0
|
1 |
(* Title: CTT/ctt.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1993 University of Cambridge
|
|
5 |
|
|
6 |
Constructive Type Theory
|
|
7 |
*)
|
|
8 |
|
|
9 |
CTT = Pure +
|
|
10 |
|
283
|
11 |
types
|
|
12 |
i
|
|
13 |
t
|
|
14 |
o
|
0
|
15 |
|
283
|
16 |
arities
|
|
17 |
i,t,o :: logic
|
0
|
18 |
|
|
19 |
consts
|
|
20 |
(*Types*)
|
|
21 |
F,T :: "t" (*F is empty, T contains one element*)
|
|
22 |
contr :: "i=>i"
|
|
23 |
tt :: "i"
|
|
24 |
(*Natural numbers*)
|
|
25 |
N :: "t"
|
|
26 |
succ :: "i=>i"
|
|
27 |
rec :: "[i, i, [i,i]=>i] => i"
|
|
28 |
(*Unions*)
|
|
29 |
inl,inr :: "i=>i"
|
|
30 |
when :: "[i, i=>i, i=>i]=>i"
|
|
31 |
(*General Sum and Binary Product*)
|
|
32 |
Sum :: "[t, i=>t]=>t"
|
|
33 |
fst,snd :: "i=>i"
|
|
34 |
split :: "[i, [i,i]=>i] =>i"
|
|
35 |
(*General Product and Function Space*)
|
|
36 |
Prod :: "[t, i=>t]=>t"
|
|
37 |
(*Equality type*)
|
|
38 |
Eq :: "[t,i,i]=>t"
|
|
39 |
eq :: "i"
|
|
40 |
(*Judgements*)
|
|
41 |
Type :: "t => prop" ("(_ type)" [10] 5)
|
|
42 |
Eqtype :: "[t,t]=>prop" ("(3_ =/ _)" [10,10] 5)
|
|
43 |
Elem :: "[i, t]=>prop" ("(_ /: _)" [10,10] 5)
|
|
44 |
Eqelem :: "[i,i,t]=>prop" ("(3_ =/ _ :/ _)" [10,10,10] 5)
|
|
45 |
Reduce :: "[i,i]=>prop" ("Reduce[_,_]")
|
|
46 |
(*Types*)
|
23
|
47 |
"@PROD" :: "[idt,t,t]=>t" ("(3PROD _:_./ _)" 10)
|
|
48 |
"@SUM" :: "[idt,t,t]=>t" ("(3SUM _:_./ _)" 10)
|
0
|
49 |
"+" :: "[t,t]=>t" (infixr 40)
|
|
50 |
(*Invisible infixes!*)
|
|
51 |
"@-->" :: "[t,t]=>t" ("(_ -->/ _)" [31,30] 30)
|
|
52 |
"@*" :: "[t,t]=>t" ("(_ */ _)" [51,50] 50)
|
|
53 |
(*Functions*)
|
|
54 |
lambda :: "(i => i) => i" (binder "lam " 10)
|
|
55 |
"`" :: "[i,i]=>i" (infixl 60)
|
|
56 |
(*Natural numbers*)
|
|
57 |
"0" :: "i" ("0")
|
|
58 |
(*Pairing*)
|
|
59 |
pair :: "[i,i]=>i" ("(1<_,/_>)")
|
|
60 |
|
|
61 |
translations
|
|
62 |
"PROD x:A. B" => "Prod(A, %x. B)"
|
23
|
63 |
"A --> B" => "Prod(A, _K(B))"
|
0
|
64 |
"SUM x:A. B" => "Sum(A, %x. B)"
|
23
|
65 |
"A * B" => "Sum(A, _K(B))"
|
0
|
66 |
|
|
67 |
rules
|
|
68 |
|
|
69 |
(*Reduction: a weaker notion than equality; a hack for simplification.
|
|
70 |
Reduce[a,b] means either that a=b:A for some A or else that "a" and "b"
|
|
71 |
are textually identical.*)
|
|
72 |
|
|
73 |
(*does not verify a:A! Sound because only trans_red uses a Reduce premise
|
|
74 |
No new theorems can be proved about the standard judgements.*)
|
|
75 |
refl_red "Reduce[a,a]"
|
|
76 |
red_if_equal "a = b : A ==> Reduce[a,b]"
|
|
77 |
trans_red "[| a = b : A; Reduce[b,c] |] ==> a = c : A"
|
|
78 |
|
|
79 |
(*Reflexivity*)
|
|
80 |
|
|
81 |
refl_type "A type ==> A = A"
|
|
82 |
refl_elem "a : A ==> a = a : A"
|
|
83 |
|
|
84 |
(*Symmetry*)
|
|
85 |
|
|
86 |
sym_type "A = B ==> B = A"
|
|
87 |
sym_elem "a = b : A ==> b = a : A"
|
|
88 |
|
|
89 |
(*Transitivity*)
|
|
90 |
|
|
91 |
trans_type "[| A = B; B = C |] ==> A = C"
|
|
92 |
trans_elem "[| a = b : A; b = c : A |] ==> a = c : A"
|
|
93 |
|
|
94 |
equal_types "[| a : A; A = B |] ==> a : B"
|
|
95 |
equal_typesL "[| a = b : A; A = B |] ==> a = b : B"
|
|
96 |
|
|
97 |
(*Substitution*)
|
|
98 |
|
|
99 |
subst_type "[| a : A; !!z. z:A ==> B(z) type |] ==> B(a) type"
|
|
100 |
subst_typeL "[| a = c : A; !!z. z:A ==> B(z) = D(z) |] ==> B(a) = D(c)"
|
|
101 |
|
|
102 |
subst_elem "[| a : A; !!z. z:A ==> b(z):B(z) |] ==> b(a):B(a)"
|
|
103 |
subst_elemL
|
|
104 |
"[| a=c : A; !!z. z:A ==> b(z)=d(z) : B(z) |] ==> b(a)=d(c) : B(a)"
|
|
105 |
|
|
106 |
|
|
107 |
(*The type N -- natural numbers*)
|
|
108 |
|
|
109 |
NF "N type"
|
|
110 |
NI0 "0 : N"
|
|
111 |
NI_succ "a : N ==> succ(a) : N"
|
|
112 |
NI_succL "a = b : N ==> succ(a) = succ(b) : N"
|
|
113 |
|
|
114 |
NE
|
1149
|
115 |
"[| p: N; a: C(0); !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |]
|
|
116 |
==> rec(p, a, %u v.b(u,v)) : C(p)"
|
0
|
117 |
|
|
118 |
NEL
|
1149
|
119 |
"[| p = q : N; a = c : C(0);
|
|
120 |
!!u v. [| u: N; v: C(u) |] ==> b(u,v) = d(u,v): C(succ(u)) |]
|
|
121 |
==> rec(p, a, %u v.b(u,v)) = rec(q,c,d) : C(p)"
|
0
|
122 |
|
|
123 |
NC0
|
1149
|
124 |
"[| a: C(0); !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |]
|
|
125 |
==> rec(0, a, %u v.b(u,v)) = a : C(0)"
|
0
|
126 |
|
|
127 |
NC_succ
|
1149
|
128 |
"[| p: N; a: C(0);
|
|
129 |
!!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] ==>
|
|
130 |
rec(succ(p), a, %u v.b(u,v)) = b(p, rec(p, a, %u v.b(u,v))) : C(succ(p))"
|
0
|
131 |
|
|
132 |
(*The fourth Peano axiom. See page 91 of Martin-Lof's book*)
|
|
133 |
zero_ne_succ
|
|
134 |
"[| a: N; 0 = succ(a) : N |] ==> 0: F"
|
|
135 |
|
|
136 |
|
|
137 |
(*The Product of a family of types*)
|
|
138 |
|
|
139 |
ProdF "[| A type; !!x. x:A ==> B(x) type |] ==> PROD x:A.B(x) type"
|
|
140 |
|
|
141 |
ProdFL
|
1149
|
142 |
"[| A = C; !!x. x:A ==> B(x) = D(x) |] ==>
|
|
143 |
PROD x:A.B(x) = PROD x:C.D(x)"
|
0
|
144 |
|
|
145 |
ProdI
|
|
146 |
"[| A type; !!x. x:A ==> b(x):B(x)|] ==> lam x.b(x) : PROD x:A.B(x)"
|
|
147 |
|
|
148 |
ProdIL
|
1149
|
149 |
"[| A type; !!x. x:A ==> b(x) = c(x) : B(x)|] ==>
|
|
150 |
lam x.b(x) = lam x.c(x) : PROD x:A.B(x)"
|
0
|
151 |
|
|
152 |
ProdE "[| p : PROD x:A.B(x); a : A |] ==> p`a : B(a)"
|
|
153 |
ProdEL "[| p=q: PROD x:A.B(x); a=b : A |] ==> p`a = q`b : B(a)"
|
|
154 |
|
|
155 |
ProdC
|
1149
|
156 |
"[| a : A; !!x. x:A ==> b(x) : B(x)|] ==>
|
|
157 |
(lam x.b(x)) ` a = b(a) : B(a)"
|
0
|
158 |
|
|
159 |
ProdC2
|
|
160 |
"p : PROD x:A.B(x) ==> (lam x. p`x) = p : PROD x:A.B(x)"
|
|
161 |
|
|
162 |
|
|
163 |
(*The Sum of a family of types*)
|
|
164 |
|
|
165 |
SumF "[| A type; !!x. x:A ==> B(x) type |] ==> SUM x:A.B(x) type"
|
|
166 |
SumFL
|
|
167 |
"[| A = C; !!x. x:A ==> B(x) = D(x) |] ==> SUM x:A.B(x) = SUM x:C.D(x)"
|
|
168 |
|
|
169 |
SumI "[| a : A; b : B(a) |] ==> <a,b> : SUM x:A.B(x)"
|
|
170 |
SumIL "[| a=c:A; b=d:B(a) |] ==> <a,b> = <c,d> : SUM x:A.B(x)"
|
|
171 |
|
|
172 |
SumE
|
1149
|
173 |
"[| p: SUM x:A.B(x); !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>) |]
|
|
174 |
==> split(p, %x y.c(x,y)) : C(p)"
|
0
|
175 |
|
|
176 |
SumEL
|
1149
|
177 |
"[| p=q : SUM x:A.B(x);
|
|
178 |
!!x y. [| x:A; y:B(x) |] ==> c(x,y)=d(x,y): C(<x,y>)|]
|
|
179 |
==> split(p, %x y.c(x,y)) = split(q, % x y.d(x,y)) : C(p)"
|
0
|
180 |
|
|
181 |
SumC
|
1149
|
182 |
"[| a: A; b: B(a); !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>) |]
|
|
183 |
==> split(<a,b>, %x y.c(x,y)) = c(a,b) : C(<a,b>)"
|
0
|
184 |
|
|
185 |
fst_def "fst(a) == split(a, %x y.x)"
|
|
186 |
snd_def "snd(a) == split(a, %x y.y)"
|
|
187 |
|
|
188 |
|
|
189 |
(*The sum of two types*)
|
|
190 |
|
|
191 |
PlusF "[| A type; B type |] ==> A+B type"
|
|
192 |
PlusFL "[| A = C; B = D |] ==> A+B = C+D"
|
|
193 |
|
|
194 |
PlusI_inl "[| a : A; B type |] ==> inl(a) : A+B"
|
|
195 |
PlusI_inlL "[| a = c : A; B type |] ==> inl(a) = inl(c) : A+B"
|
|
196 |
|
|
197 |
PlusI_inr "[| A type; b : B |] ==> inr(b) : A+B"
|
|
198 |
PlusI_inrL "[| A type; b = d : B |] ==> inr(b) = inr(d) : A+B"
|
|
199 |
|
|
200 |
PlusE
|
1149
|
201 |
"[| p: A+B; !!x. x:A ==> c(x): C(inl(x));
|
|
202 |
!!y. y:B ==> d(y): C(inr(y)) |]
|
|
203 |
==> when(p, %x.c(x), %y.d(y)) : C(p)"
|
0
|
204 |
|
|
205 |
PlusEL
|
1149
|
206 |
"[| p = q : A+B; !!x. x: A ==> c(x) = e(x) : C(inl(x));
|
|
207 |
!!y. y: B ==> d(y) = f(y) : C(inr(y)) |]
|
|
208 |
==> when(p, %x.c(x), %y.d(y)) = when(q, %x.e(x), %y.f(y)) : C(p)"
|
0
|
209 |
|
|
210 |
PlusC_inl
|
1149
|
211 |
"[| a: A; !!x. x:A ==> c(x): C(inl(x));
|
|
212 |
!!y. y:B ==> d(y): C(inr(y)) |]
|
|
213 |
==> when(inl(a), %x.c(x), %y.d(y)) = c(a) : C(inl(a))"
|
0
|
214 |
|
|
215 |
PlusC_inr
|
1149
|
216 |
"[| b: B; !!x. x:A ==> c(x): C(inl(x));
|
|
217 |
!!y. y:B ==> d(y): C(inr(y)) |]
|
|
218 |
==> when(inr(b), %x.c(x), %y.d(y)) = d(b) : C(inr(b))"
|
0
|
219 |
|
|
220 |
|
|
221 |
(*The type Eq*)
|
|
222 |
|
|
223 |
EqF "[| A type; a : A; b : A |] ==> Eq(A,a,b) type"
|
|
224 |
EqFL "[| A=B; a=c: A; b=d : A |] ==> Eq(A,a,b) = Eq(B,c,d)"
|
|
225 |
EqI "a = b : A ==> eq : Eq(A,a,b)"
|
|
226 |
EqE "p : Eq(A,a,b) ==> a = b : A"
|
|
227 |
|
|
228 |
(*By equality of types, can prove C(p) from C(eq), an elimination rule*)
|
|
229 |
EqC "p : Eq(A,a,b) ==> p = eq : Eq(A,a,b)"
|
|
230 |
|
|
231 |
(*The type F*)
|
|
232 |
|
|
233 |
FF "F type"
|
|
234 |
FE "[| p: F; C type |] ==> contr(p) : C"
|
|
235 |
FEL "[| p = q : F; C type |] ==> contr(p) = contr(q) : C"
|
|
236 |
|
|
237 |
(*The type T
|
|
238 |
Martin-Lof's book (page 68) discusses elimination and computation.
|
|
239 |
Elimination can be derived by computation and equality of types,
|
|
240 |
but with an extra premise C(x) type x:T.
|
|
241 |
Also computation can be derived from elimination. *)
|
|
242 |
|
|
243 |
TF "T type"
|
|
244 |
TI "tt : T"
|
|
245 |
TE "[| p : T; c : C(tt) |] ==> c : C(p)"
|
|
246 |
TEL "[| p = q : T; c = d : C(tt) |] ==> c = d : C(p)"
|
|
247 |
TC "p : T ==> p = tt : T"
|
|
248 |
end
|
|
249 |
|
|
250 |
|
|
251 |
ML
|
|
252 |
|
|
253 |
val print_translation =
|
|
254 |
[("Prod", dependent_tr' ("@PROD", "@-->")),
|
|
255 |
("Sum", dependent_tr' ("@SUM", "@*"))];
|
|
256 |
|