit_VfromE, assumption) |
|
202 |
apply (erule singleton_in_Vfrom [THEN Limit_VfromI], assumption) |
|
203 |
apply (blast intro: Limit_has_succ) |
|
204 |
done |
|
205 |
||
206 |
lemmas Vfrom_UnI1 = |
|
207 |
Un_upper1 [THEN subset_refl [THEN Vfrom_mono, THEN subsetD], standard] |
|
208 |
lemmas Vfrom_UnI2 = |
|
209 |
Un_upper2 [THEN subset_refl [THEN Vfrom_mono, THEN subsetD], standard] |
|
210 |
||
211 |
text{*Hard work is finding a single j:i such that {a,b}<=Vfrom(A,j)*}
|
|
212 |
lemma doubleton_in_VLimit: |
|
213 |
"[| a: Vfrom(A,i); b: Vfrom(A,i); Limit(i) |] ==> {a,b} : Vfrom(A,i)"
|
|
214 |
apply (erule Limit_VfromE, assumption) |
|
215 |
apply (erule Limit_VfromE, assumption) |
|
216 |
apply (blast intro: Limit_VfromI [OF doubleton_in_Vfrom] |
|
217 |
Vfrom_UnI1 Vfrom_UnI2 Limit_has_succ Un_least_lt) |
|
218 |
done |
|
219 |
||
220 |
lemma Pair_in_VLimit: |
|
221 |
"[| a: Vfrom(A,i); b: Vfrom(A,i); Limit(i) |] ==> <a,b> : Vfrom(A,i)" |
|
222 |
txt{*Infer that a, b occur at ordinals x,xa < i.*}
|
|
223 |
apply (erule Limit_VfromE, assumption) |
|
224 |
apply (erule Limit_VfromE, assumption) |
|
225 |
txt{*Infer that succ(succ(x Un xa)) < i *}
|
|
226 |
apply (blast intro: Limit_VfromI [OF Pair_in_Vfrom] |
|
227 |
Vfrom_UnI1 Vfrom_UnI2 Limit_has_succ Un_least_lt) |
|
228 |
done |
|
229 |
||
230 |
lemma product_VLimit: "Limit(i) ==> Vfrom(A,i) * Vfrom(A,i) <= Vfrom(A,i)" |
|
231 |
by (blast intro: Pair_in_VLimit) |
|
232 |
||
233 |
lemmas Sigma_subset_VLimit = |
|
234 |
subset_trans [OF Sigma_mono product_VLimit] |
|
235 |
||
236 |
lemmas nat_subset_VLimit = |
|
237 |
subset_trans [OF nat_le_Limit [THEN le_imp_subset] i_subset_Vfrom] |
|
238 |
||
239 |
lemma nat_into_VLimit: "[| n: nat; Limit(i) |] ==> n : Vfrom(A,i)" |
|
240 |
by (blast intro: nat_subset_VLimit [THEN subsetD]) |
|
241 |
||
242 |
subsubsection{* Closure under disjoint union *}
|
|
243 |
||
244 |
lemmas zero_in_VLimit = Limit_has_0 [THEN ltD, THEN zero_in_Vfrom, standard] |
|
245 |
||
246 |
lemma one_in_VLimit: "Limit(i) ==> 1 : Vfrom(A,i)" |
|
247 |
by (blast intro: nat_into_VLimit) |
|
248 |
||
249 |
lemma Inl_in_VLimit: |
|
250 |
"[| a: Vfrom(A,i); Limit(i) |] ==> Inl(a) : Vfrom(A,i)" |
|
251 |
apply (unfold Inl_def) |
|
252 |
apply (blast intro: zero_in_VLimit Pair_in_VLimit) |
|
253 |
done |
|
254 |
||
255 |
lemma Inr_in_VLimit: |
|
256 |
"[| b: Vfrom(A,i); Limit(i) |] ==> Inr(b) : Vfrom(A,i)" |
|
257 |
apply (unfold Inr_def) |
|
258 |
apply (blast intro: one_in_VLimit Pair_in_VLimit) |
|
259 |
done |
|
260 |
||
261 |
lemma sum_VLimit: "Limit(i) ==> Vfrom(C,i)+Vfrom(C,i) <= Vfrom(C,i)" |
|
262 |
by (blast intro!: Inl_in_VLimit Inr_in_VLimit) |
|
263 |
||
264 |
lemmas sum_subset_VLimit = subset_trans [OF sum_mono sum_VLimit] |
|
265 |
||
266 |
||
267 |
||
268 |
subsection{* Properties assuming Transset(A) *}
|
|
269 |
||
270 |
lemma Transset_Vfrom: "Transset(A) ==> Transset(Vfrom(A,i))" |
|
271 |
apply (rule_tac a=i in eps_induct) |
|
272 |
apply (subst Vfrom) |
|
273 |
apply (blast intro!: Transset_Union_family Transset_Un Transset_Pow) |
|
274 |
done |
|
275 |
||
276 |
lemma Transset_Vfrom_succ: |
|
277 |
"Transset(A) ==> Vfrom(A, succ(i)) = Pow(Vfrom(A,i))" |
|
278 |
apply (rule Vfrom_succ [THEN trans]) |
|
279 |
apply (rule equalityI [OF _ Un_upper2]) |
|
280 |
apply (rule Un_least [OF _ subset_refl]) |
|
281 |
apply (rule A_subset_Vfrom [THEN subset_trans]) |
|
282 |
apply (erule Transset_Vfrom [THEN Transset_iff_Pow [THEN iffD1]]) |
|
283 |
done |
|
284 |
||
285 |
lemma Transset_Pair_subset: "[| <a,b> <= C; Transset(C) |] ==> a: C & b: C" |
|
286 |
by (unfold Pair_def Transset_def, blast) |
|
287 |
||
288 |
lemma Transset_Pair_subset_VLimit: |
|
289 |
"[| <a,b> <= Vfrom(A,i); Transset(A); Limit(i) |] |
|
290 |
==> <a,b> : Vfrom(A,i)" |
|
291 |
apply (erule Transset_Pair_subset [THEN conjE]) |
|
292 |
apply (erule Transset_Vfrom) |
|
293 |
apply (blast intro: Pair_in_VLimit) |
|
294 |
done |
|
295 |
||
296 |
lemma Union_in_Vfrom: |
|
297 |
"[| X: Vfrom(A,j); Transset(A) |] ==> Union(X) : Vfrom(A, succ(j))" |
|
298 |
apply (drule Transset_Vfrom) |
|
299 |
apply (rule subset_mem_Vfrom) |
|
300 |
apply (unfold Transset_def, blast) |
|
301 |
done |
|
302 |
||
303 |
lemma Union_in_VLimit: |
|
304 |
"[| X: Vfrom(A,i); Limit(i); Transset(A) |] ==> Union(X) : Vfrom(A,i)" |
|
305 |
apply (rule Limit_VfromE, assumption+) |
|
306 |
apply (blast intro: Limit_has_succ Limit_VfromI Union_in_Vfrom) |
|
307 |
done |
|
308 |
||
309 |
||
310 |
(*** Closure under product/sum applied to elements -- thus Vfrom(A,i) |
|
311 |
is a model of simple type theory provided A is a transitive set |
|
312 |
and i is a limit ordinal |
|
313 |
***) |
|
314 |
||
315 |
text{*General theorem for membership in Vfrom(A,i) when i is a limit ordinal*}
|
|
316 |
lemma in_VLimit: |
|
317 |
"[| a: Vfrom(A,i); b: Vfrom(A,i); Limit(i); |
|
318 |
!!x y j. [| j<i; 1:j; x: Vfrom(A,j); y: Vfrom(A,j) |] |
|
319 |
==> EX k. h(x,y): Vfrom(A,k) & k<i |] |
|
320 |
==> h(a,b) : Vfrom(A,i)" |
|
321 |
txt{*Infer that a, b occur at ordinals x,xa < i.*}
|
|
322 |
apply (erule Limit_VfromE, assumption) |
|
323 |
apply (erule Limit_VfromE, assumption, atomize) |
|
324 |
apply (drule_tac x=a in spec) |
|
325 |
apply (drule_tac x=b in spec) |
|
326 |
apply (drule_tac x="x Un xa Un 2" in spec) |
|
327 |
txt{*FIXME: can do better using simprule about Un and <*}
|
|
328 |
apply (simp add: Vfrom_UnI2 [THEN Vfrom_UnI1] Vfrom_UnI1 [THEN Vfrom_UnI1]) |
|
329 |
apply (blast intro: Limit_has_0 Limit_has_succ Un_least_lt Limit_VfromI) |
|
330 |
done |
|
331 |
||
332 |
subsubsection{* products *}
|
|
333 |
||
334 |
lemma prod_in_Vfrom: |
|
335 |
"[| a: Vfrom(A,j); b: Vfrom(A,j); Transset(A) |] |
|
336 |
==> a*b : Vfrom(A, succ(succ(succ(j))))" |
|
337 |
apply (drule Transset_Vfrom) |
|
338 |
apply (rule subset_mem_Vfrom) |
|
339 |
apply (unfold Transset_def) |
|
340 |
apply (blast intro: Pair_in_Vfrom) |
|
341 |
done |
|
342 |
||
343 |
lemma prod_in_VLimit: |
|
344 |
"[| a: Vfrom(A,i); b: Vfrom(A,i); Limit(i); Transset(A) |] |
|
345 |
==> a*b : Vfrom(A,i)" |
|
346 |
apply (erule in_VLimit, assumption+) |
|
347 |
apply (blast intro: prod_in_Vfrom Limit_has_succ) |
|
348 |
done |
|
349 |
||
350 |
subsubsection{* Disjoint sums, aka Quine ordered pairs *}
|
|
351 |
||
352 |
lemma sum_in_Vfrom: |
|
353 |
"[| a: Vfrom(A,j); b: Vfrom(A,j); Transset(A); 1:j |] |
|
354 |
==> a+b : Vfrom(A, succ(succ(succ(j))))" |
|
355 |
apply (unfold sum_def) |
|
356 |
apply (drule Transset_Vfrom) |
|
357 |
apply (rule subset_mem_Vfrom) |
|
358 |
apply (unfold Transset_def) |
|
359 |
apply (blast intro: zero_in_Vfrom Pair_in_Vfrom i_subset_Vfrom [THEN subsetD]) |
|
360 |
done |
|
361 |
||
362 |
lemma sum_in_VLimit: |
|
363 |
"[| a: Vfrom(A,i); b: Vfrom(A,i); Limit(i); Transset(A) |] |
|
364 |
==> a+b : Vfrom(A,i)" |
|
365 |
apply (erule in_VLimit, assumption+) |
|
366 |
apply (blast intro: sum_in_Vfrom Limit_has_succ) |
|
367 |
done |
|
368 |
||
369 |
subsubsection{* function space! *}
|
|
370 |
||
371 |
lemma fun_in_Vfrom: |
|
372 |
"[| a: Vfrom(A,j); b: Vfrom(A,j); Transset(A) |] ==> |
|
373 |
a->b : Vfrom(A, succ(succ(succ(succ(j)))))" |
|
374 |
apply (unfold Pi_def) |
|
375 |
apply (drule Transset_Vfrom) |
|
376 |
apply (rule subset_mem_Vfrom) |
|
377 |
apply (rule Collect_subset [THEN subset_trans]) |
|
378 |
apply (subst Vfrom) |
|
379 |
apply (rule subset_trans [THEN subset_trans]) |
|
380 |
apply (rule_tac [3] Un_upper2) |
|
381 |
apply (rule_tac [2] succI1 [THEN UN_upper]) |
|
382 |
apply (rule Pow_mono) |
|
383 |
apply (unfold Transset_def) |
|
384 |
apply (blast intro: Pair_in_Vfrom) |
|
385 |
done |
|
386 |
||
387 |
lemma fun_in_VLimit: |
|
388 |
"[| a: Vfrom(A,i); b: Vfrom(A,i); Limit(i); Transset(A) |] |
|
389 |
==> a->b : Vfrom(A,i)" |
|
390 |
apply (erule in_VLimit, assumption+) |
|
391 |
apply (blast intro: fun_in_Vfrom Limit_has_succ) |
|
392 |
done |
|
393 |
||
394 |
lemma Pow_in_Vfrom: |
|
395 |
"[| a: Vfrom(A,j); Transset(A) |] ==> Pow(a) : Vfrom(A, succ(succ(j)))" |
|
396 |
apply (drule Transset_Vfrom) |
|
397 |
apply (rule subset_mem_Vfrom) |
|
398 |
apply (unfold Transset_def) |
|
399 |
apply (subst Vfrom, blast) |
|
400 |
done |
|
401 |
||
402 |
lemma Pow_in_VLimit: |
|
403 |
"[| a: Vfrom(A,i); Limit(i); Transset(A) |] ==> Pow(a) : Vfrom(A,i)" |
|
404 |
by (blast elim: Limit_VfromE intro: Limit_has_succ Pow_in_Vfrom Limit_VfromI) |
|
405 |
||
406 |
||
407 |
subsection{* The set Vset(i) *}
|
|
408 |
||
409 |
lemma Vset: "Vset(i) = (UN j:i. Pow(Vset(j)))" |
|
410 |
by (subst Vfrom, blast) |
|
411 |
||
412 |
lemmas Vset_succ = Transset_0 [THEN Transset_Vfrom_succ, standard] |
|
413 |
lemmas Transset_Vset = Transset_0 [THEN Transset_Vfrom, standard] |
|
414 |
||
415 |
subsubsection{* Characterisation of the elements of Vset(i) *}
|
|
416 |
||
417 |
lemma VsetD [rule_format]: "Ord(i) ==> ALL b. b : Vset(i) --> rank(b) < i" |
|
418 |
apply (erule trans_induct) |
|
419 |
apply (subst Vset, safe) |
|
420 |
apply (subst rank) |
|
421 |
apply (blast intro: ltI UN_succ_least_lt) |
|
422 |
done |
|
423 |
||
424 |
lemma VsetI_lemma [rule_format]: |
|
425 |
"Ord(i) ==> ALL b. rank(b) : i --> b : Vset(i)" |
|
426 |
apply (erule trans_induct) |
|
427 |
apply (rule allI) |
|
428 |
apply (subst Vset) |
|
429 |
apply (blast intro!: rank_lt [THEN ltD]) |
|
430 |
done |
|
431 |
||
432 |
lemma VsetI: "rank(x)<i ==> x : Vset(i)" |
|
433 |
by (blast intro: VsetI_lemma elim: ltE) |
|
434 |
||
435 |
text{*Merely a lemma for the next result*}
|
|
436 |
lemma Vset_Ord_rank_iff: "Ord(i) ==> b : Vset(i) <-> rank(b) < i" |
|
437 |
by (blast intro: VsetD VsetI) |
|
438 |
||
439 |
lemma Vset_rank_iff [simp]: "b : Vset(a) <-> rank(b) < rank(a)" |
|
440 |
apply (rule Vfrom_rank_eq [THEN subst]) |
|
441 |
apply (rule Ord_rank [THEN Vset_Ord_rank_iff]) |
|
442 |
done |
|
443 |
||
444 |
text{*This is rank(rank(a)) = rank(a) *}
|
|
445 |
declare Ord_rank [THEN rank_of_Ord, simp] |
|
446 |
||
447 |
lemma rank_Vset: "Ord(i) ==> rank(Vset(i)) = i" |
|
448 |
apply (subst rank) |
|
449 |
apply (rule equalityI, safe) |
|
450 |
apply (blast intro: VsetD [THEN ltD]) |
|
451 |
apply (blast intro: VsetD [THEN ltD] Ord_trans) |
|
452 |
apply (blast intro: i_subset_Vfrom [THEN subsetD] |
|
453 |
Ord_in_Ord [THEN rank_of_Ord, THEN ssubst]) |
|
454 |
done |
|
455 |
||
456 |
subsubsection{* Lemmas for reasoning about sets in terms of their elements' ranks *}
|
|
| 0 | 457 |
|
| 13163 | 458 |
lemma arg_subset_Vset_rank: "a <= Vset(rank(a))" |
459 |
apply (rule subsetI) |
|
460 |
apply (erule rank_lt [THEN VsetI]) |
|
461 |
done |
|
462 |
||
463 |
lemma Int_Vset_subset: |
|
464 |
"[| !!i. Ord(i) ==> a Int Vset(i) <= b |] ==> a <= b" |
|
465 |
apply (rule subset_trans) |
|
466 |
apply (rule Int_greatest [OF subset_refl arg_subset_Vset_rank]) |
|
467 |
apply (blast intro: Ord_rank) |
|
468 |
done |
|
469 |
||
470 |
subsubsection{* Set up an environment for simplification *}
|
|
471 |
||
472 |
lemma rank_Inl: "rank(a) < rank(Inl(a))" |
|
473 |
apply (unfold Inl_def) |
|
474 |
apply (rule rank_pair2) |
|
475 |
done |
|
476 |
||
477 |
lemma rank_Inr: "rank(a) < rank(Inr(a))" |
|
478 |
apply (unfold Inr_def) |
|
479 |
apply (rule rank_pair2) |
|
480 |
done |
|
481 |
||
482 |
lemmas rank_rls = rank_Inl rank_Inr rank_pair1 rank_pair2 |
|
483 |
||
484 |
subsubsection{* Recursion over Vset levels! *}
|
|
485 |
||
486 |
text{*NOT SUITABLE FOR REWRITING: recursive!*}
|
|
487 |
lemma Vrec: "Vrec(a,H) = H(a, lam x:Vset(rank(a)). Vrec(x,H))" |
|
488 |
apply (unfold Vrec_def) |
|
489 |
apply (subst transrec) |
|
490 |
apply simp |
|
491 |
apply (rule refl [THEN lam_cong, THEN subst_context], simp) |
|
492 |
done |
|
493 |
||
494 |
text{*This form avoids giant explosions in proofs. NOTE USE OF == *}
|
|
495 |
lemma def_Vrec: |
|
496 |
"[| !!x. h(x)==Vrec(x,H) |] ==> |
|
497 |
h(a) = H(a, lam x: Vset(rank(a)). h(x))" |
|
498 |
apply simp |
|
499 |
apply (rule Vrec) |
|
500 |
done |
|
501 |
||
502 |
text{*NOT SUITABLE FOR REWRITING: recursive!*}
|
|
503 |
lemma Vrecursor: |
|
504 |
"Vrecursor(H,a) = H(lam x:Vset(rank(a)). Vrecursor(H,x), a)" |
|
505 |
apply (unfold Vrecursor_def) |
|
506 |
apply (subst transrec, simp) |
|
507 |
apply (rule refl [THEN lam_cong, THEN subst_context], simp) |
|
508 |
done |
|
509 |
||
510 |
text{*This form avoids giant explosions in proofs. NOTE USE OF == *}
|
|
511 |
lemma def_Vrecursor: |
|
512 |
"h == Vrecursor(H) ==> h(a) = H(lam x: Vset(rank(a)). h(x), a)" |
|
513 |
apply simp |
|
514 |
apply (rule Vrecursor) |
|
515 |
done |
|
516 |
||
517 |
||
518 |
subsection{* univ(A) *}
|
|
519 |
||
520 |
lemma univ_mono: "A<=B ==> univ(A) <= univ(B)" |
|
521 |
apply (unfold univ_def) |
|
522 |
apply (erule Vfrom_mono) |
|
523 |
apply (rule subset_refl) |
|
524 |
done |
|
525 |
||
526 |
lemma Transset_univ: "Transset(A) ==> Transset(univ(A))" |
|
527 |
apply (unfold univ_def) |
|
528 |
apply (erule Transset_Vfrom) |
|
529 |
done |
|
530 |
||
531 |
subsubsection{* univ(A) as a limit *}
|
|
532 |
||
533 |
lemma univ_eq_UN: "univ(A) = (UN i:nat. Vfrom(A,i))" |
|
534 |
apply (unfold univ_def) |
|
535 |
apply (rule Limit_nat [THEN Limit_Vfrom_eq]) |
|
536 |
done |
|
537 |
||
538 |
lemma subset_univ_eq_Int: "c <= univ(A) ==> c = (UN i:nat. c Int Vfrom(A,i))" |
|
539 |
apply (rule subset_UN_iff_eq [THEN iffD1]) |
|
540 |
apply (erule univ_eq_UN [THEN subst]) |
|
541 |
done |
|
542 |
||
543 |
lemma univ_Int_Vfrom_subset: |
|
544 |
"[| a <= univ(X); |
|
545 |
!!i. i:nat ==> a Int Vfrom(X,i) <= b |] |
|
546 |
==> a <= b" |
|
547 |
apply (subst subset_univ_eq_Int, assumption) |
|
548 |
apply (rule UN_least, simp) |
|
549 |
done |
|
550 |
||
551 |
lemma univ_Int_Vfrom_eq: |
|
552 |
"[| a <= univ(X); b <= univ(X); |
|
553 |
!!i. i:nat ==> a Int Vfrom(X,i) = b Int Vfrom(X,i) |
|
554 |
|] ==> a = b" |
|
555 |
apply (rule equalityI) |
|
556 |
apply (rule univ_Int_Vfrom_subset, assumption) |
|
557 |
apply (blast elim: equalityCE) |
|
558 |
apply (rule univ_Int_Vfrom_subset, assumption) |
|
559 |
apply (blast elim: equalityCE) |
|
560 |
done |
|
561 |
||
562 |
subsubsection{* Closure properties *}
|
|
563 |
||
564 |
lemma zero_in_univ: "0 : univ(A)" |
|
565 |
apply (unfold univ_def) |
|
566 |
apply (rule nat_0I [THEN zero_in_Vfrom]) |
|
567 |
done |
|
568 |
||
569 |
lemma A_subset_univ: "A <= univ(A)" |
|
570 |
apply (unfold univ_def) |
|
571 |
apply (rule A_subset_Vfrom) |
|
572 |
done |
|
573 |
||
574 |
lemmas A_into_univ = A_subset_univ [THEN subsetD, standard] |
|
575 |
||
576 |
subsubsection{* Closure under unordered and ordered pairs *}
|
|
577 |
||
578 |
lemma singleton_in_univ: "a: univ(A) ==> {a} : univ(A)"
|
|
579 |
apply (unfold univ_def) |
|
580 |
apply (blast intro: singleton_in_VLimit Limit_nat) |
|
581 |
done |
|
582 |
||
583 |
lemma doubleton_in_univ: |
|
584 |
"[| a: univ(A); b: univ(A) |] ==> {a,b} : univ(A)"
|
|
585 |
apply (unfold univ_def) |
|
586 |
apply (blast intro: doubleton_in_VLimit Limit_nat) |
|
587 |
done |
|
588 |
||
589 |
lemma Pair_in_univ: |
|
590 |
"[| a: univ(A); b: univ(A) |] ==> <a,b> : univ(A)" |
|
591 |
apply (unfold univ_def) |
|
592 |
apply (blast intro: Pair_in_VLimit Limit_nat) |
|
593 |
done |
|
594 |
||
595 |
lemma Union_in_univ: |
|
596 |
"[| X: univ(A); Transset(A) |] ==> Union(X) : univ(A)" |
|
597 |
apply (unfold univ_def) |
|
598 |
apply (blast intro: Union_in_VLimit Limit_nat) |
|
599 |
done |
|
600 |
||
601 |
lemma product_univ: "univ(A)*univ(A) <= univ(A)" |
|
602 |
apply (unfold univ_def) |
|
603 |
apply (rule Limit_nat [THEN product_VLimit]) |
|
604 |
done |
|
605 |
||
606 |
||
607 |
subsubsection{* The natural numbers *}
|
|
608 |
||
609 |
lemma nat_subset_univ: "nat <= univ(A)" |
|
610 |
apply (unfold univ_def) |
|
611 |
apply (rule i_subset_Vfrom) |
|
612 |
done |
|
613 |
||
614 |
text{* n:nat ==> n:univ(A) *}
|
|
615 |
lemmas nat_into_univ = nat_subset_univ [THEN subsetD, standard] |
|
616 |
||
617 |
subsubsection{* instances for 1 and 2 *}
|
|
618 |
||
619 |
lemma one_in_univ: "1 : univ(A)" |
|
620 |
apply (unfold univ_def) |
|
621 |
apply (rule Limit_nat [THEN one_in_VLimit]) |
|
622 |
done |
|
623 |
||
624 |
text{*unused!*}
|
|
625 |
lemma two_in_univ: "2 : univ(A)" |
|
626 |
by (blast intro: nat_into_univ) |
|
627 |
||
628 |
lemma bool_subset_univ: "bool <= univ(A)" |
|
629 |
apply (unfold bool_def) |
|
630 |
apply (blast intro!: zero_in_univ one_in_univ) |
|
631 |
done |
|
632 |
||
633 |
lemmas bool_into_univ = bool_subset_univ [THEN subsetD, standard] |
|
634 |
||
635 |
||
636 |
subsubsection{* Closure under disjoint union *}
|
|
637 |
||
638 |
lemma Inl_in_univ: "a: univ(A) ==> Inl(a) : univ(A)" |
|
639 |
apply (unfold univ_def) |
|
640 |
apply (erule Inl_in_VLimit [OF _ Limit_nat]) |
|
641 |
done |
|
642 |
||
643 |
lemma Inr_in_univ: "b: univ(A) ==> Inr(b) : univ(A)" |
|
644 |
apply (unfold univ_def) |
|
645 |
apply (erule Inr_in_VLimit [OF _ Limit_nat]) |
|
646 |
done |
|
647 |
||
648 |
lemma sum_univ: "univ(C)+univ(C) <= univ(C)" |
|
649 |
apply (unfold univ_def) |
|
650 |
apply (rule Limit_nat [THEN sum_VLimit]) |
|
651 |
done |
|
652 |
||
653 |
lemmas sum_subset_univ = subset_trans [OF sum_mono sum_univ] |
|
654 |
||
655 |
||
656 |
subsubsection{* Closure under binary union -- use Un_least *}
|
|
657 |
subsubsection{* Closure under Collect -- use (Collect_subset RS subset_trans) *}
|
|
658 |
subsubsection{* Closure under RepFun -- use RepFun_subset *}
|
|
659 |
||
660 |
||
661 |
subsection{* Finite Branching Closure Properties *}
|
|
662 |
||
663 |
subsubsection{* Closure under finite powerset *}
|
|
664 |
||
665 |
lemma Fin_Vfrom_lemma: |
|
666 |
"[| b: Fin(Vfrom(A,i)); Limit(i) |] ==> EX j. b <= Vfrom(A,j) & j<i" |
|
667 |
apply (erule Fin_induct) |
|
668 |
apply (blast dest!: Limit_has_0, safe) |
|
669 |
apply (erule Limit_VfromE, assumption) |
|
670 |
apply (blast intro!: Un_least_lt intro: Vfrom_UnI1 Vfrom_UnI2) |
|
671 |
done |
|
| 0 | 672 |
|
| 13163 | 673 |
lemma Fin_VLimit: "Limit(i) ==> Fin(Vfrom(A,i)) <= Vfrom(A,i)" |
674 |
apply (rule subsetI) |
|
675 |
apply (drule Fin_Vfrom_lemma, safe) |
|
676 |
apply (rule Vfrom [THEN ssubst]) |
|
677 |
apply (blast dest!: ltD) |
|
678 |
done |
|
679 |
||
680 |
lemmas Fin_subset_VLimit = subset_trans [OF Fin_mono Fin_VLimit] |
|
681 |
||
682 |
lemma Fin_univ: "Fin(univ(A)) <= univ(A)" |
|
683 |
apply (unfold univ_def) |
|
684 |
apply (rule Limit_nat [THEN Fin_VLimit]) |
|
685 |
done |
|
686 |
||
687 |
subsubsection{* Closure under finite powers (functions from a fixed natural number) *}
|
|
688 |
||
689 |
lemma nat_fun_VLimit: |
|
690 |
"[| n: nat; Limit(i) |] ==> n -> Vfrom(A,i) <= Vfrom(A,i)" |
|
691 |
apply (erule nat_fun_subset_Fin [THEN subset_trans]) |
|
692 |
apply (blast del: subsetI |
|
693 |
intro: subset_refl Fin_subset_VLimit Sigma_subset_VLimit nat_subset_VLimit) |
|
694 |
done |
|
695 |
||
696 |
lemmas nat_fun_subset_VLimit = subset_trans [OF Pi_mono nat_fun_VLimit] |
|
697 |
||
698 |
lemma nat_fun_univ: "n: nat ==> n -> univ(A) <= univ(A)" |
|
699 |
apply (unfold univ_def) |
|
700 |
apply (erule nat_fun_VLimit [OF _ Limit_nat]) |
|
701 |
done |
|
702 |
||
703 |
||
704 |
subsubsection{* Closure under finite function space *}
|
|
705 |
||
706 |
text{*General but seldom-used version; normally the domain is fixed*}
|
|
707 |
lemma FiniteFun_VLimit1: |
|
708 |
"Limit(i) ==> Vfrom(A,i) -||> Vfrom(A,i) <= Vfrom(A,i)" |
|
709 |
apply (rule FiniteFun.dom_subset [THEN subset_trans]) |
|
710 |
apply (blast del: subsetI |
|
711 |
intro: Fin_subset_VLimit Sigma_subset_VLimit subset_refl) |
|
712 |
done |
|
713 |
||
714 |
lemma FiniteFun_univ1: "univ(A) -||> univ(A) <= univ(A)" |
|
715 |
apply (unfold univ_def) |
|
716 |
apply (rule Limit_nat [THEN FiniteFun_VLimit1]) |
|
717 |
done |
|
718 |
||
719 |
text{*Version for a fixed domain*}
|
|
720 |
lemma FiniteFun_VLimit: |
|
721 |
"[| W <= Vfrom(A,i); Limit(i) |] ==> W -||> Vfrom(A,i) <= Vfrom(A,i)" |
|
722 |
apply (rule subset_trans) |
|
723 |
apply (erule FiniteFun_mono [OF _ subset_refl]) |
|
724 |
apply (erule FiniteFun_VLimit1) |
|
725 |
done |
|
726 |
||
727 |
lemma FiniteFun_univ: |
|
728 |
"W <= univ(A) ==> W -||> univ(A) <= univ(A)" |
|
729 |
apply (unfold univ_def) |
|
730 |
apply (erule FiniteFun_VLimit [OF _ Limit_nat]) |
|
731 |
done |
|
732 |
||
733 |
lemma FiniteFun_in_univ: |
|
734 |
"[| f: W -||> univ(A); W <= univ(A) |] ==> f : univ(A)" |
|
735 |
by (erule FiniteFun_univ [THEN subsetD], assumption) |
|
736 |
||
737 |
text{*Remove <= from the rule above*}
|
|
738 |
lemmas FiniteFun_in_univ' = FiniteFun_in_univ [OF _ subsetI] |
|
739 |
||
740 |
||
741 |
subsection{** For QUniv. Properties of Vfrom analogous to the "take-lemma" **}
|
|
742 |
||
743 |
subsection{* Intersecting a*b with Vfrom... *}
|
|
744 |
||
745 |
text{*This version says a, b exist one level down, in the smaller set Vfrom(X,i)*}
|
|
746 |
lemma doubleton_in_Vfrom_D: |
|
747 |
"[| {a,b} : Vfrom(X,succ(i)); Transset(X) |]
|
|
748 |
==> a: Vfrom(X,i) & b: Vfrom(X,i)" |
|
749 |
by (drule Transset_Vfrom_succ [THEN equalityD1, THEN subsetD, THEN PowD], |
|
750 |
assumption, fast) |
|
751 |
||
752 |
text{*This weaker version says a, b exist at the same level*}
|
|
753 |
lemmas Vfrom_doubleton_D = Transset_Vfrom [THEN Transset_doubleton_D, standard] |
|
754 |
||
755 |
(** Using only the weaker theorem would prove <a,b> : Vfrom(X,i) |
|
756 |
implies a, b : Vfrom(X,i), which is useless for induction. |
|
757 |
Using only the stronger theorem would prove <a,b> : Vfrom(X,succ(succ(i))) |
|
758 |
implies a, b : Vfrom(X,i), leaving the succ(i) case untreated. |
|
759 |
The combination gives a reduction by precisely one level, which is |
|
760 |
most convenient for proofs. |
|
761 |
**) |
|
762 |
||
763 |
lemma Pair_in_Vfrom_D: |
|
764 |
"[| <a,b> : Vfrom(X,succ(i)); Transset(X) |] |
|
765 |
==> a: Vfrom(X,i) & b: Vfrom(X,i)" |
|
766 |
apply (unfold Pair_def) |
|
767 |
apply (blast dest!: doubleton_in_Vfrom_D Vfrom_doubleton_D) |
|
768 |
done |
|
769 |
||
770 |
lemma product_Int_Vfrom_subset: |
|
771 |
"Transset(X) ==> |
|
772 |
(a*b) Int Vfrom(X, succ(i)) <= (a Int Vfrom(X,i)) * (b Int Vfrom(X,i))" |
|
773 |
by (blast dest!: Pair_in_Vfrom_D) |
|
774 |
||
775 |
||
776 |
ML |
|
777 |
{*
|
|
|
6053
8a1059aa01f0
new inductive, datatype and primrec packages, etc.
paulson
parents:
3940
diff
changeset
|
778 |
|
| 13163 | 779 |
val Vfrom = thm "Vfrom"; |
780 |
val Vfrom_mono = thm "Vfrom_mono"; |
|
781 |
val Vfrom_rank_subset1 = thm "Vfrom_rank_subset1"; |
|
782 |
val Vfrom_rank_subset2 = thm "Vfrom_rank_subset2"; |
|
783 |
val Vfrom_rank_eq = thm "Vfrom_rank_eq"; |
|
784 |
val zero_in_Vfrom = thm "zero_in_Vfrom"; |
|
785 |
val i_subset_Vfrom = thm "i_subset_Vfrom"; |
|
786 |
val A_subset_Vfrom = thm "A_subset_Vfrom"; |
|
787 |
val subset_mem_Vfrom = thm "subset_mem_Vfrom"; |
|
788 |
val singleton_in_Vfrom = thm "singleton_in_Vfrom"; |
|
789 |
val doubleton_in_Vfrom = thm "doubleton_in_Vfrom"; |
|
790 |
val Pair_in_Vfrom = thm "Pair_in_Vfrom"; |
|
791 |
val succ_in_Vfrom = thm "succ_in_Vfrom"; |
|
792 |
val Vfrom_0 = thm "Vfrom_0"; |
|
793 |
val Vfrom_succ_lemma = thm "Vfrom_succ_lemma"; |
|
794 |
val Vfrom_succ = thm "Vfrom_succ"; |
|
795 |
val Vfrom_Union = thm "Vfrom_Union"; |
|
796 |
val Limit_Vfrom_eq = thm "Limit_Vfrom_eq"; |
|
797 |
val Limit_VfromI = thm "Limit_VfromI"; |
|
798 |
val Limit_VfromE = thm "Limit_VfromE"; |
|
799 |
val zero_in_VLimit = thm "zero_in_VLimit"; |
|
800 |
val singleton_in_VLimit = thm "singleton_in_VLimit"; |
|
801 |
val Vfrom_UnI1 = thm "Vfrom_UnI1"; |
|
802 |
val Vfrom_UnI2 = thm "Vfrom_UnI2"; |
|
803 |
val doubleton_in_VLimit = thm "doubleton_in_VLimit"; |
|
804 |
val Pair_in_VLimit = thm "Pair_in_VLimit"; |
|
805 |
val product_VLimit = thm "product_VLimit"; |
|
806 |
val Sigma_subset_VLimit = thm "Sigma_subset_VLimit"; |
|
807 |
val nat_subset_VLimit = thm "nat_subset_VLimit"; |
|
808 |
val nat_into_VLimit = thm "nat_into_VLimit"; |
|
809 |
val zero_in_VLimit = thm "zero_in_VLimit"; |
|
810 |
val one_in_VLimit = thm "one_in_VLimit"; |
|
811 |
val Inl_in_VLimit = thm "Inl_in_VLimit"; |
|
812 |
val Inr_in_VLimit = thm "Inr_in_VLimit"; |
|
813 |
val sum_VLimit = thm "sum_VLimit"; |
|
814 |
val sum_subset_VLimit = thm "sum_subset_VLimit"; |
|
815 |
val Transset_Vfrom = thm "Transset_Vfrom"; |
|
816 |
val Transset_Vfrom_succ = thm "Transset_Vfrom_succ"; |
|
817 |
val Transset_Pair_subset = thm "Transset_Pair_subset"; |
|
818 |
val Transset_Pair_subset_VLimit = thm "Transset_Pair_subset_VLimit"; |
|
819 |
val Union_in_Vfrom = thm "Union_in_Vfrom"; |
|
820 |
val Union_in_VLimit = thm "Union_in_VLimit"; |
|
821 |
val in_VLimit = thm "in_VLimit"; |
|
822 |
val prod_in_Vfrom = thm "prod_in_Vfrom"; |
|
823 |
val prod_in_VLimit = thm "prod_in_VLimit"; |
|
824 |
val sum_in_Vfrom = thm "sum_in_Vfrom"; |
|
825 |
val sum_in_VLimit = thm "sum_in_VLimit"; |
|
826 |
val fun_in_Vfrom = thm "fun_in_Vfrom"; |
|
827 |
val fun_in_VLimit = thm "fun_in_VLimit"; |
|
828 |
val Pow_in_Vfrom = thm "Pow_in_Vfrom"; |
|
829 |
val Pow_in_VLimit = thm "Pow_in_VLimit"; |
|
830 |
val Vset = thm "Vset"; |
|
831 |
val Vset_succ = thm "Vset_succ"; |
|
832 |
val Transset_Vset = thm "Transset_Vset"; |
|
833 |
val VsetD = thm "VsetD"; |
|
834 |
val VsetI_lemma = thm "VsetI_lemma"; |
|
835 |
val VsetI = thm "VsetI"; |
|
836 |
val Vset_Ord_rank_iff = thm "Vset_Ord_rank_iff"; |
|
837 |
val Vset_rank_iff = thm "Vset_rank_iff"; |
|
838 |
val rank_Vset = thm "rank_Vset"; |
|
839 |
val arg_subset_Vset_rank = thm "arg_subset_Vset_rank"; |
|
840 |
val Int_Vset_subset = thm "Int_Vset_subset"; |
|
841 |
val rank_Inl = thm "rank_Inl"; |
|
842 |
val rank_Inr = thm "rank_Inr"; |
|
843 |
val Vrec = thm "Vrec"; |
|
844 |
val def_Vrec = thm "def_Vrec"; |
|
845 |
val Vrecursor = thm "Vrecursor"; |
|
846 |
val def_Vrecursor = thm "def_Vrecursor"; |
|
847 |
val univ_mono = thm "univ_mono"; |
|
848 |
val Transset_univ = thm "Transset_univ"; |
|
849 |
val univ_eq_UN = thm "univ_eq_UN"; |
|
850 |
val subset_univ_eq_Int = thm "subset_univ_eq_Int"; |
|
851 |
val univ_Int_Vfrom_subset = thm "univ_Int_Vfrom_subset"; |
|
852 |
val univ_Int_Vfrom_eq = thm "univ_Int_Vfrom_eq"; |
|
853 |
val zero_in_univ = thm "zero_in_univ"; |
|
854 |
val A_subset_univ = thm "A_subset_univ"; |
|
855 |
val A_into_univ = thm "A_into_univ"; |
|
856 |
val singleton_in_univ = thm "singleton_in_univ"; |
|
857 |
val doubleton_in_univ = thm "doubleton_in_univ"; |
|
858 |
val Pair_in_univ = thm "Pair_in_univ"; |
|
859 |
val Union_in_univ = thm "Union_in_univ"; |
|
860 |
val product_univ = thm "product_univ"; |
|
861 |
val nat_subset_univ = thm "nat_subset_univ"; |
|
862 |
val nat_into_univ = thm "nat_into_univ"; |
|
863 |
val one_in_univ = thm "one_in_univ"; |
|
864 |
val two_in_univ = thm "two_in_univ"; |
|
865 |
val bool_subset_univ = thm "bool_subset_univ"; |
|
866 |
val bool_into_univ = thm "bool_into_univ"; |
|
867 |
val Inl_in_univ = thm "Inl_in_univ"; |
|
868 |
val Inr_in_univ = thm "Inr_in_univ"; |
|
869 |
val sum_univ = thm "sum_univ"; |
|
870 |
val sum_subset_univ = thm "sum_subset_univ"; |
|
871 |
val Fin_Vfrom_lemma = thm "Fin_Vfrom_lemma"; |
|
872 |
val Fin_VLimit = thm "Fin_VLimit"; |
|
873 |
val Fin_subset_VLimit = thm "Fin_subset_VLimit"; |
|
874 |
val Fin_univ = thm "Fin_univ"; |
|
875 |
val nat_fun_VLimit = thm "nat_fun_VLimit"; |
|
876 |
val nat_fun_subset_VLimit = thm "nat_fun_subset_VLimit"; |
|
877 |
val nat_fun_univ = thm "nat_fun_univ"; |
|
878 |
val FiniteFun_VLimit1 = thm "FiniteFun_VLimit1"; |
|
879 |
val FiniteFun_univ1 = thm "FiniteFun_univ1"; |
|
880 |
val FiniteFun_VLimit = thm "FiniteFun_VLimit"; |
|
881 |
val FiniteFun_univ = thm "FiniteFun_univ"; |
|
882 |
val FiniteFun_in_univ = thm "FiniteFun_in_univ"; |
|
883 |
val FiniteFun_in_univ' = thm "FiniteFun_in_univ'"; |
|
884 |
val doubleton_in_Vfrom_D = thm "doubleton_in_Vfrom_D"; |
|
885 |
val Vfrom_doubleton_D = thm "Vfrom_doubleton_D"; |
|
886 |
val Pair_in_Vfrom_D = thm "Pair_in_Vfrom_D"; |
|
887 |
val product_Int_Vfrom_subset = thm "product_Int_Vfrom_subset"; |
|
888 |
||
889 |
val rank_rls = thms "rank_rls"; |
|
890 |
val rank_ss = simpset() addsimps [VsetI] |
|
891 |
addsimps rank_rls @ (rank_rls RLN (2, [lt_trans])); |
|
892 |
||
893 |
*} |
|
| 0 | 894 |
|
895 |
end |