| author | wenzelm | 
| Tue, 09 Jan 2018 14:07:39 +0100 | |
| changeset 67384 | e32b0eb63666 | 
| parent 63648 | f9f3006a5579 | 
| child 67613 | ce654b0e6d69 | 
| permissions | -rw-r--r-- | 
| 4530 | 1 | (* Title: HOL/IOA/Solve.thy | 
| 3078 
984866a8f905
old IOA meta theory (see also new version in HOLCF/IOA/meta_theory);
 mueller parents: diff
changeset | 2 | Author: Tobias Nipkow & Konrad Slind | 
| 
984866a8f905
old IOA meta theory (see also new version in HOLCF/IOA/meta_theory);
 mueller parents: diff
changeset | 3 | Copyright 1994 TU Muenchen | 
| 
984866a8f905
old IOA meta theory (see also new version in HOLCF/IOA/meta_theory);
 mueller parents: diff
changeset | 4 | *) | 
| 
984866a8f905
old IOA meta theory (see also new version in HOLCF/IOA/meta_theory);
 mueller parents: diff
changeset | 5 | |
| 63167 | 6 | section \<open>Weak possibilities mapping (abstraction)\<close> | 
| 17288 | 7 | |
| 8 | theory Solve | |
| 9 | imports IOA | |
| 10 | begin | |
| 3078 
984866a8f905
old IOA meta theory (see also new version in HOLCF/IOA/meta_theory);
 mueller parents: diff
changeset | 11 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
26342diff
changeset | 12 | definition is_weak_pmap :: "['c => 'a, ('action,'c)ioa,('action,'a)ioa] => bool" where
 | 
| 17288 | 13 | "is_weak_pmap f C A == | 
| 14 | (!s:starts_of(C). f(s):starts_of(A)) & | |
| 15 | (!s t a. reachable C s & | |
| 16 | (s,a,t):trans_of(C) | |
| 17 | --> (if a:externals(asig_of(C)) then | |
| 18 | (f(s),a,f(t)):trans_of(A) | |
| 3078 
984866a8f905
old IOA meta theory (see also new version in HOLCF/IOA/meta_theory);
 mueller parents: diff
changeset | 19 | else f(s)=f(t)))" | 
| 
984866a8f905
old IOA meta theory (see also new version in HOLCF/IOA/meta_theory);
 mueller parents: diff
changeset | 20 | |
| 19801 | 21 | declare mk_trace_thm [simp] trans_in_actions [simp] | 
| 22 | ||
| 23 | lemma trace_inclusion: | |
| 24 | "[| IOA(C); IOA(A); externals(asig_of(C)) = externals(asig_of(A)); | |
| 25 | is_weak_pmap f C A |] ==> traces(C) <= traces(A)" | |
| 26 | apply (unfold is_weak_pmap_def traces_def) | |
| 27 | ||
| 28 | apply (simp (no_asm) add: has_trace_def) | |
| 29 | apply safe | |
| 30 | apply (rename_tac ex1 ex2) | |
| 31 | ||
| 32 | (* choose same trace, therefore same NF *) | |
| 33 | apply (rule_tac x = "mk_trace C ex1" in exI) | |
| 34 | apply simp | |
| 35 | ||
| 36 | (* give execution of abstract automata *) | |
| 37 | apply (rule_tac x = "(mk_trace A ex1,%i. f (ex2 i))" in bexI) | |
| 38 | ||
| 39 | (* Traces coincide *) | |
| 40 | apply (simp (no_asm_simp) add: mk_trace_def filter_oseq_idemp) | |
| 41 | ||
| 42 | (* Use lemma *) | |
| 43 | apply (frule states_of_exec_reachable) | |
| 44 | ||
| 45 | (* Now show that it's an execution *) | |
| 46 | apply (simp add: executions_def) | |
| 47 | apply safe | |
| 48 | ||
| 49 | (* Start states map to start states *) | |
| 50 | apply (drule bspec) | |
| 51 | apply assumption | |
| 52 | ||
| 53 | (* Show that it's an execution fragment *) | |
| 54 | apply (simp add: is_execution_fragment_def) | |
| 55 | apply safe | |
| 56 | ||
| 57 | apply (erule_tac x = "ex2 n" in allE) | |
| 58 | apply (erule_tac x = "ex2 (Suc n)" in allE) | |
| 59 | apply (erule_tac x = a in allE) | |
| 60 | apply simp | |
| 61 | done | |
| 62 | ||
| 63 | (* Lemmata *) | |
| 64 | ||
| 65 | lemma imp_conj_lemma: "(P ==> Q-->R) ==> P&Q --> R" | |
| 66 | by blast | |
| 67 | ||
| 68 | ||
| 69 | (* fist_order_tautology of externals_of_par *) | |
| 70 | lemma externals_of_par_extra: | |
| 71 | "a:externals(asig_of(A1||A2)) = | |
| 72 | (a:externals(asig_of(A1)) & a:externals(asig_of(A2)) | | |
| 73 | a:externals(asig_of(A1)) & a~:externals(asig_of(A2)) | | |
| 74 | a~:externals(asig_of(A1)) & a:externals(asig_of(A2)))" | |
| 75 | apply (auto simp add: externals_def asig_of_par asig_comp_def asig_inputs_def asig_outputs_def) | |
| 76 | done | |
| 77 | ||
| 78 | lemma comp1_reachable: "[| reachable (C1||C2) s |] ==> reachable C1 (fst s)" | |
| 79 | apply (simp add: reachable_def) | |
| 80 | apply (erule bexE) | |
| 81 | apply (rule_tac x = | |
| 82 | "(filter_oseq (%a. a:actions (asig_of (C1))) (fst ex) , %i. fst (snd ex i))" in bexI) | |
| 83 | (* fst(s) is in projected execution *) | |
| 84 | apply force | |
| 85 | (* projected execution is indeed an execution *) | |
| 86 | apply (simp cong del: if_weak_cong | |
| 87 | add: executions_def is_execution_fragment_def par_def starts_of_def | |
| 88 | trans_of_def filter_oseq_def | |
| 63648 | 89 | split: option.split) | 
| 19801 | 90 | done | 
| 91 | ||
| 92 | ||
| 93 | (* Exact copy of proof of comp1_reachable for the second | |
| 94 | component of a parallel composition. *) | |
| 95 | lemma comp2_reachable: "[| reachable (C1||C2) s|] ==> reachable C2 (snd s)" | |
| 96 | apply (simp add: reachable_def) | |
| 97 | apply (erule bexE) | |
| 98 | apply (rule_tac x = | |
| 99 | "(filter_oseq (%a. a:actions (asig_of (C2))) (fst ex) , %i. snd (snd ex i))" in bexI) | |
| 100 | (* fst(s) is in projected execution *) | |
| 101 | apply force | |
| 102 | (* projected execution is indeed an execution *) | |
| 103 | apply (simp cong del: if_weak_cong | |
| 104 | add: executions_def is_execution_fragment_def par_def starts_of_def | |
| 105 | trans_of_def filter_oseq_def | |
| 63648 | 106 | split: option.split) | 
| 19801 | 107 | done | 
| 108 | ||
| 62390 | 109 | declare if_split [split del] if_weak_cong [cong del] | 
| 19801 | 110 | |
| 111 | (*Composition of possibility-mappings *) | |
| 112 | lemma fxg_is_weak_pmap_of_product_IOA: | |
| 113 | "[| is_weak_pmap f C1 A1; | |
| 114 | externals(asig_of(A1))=externals(asig_of(C1)); | |
| 115 | is_weak_pmap g C2 A2; | |
| 116 | externals(asig_of(A2))=externals(asig_of(C2)); | |
| 117 | compat_ioas C1 C2; compat_ioas A1 A2 |] | |
| 118 | ==> is_weak_pmap (%p.(f(fst(p)),g(snd(p)))) (C1||C2) (A1||A2)" | |
| 119 | apply (unfold is_weak_pmap_def) | |
| 120 | apply (rule conjI) | |
| 121 | (* start_states *) | |
| 122 | apply (simp add: par_def starts_of_def) | |
| 123 | (* transitions *) | |
| 124 | apply (rule allI)+ | |
| 125 | apply (rule imp_conj_lemma) | |
| 126 | apply (simp (no_asm) add: externals_of_par_extra) | |
| 127 | apply (simp (no_asm) add: par_def) | |
| 128 | apply (simp add: trans_of_def) | |
| 62390 | 129 | apply (simplesubst if_split) | 
| 19801 | 130 | apply (rule conjI) | 
| 131 | apply (rule impI) | |
| 132 | apply (erule disjE) | |
| 133 | (* case 1 a:e(A1) | a:e(A2) *) | |
| 134 | apply (simp add: comp1_reachable comp2_reachable ext_is_act) | |
| 135 | apply (erule disjE) | |
| 136 | (* case 2 a:e(A1) | a~:e(A2) *) | |
| 137 | apply (simp add: comp1_reachable comp2_reachable ext_is_act ext1_ext2_is_not_act2) | |
| 138 | (* case 3 a:~e(A1) | a:e(A2) *) | |
| 139 | apply (simp add: comp1_reachable comp2_reachable ext_is_act ext1_ext2_is_not_act1) | |
| 140 | (* case 4 a:~e(A1) | a~:e(A2) *) | |
| 141 | apply (rule impI) | |
| 142 | apply (subgoal_tac "a~:externals (asig_of (A1)) & a~:externals (asig_of (A2))") | |
| 143 | (* delete auxiliary subgoal *) | |
| 144 | prefer 2 | |
| 145 | apply force | |
| 63648 | 146 | apply (simp (no_asm) add: conj_disj_distribR cong add: conj_cong split: if_split) | 
| 63167 | 147 | apply (tactic \<open> | 
| 60754 | 148 |     REPEAT((resolve_tac @{context} [conjI, impI] 1 ORELSE eresolve_tac @{context} [conjE] 1) THEN
 | 
| 63167 | 149 |       asm_full_simp_tac(@{context} addsimps [@{thm comp1_reachable}, @{thm comp2_reachable}]) 1)\<close>)
 | 
| 19801 | 150 | done | 
| 151 | ||
| 152 | ||
| 153 | lemma reachable_rename_ioa: "[| reachable (rename C g) s |] ==> reachable C s" | |
| 154 | apply (simp add: reachable_def) | |
| 155 | apply (erule bexE) | |
| 156 | apply (rule_tac x = "((%i. case (fst ex i) of None => None | Some (x) => g x) ,snd ex)" in bexI) | |
| 157 | apply (simp (no_asm)) | |
| 158 | (* execution is indeed an execution of C *) | |
| 159 | apply (simp add: executions_def is_execution_fragment_def par_def | |
| 63648 | 160 | starts_of_def trans_of_def rename_def split: option.split) | 
| 19801 | 161 | apply force | 
| 162 | done | |
| 163 | ||
| 164 | ||
| 165 | lemma rename_through_pmap: "[| is_weak_pmap f C A |] | |
| 166 | ==> (is_weak_pmap f (rename C g) (rename A g))" | |
| 167 | apply (simp add: is_weak_pmap_def) | |
| 168 | apply (rule conjI) | |
| 169 | apply (simp add: rename_def starts_of_def) | |
| 170 | apply (rule allI)+ | |
| 171 | apply (rule imp_conj_lemma) | |
| 172 | apply (simp (no_asm) add: rename_def) | |
| 173 | apply (simp add: externals_def asig_inputs_def asig_outputs_def asig_of_def trans_of_def) | |
| 174 | apply safe | |
| 62390 | 175 | apply (simplesubst if_split) | 
| 19801 | 176 | apply (rule conjI) | 
| 177 | apply (rule impI) | |
| 178 | apply (erule disjE) | |
| 179 | apply (erule exE) | |
| 180 | apply (erule conjE) | |
| 181 | (* x is input *) | |
| 182 | apply (drule sym) | |
| 183 | apply (drule sym) | |
| 184 | apply simp | |
| 185 | apply hypsubst+ | |
| 186 | apply (cut_tac C = "C" and g = "g" and s = "s" in reachable_rename_ioa) | |
| 187 | apply assumption | |
| 188 | apply simp | |
| 189 | (* x is output *) | |
| 190 | apply (erule exE) | |
| 191 | apply (erule conjE) | |
| 192 | apply (drule sym) | |
| 193 | apply (drule sym) | |
| 194 | apply simp | |
| 195 | apply hypsubst+ | |
| 196 | apply (cut_tac C = "C" and g = "g" and s = "s" in reachable_rename_ioa) | |
| 197 | apply assumption | |
| 198 | apply simp | |
| 199 | (* x is internal *) | |
| 63648 | 200 | apply (simp (no_asm) cong add: conj_cong) | 
| 19801 | 201 | apply (rule impI) | 
| 202 | apply (erule conjE) | |
| 203 | apply (cut_tac C = "C" and g = "g" and s = "s" in reachable_rename_ioa) | |
| 204 | apply auto | |
| 205 | done | |
| 206 | ||
| 62390 | 207 | declare if_split [split] if_weak_cong [cong] | 
| 17288 | 208 | |
| 3078 
984866a8f905
old IOA meta theory (see also new version in HOLCF/IOA/meta_theory);
 mueller parents: diff
changeset | 209 | end |