| author | wenzelm | 
| Sat, 30 Sep 2017 20:06:26 +0200 | |
| changeset 66732 | e566fb4d43d4 | 
| parent 65680 | 378a2f11bec9 | 
| child 66936 | cf8d8fc23891 | 
| permissions | -rw-r--r-- | 
| 43920 | 1 | (* Title: HOL/Library/Extended_Real.thy | 
| 41983 | 2 | Author: Johannes Hölzl, TU München | 
| 3 | Author: Robert Himmelmann, TU München | |
| 4 | Author: Armin Heller, TU München | |
| 5 | Author: Bogdan Grechuk, University of Edinburgh | |
| 62049 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 6 | Author: Manuel Eberl, TU München | 
| 41983 | 7 | *) | 
| 41973 | 8 | |
| 60500 | 9 | section \<open>Extended real number line\<close> | 
| 41973 | 10 | |
| 43920 | 11 | theory Extended_Real | 
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60580diff
changeset | 12 | imports Complex_Main Extended_Nat Liminf_Limsup | 
| 41973 | 13 | begin | 
| 14 | ||
| 62626 
de25474ce728
Contractible sets. Also removal of obsolete theorems and refactoring
 paulson <lp15@cam.ac.uk> parents: 
62390diff
changeset | 15 | text \<open>This should be part of @{theory Extended_Nat} or @{theory Order_Continuity}, but then the
 | 
| 
de25474ce728
Contractible sets. Also removal of obsolete theorems and refactoring
 paulson <lp15@cam.ac.uk> parents: 
62390diff
changeset | 16 | AFP-entry \<open>Jinja_Thread\<close> fails, as it does overload certain named from @{theory Complex_Main}.\<close>
 | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62371diff
changeset | 17 | |
| 64267 | 18 | lemma incseq_sumI2: | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62371diff
changeset | 19 | fixes f :: "'i \<Rightarrow> nat \<Rightarrow> 'a::ordered_comm_monoid_add" | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62371diff
changeset | 20 | shows "(\<And>n. n \<in> A \<Longrightarrow> mono (f n)) \<Longrightarrow> mono (\<lambda>i. \<Sum>n\<in>A. f n i)" | 
| 64267 | 21 | unfolding incseq_def by (auto intro: sum_mono) | 
| 22 | ||
| 23 | lemma incseq_sumI: | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62371diff
changeset | 24 | fixes f :: "nat \<Rightarrow> 'a::ordered_comm_monoid_add" | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62371diff
changeset | 25 | assumes "\<And>i. 0 \<le> f i" | 
| 64267 | 26 |   shows "incseq (\<lambda>i. sum f {..< i})"
 | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62371diff
changeset | 27 | proof (intro incseq_SucI) | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62371diff
changeset | 28 | fix n | 
| 64267 | 29 |   have "sum f {..< n} + 0 \<le> sum f {..<n} + f n"
 | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62371diff
changeset | 30 | using assms by (rule add_left_mono) | 
| 64267 | 31 |   then show "sum f {..< n} \<le> sum f {..< Suc n}"
 | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62371diff
changeset | 32 | by auto | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62371diff
changeset | 33 | qed | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62371diff
changeset | 34 | |
| 60172 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 35 | lemma continuous_at_left_imp_sup_continuous: | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 36 |   fixes f :: "'a::{complete_linorder, linorder_topology} \<Rightarrow> 'b::{complete_linorder, linorder_topology}"
 | 
| 60172 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 37 | assumes "mono f" "\<And>x. continuous (at_left x) f" | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 38 | shows "sup_continuous f" | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 39 | unfolding sup_continuous_def | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 40 | proof safe | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 41 | fix M :: "nat \<Rightarrow> 'a" assume "incseq M" then show "f (SUP i. M i) = (SUP i. f (M i))" | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 42 | using continuous_at_Sup_mono[OF assms, of "range M"] by simp | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 43 | qed | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 44 | |
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 45 | lemma sup_continuous_at_left: | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 46 |   fixes f :: "'a::{complete_linorder, linorder_topology, first_countable_topology} \<Rightarrow>
 | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 47 |     'b::{complete_linorder, linorder_topology}"
 | 
| 60172 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 48 | assumes f: "sup_continuous f" | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 49 | shows "continuous (at_left x) f" | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 50 | proof cases | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 51 | assume "x = bot" then show ?thesis | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 52 | by (simp add: trivial_limit_at_left_bot) | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 53 | next | 
| 61738 
c4f6031f1310
New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
 paulson <lp15@cam.ac.uk> parents: 
61631diff
changeset | 54 | assume x: "x \<noteq> bot" | 
| 60172 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 55 | show ?thesis | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 56 | unfolding continuous_within | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 57 | proof (intro tendsto_at_left_sequentially[of bot]) | 
| 61969 | 58 | fix S :: "nat \<Rightarrow> 'a" assume S: "incseq S" and S_x: "S \<longlonglongrightarrow> x" | 
| 60172 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 59 | from S_x have x_eq: "x = (SUP i. S i)" | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 60 | by (rule LIMSEQ_unique) (intro LIMSEQ_SUP S) | 
| 61969 | 61 | show "(\<lambda>n. f (S n)) \<longlonglongrightarrow> f x" | 
| 60172 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 62 | unfolding x_eq sup_continuousD[OF f S] | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 63 | using S sup_continuous_mono[OF f] by (intro LIMSEQ_SUP) (auto simp: mono_def) | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 64 | qed (insert x, auto simp: bot_less) | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 65 | qed | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 66 | |
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 67 | lemma sup_continuous_iff_at_left: | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 68 |   fixes f :: "'a::{complete_linorder, linorder_topology, first_countable_topology} \<Rightarrow>
 | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 69 |     'b::{complete_linorder, linorder_topology}"
 | 
| 60172 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 70 | shows "sup_continuous f \<longleftrightarrow> (\<forall>x. continuous (at_left x) f) \<and> mono f" | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 71 | using sup_continuous_at_left[of f] continuous_at_left_imp_sup_continuous[of f] | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 72 | sup_continuous_mono[of f] by auto | 
| 61738 
c4f6031f1310
New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
 paulson <lp15@cam.ac.uk> parents: 
61631diff
changeset | 73 | |
| 60172 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 74 | lemma continuous_at_right_imp_inf_continuous: | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 75 |   fixes f :: "'a::{complete_linorder, linorder_topology} \<Rightarrow> 'b::{complete_linorder, linorder_topology}"
 | 
| 60172 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 76 | assumes "mono f" "\<And>x. continuous (at_right x) f" | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 77 | shows "inf_continuous f" | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 78 | unfolding inf_continuous_def | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 79 | proof safe | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 80 | fix M :: "nat \<Rightarrow> 'a" assume "decseq M" then show "f (INF i. M i) = (INF i. f (M i))" | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 81 | using continuous_at_Inf_mono[OF assms, of "range M"] by simp | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 82 | qed | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 83 | |
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 84 | lemma inf_continuous_at_right: | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 85 |   fixes f :: "'a::{complete_linorder, linorder_topology, first_countable_topology} \<Rightarrow>
 | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 86 |     'b::{complete_linorder, linorder_topology}"
 | 
| 60172 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 87 | assumes f: "inf_continuous f" | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 88 | shows "continuous (at_right x) f" | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 89 | proof cases | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 90 | assume "x = top" then show ?thesis | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 91 | by (simp add: trivial_limit_at_right_top) | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 92 | next | 
| 61738 
c4f6031f1310
New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
 paulson <lp15@cam.ac.uk> parents: 
61631diff
changeset | 93 | assume x: "x \<noteq> top" | 
| 60172 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 94 | show ?thesis | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 95 | unfolding continuous_within | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 96 | proof (intro tendsto_at_right_sequentially[of _ top]) | 
| 61969 | 97 | fix S :: "nat \<Rightarrow> 'a" assume S: "decseq S" and S_x: "S \<longlonglongrightarrow> x" | 
| 60172 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 98 | from S_x have x_eq: "x = (INF i. S i)" | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 99 | by (rule LIMSEQ_unique) (intro LIMSEQ_INF S) | 
| 61969 | 100 | show "(\<lambda>n. f (S n)) \<longlonglongrightarrow> f x" | 
| 60172 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 101 | unfolding x_eq inf_continuousD[OF f S] | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 102 | using S inf_continuous_mono[OF f] by (intro LIMSEQ_INF) (auto simp: mono_def antimono_def) | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 103 | qed (insert x, auto simp: less_top) | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 104 | qed | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 105 | |
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 106 | lemma inf_continuous_iff_at_right: | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 107 |   fixes f :: "'a::{complete_linorder, linorder_topology, first_countable_topology} \<Rightarrow>
 | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62376diff
changeset | 108 |     'b::{complete_linorder, linorder_topology}"
 | 
| 60172 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 109 | shows "inf_continuous f \<longleftrightarrow> (\<forall>x. continuous (at_right x) f) \<and> mono f" | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 110 | using inf_continuous_at_right[of f] continuous_at_right_imp_inf_continuous[of f] | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 111 | inf_continuous_mono[of f] by auto | 
| 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
60060diff
changeset | 112 | |
| 59115 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 113 | instantiation enat :: linorder_topology | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 114 | begin | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 115 | |
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 116 | definition open_enat :: "enat set \<Rightarrow> bool" where | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 117 | "open_enat = generate_topology (range lessThan \<union> range greaterThan)" | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 118 | |
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 119 | instance | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 120 | proof qed (rule open_enat_def) | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 121 | |
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 122 | end | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 123 | |
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 124 | lemma open_enat: "open {enat n}"
 | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 125 | proof (cases n) | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 126 | case 0 | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 127 |   then have "{enat n} = {..< eSuc 0}"
 | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 128 | by (auto simp: enat_0) | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 129 | then show ?thesis | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 130 | by simp | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 131 | next | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 132 | case (Suc n') | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 133 |   then have "{enat n} = {enat n' <..< enat (Suc n)}"
 | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 134 | apply auto | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 135 | apply (case_tac x) | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 136 | apply auto | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 137 | done | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 138 | then show ?thesis | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 139 | by simp | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 140 | qed | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 141 | |
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 142 | lemma open_enat_iff: | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 143 | fixes A :: "enat set" | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 144 |   shows "open A \<longleftrightarrow> (\<infinity> \<in> A \<longrightarrow> (\<exists>n::nat. {n <..} \<subseteq> A))"
 | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 145 | proof safe | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 146 | assume "\<infinity> \<notin> A" | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 147 |   then have "A = (\<Union>n\<in>{n. enat n \<in> A}. {enat n})"
 | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 148 | apply auto | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 149 | apply (case_tac x) | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 150 | apply auto | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 151 | done | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 152 | moreover have "open \<dots>" | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 153 | by (auto intro: open_enat) | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 154 | ultimately show "open A" | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 155 | by simp | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 156 | next | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 157 |   fix n assume "{enat n <..} \<subseteq> A"
 | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 158 |   then have "A = (\<Union>n\<in>{n. enat n \<in> A}. {enat n}) \<union> {enat n <..}"
 | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 159 | apply auto | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 160 | apply (case_tac x) | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 161 | apply auto | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 162 | done | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 163 | moreover have "open \<dots>" | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 164 | by (intro open_Un open_UN ballI open_enat open_greaterThan) | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 165 | ultimately show "open A" | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 166 | by simp | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 167 | next | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 168 | assume "open A" "\<infinity> \<in> A" | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 169 | then have "generate_topology (range lessThan \<union> range greaterThan) A" "\<infinity> \<in> A" | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 170 | unfolding open_enat_def by auto | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 171 |   then show "\<exists>n::nat. {n <..} \<subseteq> A"
 | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 172 | proof induction | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 173 | case (Int A B) | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 174 |     then obtain n m where "{enat n<..} \<subseteq> A" "{enat m<..} \<subseteq> B"
 | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 175 | by auto | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 176 |     then have "{enat (max n m) <..} \<subseteq> A \<inter> B"
 | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 177 | by (auto simp add: subset_eq Ball_def max_def enat_ord_code(1)[symmetric] simp del: enat_ord_code(1)) | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 178 | then show ?case | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 179 | by auto | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 180 | next | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 181 | case (UN K) | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 182 | then obtain k where "k \<in> K" "\<infinity> \<in> k" | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 183 | by auto | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 184 | with UN.IH[OF this] show ?case | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 185 | by auto | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 186 | qed auto | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 187 | qed | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 188 | |
| 62369 | 189 | lemma nhds_enat: "nhds x = (if x = \<infinity> then INF i. principal {enat i..} else principal {x})"
 | 
| 190 | proof auto | |
| 191 |   show "nhds \<infinity> = (INF i. principal {enat i..})"
 | |
| 192 | unfolding nhds_def | |
| 193 | apply (auto intro!: antisym INF_greatest simp add: open_enat_iff cong: rev_conj_cong) | |
| 194 | apply (auto intro!: INF_lower Ioi_le_Ico) [] | |
| 195 | subgoal for x i | |
| 196 | by (auto intro!: INF_lower2[of "Suc i"] simp: subset_eq Ball_def eSuc_enat Suc_ile_eq) | |
| 197 | done | |
| 198 |   show "nhds (enat i) = principal {enat i}" for i
 | |
| 199 | by (simp add: nhds_discrete_open open_enat) | |
| 200 | qed | |
| 201 | ||
| 202 | instance enat :: topological_comm_monoid_add | |
| 203 | proof | |
| 204 | have [simp]: "enat i \<le> aa \<Longrightarrow> enat i \<le> aa + ba" for aa ba i | |
| 205 | by (rule order_trans[OF _ add_mono[of aa aa 0 ba]]) auto | |
| 206 | then have [simp]: "enat i \<le> ba \<Longrightarrow> enat i \<le> aa + ba" for aa ba i | |
| 207 | by (metis add.commute) | |
| 208 | fix a b :: enat show "((\<lambda>x. fst x + snd x) \<longlongrightarrow> a + b) (nhds a \<times>\<^sub>F nhds b)" | |
| 209 | apply (auto simp: nhds_enat filterlim_INF prod_filter_INF1 prod_filter_INF2 | |
| 210 | filterlim_principal principal_prod_principal eventually_principal) | |
| 211 | subgoal for i | |
| 212 | by (auto intro!: eventually_INF1[of i] simp: eventually_principal) | |
| 213 | subgoal for j i | |
| 214 | by (auto intro!: eventually_INF1[of i] simp: eventually_principal) | |
| 215 | subgoal for j i | |
| 216 | by (auto intro!: eventually_INF1[of i] simp: eventually_principal) | |
| 217 | done | |
| 218 | qed | |
| 59115 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 219 | |
| 60500 | 220 | text \<open> | 
| 63680 | 221 | For more lemmas about the extended real numbers see | 
| 222 | \<^file>\<open>~~/src/HOL/Analysis/Extended_Real_Limits.thy\<close>. | |
| 60500 | 223 | \<close> | 
| 224 | ||
| 225 | subsection \<open>Definition and basic properties\<close> | |
| 41973 | 226 | |
| 58310 | 227 | datatype ereal = ereal real | PInfty | MInfty | 
| 41973 | 228 | |
| 63099 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
63092diff
changeset | 229 | lemma ereal_cong: "x = y \<Longrightarrow> ereal x = ereal y" by simp | 
| 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
63092diff
changeset | 230 | |
| 43920 | 231 | instantiation ereal :: uminus | 
| 41973 | 232 | begin | 
| 53873 | 233 | |
| 234 | fun uminus_ereal where | |
| 235 | "- (ereal r) = ereal (- r)" | |
| 236 | | "- PInfty = MInfty" | |
| 237 | | "- MInfty = PInfty" | |
| 238 | ||
| 239 | instance .. | |
| 240 | ||
| 41973 | 241 | end | 
| 242 | ||
| 43923 | 243 | instantiation ereal :: infinity | 
| 244 | begin | |
| 53873 | 245 | |
| 246 | definition "(\<infinity>::ereal) = PInfty" | |
| 247 | instance .. | |
| 248 | ||
| 43923 | 249 | end | 
| 41973 | 250 | |
| 43923 | 251 | declare [[coercion "ereal :: real \<Rightarrow> ereal"]] | 
| 41973 | 252 | |
| 43920 | 253 | lemma ereal_uminus_uminus[simp]: | 
| 53873 | 254 | fixes a :: ereal | 
| 255 | shows "- (- a) = a" | |
| 41973 | 256 | by (cases a) simp_all | 
| 257 | ||
| 43923 | 258 | lemma | 
| 259 | shows PInfty_eq_infinity[simp]: "PInfty = \<infinity>" | |
| 260 | and MInfty_eq_minfinity[simp]: "MInfty = - \<infinity>" | |
| 261 | and MInfty_neq_PInfty[simp]: "\<infinity> \<noteq> - (\<infinity>::ereal)" "- \<infinity> \<noteq> (\<infinity>::ereal)" | |
| 262 | and MInfty_neq_ereal[simp]: "ereal r \<noteq> - \<infinity>" "- \<infinity> \<noteq> ereal r" | |
| 263 | and PInfty_neq_ereal[simp]: "ereal r \<noteq> \<infinity>" "\<infinity> \<noteq> ereal r" | |
| 264 | and PInfty_cases[simp]: "(case \<infinity> of ereal r \<Rightarrow> f r | PInfty \<Rightarrow> y | MInfty \<Rightarrow> z) = y" | |
| 265 | and MInfty_cases[simp]: "(case - \<infinity> of ereal r \<Rightarrow> f r | PInfty \<Rightarrow> y | MInfty \<Rightarrow> z) = z" | |
| 266 | by (simp_all add: infinity_ereal_def) | |
| 41973 | 267 | |
| 43933 | 268 | declare | 
| 269 | PInfty_eq_infinity[code_post] | |
| 270 | MInfty_eq_minfinity[code_post] | |
| 271 | ||
| 272 | lemma [code_unfold]: | |
| 273 | "\<infinity> = PInfty" | |
| 53873 | 274 | "- PInfty = MInfty" | 
| 43933 | 275 | by simp_all | 
| 276 | ||
| 43923 | 277 | lemma inj_ereal[simp]: "inj_on ereal A" | 
| 278 | unfolding inj_on_def by auto | |
| 41973 | 279 | |
| 55913 | 280 | lemma ereal_cases[cases type: ereal]: | 
| 281 | obtains (real) r where "x = ereal r" | |
| 282 | | (PInf) "x = \<infinity>" | |
| 283 | | (MInf) "x = -\<infinity>" | |
| 63092 | 284 | by (cases x) auto | 
| 41973 | 285 | |
| 43920 | 286 | lemmas ereal2_cases = ereal_cases[case_product ereal_cases] | 
| 287 | lemmas ereal3_cases = ereal2_cases[case_product ereal_cases] | |
| 41973 | 288 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57025diff
changeset | 289 | lemma ereal_all_split: "\<And>P. (\<forall>x::ereal. P x) \<longleftrightarrow> P \<infinity> \<and> (\<forall>x. P (ereal x)) \<and> P (-\<infinity>)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57025diff
changeset | 290 | by (metis ereal_cases) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57025diff
changeset | 291 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57025diff
changeset | 292 | lemma ereal_ex_split: "\<And>P. (\<exists>x::ereal. P x) \<longleftrightarrow> P \<infinity> \<or> (\<exists>x. P (ereal x)) \<or> P (-\<infinity>)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57025diff
changeset | 293 | by (metis ereal_cases) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57025diff
changeset | 294 | |
| 43920 | 295 | lemma ereal_uminus_eq_iff[simp]: | 
| 53873 | 296 | fixes a b :: ereal | 
| 297 | shows "-a = -b \<longleftrightarrow> a = b" | |
| 43920 | 298 | by (cases rule: ereal2_cases[of a b]) simp_all | 
| 41973 | 299 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 300 | function real_of_ereal :: "ereal \<Rightarrow> real" where | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 301 | "real_of_ereal (ereal r) = r" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 302 | | "real_of_ereal \<infinity> = 0" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 303 | | "real_of_ereal (-\<infinity>) = 0" | 
| 43920 | 304 | by (auto intro: ereal_cases) | 
| 60679 | 305 | termination by standard (rule wf_empty) | 
| 41973 | 306 | |
| 43920 | 307 | lemma real_of_ereal[simp]: | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 308 | "real_of_ereal (- x :: ereal) = - (real_of_ereal x)" | 
| 58042 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 hoelzl parents: 
57512diff
changeset | 309 | by (cases x) simp_all | 
| 41973 | 310 | |
| 43920 | 311 | lemma range_ereal[simp]: "range ereal = UNIV - {\<infinity>, -\<infinity>}"
 | 
| 41973 | 312 | proof safe | 
| 53873 | 313 | fix x | 
| 314 | assume "x \<notin> range ereal" "x \<noteq> \<infinity>" | |
| 315 | then show "x = -\<infinity>" | |
| 316 | by (cases x) auto | |
| 41973 | 317 | qed auto | 
| 318 | ||
| 43920 | 319 | lemma ereal_range_uminus[simp]: "range uminus = (UNIV::ereal set)" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 320 | proof safe | 
| 53873 | 321 | fix x :: ereal | 
| 322 | show "x \<in> range uminus" | |
| 323 | by (intro image_eqI[of _ _ "-x"]) auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 324 | qed auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 325 | |
| 43920 | 326 | instantiation ereal :: abs | 
| 41976 | 327 | begin | 
| 53873 | 328 | |
| 329 | function abs_ereal where | |
| 330 | "\<bar>ereal r\<bar> = ereal \<bar>r\<bar>" | |
| 331 | | "\<bar>-\<infinity>\<bar> = (\<infinity>::ereal)" | |
| 332 | | "\<bar>\<infinity>\<bar> = (\<infinity>::ereal)" | |
| 333 | by (auto intro: ereal_cases) | |
| 334 | termination proof qed (rule wf_empty) | |
| 335 | ||
| 336 | instance .. | |
| 337 | ||
| 41976 | 338 | end | 
| 339 | ||
| 53873 | 340 | lemma abs_eq_infinity_cases[elim!]: | 
| 341 | fixes x :: ereal | |
| 342 | assumes "\<bar>x\<bar> = \<infinity>" | |
| 343 | obtains "x = \<infinity>" | "x = -\<infinity>" | |
| 344 | using assms by (cases x) auto | |
| 41976 | 345 | |
| 53873 | 346 | lemma abs_neq_infinity_cases[elim!]: | 
| 347 | fixes x :: ereal | |
| 348 | assumes "\<bar>x\<bar> \<noteq> \<infinity>" | |
| 349 | obtains r where "x = ereal r" | |
| 350 | using assms by (cases x) auto | |
| 351 | ||
| 352 | lemma abs_ereal_uminus[simp]: | |
| 353 | fixes x :: ereal | |
| 354 | shows "\<bar>- x\<bar> = \<bar>x\<bar>" | |
| 41976 | 355 | by (cases x) auto | 
| 356 | ||
| 53873 | 357 | lemma ereal_infinity_cases: | 
| 358 | fixes a :: ereal | |
| 359 | shows "a \<noteq> \<infinity> \<Longrightarrow> a \<noteq> -\<infinity> \<Longrightarrow> \<bar>a\<bar> \<noteq> \<infinity>" | |
| 360 | by auto | |
| 41976 | 361 | |
| 41973 | 362 | subsubsection "Addition" | 
| 363 | ||
| 54408 | 364 | instantiation ereal :: "{one,comm_monoid_add,zero_neq_one}"
 | 
| 41973 | 365 | begin | 
| 366 | ||
| 43920 | 367 | definition "0 = ereal 0" | 
| 51351 | 368 | definition "1 = ereal 1" | 
| 41973 | 369 | |
| 43920 | 370 | function plus_ereal where | 
| 53873 | 371 | "ereal r + ereal p = ereal (r + p)" | 
| 372 | | "\<infinity> + a = (\<infinity>::ereal)" | |
| 373 | | "a + \<infinity> = (\<infinity>::ereal)" | |
| 374 | | "ereal r + -\<infinity> = - \<infinity>" | |
| 375 | | "-\<infinity> + ereal p = -(\<infinity>::ereal)" | |
| 376 | | "-\<infinity> + -\<infinity> = -(\<infinity>::ereal)" | |
| 61166 
5976fe402824
renamed method "goals" to "goal_cases" to emphasize its meaning;
 wenzelm parents: 
61120diff
changeset | 377 | proof goal_cases | 
| 60580 | 378 | case prems: (1 P x) | 
| 53873 | 379 | then obtain a b where "x = (a, b)" | 
| 380 | by (cases x) auto | |
| 60580 | 381 | with prems show P | 
| 43920 | 382 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 383 | qed auto | 
| 60679 | 384 | termination by standard (rule wf_empty) | 
| 41973 | 385 | |
| 386 | lemma Infty_neq_0[simp]: | |
| 43923 | 387 | "(\<infinity>::ereal) \<noteq> 0" "0 \<noteq> (\<infinity>::ereal)" | 
| 388 | "-(\<infinity>::ereal) \<noteq> 0" "0 \<noteq> -(\<infinity>::ereal)" | |
| 43920 | 389 | by (simp_all add: zero_ereal_def) | 
| 41973 | 390 | |
| 43920 | 391 | lemma ereal_eq_0[simp]: | 
| 392 | "ereal r = 0 \<longleftrightarrow> r = 0" | |
| 393 | "0 = ereal r \<longleftrightarrow> r = 0" | |
| 394 | unfolding zero_ereal_def by simp_all | |
| 41973 | 395 | |
| 54416 | 396 | lemma ereal_eq_1[simp]: | 
| 397 | "ereal r = 1 \<longleftrightarrow> r = 1" | |
| 398 | "1 = ereal r \<longleftrightarrow> r = 1" | |
| 399 | unfolding one_ereal_def by simp_all | |
| 400 | ||
| 41973 | 401 | instance | 
| 402 | proof | |
| 47082 | 403 | fix a b c :: ereal | 
| 404 | show "0 + a = a" | |
| 43920 | 405 | by (cases a) (simp_all add: zero_ereal_def) | 
| 47082 | 406 | show "a + b = b + a" | 
| 43920 | 407 | by (cases rule: ereal2_cases[of a b]) simp_all | 
| 47082 | 408 | show "a + b + c = a + (b + c)" | 
| 43920 | 409 | by (cases rule: ereal3_cases[of a b c]) simp_all | 
| 54408 | 410 | show "0 \<noteq> (1::ereal)" | 
| 411 | by (simp add: one_ereal_def zero_ereal_def) | |
| 41973 | 412 | qed | 
| 53873 | 413 | |
| 41973 | 414 | end | 
| 415 | ||
| 60060 | 416 | lemma ereal_0_plus [simp]: "ereal 0 + x = x" | 
| 417 | and plus_ereal_0 [simp]: "x + ereal 0 = x" | |
| 418 | by(simp_all add: zero_ereal_def[symmetric]) | |
| 419 | ||
| 51351 | 420 | instance ereal :: numeral .. | 
| 421 | ||
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 422 | lemma real_of_ereal_0[simp]: "real_of_ereal (0::ereal) = 0" | 
| 58042 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 hoelzl parents: 
57512diff
changeset | 423 | unfolding zero_ereal_def by simp | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 424 | |
| 43920 | 425 | lemma abs_ereal_zero[simp]: "\<bar>0\<bar> = (0::ereal)" | 
| 426 | unfolding zero_ereal_def abs_ereal.simps by simp | |
| 41976 | 427 | |
| 53873 | 428 | lemma ereal_uminus_zero[simp]: "- 0 = (0::ereal)" | 
| 43920 | 429 | by (simp add: zero_ereal_def) | 
| 41973 | 430 | |
| 43920 | 431 | lemma ereal_uminus_zero_iff[simp]: | 
| 53873 | 432 | fixes a :: ereal | 
| 433 | shows "-a = 0 \<longleftrightarrow> a = 0" | |
| 41973 | 434 | by (cases a) simp_all | 
| 435 | ||
| 43920 | 436 | lemma ereal_plus_eq_PInfty[simp]: | 
| 53873 | 437 | fixes a b :: ereal | 
| 438 | shows "a + b = \<infinity> \<longleftrightarrow> a = \<infinity> \<or> b = \<infinity>" | |
| 43920 | 439 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 440 | |
| 43920 | 441 | lemma ereal_plus_eq_MInfty[simp]: | 
| 53873 | 442 | fixes a b :: ereal | 
| 443 | shows "a + b = -\<infinity> \<longleftrightarrow> (a = -\<infinity> \<or> b = -\<infinity>) \<and> a \<noteq> \<infinity> \<and> b \<noteq> \<infinity>" | |
| 43920 | 444 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 445 | |
| 43920 | 446 | lemma ereal_add_cancel_left: | 
| 53873 | 447 | fixes a b :: ereal | 
| 448 | assumes "a \<noteq> -\<infinity>" | |
| 449 | shows "a + b = a + c \<longleftrightarrow> a = \<infinity> \<or> b = c" | |
| 43920 | 450 | using assms by (cases rule: ereal3_cases[of a b c]) auto | 
| 41973 | 451 | |
| 43920 | 452 | lemma ereal_add_cancel_right: | 
| 53873 | 453 | fixes a b :: ereal | 
| 454 | assumes "a \<noteq> -\<infinity>" | |
| 455 | shows "b + a = c + a \<longleftrightarrow> a = \<infinity> \<or> b = c" | |
| 43920 | 456 | using assms by (cases rule: ereal3_cases[of a b c]) auto | 
| 41973 | 457 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 458 | lemma ereal_real: "ereal (real_of_ereal x) = (if \<bar>x\<bar> = \<infinity> then 0 else x)" | 
| 41973 | 459 | by (cases x) simp_all | 
| 460 | ||
| 43920 | 461 | lemma real_of_ereal_add: | 
| 462 | fixes a b :: ereal | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 463 | shows "real_of_ereal (a + b) = | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 464 | (if (\<bar>a\<bar> = \<infinity>) \<and> (\<bar>b\<bar> = \<infinity>) \<or> (\<bar>a\<bar> \<noteq> \<infinity>) \<and> (\<bar>b\<bar> \<noteq> \<infinity>) then real_of_ereal a + real_of_ereal b else 0)" | 
| 43920 | 465 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 466 | |
| 53873 | 467 | |
| 43920 | 468 | subsubsection "Linear order on @{typ ereal}"
 | 
| 41973 | 469 | |
| 43920 | 470 | instantiation ereal :: linorder | 
| 41973 | 471 | begin | 
| 472 | ||
| 47082 | 473 | function less_ereal | 
| 474 | where | |
| 475 | " ereal x < ereal y \<longleftrightarrow> x < y" | |
| 476 | | "(\<infinity>::ereal) < a \<longleftrightarrow> False" | |
| 477 | | " a < -(\<infinity>::ereal) \<longleftrightarrow> False" | |
| 478 | | "ereal x < \<infinity> \<longleftrightarrow> True" | |
| 479 | | " -\<infinity> < ereal r \<longleftrightarrow> True" | |
| 480 | | " -\<infinity> < (\<infinity>::ereal) \<longleftrightarrow> True" | |
| 61166 
5976fe402824
renamed method "goals" to "goal_cases" to emphasize its meaning;
 wenzelm parents: 
61120diff
changeset | 481 | proof goal_cases | 
| 60580 | 482 | case prems: (1 P x) | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 483 | then obtain a b where "x = (a,b)" by (cases x) auto | 
| 60580 | 484 | with prems show P by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 485 | qed simp_all | 
| 486 | termination by (relation "{}") simp
 | |
| 487 | ||
| 43920 | 488 | definition "x \<le> (y::ereal) \<longleftrightarrow> x < y \<or> x = y" | 
| 41973 | 489 | |
| 43920 | 490 | lemma ereal_infty_less[simp]: | 
| 43923 | 491 | fixes x :: ereal | 
| 492 | shows "x < \<infinity> \<longleftrightarrow> (x \<noteq> \<infinity>)" | |
| 493 | "-\<infinity> < x \<longleftrightarrow> (x \<noteq> -\<infinity>)" | |
| 41973 | 494 | by (cases x, simp_all) (cases x, simp_all) | 
| 495 | ||
| 43920 | 496 | lemma ereal_infty_less_eq[simp]: | 
| 43923 | 497 | fixes x :: ereal | 
| 498 | shows "\<infinity> \<le> x \<longleftrightarrow> x = \<infinity>" | |
| 53873 | 499 | and "x \<le> -\<infinity> \<longleftrightarrow> x = -\<infinity>" | 
| 43920 | 500 | by (auto simp add: less_eq_ereal_def) | 
| 41973 | 501 | |
| 43920 | 502 | lemma ereal_less[simp]: | 
| 503 | "ereal r < 0 \<longleftrightarrow> (r < 0)" | |
| 504 | "0 < ereal r \<longleftrightarrow> (0 < r)" | |
| 54416 | 505 | "ereal r < 1 \<longleftrightarrow> (r < 1)" | 
| 506 | "1 < ereal r \<longleftrightarrow> (1 < r)" | |
| 43923 | 507 | "0 < (\<infinity>::ereal)" | 
| 508 | "-(\<infinity>::ereal) < 0" | |
| 54416 | 509 | by (simp_all add: zero_ereal_def one_ereal_def) | 
| 41973 | 510 | |
| 43920 | 511 | lemma ereal_less_eq[simp]: | 
| 43923 | 512 | "x \<le> (\<infinity>::ereal)" | 
| 513 | "-(\<infinity>::ereal) \<le> x" | |
| 43920 | 514 | "ereal r \<le> ereal p \<longleftrightarrow> r \<le> p" | 
| 515 | "ereal r \<le> 0 \<longleftrightarrow> r \<le> 0" | |
| 516 | "0 \<le> ereal r \<longleftrightarrow> 0 \<le> r" | |
| 54416 | 517 | "ereal r \<le> 1 \<longleftrightarrow> r \<le> 1" | 
| 518 | "1 \<le> ereal r \<longleftrightarrow> 1 \<le> r" | |
| 519 | by (auto simp add: less_eq_ereal_def zero_ereal_def one_ereal_def) | |
| 41973 | 520 | |
| 43920 | 521 | lemma ereal_infty_less_eq2: | 
| 43923 | 522 | "a \<le> b \<Longrightarrow> a = \<infinity> \<Longrightarrow> b = (\<infinity>::ereal)" | 
| 523 | "a \<le> b \<Longrightarrow> b = -\<infinity> \<Longrightarrow> a = -(\<infinity>::ereal)" | |
| 41973 | 524 | by simp_all | 
| 525 | ||
| 526 | instance | |
| 527 | proof | |
| 47082 | 528 | fix x y z :: ereal | 
| 529 | show "x \<le> x" | |
| 41973 | 530 | by (cases x) simp_all | 
| 47082 | 531 | show "x < y \<longleftrightarrow> x \<le> y \<and> \<not> y \<le> x" | 
| 43920 | 532 | by (cases rule: ereal2_cases[of x y]) auto | 
| 41973 | 533 | show "x \<le> y \<or> y \<le> x " | 
| 43920 | 534 | by (cases rule: ereal2_cases[of x y]) auto | 
| 53873 | 535 |   {
 | 
| 536 | assume "x \<le> y" "y \<le> x" | |
| 537 | then show "x = y" | |
| 538 | by (cases rule: ereal2_cases[of x y]) auto | |
| 539 | } | |
| 540 |   {
 | |
| 541 | assume "x \<le> y" "y \<le> z" | |
| 542 | then show "x \<le> z" | |
| 543 | by (cases rule: ereal3_cases[of x y z]) auto | |
| 544 | } | |
| 41973 | 545 | qed | 
| 47082 | 546 | |
| 41973 | 547 | end | 
| 548 | ||
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 549 | lemma ereal_dense2: "x < y \<Longrightarrow> \<exists>z. x < ereal z \<and> ereal z < y" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 550 | using lt_ex gt_ex dense by (cases x y rule: ereal2_cases) auto | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 551 | |
| 53216 | 552 | instance ereal :: dense_linorder | 
| 60679 | 553 | by standard (blast dest: ereal_dense2) | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 554 | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62371diff
changeset | 555 | instance ereal :: ordered_comm_monoid_add | 
| 41978 | 556 | proof | 
| 53873 | 557 | fix a b c :: ereal | 
| 558 | assume "a \<le> b" | |
| 559 | then show "c + a \<le> c + b" | |
| 43920 | 560 | by (cases rule: ereal3_cases[of a b c]) auto | 
| 41978 | 561 | qed | 
| 562 | ||
| 62648 | 563 | lemma ereal_one_not_less_zero_ereal[simp]: "\<not> 1 < (0::ereal)" | 
| 564 | by (simp add: zero_ereal_def) | |
| 565 | ||
| 43920 | 566 | lemma real_of_ereal_positive_mono: | 
| 53873 | 567 | fixes x y :: ereal | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 568 | shows "0 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> y \<noteq> \<infinity> \<Longrightarrow> real_of_ereal x \<le> real_of_ereal y" | 
| 43920 | 569 | by (cases rule: ereal2_cases[of x y]) auto | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 570 | |
| 43920 | 571 | lemma ereal_MInfty_lessI[intro, simp]: | 
| 53873 | 572 | fixes a :: ereal | 
| 573 | shows "a \<noteq> -\<infinity> \<Longrightarrow> -\<infinity> < a" | |
| 41973 | 574 | by (cases a) auto | 
| 575 | ||
| 43920 | 576 | lemma ereal_less_PInfty[intro, simp]: | 
| 53873 | 577 | fixes a :: ereal | 
| 578 | shows "a \<noteq> \<infinity> \<Longrightarrow> a < \<infinity>" | |
| 41973 | 579 | by (cases a) auto | 
| 580 | ||
| 43920 | 581 | lemma ereal_less_ereal_Ex: | 
| 582 | fixes a b :: ereal | |
| 583 | shows "x < ereal r \<longleftrightarrow> x = -\<infinity> \<or> (\<exists>p. p < r \<and> x = ereal p)" | |
| 41973 | 584 | by (cases x) auto | 
| 585 | ||
| 43920 | 586 | lemma less_PInf_Ex_of_nat: "x \<noteq> \<infinity> \<longleftrightarrow> (\<exists>n::nat. x < ereal (real n))" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 587 | proof (cases x) | 
| 53873 | 588 | case (real r) | 
| 589 | then show ?thesis | |
| 41980 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 590 | using reals_Archimedean2[of r] by simp | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 591 | qed simp_all | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 592 | |
| 43920 | 593 | lemma ereal_add_mono: | 
| 53873 | 594 | fixes a b c d :: ereal | 
| 595 | assumes "a \<le> b" | |
| 596 | and "c \<le> d" | |
| 597 | shows "a + c \<le> b + d" | |
| 41973 | 598 | using assms | 
| 599 | apply (cases a) | |
| 43920 | 600 | apply (cases rule: ereal3_cases[of b c d], auto) | 
| 601 | apply (cases rule: ereal3_cases[of b c d], auto) | |
| 41973 | 602 | done | 
| 603 | ||
| 43920 | 604 | lemma ereal_minus_le_minus[simp]: | 
| 53873 | 605 | fixes a b :: ereal | 
| 606 | shows "- a \<le> - b \<longleftrightarrow> b \<le> a" | |
| 43920 | 607 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 608 | |
| 43920 | 609 | lemma ereal_minus_less_minus[simp]: | 
| 53873 | 610 | fixes a b :: ereal | 
| 611 | shows "- a < - b \<longleftrightarrow> b < a" | |
| 43920 | 612 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 613 | |
| 43920 | 614 | lemma ereal_le_real_iff: | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 615 | "x \<le> real_of_ereal y \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> ereal x \<le> y) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> x \<le> 0)" | 
| 41973 | 616 | by (cases y) auto | 
| 617 | ||
| 43920 | 618 | lemma real_le_ereal_iff: | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 619 | "real_of_ereal y \<le> x \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> y \<le> ereal x) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> 0 \<le> x)" | 
| 41973 | 620 | by (cases y) auto | 
| 621 | ||
| 43920 | 622 | lemma ereal_less_real_iff: | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 623 | "x < real_of_ereal y \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> ereal x < y) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> x < 0)" | 
| 41973 | 624 | by (cases y) auto | 
| 625 | ||
| 43920 | 626 | lemma real_less_ereal_iff: | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 627 | "real_of_ereal y < x \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> y < ereal x) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> 0 < x)" | 
| 41973 | 628 | by (cases y) auto | 
| 629 | ||
| 43920 | 630 | lemma real_of_ereal_pos: | 
| 53873 | 631 | fixes x :: ereal | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 632 | shows "0 \<le> x \<Longrightarrow> 0 \<le> real_of_ereal x" by (cases x) auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 633 | |
| 43920 | 634 | lemmas real_of_ereal_ord_simps = | 
| 635 | ereal_le_real_iff real_le_ereal_iff ereal_less_real_iff real_less_ereal_iff | |
| 41973 | 636 | |
| 43920 | 637 | lemma abs_ereal_ge0[simp]: "0 \<le> x \<Longrightarrow> \<bar>x :: ereal\<bar> = x" | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 638 | by (cases x) auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 639 | |
| 43920 | 640 | lemma abs_ereal_less0[simp]: "x < 0 \<Longrightarrow> \<bar>x :: ereal\<bar> = -x" | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 641 | by (cases x) auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 642 | |
| 43920 | 643 | lemma abs_ereal_pos[simp]: "0 \<le> \<bar>x :: ereal\<bar>" | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 644 | by (cases x) auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 645 | |
| 61631 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 646 | lemma ereal_abs_leI: | 
| 61738 
c4f6031f1310
New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
 paulson <lp15@cam.ac.uk> parents: 
61631diff
changeset | 647 | fixes x y :: ereal | 
| 61631 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 648 | shows "\<lbrakk> x \<le> y; -x \<le> y \<rbrakk> \<Longrightarrow> \<bar>x\<bar> \<le> y" | 
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 649 | by(cases x y rule: ereal2_cases)(simp_all) | 
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 650 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 651 | lemma real_of_ereal_le_0[simp]: "real_of_ereal (x :: ereal) \<le> 0 \<longleftrightarrow> x \<le> 0 \<or> x = \<infinity>" | 
| 43923 | 652 | by (cases x) auto | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 653 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 654 | lemma abs_real_of_ereal[simp]: "\<bar>real_of_ereal (x :: ereal)\<bar> = real_of_ereal \<bar>x\<bar>" | 
| 43923 | 655 | by (cases x) auto | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 656 | |
| 43923 | 657 | lemma zero_less_real_of_ereal: | 
| 53873 | 658 | fixes x :: ereal | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 659 | shows "0 < real_of_ereal x \<longleftrightarrow> 0 < x \<and> x \<noteq> \<infinity>" | 
| 43923 | 660 | by (cases x) auto | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 661 | |
| 43920 | 662 | lemma ereal_0_le_uminus_iff[simp]: | 
| 53873 | 663 | fixes a :: ereal | 
| 664 | shows "0 \<le> - a \<longleftrightarrow> a \<le> 0" | |
| 43920 | 665 | by (cases rule: ereal2_cases[of a]) auto | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 666 | |
| 43920 | 667 | lemma ereal_uminus_le_0_iff[simp]: | 
| 53873 | 668 | fixes a :: ereal | 
| 669 | shows "- a \<le> 0 \<longleftrightarrow> 0 \<le> a" | |
| 43920 | 670 | by (cases rule: ereal2_cases[of a]) auto | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 671 | |
| 43920 | 672 | lemma ereal_add_strict_mono: | 
| 673 | fixes a b c d :: ereal | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 674 | assumes "a \<le> b" | 
| 53873 | 675 | and "0 \<le> a" | 
| 676 | and "a \<noteq> \<infinity>" | |
| 677 | and "c < d" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 678 | shows "a + c < b + d" | 
| 53873 | 679 | using assms | 
| 680 | by (cases rule: ereal3_cases[case_product ereal_cases, of a b c d]) auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 681 | |
| 53873 | 682 | lemma ereal_less_add: | 
| 683 | fixes a b c :: ereal | |
| 684 | shows "\<bar>a\<bar> \<noteq> \<infinity> \<Longrightarrow> c < b \<Longrightarrow> a + c < a + b" | |
| 43920 | 685 | by (cases rule: ereal2_cases[of b c]) auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 686 | |
| 54416 | 687 | lemma ereal_add_nonneg_eq_0_iff: | 
| 688 | fixes a b :: ereal | |
| 689 | shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> a + b = 0 \<longleftrightarrow> a = 0 \<and> b = 0" | |
| 690 | by (cases a b rule: ereal2_cases) auto | |
| 691 | ||
| 53873 | 692 | lemma ereal_uminus_eq_reorder: "- a = b \<longleftrightarrow> a = (-b::ereal)" | 
| 693 | by auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 694 | |
| 43920 | 695 | lemma ereal_uminus_less_reorder: "- a < b \<longleftrightarrow> -b < (a::ereal)" | 
| 696 | by (subst (3) ereal_uminus_uminus[symmetric]) (simp only: ereal_minus_less_minus) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 697 | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 698 | lemma ereal_less_uminus_reorder: "a < - b \<longleftrightarrow> b < - (a::ereal)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 699 | by (subst (3) ereal_uminus_uminus[symmetric]) (simp only: ereal_minus_less_minus) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 700 | |
| 43920 | 701 | lemma ereal_uminus_le_reorder: "- a \<le> b \<longleftrightarrow> -b \<le> (a::ereal)" | 
| 702 | by (subst (3) ereal_uminus_uminus[symmetric]) (simp only: ereal_minus_le_minus) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 703 | |
| 43920 | 704 | lemmas ereal_uminus_reorder = | 
| 705 | ereal_uminus_eq_reorder ereal_uminus_less_reorder ereal_uminus_le_reorder | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 706 | |
| 43920 | 707 | lemma ereal_bot: | 
| 53873 | 708 | fixes x :: ereal | 
| 709 | assumes "\<And>B. x \<le> ereal B" | |
| 710 | shows "x = - \<infinity>" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 711 | proof (cases x) | 
| 53873 | 712 | case (real r) | 
| 713 | with assms[of "r - 1"] show ?thesis | |
| 714 | by auto | |
| 47082 | 715 | next | 
| 53873 | 716 | case PInf | 
| 717 | with assms[of 0] show ?thesis | |
| 718 | by auto | |
| 47082 | 719 | next | 
| 53873 | 720 | case MInf | 
| 721 | then show ?thesis | |
| 722 | by simp | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 723 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 724 | |
| 43920 | 725 | lemma ereal_top: | 
| 53873 | 726 | fixes x :: ereal | 
| 727 | assumes "\<And>B. x \<ge> ereal B" | |
| 728 | shows "x = \<infinity>" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 729 | proof (cases x) | 
| 53873 | 730 | case (real r) | 
| 731 | with assms[of "r + 1"] show ?thesis | |
| 732 | by auto | |
| 47082 | 733 | next | 
| 53873 | 734 | case MInf | 
| 735 | with assms[of 0] show ?thesis | |
| 736 | by auto | |
| 47082 | 737 | next | 
| 53873 | 738 | case PInf | 
| 739 | then show ?thesis | |
| 740 | by simp | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 741 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 742 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 743 | lemma | 
| 43920 | 744 | shows ereal_max[simp]: "ereal (max x y) = max (ereal x) (ereal y)" | 
| 745 | and ereal_min[simp]: "ereal (min x y) = min (ereal x) (ereal y)" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 746 | by (simp_all add: min_def max_def) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 747 | |
| 43920 | 748 | lemma ereal_max_0: "max 0 (ereal r) = ereal (max 0 r)" | 
| 749 | by (auto simp: zero_ereal_def) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 750 | |
| 41978 | 751 | lemma | 
| 43920 | 752 | fixes f :: "nat \<Rightarrow> ereal" | 
| 54416 | 753 | shows ereal_incseq_uminus[simp]: "incseq (\<lambda>x. - f x) \<longleftrightarrow> decseq f" | 
| 754 | and ereal_decseq_uminus[simp]: "decseq (\<lambda>x. - f x) \<longleftrightarrow> incseq f" | |
| 41978 | 755 | unfolding decseq_def incseq_def by auto | 
| 756 | ||
| 43920 | 757 | lemma incseq_ereal: "incseq f \<Longrightarrow> incseq (\<lambda>x. ereal (f x))" | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 758 | unfolding incseq_def by auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 759 | |
| 56537 | 760 | lemma ereal_add_nonneg_nonneg[simp]: | 
| 53873 | 761 | fixes a b :: ereal | 
| 762 | shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a + b" | |
| 41978 | 763 | using add_mono[of 0 a 0 b] by simp | 
| 764 | ||
| 64267 | 765 | lemma sum_ereal[simp]: "(\<Sum>x\<in>A. ereal (f x)) = ereal (\<Sum>x\<in>A. f x)" | 
| 59000 | 766 | proof (cases "finite A") | 
| 767 | case True | |
| 768 | then show ?thesis by induct auto | |
| 769 | next | |
| 770 | case False | |
| 771 | then show ?thesis by simp | |
| 772 | qed | |
| 773 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63680diff
changeset | 774 | lemma sum_list_ereal [simp]: "sum_list (map (\<lambda>x. ereal (f x)) xs) = ereal (sum_list (map f xs))" | 
| 63099 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
63092diff
changeset | 775 | by (induction xs) simp_all | 
| 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
63092diff
changeset | 776 | |
| 64267 | 777 | lemma sum_Pinfty: | 
| 59000 | 778 | fixes f :: "'a \<Rightarrow> ereal" | 
| 779 | shows "(\<Sum>x\<in>P. f x) = \<infinity> \<longleftrightarrow> finite P \<and> (\<exists>i\<in>P. f i = \<infinity>)" | |
| 780 | proof safe | |
| 64267 | 781 | assume *: "sum f P = \<infinity>" | 
| 59000 | 782 | show "finite P" | 
| 783 | proof (rule ccontr) | |
| 784 | assume "\<not> finite P" | |
| 785 | with * show False | |
| 786 | by auto | |
| 787 | qed | |
| 788 | show "\<exists>i\<in>P. f i = \<infinity>" | |
| 789 | proof (rule ccontr) | |
| 790 | assume "\<not> ?thesis" | |
| 791 | then have "\<And>i. i \<in> P \<Longrightarrow> f i \<noteq> \<infinity>" | |
| 792 | by auto | |
| 64267 | 793 | with \<open>finite P\<close> have "sum f P \<noteq> \<infinity>" | 
| 59000 | 794 | by induct auto | 
| 795 | with * show False | |
| 796 | by auto | |
| 797 | qed | |
| 798 | next | |
| 799 | fix i | |
| 800 | assume "finite P" and "i \<in> P" and "f i = \<infinity>" | |
| 64267 | 801 | then show "sum f P = \<infinity>" | 
| 59000 | 802 | proof induct | 
| 803 | case (insert x A) | |
| 804 | show ?case using insert by (cases "x = i") auto | |
| 805 | qed simp | |
| 806 | qed | |
| 807 | ||
| 64267 | 808 | lemma sum_Inf: | 
| 59000 | 809 | fixes f :: "'a \<Rightarrow> ereal" | 
| 64267 | 810 | shows "\<bar>sum f A\<bar> = \<infinity> \<longleftrightarrow> finite A \<and> (\<exists>i\<in>A. \<bar>f i\<bar> = \<infinity>)" | 
| 59000 | 811 | proof | 
| 64267 | 812 | assume *: "\<bar>sum f A\<bar> = \<infinity>" | 
| 59000 | 813 | have "finite A" | 
| 814 | by (rule ccontr) (insert *, auto) | |
| 815 | moreover have "\<exists>i\<in>A. \<bar>f i\<bar> = \<infinity>" | |
| 816 | proof (rule ccontr) | |
| 817 | assume "\<not> ?thesis" | |
| 818 | then have "\<forall>i\<in>A. \<exists>r. f i = ereal r" | |
| 819 | by auto | |
| 820 | from bchoice[OF this] obtain r where "\<forall>x\<in>A. f x = ereal (r x)" .. | |
| 821 | with * show False | |
| 822 | by auto | |
| 823 | qed | |
| 824 | ultimately show "finite A \<and> (\<exists>i\<in>A. \<bar>f i\<bar> = \<infinity>)" | |
| 825 | by auto | |
| 826 | next | |
| 827 | assume "finite A \<and> (\<exists>i\<in>A. \<bar>f i\<bar> = \<infinity>)" | |
| 828 | then obtain i where "finite A" "i \<in> A" and "\<bar>f i\<bar> = \<infinity>" | |
| 829 | by auto | |
| 64267 | 830 | then show "\<bar>sum f A\<bar> = \<infinity>" | 
| 59000 | 831 | proof induct | 
| 832 | case (insert j A) | |
| 833 | then show ?case | |
| 64267 | 834 | by (cases rule: ereal3_cases[of "f i" "f j" "sum f A"]) auto | 
| 59000 | 835 | qed simp | 
| 836 | qed | |
| 837 | ||
| 64267 | 838 | lemma sum_real_of_ereal: | 
| 59000 | 839 | fixes f :: "'i \<Rightarrow> ereal" | 
| 840 | assumes "\<And>x. x \<in> S \<Longrightarrow> \<bar>f x\<bar> \<noteq> \<infinity>" | |
| 64267 | 841 | shows "(\<Sum>x\<in>S. real_of_ereal (f x)) = real_of_ereal (sum f S)" | 
| 59000 | 842 | proof - | 
| 843 | have "\<forall>x\<in>S. \<exists>r. f x = ereal r" | |
| 844 | proof | |
| 845 | fix x | |
| 846 | assume "x \<in> S" | |
| 847 | from assms[OF this] show "\<exists>r. f x = ereal r" | |
| 848 | by (cases "f x") auto | |
| 849 | qed | |
| 850 | from bchoice[OF this] obtain r where "\<forall>x\<in>S. f x = ereal (r x)" .. | |
| 851 | then show ?thesis | |
| 852 | by simp | |
| 853 | qed | |
| 854 | ||
| 64267 | 855 | lemma sum_ereal_0: | 
| 59000 | 856 | fixes f :: "'a \<Rightarrow> ereal" | 
| 857 | assumes "finite A" | |
| 858 | and "\<And>i. i \<in> A \<Longrightarrow> 0 \<le> f i" | |
| 859 | shows "(\<Sum>x\<in>A. f x) = 0 \<longleftrightarrow> (\<forall>i\<in>A. f i = 0)" | |
| 860 | proof | |
| 64267 | 861 | assume "sum f A = 0" with assms show "\<forall>i\<in>A. f i = 0" | 
| 59000 | 862 | proof (induction A) | 
| 863 | case (insert a A) | |
| 864 | then have "f a = 0 \<and> (\<Sum>a\<in>A. f a) = 0" | |
| 64267 | 865 | by (subst ereal_add_nonneg_eq_0_iff[symmetric]) (simp_all add: sum_nonneg) | 
| 59000 | 866 | with insert show ?case | 
| 867 | by simp | |
| 868 | qed simp | |
| 869 | qed auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 870 | |
| 41973 | 871 | subsubsection "Multiplication" | 
| 872 | ||
| 53873 | 873 | instantiation ereal :: "{comm_monoid_mult,sgn}"
 | 
| 41973 | 874 | begin | 
| 875 | ||
| 51351 | 876 | function sgn_ereal :: "ereal \<Rightarrow> ereal" where | 
| 43920 | 877 | "sgn (ereal r) = ereal (sgn r)" | 
| 43923 | 878 | | "sgn (\<infinity>::ereal) = 1" | 
| 879 | | "sgn (-\<infinity>::ereal) = -1" | |
| 43920 | 880 | by (auto intro: ereal_cases) | 
| 60679 | 881 | termination by standard (rule wf_empty) | 
| 41976 | 882 | |
| 43920 | 883 | function times_ereal where | 
| 53873 | 884 | "ereal r * ereal p = ereal (r * p)" | 
| 885 | | "ereal r * \<infinity> = (if r = 0 then 0 else if r > 0 then \<infinity> else -\<infinity>)" | |
| 886 | | "\<infinity> * ereal r = (if r = 0 then 0 else if r > 0 then \<infinity> else -\<infinity>)" | |
| 887 | | "ereal r * -\<infinity> = (if r = 0 then 0 else if r > 0 then -\<infinity> else \<infinity>)" | |
| 888 | | "-\<infinity> * ereal r = (if r = 0 then 0 else if r > 0 then -\<infinity> else \<infinity>)" | |
| 889 | | "(\<infinity>::ereal) * \<infinity> = \<infinity>" | |
| 890 | | "-(\<infinity>::ereal) * \<infinity> = -\<infinity>" | |
| 891 | | "(\<infinity>::ereal) * -\<infinity> = -\<infinity>" | |
| 892 | | "-(\<infinity>::ereal) * -\<infinity> = \<infinity>" | |
| 61166 
5976fe402824
renamed method "goals" to "goal_cases" to emphasize its meaning;
 wenzelm parents: 
61120diff
changeset | 893 | proof goal_cases | 
| 60580 | 894 | case prems: (1 P x) | 
| 53873 | 895 | then obtain a b where "x = (a, b)" | 
| 896 | by (cases x) auto | |
| 60580 | 897 | with prems show P | 
| 53873 | 898 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 899 | qed simp_all | 
| 900 | termination by (relation "{}") simp
 | |
| 901 | ||
| 902 | instance | |
| 903 | proof | |
| 53873 | 904 | fix a b c :: ereal | 
| 905 | show "1 * a = a" | |
| 43920 | 906 | by (cases a) (simp_all add: one_ereal_def) | 
| 47082 | 907 | show "a * b = b * a" | 
| 43920 | 908 | by (cases rule: ereal2_cases[of a b]) simp_all | 
| 47082 | 909 | show "a * b * c = a * (b * c)" | 
| 43920 | 910 | by (cases rule: ereal3_cases[of a b c]) | 
| 911 | (simp_all add: zero_ereal_def zero_less_mult_iff) | |
| 41973 | 912 | qed | 
| 53873 | 913 | |
| 41973 | 914 | end | 
| 915 | ||
| 61738 
c4f6031f1310
New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
 paulson <lp15@cam.ac.uk> parents: 
61631diff
changeset | 916 | lemma [simp]: | 
| 61631 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 917 | shows ereal_1_times: "ereal 1 * x = x" | 
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 918 | and times_ereal_1: "x * ereal 1 = x" | 
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 919 | by(simp_all add: one_ereal_def[symmetric]) | 
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 920 | |
| 59000 | 921 | lemma one_not_le_zero_ereal[simp]: "\<not> (1 \<le> (0::ereal))" | 
| 922 | by (simp add: one_ereal_def zero_ereal_def) | |
| 923 | ||
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 924 | lemma real_ereal_1[simp]: "real_of_ereal (1::ereal) = 1" | 
| 50104 | 925 | unfolding one_ereal_def by simp | 
| 926 | ||
| 43920 | 927 | lemma real_of_ereal_le_1: | 
| 53873 | 928 | fixes a :: ereal | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 929 | shows "a \<le> 1 \<Longrightarrow> real_of_ereal a \<le> 1" | 
| 43920 | 930 | by (cases a) (auto simp: one_ereal_def) | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 931 | |
| 43920 | 932 | lemma abs_ereal_one[simp]: "\<bar>1\<bar> = (1::ereal)" | 
| 933 | unfolding one_ereal_def by simp | |
| 41976 | 934 | |
| 43920 | 935 | lemma ereal_mult_zero[simp]: | 
| 53873 | 936 | fixes a :: ereal | 
| 937 | shows "a * 0 = 0" | |
| 43920 | 938 | by (cases a) (simp_all add: zero_ereal_def) | 
| 41973 | 939 | |
| 43920 | 940 | lemma ereal_zero_mult[simp]: | 
| 53873 | 941 | fixes a :: ereal | 
| 942 | shows "0 * a = 0" | |
| 43920 | 943 | by (cases a) (simp_all add: zero_ereal_def) | 
| 41973 | 944 | |
| 53873 | 945 | lemma ereal_m1_less_0[simp]: "-(1::ereal) < 0" | 
| 43920 | 946 | by (simp add: zero_ereal_def one_ereal_def) | 
| 41973 | 947 | |
| 43920 | 948 | lemma ereal_times[simp]: | 
| 43923 | 949 | "1 \<noteq> (\<infinity>::ereal)" "(\<infinity>::ereal) \<noteq> 1" | 
| 950 | "1 \<noteq> -(\<infinity>::ereal)" "-(\<infinity>::ereal) \<noteq> 1" | |
| 61120 | 951 | by (auto simp: one_ereal_def) | 
| 41973 | 952 | |
| 43920 | 953 | lemma ereal_plus_1[simp]: | 
| 53873 | 954 | "1 + ereal r = ereal (r + 1)" | 
| 955 | "ereal r + 1 = ereal (r + 1)" | |
| 956 | "1 + -(\<infinity>::ereal) = -\<infinity>" | |
| 957 | "-(\<infinity>::ereal) + 1 = -\<infinity>" | |
| 43920 | 958 | unfolding one_ereal_def by auto | 
| 41973 | 959 | |
| 43920 | 960 | lemma ereal_zero_times[simp]: | 
| 53873 | 961 | fixes a b :: ereal | 
| 962 | shows "a * b = 0 \<longleftrightarrow> a = 0 \<or> b = 0" | |
| 43920 | 963 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 964 | |
| 43920 | 965 | lemma ereal_mult_eq_PInfty[simp]: | 
| 53873 | 966 | "a * b = (\<infinity>::ereal) \<longleftrightarrow> | 
| 41973 | 967 | (a = \<infinity> \<and> b > 0) \<or> (a > 0 \<and> b = \<infinity>) \<or> (a = -\<infinity> \<and> b < 0) \<or> (a < 0 \<and> b = -\<infinity>)" | 
| 43920 | 968 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 969 | |
| 43920 | 970 | lemma ereal_mult_eq_MInfty[simp]: | 
| 53873 | 971 | "a * b = -(\<infinity>::ereal) \<longleftrightarrow> | 
| 41973 | 972 | (a = \<infinity> \<and> b < 0) \<or> (a < 0 \<and> b = \<infinity>) \<or> (a = -\<infinity> \<and> b > 0) \<or> (a > 0 \<and> b = -\<infinity>)" | 
| 43920 | 973 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 974 | |
| 54416 | 975 | lemma ereal_abs_mult: "\<bar>x * y :: ereal\<bar> = \<bar>x\<bar> * \<bar>y\<bar>" | 
| 976 | by (cases x y rule: ereal2_cases) (auto simp: abs_mult) | |
| 977 | ||
| 43920 | 978 | lemma ereal_0_less_1[simp]: "0 < (1::ereal)" | 
| 979 | by (simp_all add: zero_ereal_def one_ereal_def) | |
| 41973 | 980 | |
| 43920 | 981 | lemma ereal_mult_minus_left[simp]: | 
| 53873 | 982 | fixes a b :: ereal | 
| 983 | shows "-a * b = - (a * b)" | |
| 43920 | 984 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 985 | |
| 43920 | 986 | lemma ereal_mult_minus_right[simp]: | 
| 53873 | 987 | fixes a b :: ereal | 
| 988 | shows "a * -b = - (a * b)" | |
| 43920 | 989 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 990 | |
| 43920 | 991 | lemma ereal_mult_infty[simp]: | 
| 43923 | 992 | "a * (\<infinity>::ereal) = (if a = 0 then 0 else if 0 < a then \<infinity> else - \<infinity>)" | 
| 41973 | 993 | by (cases a) auto | 
| 994 | ||
| 43920 | 995 | lemma ereal_infty_mult[simp]: | 
| 43923 | 996 | "(\<infinity>::ereal) * a = (if a = 0 then 0 else if 0 < a then \<infinity> else - \<infinity>)" | 
| 41973 | 997 | by (cases a) auto | 
| 998 | ||
| 43920 | 999 | lemma ereal_mult_strict_right_mono: | 
| 53873 | 1000 | assumes "a < b" | 
| 1001 | and "0 < c" | |
| 1002 | and "c < (\<infinity>::ereal)" | |
| 41973 | 1003 | shows "a * c < b * c" | 
| 1004 | using assms | |
| 53873 | 1005 | by (cases rule: ereal3_cases[of a b c]) (auto simp: zero_le_mult_iff) | 
| 41973 | 1006 | |
| 43920 | 1007 | lemma ereal_mult_strict_left_mono: | 
| 53873 | 1008 | "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c < (\<infinity>::ereal) \<Longrightarrow> c * a < c * b" | 
| 1009 | using ereal_mult_strict_right_mono | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57447diff
changeset | 1010 | by (simp add: mult.commute[of c]) | 
| 41973 | 1011 | |
| 43920 | 1012 | lemma ereal_mult_right_mono: | 
| 53873 | 1013 | fixes a b c :: ereal | 
| 1014 | shows "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * c" | |
| 1015 | apply (cases "c = 0") | |
| 1016 | apply simp | |
| 1017 | apply (cases rule: ereal3_cases[of a b c]) | |
| 1018 | apply (auto simp: zero_le_mult_iff) | |
| 1019 | done | |
| 41973 | 1020 | |
| 43920 | 1021 | lemma ereal_mult_left_mono: | 
| 53873 | 1022 | fixes a b c :: ereal | 
| 1023 | shows "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b" | |
| 1024 | using ereal_mult_right_mono | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57447diff
changeset | 1025 | by (simp add: mult.commute[of c]) | 
| 41973 | 1026 | |
| 43920 | 1027 | lemma zero_less_one_ereal[simp]: "0 \<le> (1::ereal)" | 
| 1028 | by (simp add: one_ereal_def zero_ereal_def) | |
| 41978 | 1029 | |
| 43920 | 1030 | lemma ereal_0_le_mult[simp]: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a * (b :: ereal)" | 
| 56536 | 1031 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1032 | |
| 43920 | 1033 | lemma ereal_right_distrib: | 
| 53873 | 1034 | fixes r a b :: ereal | 
| 1035 | shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> r * (a + b) = r * a + r * b" | |
| 43920 | 1036 | by (cases rule: ereal3_cases[of r a b]) (simp_all add: field_simps) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1037 | |
| 43920 | 1038 | lemma ereal_left_distrib: | 
| 53873 | 1039 | fixes r a b :: ereal | 
| 1040 | shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> (a + b) * r = a * r + b * r" | |
| 43920 | 1041 | by (cases rule: ereal3_cases[of r a b]) (simp_all add: field_simps) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1042 | |
| 43920 | 1043 | lemma ereal_mult_le_0_iff: | 
| 1044 | fixes a b :: ereal | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1045 | shows "a * b \<le> 0 \<longleftrightarrow> (0 \<le> a \<and> b \<le> 0) \<or> (a \<le> 0 \<and> 0 \<le> b)" | 
| 43920 | 1046 | by (cases rule: ereal2_cases[of a b]) (simp_all add: mult_le_0_iff) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1047 | |
| 43920 | 1048 | lemma ereal_zero_le_0_iff: | 
| 1049 | fixes a b :: ereal | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1050 | shows "0 \<le> a * b \<longleftrightarrow> (0 \<le> a \<and> 0 \<le> b) \<or> (a \<le> 0 \<and> b \<le> 0)" | 
| 43920 | 1051 | by (cases rule: ereal2_cases[of a b]) (simp_all add: zero_le_mult_iff) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1052 | |
| 43920 | 1053 | lemma ereal_mult_less_0_iff: | 
| 1054 | fixes a b :: ereal | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1055 | shows "a * b < 0 \<longleftrightarrow> (0 < a \<and> b < 0) \<or> (a < 0 \<and> 0 < b)" | 
| 43920 | 1056 | by (cases rule: ereal2_cases[of a b]) (simp_all add: mult_less_0_iff) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1057 | |
| 43920 | 1058 | lemma ereal_zero_less_0_iff: | 
| 1059 | fixes a b :: ereal | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1060 | shows "0 < a * b \<longleftrightarrow> (0 < a \<and> 0 < b) \<or> (a < 0 \<and> b < 0)" | 
| 43920 | 1061 | by (cases rule: ereal2_cases[of a b]) (simp_all add: zero_less_mult_iff) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1062 | |
| 50104 | 1063 | lemma ereal_left_mult_cong: | 
| 1064 | fixes a b c :: ereal | |
| 59002 
2c8b2fb54b88
cleaning up some theorem names; remove unnecessary assumptions; more complete pmf theory
 hoelzl parents: 
59000diff
changeset | 1065 | shows "c = d \<Longrightarrow> (d \<noteq> 0 \<Longrightarrow> a = b) \<Longrightarrow> a * c = b * d" | 
| 50104 | 1066 | by (cases "c = 0") simp_all | 
| 1067 | ||
| 61738 
c4f6031f1310
New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
 paulson <lp15@cam.ac.uk> parents: 
61631diff
changeset | 1068 | lemma ereal_right_mult_cong: | 
| 59002 
2c8b2fb54b88
cleaning up some theorem names; remove unnecessary assumptions; more complete pmf theory
 hoelzl parents: 
59000diff
changeset | 1069 | fixes a b c :: ereal | 
| 59000 | 1070 | shows "c = d \<Longrightarrow> (d \<noteq> 0 \<Longrightarrow> a = b) \<Longrightarrow> c * a = d * b" | 
| 59002 
2c8b2fb54b88
cleaning up some theorem names; remove unnecessary assumptions; more complete pmf theory
 hoelzl parents: 
59000diff
changeset | 1071 | by (cases "c = 0") simp_all | 
| 50104 | 1072 | |
| 43920 | 1073 | lemma ereal_distrib: | 
| 1074 | fixes a b c :: ereal | |
| 53873 | 1075 | assumes "a \<noteq> \<infinity> \<or> b \<noteq> -\<infinity>" | 
| 1076 | and "a \<noteq> -\<infinity> \<or> b \<noteq> \<infinity>" | |
| 1077 | and "\<bar>c\<bar> \<noteq> \<infinity>" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1078 | shows "(a + b) * c = a * c + b * c" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1079 | using assms | 
| 43920 | 1080 | by (cases rule: ereal3_cases[of a b c]) (simp_all add: field_simps) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1081 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 1082 | lemma numeral_eq_ereal [simp]: "numeral w = ereal (numeral w)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 1083 | apply (induct w rule: num_induct) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 1084 | apply (simp only: numeral_One one_ereal_def) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 1085 | apply (simp only: numeral_inc ereal_plus_1) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 1086 | done | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 1087 | |
| 61631 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 1088 | lemma distrib_left_ereal_nn: | 
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 1089 | "c \<ge> 0 \<Longrightarrow> (x + y) * ereal c = x * ereal c + y * ereal c" | 
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 1090 | by(cases x y rule: ereal2_cases)(simp_all add: ring_distribs) | 
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 1091 | |
| 64267 | 1092 | lemma sum_ereal_right_distrib: | 
| 59000 | 1093 | fixes f :: "'a \<Rightarrow> ereal" | 
| 64267 | 1094 | shows "(\<And>i. i \<in> A \<Longrightarrow> 0 \<le> f i) \<Longrightarrow> r * sum f A = (\<Sum>n\<in>A. r * f n)" | 
| 1095 | by (induct A rule: infinite_finite_induct) (auto simp: ereal_right_distrib sum_nonneg) | |
| 1096 | ||
| 1097 | lemma sum_ereal_left_distrib: | |
| 1098 | "(\<And>i. i \<in> A \<Longrightarrow> 0 \<le> f i) \<Longrightarrow> sum f A * r = (\<Sum>n\<in>A. f n * r :: ereal)" | |
| 1099 | using sum_ereal_right_distrib[of A f r] by (simp add: mult_ac) | |
| 1100 | ||
| 1101 | lemma sum_distrib_right_ereal: | |
| 1102 | "c \<ge> 0 \<Longrightarrow> sum f A * ereal c = (\<Sum>x\<in>A. f x * c :: ereal)" | |
| 1103 | by(subst sum_comp_morphism[where h="\<lambda>x. x * ereal c", symmetric])(simp_all add: distrib_left_ereal_nn) | |
| 61631 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 1104 | |
| 43920 | 1105 | lemma ereal_le_epsilon: | 
| 1106 | fixes x y :: ereal | |
| 53873 | 1107 | assumes "\<forall>e. 0 < e \<longrightarrow> x \<le> y + e" | 
| 1108 | shows "x \<le> y" | |
| 1109 | proof - | |
| 1110 |   {
 | |
| 1111 | assume a: "\<exists>r. y = ereal r" | |
| 1112 | then obtain r where r_def: "y = ereal r" | |
| 1113 | by auto | |
| 1114 |     {
 | |
| 1115 | assume "x = -\<infinity>" | |
| 1116 | then have ?thesis by auto | |
| 1117 | } | |
| 1118 | moreover | |
| 1119 |     {
 | |
| 1120 | assume "x \<noteq> -\<infinity>" | |
| 1121 | then obtain p where p_def: "x = ereal p" | |
| 1122 | using a assms[rule_format, of 1] | |
| 1123 | by (cases x) auto | |
| 1124 |       {
 | |
| 1125 | fix e | |
| 1126 | have "0 < e \<longrightarrow> p \<le> r + e" | |
| 1127 | using assms[rule_format, of "ereal e"] p_def r_def by auto | |
| 1128 | } | |
| 1129 | then have "p \<le> r" | |
| 1130 | apply (subst field_le_epsilon) | |
| 1131 | apply auto | |
| 1132 | done | |
| 1133 | then have ?thesis | |
| 1134 | using r_def p_def by auto | |
| 1135 | } | |
| 1136 | ultimately have ?thesis | |
| 1137 | by blast | |
| 1138 | } | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1139 | moreover | 
| 53873 | 1140 |   {
 | 
| 1141 | assume "y = -\<infinity> | y = \<infinity>" | |
| 1142 | then have ?thesis | |
| 1143 | using assms[rule_format, of 1] by (cases x) auto | |
| 1144 | } | |
| 1145 | ultimately show ?thesis | |
| 1146 | by (cases y) auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1147 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1148 | |
| 43920 | 1149 | lemma ereal_le_epsilon2: | 
| 1150 | fixes x y :: ereal | |
| 53873 | 1151 | assumes "\<forall>e. 0 < e \<longrightarrow> x \<le> y + ereal e" | 
| 1152 | shows "x \<le> y" | |
| 1153 | proof - | |
| 1154 |   {
 | |
| 1155 | fix e :: ereal | |
| 1156 | assume "e > 0" | |
| 1157 |     {
 | |
| 1158 | assume "e = \<infinity>" | |
| 1159 | then have "x \<le> y + e" | |
| 1160 | by auto | |
| 1161 | } | |
| 1162 | moreover | |
| 1163 |     {
 | |
| 1164 | assume "e \<noteq> \<infinity>" | |
| 1165 | then obtain r where "e = ereal r" | |
| 60500 | 1166 | using \<open>e > 0\<close> by (cases e) auto | 
| 53873 | 1167 | then have "x \<le> y + e" | 
| 60500 | 1168 | using assms[rule_format, of r] \<open>e>0\<close> by auto | 
| 53873 | 1169 | } | 
| 1170 | ultimately have "x \<le> y + e" | |
| 1171 | by blast | |
| 1172 | } | |
| 1173 | then show ?thesis | |
| 1174 | using ereal_le_epsilon by auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1175 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1176 | |
| 43920 | 1177 | lemma ereal_le_real: | 
| 1178 | fixes x y :: ereal | |
| 53873 | 1179 | assumes "\<forall>z. x \<le> ereal z \<longrightarrow> y \<le> ereal z" | 
| 1180 | shows "y \<le> x" | |
| 1181 | by (metis assms ereal_bot ereal_cases ereal_infty_less_eq(2) ereal_less_eq(1) linorder_le_cases) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1182 | |
| 64272 | 1183 | lemma prod_ereal_0: | 
| 43920 | 1184 | fixes f :: "'a \<Rightarrow> ereal" | 
| 53873 | 1185 | shows "(\<Prod>i\<in>A. f i) = 0 \<longleftrightarrow> finite A \<and> (\<exists>i\<in>A. f i = 0)" | 
| 1186 | proof (cases "finite A") | |
| 1187 | case True | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1188 | then show ?thesis by (induct A) auto | 
| 53873 | 1189 | next | 
| 1190 | case False | |
| 1191 | then show ?thesis by auto | |
| 1192 | qed | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1193 | |
| 64272 | 1194 | lemma prod_ereal_pos: | 
| 53873 | 1195 | fixes f :: "'a \<Rightarrow> ereal" | 
| 1196 | assumes pos: "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i" | |
| 1197 | shows "0 \<le> (\<Prod>i\<in>I. f i)" | |
| 1198 | proof (cases "finite I") | |
| 1199 | case True | |
| 1200 | from this pos show ?thesis | |
| 1201 | by induct auto | |
| 1202 | next | |
| 1203 | case False | |
| 1204 | then show ?thesis by simp | |
| 1205 | qed | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1206 | |
| 64272 | 1207 | lemma prod_PInf: | 
| 43923 | 1208 | fixes f :: "'a \<Rightarrow> ereal" | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1209 | assumes "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1210 | shows "(\<Prod>i\<in>I. f i) = \<infinity> \<longleftrightarrow> finite I \<and> (\<exists>i\<in>I. f i = \<infinity>) \<and> (\<forall>i\<in>I. f i \<noteq> 0)" | 
| 53873 | 1211 | proof (cases "finite I") | 
| 1212 | case True | |
| 1213 | from this assms show ?thesis | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1214 | proof (induct I) | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1215 | case (insert i I) | 
| 64272 | 1216 | then have pos: "0 \<le> f i" "0 \<le> prod f I" | 
| 1217 | by (auto intro!: prod_ereal_pos) | |
| 1218 | from insert have "(\<Prod>j\<in>insert i I. f j) = \<infinity> \<longleftrightarrow> prod f I * f i = \<infinity>" | |
| 53873 | 1219 | by auto | 
| 64272 | 1220 | also have "\<dots> \<longleftrightarrow> (prod f I = \<infinity> \<or> f i = \<infinity>) \<and> f i \<noteq> 0 \<and> prod f I \<noteq> 0" | 
| 1221 | using prod_ereal_pos[of I f] pos | |
| 1222 | by (cases rule: ereal2_cases[of "f i" "prod f I"]) auto | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1223 | also have "\<dots> \<longleftrightarrow> finite (insert i I) \<and> (\<exists>j\<in>insert i I. f j = \<infinity>) \<and> (\<forall>j\<in>insert i I. f j \<noteq> 0)" | 
| 64272 | 1224 | using insert by (auto simp: prod_ereal_0) | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1225 | finally show ?case . | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1226 | qed simp | 
| 53873 | 1227 | next | 
| 1228 | case False | |
| 1229 | then show ?thesis by simp | |
| 1230 | qed | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1231 | |
| 64272 | 1232 | lemma prod_ereal: "(\<Prod>i\<in>A. ereal (f i)) = ereal (prod f A)" | 
| 53873 | 1233 | proof (cases "finite A") | 
| 1234 | case True | |
| 1235 | then show ?thesis | |
| 43920 | 1236 | by induct (auto simp: one_ereal_def) | 
| 53873 | 1237 | next | 
| 1238 | case False | |
| 1239 | then show ?thesis | |
| 1240 | by (simp add: one_ereal_def) | |
| 1241 | qed | |
| 1242 | ||
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1243 | |
| 60500 | 1244 | subsubsection \<open>Power\<close> | 
| 41978 | 1245 | |
| 43920 | 1246 | lemma ereal_power[simp]: "(ereal x) ^ n = ereal (x^n)" | 
| 1247 | by (induct n) (auto simp: one_ereal_def) | |
| 41978 | 1248 | |
| 43923 | 1249 | lemma ereal_power_PInf[simp]: "(\<infinity>::ereal) ^ n = (if n = 0 then 1 else \<infinity>)" | 
| 43920 | 1250 | by (induct n) (auto simp: one_ereal_def) | 
| 41978 | 1251 | |
| 43920 | 1252 | lemma ereal_power_uminus[simp]: | 
| 1253 | fixes x :: ereal | |
| 41978 | 1254 | shows "(- x) ^ n = (if even n then x ^ n else - (x^n))" | 
| 43920 | 1255 | by (induct n) (auto simp: one_ereal_def) | 
| 41978 | 1256 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 1257 | lemma ereal_power_numeral[simp]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 1258 | "(numeral num :: ereal) ^ n = ereal (numeral num ^ n)" | 
| 43920 | 1259 | by (induct n) (auto simp: one_ereal_def) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1260 | |
| 43920 | 1261 | lemma zero_le_power_ereal[simp]: | 
| 53873 | 1262 | fixes a :: ereal | 
| 1263 | assumes "0 \<le> a" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1264 | shows "0 \<le> a ^ n" | 
| 43920 | 1265 | using assms by (induct n) (auto simp: ereal_zero_le_0_iff) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1266 | |
| 53873 | 1267 | |
| 60500 | 1268 | subsubsection \<open>Subtraction\<close> | 
| 41973 | 1269 | |
| 43920 | 1270 | lemma ereal_minus_minus_image[simp]: | 
| 1271 | fixes S :: "ereal set" | |
| 41973 | 1272 | shows "uminus ` uminus ` S = S" | 
| 1273 | by (auto simp: image_iff) | |
| 1274 | ||
| 43920 | 1275 | lemma ereal_uminus_lessThan[simp]: | 
| 53873 | 1276 | fixes a :: ereal | 
| 1277 |   shows "uminus ` {..<a} = {-a<..}"
 | |
| 47082 | 1278 | proof - | 
| 1279 |   {
 | |
| 53873 | 1280 | fix x | 
| 1281 | assume "-a < x" | |
| 1282 | then have "- x < - (- a)" | |
| 1283 | by (simp del: ereal_uminus_uminus) | |
| 1284 | then have "- x < a" | |
| 1285 | by simp | |
| 47082 | 1286 | } | 
| 53873 | 1287 | then show ?thesis | 
| 54416 | 1288 | by force | 
| 47082 | 1289 | qed | 
| 41973 | 1290 | |
| 53873 | 1291 | lemma ereal_uminus_greaterThan[simp]: "uminus ` {(a::ereal)<..} = {..<-a}"
 | 
| 1292 | by (metis ereal_uminus_lessThan ereal_uminus_uminus ereal_minus_minus_image) | |
| 41973 | 1293 | |
| 43920 | 1294 | instantiation ereal :: minus | 
| 41973 | 1295 | begin | 
| 53873 | 1296 | |
| 43920 | 1297 | definition "x - y = x + -(y::ereal)" | 
| 41973 | 1298 | instance .. | 
| 53873 | 1299 | |
| 41973 | 1300 | end | 
| 1301 | ||
| 43920 | 1302 | lemma ereal_minus[simp]: | 
| 1303 | "ereal r - ereal p = ereal (r - p)" | |
| 1304 | "-\<infinity> - ereal r = -\<infinity>" | |
| 1305 | "ereal r - \<infinity> = -\<infinity>" | |
| 43923 | 1306 | "(\<infinity>::ereal) - x = \<infinity>" | 
| 1307 | "-(\<infinity>::ereal) - \<infinity> = -\<infinity>" | |
| 41973 | 1308 | "x - -y = x + y" | 
| 1309 | "x - 0 = x" | |
| 1310 | "0 - x = -x" | |
| 43920 | 1311 | by (simp_all add: minus_ereal_def) | 
| 41973 | 1312 | |
| 53873 | 1313 | lemma ereal_x_minus_x[simp]: "x - x = (if \<bar>x\<bar> = \<infinity> then \<infinity> else 0::ereal)" | 
| 41973 | 1314 | by (cases x) simp_all | 
| 1315 | ||
| 43920 | 1316 | lemma ereal_eq_minus_iff: | 
| 1317 | fixes x y z :: ereal | |
| 41973 | 1318 | shows "x = z - y \<longleftrightarrow> | 
| 41976 | 1319 | (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x + y = z) \<and> | 
| 41973 | 1320 | (y = -\<infinity> \<longrightarrow> x = \<infinity>) \<and> | 
| 1321 | (y = \<infinity> \<longrightarrow> z = \<infinity> \<longrightarrow> x = \<infinity>) \<and> | |
| 1322 | (y = \<infinity> \<longrightarrow> z \<noteq> \<infinity> \<longrightarrow> x = -\<infinity>)" | |
| 43920 | 1323 | by (cases rule: ereal3_cases[of x y z]) auto | 
| 41973 | 1324 | |
| 43920 | 1325 | lemma ereal_eq_minus: | 
| 1326 | fixes x y z :: ereal | |
| 41976 | 1327 | shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x = z - y \<longleftrightarrow> x + y = z" | 
| 43920 | 1328 | by (auto simp: ereal_eq_minus_iff) | 
| 41973 | 1329 | |
| 43920 | 1330 | lemma ereal_less_minus_iff: | 
| 1331 | fixes x y z :: ereal | |
| 41973 | 1332 | shows "x < z - y \<longleftrightarrow> | 
| 1333 | (y = \<infinity> \<longrightarrow> z = \<infinity> \<and> x \<noteq> \<infinity>) \<and> | |
| 1334 | (y = -\<infinity> \<longrightarrow> x \<noteq> \<infinity>) \<and> | |
| 41976 | 1335 | (\<bar>y\<bar> \<noteq> \<infinity>\<longrightarrow> x + y < z)" | 
| 43920 | 1336 | by (cases rule: ereal3_cases[of x y z]) auto | 
| 41973 | 1337 | |
| 43920 | 1338 | lemma ereal_less_minus: | 
| 1339 | fixes x y z :: ereal | |
| 41976 | 1340 | shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x < z - y \<longleftrightarrow> x + y < z" | 
| 43920 | 1341 | by (auto simp: ereal_less_minus_iff) | 
| 41973 | 1342 | |
| 43920 | 1343 | lemma ereal_le_minus_iff: | 
| 1344 | fixes x y z :: ereal | |
| 53873 | 1345 | shows "x \<le> z - y \<longleftrightarrow> (y = \<infinity> \<longrightarrow> z \<noteq> \<infinity> \<longrightarrow> x = -\<infinity>) \<and> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x + y \<le> z)" | 
| 43920 | 1346 | by (cases rule: ereal3_cases[of x y z]) auto | 
| 41973 | 1347 | |
| 43920 | 1348 | lemma ereal_le_minus: | 
| 1349 | fixes x y z :: ereal | |
| 41976 | 1350 | shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x \<le> z - y \<longleftrightarrow> x + y \<le> z" | 
| 43920 | 1351 | by (auto simp: ereal_le_minus_iff) | 
| 41973 | 1352 | |
| 43920 | 1353 | lemma ereal_minus_less_iff: | 
| 1354 | fixes x y z :: ereal | |
| 53873 | 1355 | shows "x - y < z \<longleftrightarrow> y \<noteq> -\<infinity> \<and> (y = \<infinity> \<longrightarrow> x \<noteq> \<infinity> \<and> z \<noteq> -\<infinity>) \<and> (y \<noteq> \<infinity> \<longrightarrow> x < z + y)" | 
| 43920 | 1356 | by (cases rule: ereal3_cases[of x y z]) auto | 
| 41973 | 1357 | |
| 43920 | 1358 | lemma ereal_minus_less: | 
| 1359 | fixes x y z :: ereal | |
| 41976 | 1360 | shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x - y < z \<longleftrightarrow> x < z + y" | 
| 43920 | 1361 | by (auto simp: ereal_minus_less_iff) | 
| 41973 | 1362 | |
| 43920 | 1363 | lemma ereal_minus_le_iff: | 
| 1364 | fixes x y z :: ereal | |
| 41973 | 1365 | shows "x - y \<le> z \<longleftrightarrow> | 
| 1366 | (y = -\<infinity> \<longrightarrow> z = \<infinity>) \<and> | |
| 1367 | (y = \<infinity> \<longrightarrow> x = \<infinity> \<longrightarrow> z = \<infinity>) \<and> | |
| 41976 | 1368 | (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x \<le> z + y)" | 
| 43920 | 1369 | by (cases rule: ereal3_cases[of x y z]) auto | 
| 41973 | 1370 | |
| 43920 | 1371 | lemma ereal_minus_le: | 
| 1372 | fixes x y z :: ereal | |
| 41976 | 1373 | shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x - y \<le> z \<longleftrightarrow> x \<le> z + y" | 
| 43920 | 1374 | by (auto simp: ereal_minus_le_iff) | 
| 41973 | 1375 | |
| 43920 | 1376 | lemma ereal_minus_eq_minus_iff: | 
| 1377 | fixes a b c :: ereal | |
| 41973 | 1378 | shows "a - b = a - c \<longleftrightarrow> | 
| 1379 | b = c \<or> a = \<infinity> \<or> (a = -\<infinity> \<and> b \<noteq> -\<infinity> \<and> c \<noteq> -\<infinity>)" | |
| 43920 | 1380 | by (cases rule: ereal3_cases[of a b c]) auto | 
| 41973 | 1381 | |
| 43920 | 1382 | lemma ereal_add_le_add_iff: | 
| 43923 | 1383 | fixes a b c :: ereal | 
| 1384 | shows "c + a \<le> c + b \<longleftrightarrow> | |
| 41973 | 1385 | a \<le> b \<or> c = \<infinity> \<or> (c = -\<infinity> \<and> a \<noteq> \<infinity> \<and> b \<noteq> \<infinity>)" | 
| 43920 | 1386 | by (cases rule: ereal3_cases[of a b c]) (simp_all add: field_simps) | 
| 41973 | 1387 | |
| 59023 | 1388 | lemma ereal_add_le_add_iff2: | 
| 1389 | fixes a b c :: ereal | |
| 1390 | shows "a + c \<le> b + c \<longleftrightarrow> a \<le> b \<or> c = \<infinity> \<or> (c = -\<infinity> \<and> a \<noteq> \<infinity> \<and> b \<noteq> \<infinity>)" | |
| 1391 | by(cases rule: ereal3_cases[of a b c])(simp_all add: field_simps) | |
| 1392 | ||
| 43920 | 1393 | lemma ereal_mult_le_mult_iff: | 
| 43923 | 1394 | fixes a b c :: ereal | 
| 1395 | shows "\<bar>c\<bar> \<noteq> \<infinity> \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" | |
| 43920 | 1396 | by (cases rule: ereal3_cases[of a b c]) (simp_all add: mult_le_cancel_left) | 
| 41973 | 1397 | |
| 43920 | 1398 | lemma ereal_minus_mono: | 
| 1399 | fixes A B C D :: ereal assumes "A \<le> B" "D \<le> C" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1400 | shows "A - C \<le> B - D" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1401 | using assms | 
| 43920 | 1402 | by (cases rule: ereal3_cases[case_product ereal_cases, of A B C D]) simp_all | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1403 | |
| 62648 | 1404 | lemma ereal_mono_minus_cancel: | 
| 1405 | fixes a b c :: ereal | |
| 1406 | shows "c - a \<le> c - b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c < \<infinity> \<Longrightarrow> b \<le> a" | |
| 1407 | by (cases a b c rule: ereal3_cases) auto | |
| 1408 | ||
| 43920 | 1409 | lemma real_of_ereal_minus: | 
| 43923 | 1410 | fixes a b :: ereal | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 1411 | shows "real_of_ereal (a - b) = (if \<bar>a\<bar> = \<infinity> \<or> \<bar>b\<bar> = \<infinity> then 0 else real_of_ereal a - real_of_ereal b)" | 
| 43920 | 1412 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1413 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 1414 | lemma real_of_ereal_minus': "\<bar>x\<bar> = \<infinity> \<longleftrightarrow> \<bar>y\<bar> = \<infinity> \<Longrightarrow> real_of_ereal x - real_of_ereal y = real_of_ereal (x - y :: ereal)" | 
| 60060 | 1415 | by(subst real_of_ereal_minus) auto | 
| 1416 | ||
| 43920 | 1417 | lemma ereal_diff_positive: | 
| 1418 | fixes a b :: ereal shows "a \<le> b \<Longrightarrow> 0 \<le> b - a" | |
| 1419 | by (cases rule: ereal2_cases[of a b]) auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1420 | |
| 43920 | 1421 | lemma ereal_between: | 
| 1422 | fixes x e :: ereal | |
| 53873 | 1423 | assumes "\<bar>x\<bar> \<noteq> \<infinity>" | 
| 1424 | and "0 < e" | |
| 1425 | shows "x - e < x" | |
| 1426 | and "x < x + e" | |
| 1427 | using assms | |
| 1428 | apply (cases x, cases e) | |
| 1429 | apply auto | |
| 1430 | using assms | |
| 1431 | apply (cases x, cases e) | |
| 1432 | apply auto | |
| 1433 | done | |
| 41973 | 1434 | |
| 50104 | 1435 | lemma ereal_minus_eq_PInfty_iff: | 
| 53873 | 1436 | fixes x y :: ereal | 
| 1437 | shows "x - y = \<infinity> \<longleftrightarrow> y = -\<infinity> \<or> x = \<infinity>" | |
| 50104 | 1438 | by (cases x y rule: ereal2_cases) simp_all | 
| 1439 | ||
| 61631 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 1440 | lemma ereal_diff_add_eq_diff_diff_swap: | 
| 61738 
c4f6031f1310
New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
 paulson <lp15@cam.ac.uk> parents: 
61631diff
changeset | 1441 | fixes x y z :: ereal | 
| 61631 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 1442 | shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x - (y + z) = x - y - z" | 
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 1443 | by(cases x y z rule: ereal3_cases) simp_all | 
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 1444 | |
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 1445 | lemma ereal_diff_add_assoc2: | 
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 1446 | fixes x y z :: ereal | 
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 1447 | shows "x + y - z = x - z + y" | 
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 1448 | by(cases x y z rule: ereal3_cases) simp_all | 
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 1449 | |
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 1450 | lemma ereal_add_uminus_conv_diff: fixes x y z :: ereal shows "- x + y = y - x" | 
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 1451 | by(cases x y rule: ereal2_cases) simp_all | 
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 1452 | |
| 61738 
c4f6031f1310
New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
 paulson <lp15@cam.ac.uk> parents: 
61631diff
changeset | 1453 | lemma ereal_minus_diff_eq: | 
| 
c4f6031f1310
New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
 paulson <lp15@cam.ac.uk> parents: 
61631diff
changeset | 1454 | fixes x y :: ereal | 
| 61631 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 1455 | shows "\<lbrakk> x = \<infinity> \<longrightarrow> y \<noteq> \<infinity>; x = -\<infinity> \<longrightarrow> y \<noteq> - \<infinity> \<rbrakk> \<Longrightarrow> - (x - y) = y - x" | 
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 1456 | by(cases x y rule: ereal2_cases) simp_all | 
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 1457 | |
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 1458 | lemma ediff_le_self [simp]: "x - y \<le> (x :: enat)" | 
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 1459 | by(cases x y rule: enat.exhaust[case_product enat.exhaust]) simp_all | 
| 53873 | 1460 | |
| 60500 | 1461 | subsubsection \<open>Division\<close> | 
| 41973 | 1462 | |
| 43920 | 1463 | instantiation ereal :: inverse | 
| 41973 | 1464 | begin | 
| 1465 | ||
| 43920 | 1466 | function inverse_ereal where | 
| 53873 | 1467 | "inverse (ereal r) = (if r = 0 then \<infinity> else ereal (inverse r))" | 
| 1468 | | "inverse (\<infinity>::ereal) = 0" | |
| 1469 | | "inverse (-\<infinity>::ereal) = 0" | |
| 43920 | 1470 | by (auto intro: ereal_cases) | 
| 41973 | 1471 | termination by (relation "{}") simp
 | 
| 1472 | ||
| 60429 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 haftmann parents: 
60352diff
changeset | 1473 | definition "x div y = x * inverse (y :: ereal)" | 
| 41973 | 1474 | |
| 47082 | 1475 | instance .. | 
| 53873 | 1476 | |
| 41973 | 1477 | end | 
| 1478 | ||
| 43920 | 1479 | lemma real_of_ereal_inverse[simp]: | 
| 1480 | fixes a :: ereal | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 1481 | shows "real_of_ereal (inverse a) = 1 / real_of_ereal a" | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1482 | by (cases a) (auto simp: inverse_eq_divide) | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1483 | |
| 43920 | 1484 | lemma ereal_inverse[simp]: | 
| 43923 | 1485 | "inverse (0::ereal) = \<infinity>" | 
| 43920 | 1486 | "inverse (1::ereal) = 1" | 
| 1487 | by (simp_all add: one_ereal_def zero_ereal_def) | |
| 41973 | 1488 | |
| 43920 | 1489 | lemma ereal_divide[simp]: | 
| 1490 | "ereal r / ereal p = (if p = 0 then ereal r * \<infinity> else ereal (r / p))" | |
| 1491 | unfolding divide_ereal_def by (auto simp: divide_real_def) | |
| 41973 | 1492 | |
| 43920 | 1493 | lemma ereal_divide_same[simp]: | 
| 53873 | 1494 | fixes x :: ereal | 
| 1495 | shows "x / x = (if \<bar>x\<bar> = \<infinity> \<or> x = 0 then 0 else 1)" | |
| 1496 | by (cases x) (simp_all add: divide_real_def divide_ereal_def one_ereal_def) | |
| 41973 | 1497 | |
| 43920 | 1498 | lemma ereal_inv_inv[simp]: | 
| 53873 | 1499 | fixes x :: ereal | 
| 1500 | shows "inverse (inverse x) = (if x \<noteq> -\<infinity> then x else \<infinity>)" | |
| 41973 | 1501 | by (cases x) auto | 
| 1502 | ||
| 43920 | 1503 | lemma ereal_inverse_minus[simp]: | 
| 53873 | 1504 | fixes x :: ereal | 
| 1505 | shows "inverse (- x) = (if x = 0 then \<infinity> else -inverse x)" | |
| 41973 | 1506 | by (cases x) simp_all | 
| 1507 | ||
| 43920 | 1508 | lemma ereal_uminus_divide[simp]: | 
| 53873 | 1509 | fixes x y :: ereal | 
| 1510 | shows "- x / y = - (x / y)" | |
| 43920 | 1511 | unfolding divide_ereal_def by simp | 
| 41973 | 1512 | |
| 43920 | 1513 | lemma ereal_divide_Infty[simp]: | 
| 53873 | 1514 | fixes x :: ereal | 
| 1515 | shows "x / \<infinity> = 0" "x / -\<infinity> = 0" | |
| 43920 | 1516 | unfolding divide_ereal_def by simp_all | 
| 41973 | 1517 | |
| 53873 | 1518 | lemma ereal_divide_one[simp]: "x / 1 = (x::ereal)" | 
| 43920 | 1519 | unfolding divide_ereal_def by simp | 
| 41973 | 1520 | |
| 53873 | 1521 | lemma ereal_divide_ereal[simp]: "\<infinity> / ereal r = (if 0 \<le> r then \<infinity> else -\<infinity>)" | 
| 43920 | 1522 | unfolding divide_ereal_def by simp | 
| 41973 | 1523 | |
| 59000 | 1524 | lemma ereal_inverse_nonneg_iff: "0 \<le> inverse (x :: ereal) \<longleftrightarrow> 0 \<le> x \<or> x = -\<infinity>" | 
| 1525 | by (cases x) auto | |
| 1526 | ||
| 61631 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 1527 | lemma inverse_ereal_ge0I: "0 \<le> (x :: ereal) \<Longrightarrow> 0 \<le> inverse x" | 
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 1528 | by(cases x) simp_all | 
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 1529 | |
| 43920 | 1530 | lemma zero_le_divide_ereal[simp]: | 
| 53873 | 1531 | fixes a :: ereal | 
| 1532 | assumes "0 \<le> a" | |
| 1533 | and "0 \<le> b" | |
| 41978 | 1534 | shows "0 \<le> a / b" | 
| 43920 | 1535 | using assms by (cases rule: ereal2_cases[of a b]) (auto simp: zero_le_divide_iff) | 
| 41978 | 1536 | |
| 43920 | 1537 | lemma ereal_le_divide_pos: | 
| 53873 | 1538 | fixes x y z :: ereal | 
| 1539 | shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y \<le> z / x \<longleftrightarrow> x * y \<le> z" | |
| 43920 | 1540 | by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps) | 
| 41973 | 1541 | |
| 43920 | 1542 | lemma ereal_divide_le_pos: | 
| 53873 | 1543 | fixes x y z :: ereal | 
| 1544 | shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> z / x \<le> y \<longleftrightarrow> z \<le> x * y" | |
| 43920 | 1545 | by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps) | 
| 41973 | 1546 | |
| 43920 | 1547 | lemma ereal_le_divide_neg: | 
| 53873 | 1548 | fixes x y z :: ereal | 
| 1549 | shows "x < 0 \<Longrightarrow> x \<noteq> -\<infinity> \<Longrightarrow> y \<le> z / x \<longleftrightarrow> z \<le> x * y" | |
| 43920 | 1550 | by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps) | 
| 41973 | 1551 | |
| 43920 | 1552 | lemma ereal_divide_le_neg: | 
| 53873 | 1553 | fixes x y z :: ereal | 
| 1554 | shows "x < 0 \<Longrightarrow> x \<noteq> -\<infinity> \<Longrightarrow> z / x \<le> y \<longleftrightarrow> x * y \<le> z" | |
| 43920 | 1555 | by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps) | 
| 41973 | 1556 | |
| 43920 | 1557 | lemma ereal_inverse_antimono_strict: | 
| 1558 | fixes x y :: ereal | |
| 41973 | 1559 | shows "0 \<le> x \<Longrightarrow> x < y \<Longrightarrow> inverse y < inverse x" | 
| 43920 | 1560 | by (cases rule: ereal2_cases[of x y]) auto | 
| 41973 | 1561 | |
| 43920 | 1562 | lemma ereal_inverse_antimono: | 
| 1563 | fixes x y :: ereal | |
| 53873 | 1564 | shows "0 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> inverse y \<le> inverse x" | 
| 43920 | 1565 | by (cases rule: ereal2_cases[of x y]) auto | 
| 41973 | 1566 | |
| 1567 | lemma inverse_inverse_Pinfty_iff[simp]: | |
| 53873 | 1568 | fixes x :: ereal | 
| 1569 | shows "inverse x = \<infinity> \<longleftrightarrow> x = 0" | |
| 41973 | 1570 | by (cases x) auto | 
| 1571 | ||
| 43920 | 1572 | lemma ereal_inverse_eq_0: | 
| 53873 | 1573 | fixes x :: ereal | 
| 1574 | shows "inverse x = 0 \<longleftrightarrow> x = \<infinity> \<or> x = -\<infinity>" | |
| 41973 | 1575 | by (cases x) auto | 
| 1576 | ||
| 43920 | 1577 | lemma ereal_0_gt_inverse: | 
| 53873 | 1578 | fixes x :: ereal | 
| 1579 | shows "0 < inverse x \<longleftrightarrow> x \<noteq> \<infinity> \<and> 0 \<le> x" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1580 | by (cases x) auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1581 | |
| 60060 | 1582 | lemma ereal_inverse_le_0_iff: | 
| 1583 | fixes x :: ereal | |
| 1584 | shows "inverse x \<le> 0 \<longleftrightarrow> x < 0 \<or> x = \<infinity>" | |
| 1585 | by(cases x) auto | |
| 1586 | ||
| 1587 | lemma ereal_divide_eq_0_iff: "x / y = 0 \<longleftrightarrow> x = 0 \<or> \<bar>y :: ereal\<bar> = \<infinity>" | |
| 1588 | by(cases x y rule: ereal2_cases) simp_all | |
| 1589 | ||
| 43920 | 1590 | lemma ereal_mult_less_right: | 
| 43923 | 1591 | fixes a b c :: ereal | 
| 53873 | 1592 | assumes "b * a < c * a" | 
| 1593 | and "0 < a" | |
| 1594 | and "a < \<infinity>" | |
| 41973 | 1595 | shows "b < c" | 
| 1596 | using assms | |
| 43920 | 1597 | by (cases rule: ereal3_cases[of a b c]) | 
| 62390 | 1598 | (auto split: if_split_asm simp: zero_less_mult_iff zero_le_mult_iff) | 
| 41973 | 1599 | |
| 59000 | 1600 | lemma ereal_mult_divide: fixes a b :: ereal shows "0 < b \<Longrightarrow> b < \<infinity> \<Longrightarrow> b * (a / b) = a" | 
| 1601 | by (cases a b rule: ereal2_cases) auto | |
| 1602 | ||
| 43920 | 1603 | lemma ereal_power_divide: | 
| 53873 | 1604 | fixes x y :: ereal | 
| 1605 | shows "y \<noteq> 0 \<Longrightarrow> (x / y) ^ n = x^n / y^n" | |
| 58787 | 1606 | by (cases rule: ereal2_cases [of x y]) | 
| 1607 | (auto simp: one_ereal_def zero_ereal_def power_divide zero_le_power_eq) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1608 | |
| 43920 | 1609 | lemma ereal_le_mult_one_interval: | 
| 1610 | fixes x y :: ereal | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1611 | assumes y: "y \<noteq> -\<infinity>" | 
| 53873 | 1612 | assumes z: "\<And>z. 0 < z \<Longrightarrow> z < 1 \<Longrightarrow> z * x \<le> y" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1613 | shows "x \<le> y" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1614 | proof (cases x) | 
| 53873 | 1615 | case PInf | 
| 1616 | with z[of "1 / 2"] show "x \<le> y" | |
| 1617 | by (simp add: one_ereal_def) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1618 | next | 
| 53873 | 1619 | case (real r) | 
| 1620 | note r = this | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1621 | show "x \<le> y" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1622 | proof (cases y) | 
| 53873 | 1623 | case (real p) | 
| 1624 | note p = this | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1625 | have "r \<le> p" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1626 | proof (rule field_le_mult_one_interval) | 
| 53873 | 1627 | fix z :: real | 
| 1628 | assume "0 < z" and "z < 1" | |
| 1629 | with z[of "ereal z"] show "z * r \<le> p" | |
| 1630 | using p r by (auto simp: zero_le_mult_iff one_ereal_def) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1631 | qed | 
| 53873 | 1632 | then show "x \<le> y" | 
| 1633 | using p r by simp | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1634 | qed (insert y, simp_all) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1635 | qed simp | 
| 41978 | 1636 | |
| 45934 | 1637 | lemma ereal_divide_right_mono[simp]: | 
| 1638 | fixes x y z :: ereal | |
| 53873 | 1639 | assumes "x \<le> y" | 
| 1640 | and "0 < z" | |
| 1641 | shows "x / z \<le> y / z" | |
| 1642 | using assms by (cases x y z rule: ereal3_cases) (auto intro: divide_right_mono) | |
| 45934 | 1643 | |
| 1644 | lemma ereal_divide_left_mono[simp]: | |
| 1645 | fixes x y z :: ereal | |
| 53873 | 1646 | assumes "y \<le> x" | 
| 1647 | and "0 < z" | |
| 1648 | and "0 < x * y" | |
| 45934 | 1649 | shows "z / x \<le> z / y" | 
| 53873 | 1650 | using assms | 
| 1651 | by (cases x y z rule: ereal3_cases) | |
| 62390 | 1652 | (auto intro: divide_left_mono simp: field_simps zero_less_mult_iff mult_less_0_iff split: if_split_asm) | 
| 45934 | 1653 | |
| 1654 | lemma ereal_divide_zero_left[simp]: | |
| 1655 | fixes a :: ereal | |
| 1656 | shows "0 / a = 0" | |
| 1657 | by (cases a) (auto simp: zero_ereal_def) | |
| 1658 | ||
| 1659 | lemma ereal_times_divide_eq_left[simp]: | |
| 1660 | fixes a b c :: ereal | |
| 1661 | shows "b / c * a = b * a / c" | |
| 54416 | 1662 | by (cases a b c rule: ereal3_cases) (auto simp: field_simps zero_less_mult_iff mult_less_0_iff) | 
| 45934 | 1663 | |
| 59000 | 1664 | lemma ereal_times_divide_eq: "a * (b / c :: ereal) = a * b / c" | 
| 1665 | by (cases a b c rule: ereal3_cases) | |
| 1666 | (auto simp: field_simps zero_less_mult_iff) | |
| 53873 | 1667 | |
| 62049 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 1668 | lemma ereal_inverse_real: "\<bar>z\<bar> \<noteq> \<infinity> \<Longrightarrow> z \<noteq> 0 \<Longrightarrow> ereal (inverse (real_of_ereal z)) = inverse z" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 1669 | by (cases z) simp_all | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 1670 | |
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 1671 | lemma ereal_inverse_mult: | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 1672 | "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> inverse (a * (b::ereal)) = inverse a * inverse b" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 1673 | by (cases a; cases b) auto | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 1674 | |
| 62369 | 1675 | |
| 41973 | 1676 | subsection "Complete lattice" | 
| 1677 | ||
| 43920 | 1678 | instantiation ereal :: lattice | 
| 41973 | 1679 | begin | 
| 53873 | 1680 | |
| 43920 | 1681 | definition [simp]: "sup x y = (max x y :: ereal)" | 
| 1682 | definition [simp]: "inf x y = (min x y :: ereal)" | |
| 60679 | 1683 | instance by standard simp_all | 
| 53873 | 1684 | |
| 41973 | 1685 | end | 
| 1686 | ||
| 43920 | 1687 | instantiation ereal :: complete_lattice | 
| 41973 | 1688 | begin | 
| 1689 | ||
| 43923 | 1690 | definition "bot = (-\<infinity>::ereal)" | 
| 1691 | definition "top = (\<infinity>::ereal)" | |
| 41973 | 1692 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1693 | definition "Sup S = (SOME x :: ereal. (\<forall>y\<in>S. y \<le> x) \<and> (\<forall>z. (\<forall>y\<in>S. y \<le> z) \<longrightarrow> x \<le> z))" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1694 | definition "Inf S = (SOME x :: ereal. (\<forall>y\<in>S. x \<le> y) \<and> (\<forall>z. (\<forall>y\<in>S. z \<le> y) \<longrightarrow> z \<le> x))" | 
| 41973 | 1695 | |
| 43920 | 1696 | lemma ereal_complete_Sup: | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1697 | fixes S :: "ereal set" | 
| 41973 | 1698 | shows "\<exists>x. (\<forall>y\<in>S. y \<le> x) \<and> (\<forall>z. (\<forall>y\<in>S. y \<le> z) \<longrightarrow> x \<le> z)" | 
| 53873 | 1699 | proof (cases "\<exists>x. \<forall>a\<in>S. a \<le> ereal x") | 
| 1700 | case True | |
| 63060 | 1701 | then obtain y where y: "a \<le> ereal y" if "a\<in>S" for a | 
| 53873 | 1702 | by auto | 
| 1703 | then have "\<infinity> \<notin> S" | |
| 1704 | by force | |
| 41973 | 1705 | show ?thesis | 
| 53873 | 1706 |   proof (cases "S \<noteq> {-\<infinity>} \<and> S \<noteq> {}")
 | 
| 1707 | case True | |
| 60500 | 1708 | with \<open>\<infinity> \<notin> S\<close> obtain x where x: "x \<in> S" "\<bar>x\<bar> \<noteq> \<infinity>" | 
| 53873 | 1709 | by auto | 
| 63060 | 1710 | obtain s where s: "\<forall>x\<in>ereal -` S. x \<le> s" "(\<forall>x\<in>ereal -` S. x \<le> z) \<Longrightarrow> s \<le> z" for z | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1711 | proof (atomize_elim, rule complete_real) | 
| 53873 | 1712 | show "\<exists>x. x \<in> ereal -` S" | 
| 1713 | using x by auto | |
| 1714 | show "\<exists>z. \<forall>x\<in>ereal -` S. x \<le> z" | |
| 1715 | by (auto dest: y intro!: exI[of _ y]) | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1716 | qed | 
| 41973 | 1717 | show ?thesis | 
| 43920 | 1718 | proof (safe intro!: exI[of _ "ereal s"]) | 
| 53873 | 1719 | fix y | 
| 1720 | assume "y \<in> S" | |
| 60500 | 1721 | with s \<open>\<infinity> \<notin> S\<close> show "y \<le> ereal s" | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1722 | by (cases y) auto | 
| 41973 | 1723 | next | 
| 53873 | 1724 | fix z | 
| 1725 | assume "\<forall>y\<in>S. y \<le> z" | |
| 60500 | 1726 |       with \<open>S \<noteq> {-\<infinity>} \<and> S \<noteq> {}\<close> show "ereal s \<le> z"
 | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1727 | by (cases z) (auto intro!: s) | 
| 41973 | 1728 | qed | 
| 53873 | 1729 | next | 
| 1730 | case False | |
| 1731 | then show ?thesis | |
| 1732 | by (auto intro!: exI[of _ "-\<infinity>"]) | |
| 1733 | qed | |
| 1734 | next | |
| 1735 | case False | |
| 1736 | then show ?thesis | |
| 1737 | by (fastforce intro!: exI[of _ \<infinity>] ereal_top intro: order_trans dest: less_imp_le simp: not_le) | |
| 1738 | qed | |
| 41973 | 1739 | |
| 43920 | 1740 | lemma ereal_complete_uminus_eq: | 
| 1741 | fixes S :: "ereal set" | |
| 41973 | 1742 | shows "(\<forall>y\<in>uminus`S. y \<le> x) \<and> (\<forall>z. (\<forall>y\<in>uminus`S. y \<le> z) \<longrightarrow> x \<le> z) | 
| 1743 | \<longleftrightarrow> (\<forall>y\<in>S. -x \<le> y) \<and> (\<forall>z. (\<forall>y\<in>S. z \<le> y) \<longrightarrow> z \<le> -x)" | |
| 43920 | 1744 | by simp (metis ereal_minus_le_minus ereal_uminus_uminus) | 
| 41973 | 1745 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1746 | lemma ereal_complete_Inf: | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1747 | "\<exists>x. (\<forall>y\<in>S::ereal set. x \<le> y) \<and> (\<forall>z. (\<forall>y\<in>S. z \<le> y) \<longrightarrow> z \<le> x)" | 
| 53873 | 1748 | using ereal_complete_Sup[of "uminus ` S"] | 
| 1749 | unfolding ereal_complete_uminus_eq | |
| 1750 | by auto | |
| 41973 | 1751 | |
| 1752 | instance | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51775diff
changeset | 1753 | proof | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51775diff
changeset | 1754 |   show "Sup {} = (bot::ereal)"
 | 
| 53873 | 1755 | apply (auto simp: bot_ereal_def Sup_ereal_def) | 
| 1756 | apply (rule some1_equality) | |
| 1757 | apply (metis ereal_bot ereal_less_eq(2)) | |
| 1758 | apply (metis ereal_less_eq(2)) | |
| 1759 | done | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51775diff
changeset | 1760 |   show "Inf {} = (top::ereal)"
 | 
| 53873 | 1761 | apply (auto simp: top_ereal_def Inf_ereal_def) | 
| 1762 | apply (rule some1_equality) | |
| 1763 | apply (metis ereal_top ereal_less_eq(1)) | |
| 1764 | apply (metis ereal_less_eq(1)) | |
| 1765 | done | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51775diff
changeset | 1766 | qed (auto intro: someI2_ex ereal_complete_Sup ereal_complete_Inf | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51775diff
changeset | 1767 | simp: Sup_ereal_def Inf_ereal_def bot_ereal_def top_ereal_def) | 
| 43941 | 1768 | |
| 41973 | 1769 | end | 
| 1770 | ||
| 43941 | 1771 | instance ereal :: complete_linorder .. | 
| 1772 | ||
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 1773 | instance ereal :: linear_continuum | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 1774 | proof | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 1775 | show "\<exists>a b::ereal. a \<noteq> b" | 
| 54416 | 1776 | using zero_neq_one by blast | 
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 1777 | qed | 
| 60720 | 1778 | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1779 | subsubsection "Topological space" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1780 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1781 | instantiation ereal :: linear_continuum_topology | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1782 | begin | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1783 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1784 | definition "open_ereal" :: "ereal set \<Rightarrow> bool" where | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1785 | open_ereal_generated: "open_ereal = generate_topology (range lessThan \<union> range greaterThan)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1786 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1787 | instance | 
| 60679 | 1788 | by standard (simp add: open_ereal_generated) | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1789 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1790 | end | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1791 | |
| 60720 | 1792 | lemma continuous_on_ereal[continuous_intros]: | 
| 1793 | assumes f: "continuous_on s f" shows "continuous_on s (\<lambda>x. ereal (f x))" | |
| 61738 
c4f6031f1310
New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
 paulson <lp15@cam.ac.uk> parents: 
61631diff
changeset | 1794 | by (rule continuous_on_compose2 [OF continuous_onI_mono[of ereal UNIV] f]) auto | 
| 60720 | 1795 | |
| 61973 | 1796 | lemma tendsto_ereal[tendsto_intros, simp, intro]: "(f \<longlongrightarrow> x) F \<Longrightarrow> ((\<lambda>x. ereal (f x)) \<longlongrightarrow> ereal x) F" | 
| 60720 | 1797 | using isCont_tendsto_compose[of x ereal f F] continuous_on_ereal[of UNIV "\<lambda>x. x"] | 
| 1798 | by (simp add: continuous_on_eq_continuous_at) | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1799 | |
| 61973 | 1800 | lemma tendsto_uminus_ereal[tendsto_intros, simp, intro]: "(f \<longlongrightarrow> x) F \<Longrightarrow> ((\<lambda>x. - f x::ereal) \<longlongrightarrow> - x) F" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1801 | apply (rule tendsto_compose[where g=uminus]) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1802 | apply (auto intro!: order_tendstoI simp: eventually_at_topological) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1803 |   apply (rule_tac x="{..< -a}" in exI)
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1804 | apply (auto split: ereal.split simp: ereal_less_uminus_reorder) [] | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1805 |   apply (rule_tac x="{- a <..}" in exI)
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1806 | apply (auto split: ereal.split simp: ereal_uminus_reorder) [] | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1807 | done | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1808 | |
| 61245 | 1809 | lemma at_infty_ereal_eq_at_top: "at \<infinity> = filtermap ereal at_top" | 
| 1810 | unfolding filter_eq_iff eventually_at_filter eventually_at_top_linorder eventually_filtermap | |
| 1811 | top_ereal_def[symmetric] | |
| 1812 | apply (subst eventually_nhds_top[of 0]) | |
| 1813 | apply (auto simp: top_ereal_def less_le ereal_all_split ereal_ex_split) | |
| 1814 | apply (metis PInfty_neq_ereal(2) ereal_less_eq(3) ereal_top le_cases order_trans) | |
| 1815 | done | |
| 1816 | ||
| 61973 | 1817 | lemma ereal_Lim_uminus: "(f \<longlongrightarrow> f0) net \<longleftrightarrow> ((\<lambda>x. - f x::ereal) \<longlongrightarrow> - f0) net" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1818 | using tendsto_uminus_ereal[of f f0 net] tendsto_uminus_ereal[of "\<lambda>x. - f x" "- f0" net] | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1819 | by auto | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1820 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1821 | lemma ereal_divide_less_iff: "0 < (c::ereal) \<Longrightarrow> c < \<infinity> \<Longrightarrow> a / c < b \<longleftrightarrow> a < b * c" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1822 | by (cases a b c rule: ereal3_cases) (auto simp: field_simps) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1823 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1824 | lemma ereal_less_divide_iff: "0 < (c::ereal) \<Longrightarrow> c < \<infinity> \<Longrightarrow> a < b / c \<longleftrightarrow> a * c < b" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1825 | by (cases a b c rule: ereal3_cases) (auto simp: field_simps) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1826 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1827 | lemma tendsto_cmult_ereal[tendsto_intros, simp, intro]: | 
| 61973 | 1828 | assumes c: "\<bar>c\<bar> \<noteq> \<infinity>" and f: "(f \<longlongrightarrow> x) F" shows "((\<lambda>x. c * f x::ereal) \<longlongrightarrow> c * x) F" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1829 | proof - | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1830 |   { fix c :: ereal assume "0 < c" "c < \<infinity>"
 | 
| 61973 | 1831 | then have "((\<lambda>x. c * f x::ereal) \<longlongrightarrow> c * x) F" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1832 | apply (intro tendsto_compose[OF _ f]) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1833 | apply (auto intro!: order_tendstoI simp: eventually_at_topological) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1834 |       apply (rule_tac x="{a/c <..}" in exI)
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1835 | apply (auto split: ereal.split simp: ereal_divide_less_iff mult.commute) [] | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1836 |       apply (rule_tac x="{..< a/c}" in exI)
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1837 | apply (auto split: ereal.split simp: ereal_less_divide_iff mult.commute) [] | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1838 | done } | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1839 | note * = this | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1840 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1841 | have "((0 < c \<and> c < \<infinity>) \<or> (-\<infinity> < c \<and> c < 0) \<or> c = 0)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1842 | using c by (cases c) auto | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1843 | then show ?thesis | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1844 | proof (elim disjE conjE) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1845 | assume "- \<infinity> < c" "c < 0" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1846 | then have "0 < - c" "- c < \<infinity>" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1847 | by (auto simp: ereal_uminus_reorder ereal_less_uminus_reorder[of 0]) | 
| 61973 | 1848 | then have "((\<lambda>x. (- c) * f x) \<longlongrightarrow> (- c) * x) F" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1849 | by (rule *) | 
| 61738 
c4f6031f1310
New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
 paulson <lp15@cam.ac.uk> parents: 
61631diff
changeset | 1850 | from tendsto_uminus_ereal[OF this] show ?thesis | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1851 | by simp | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1852 | qed (auto intro!: *) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1853 | qed | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1854 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1855 | lemma tendsto_cmult_ereal_not_0[tendsto_intros, simp, intro]: | 
| 61973 | 1856 | assumes "x \<noteq> 0" and f: "(f \<longlongrightarrow> x) F" shows "((\<lambda>x. c * f x::ereal) \<longlongrightarrow> c * x) F" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1857 | proof cases | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1858 | assume "\<bar>c\<bar> = \<infinity>" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1859 | show ?thesis | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1860 | proof (rule filterlim_cong[THEN iffD1, OF refl refl _ tendsto_const]) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1861 | have "0 < x \<or> x < 0" | 
| 60500 | 1862 | using \<open>x \<noteq> 0\<close> by (auto simp add: neq_iff) | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1863 | then show "eventually (\<lambda>x'. c * x = c * f x') F" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1864 | proof | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1865 | assume "0 < x" from order_tendstoD(1)[OF f this] show ?thesis | 
| 60500 | 1866 | by eventually_elim (insert \<open>0<x\<close> \<open>\<bar>c\<bar> = \<infinity>\<close>, auto) | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1867 | next | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1868 | assume "x < 0" from order_tendstoD(2)[OF f this] show ?thesis | 
| 60500 | 1869 | by eventually_elim (insert \<open>x<0\<close> \<open>\<bar>c\<bar> = \<infinity>\<close>, auto) | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1870 | qed | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1871 | qed | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1872 | qed (rule tendsto_cmult_ereal[OF _ f]) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1873 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1874 | lemma tendsto_cadd_ereal[tendsto_intros, simp, intro]: | 
| 61973 | 1875 | assumes c: "y \<noteq> - \<infinity>" "x \<noteq> - \<infinity>" and f: "(f \<longlongrightarrow> x) F" shows "((\<lambda>x. f x + y::ereal) \<longlongrightarrow> x + y) F" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1876 | apply (intro tendsto_compose[OF _ f]) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1877 | apply (auto intro!: order_tendstoI simp: eventually_at_topological) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1878 |   apply (rule_tac x="{a - y <..}" in exI)
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1879 | apply (auto split: ereal.split simp: ereal_minus_less_iff c) [] | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1880 |   apply (rule_tac x="{..< a - y}" in exI)
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1881 | apply (auto split: ereal.split simp: ereal_less_minus_iff c) [] | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1882 | done | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1883 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1884 | lemma tendsto_add_left_ereal[tendsto_intros, simp, intro]: | 
| 61973 | 1885 | assumes c: "\<bar>y\<bar> \<noteq> \<infinity>" and f: "(f \<longlongrightarrow> x) F" shows "((\<lambda>x. f x + y::ereal) \<longlongrightarrow> x + y) F" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1886 | apply (intro tendsto_compose[OF _ f]) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1887 | apply (auto intro!: order_tendstoI simp: eventually_at_topological) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1888 |   apply (rule_tac x="{a - y <..}" in exI)
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1889 | apply (insert c, auto split: ereal.split simp: ereal_minus_less_iff) [] | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1890 |   apply (rule_tac x="{..< a - y}" in exI)
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1891 | apply (auto split: ereal.split simp: ereal_less_minus_iff c) [] | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1892 | done | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1893 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1894 | lemma continuous_at_ereal[continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. ereal (f x))" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1895 | unfolding continuous_def by auto | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1896 | |
| 59425 | 1897 | lemma ereal_Sup: | 
| 1898 | assumes *: "\<bar>SUP a:A. ereal a\<bar> \<noteq> \<infinity>" | |
| 1899 | shows "ereal (Sup A) = (SUP a:A. ereal a)" | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1900 | proof (rule continuous_at_Sup_mono) | 
| 59425 | 1901 |   obtain r where r: "ereal r = (SUP a:A. ereal a)" "A \<noteq> {}"
 | 
| 1902 | using * by (force simp: bot_ereal_def) | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1903 |   then show "bdd_above A" "A \<noteq> {}"
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1904 | by (auto intro!: SUP_upper bdd_aboveI[of _ r] simp add: ereal_less_eq(3)[symmetric] simp del: ereal_less_eq) | 
| 60762 | 1905 | qed (auto simp: mono_def continuous_at_imp_continuous_at_within continuous_at_ereal) | 
| 59425 | 1906 | |
| 1907 | lemma ereal_SUP: "\<bar>SUP a:A. ereal (f a)\<bar> \<noteq> \<infinity> \<Longrightarrow> ereal (SUP a:A. f a) = (SUP a:A. ereal (f a))" | |
| 1908 | using ereal_Sup[of "f`A"] by auto | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1909 | |
| 59425 | 1910 | lemma ereal_Inf: | 
| 1911 | assumes *: "\<bar>INF a:A. ereal a\<bar> \<noteq> \<infinity>" | |
| 1912 | shows "ereal (Inf A) = (INF a:A. ereal a)" | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1913 | proof (rule continuous_at_Inf_mono) | 
| 59425 | 1914 |   obtain r where r: "ereal r = (INF a:A. ereal a)" "A \<noteq> {}"
 | 
| 1915 | using * by (force simp: top_ereal_def) | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1916 |   then show "bdd_below A" "A \<noteq> {}"
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1917 | by (auto intro!: INF_lower bdd_belowI[of _ r] simp add: ereal_less_eq(3)[symmetric] simp del: ereal_less_eq) | 
| 60762 | 1918 | qed (auto simp: mono_def continuous_at_imp_continuous_at_within continuous_at_ereal) | 
| 59425 | 1919 | |
| 62083 | 1920 | lemma ereal_Inf': | 
| 1921 |   assumes *: "bdd_below A" "A \<noteq> {}"
 | |
| 1922 | shows "ereal (Inf A) = (INF a:A. ereal a)" | |
| 1923 | proof (rule ereal_Inf) | |
| 63060 | 1924 | from * obtain l u where "x \<in> A \<Longrightarrow> l \<le> x" "u \<in> A" for x | 
| 62083 | 1925 | by (auto simp: bdd_below_def) | 
| 1926 | then have "l \<le> (INF x:A. ereal x)" "(INF x:A. ereal x) \<le> u" | |
| 1927 | by (auto intro!: INF_greatest INF_lower) | |
| 1928 | then show "\<bar>INF a:A. ereal a\<bar> \<noteq> \<infinity>" | |
| 1929 | by auto | |
| 1930 | qed | |
| 1931 | ||
| 59425 | 1932 | lemma ereal_INF: "\<bar>INF a:A. ereal (f a)\<bar> \<noteq> \<infinity> \<Longrightarrow> ereal (INF a:A. f a) = (INF a:A. ereal (f a))" | 
| 1933 | using ereal_Inf[of "f`A"] by auto | |
| 1934 | ||
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1935 | lemma ereal_Sup_uminus_image_eq: "Sup (uminus ` S::ereal set) = - Inf S" | 
| 56166 | 1936 | by (auto intro!: SUP_eqI | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1937 | simp: Ball_def[symmetric] ereal_uminus_le_reorder le_Inf_iff | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1938 | intro!: complete_lattice_class.Inf_lower2) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1939 | |
| 56166 | 1940 | lemma ereal_SUP_uminus_eq: | 
| 1941 | fixes f :: "'a \<Rightarrow> ereal" | |
| 1942 | shows "(SUP x:S. uminus (f x)) = - (INF x:S. f x)" | |
| 1943 | using ereal_Sup_uminus_image_eq [of "f ` S"] by (simp add: comp_def) | |
| 1944 | ||
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1945 | lemma ereal_inj_on_uminus[intro, simp]: "inj_on uminus (A :: ereal set)" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1946 | by (auto intro!: inj_onI) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1947 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1948 | lemma ereal_Inf_uminus_image_eq: "Inf (uminus ` S::ereal set) = - Sup S" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1949 | using ereal_Sup_uminus_image_eq[of "uminus ` S"] by simp | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1950 | |
| 56166 | 1951 | lemma ereal_INF_uminus_eq: | 
| 1952 | fixes f :: "'a \<Rightarrow> ereal" | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1953 | shows "(INF x:S. - f x) = - (SUP x:S. f x)" | 
| 56166 | 1954 | using ereal_Inf_uminus_image_eq [of "f ` S"] by (simp add: comp_def) | 
| 1955 | ||
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1956 | lemma ereal_SUP_uminus: | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1957 | fixes f :: "'a \<Rightarrow> ereal" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1958 | shows "(SUP i : R. - f i) = - (INF i : R. f i)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1959 | using ereal_Sup_uminus_image_eq[of "f`R"] | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1960 | by (simp add: image_image) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1961 | |
| 54416 | 1962 | lemma ereal_SUP_not_infty: | 
| 1963 | fixes f :: "_ \<Rightarrow> ereal" | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1964 |   shows "A \<noteq> {} \<Longrightarrow> l \<noteq> -\<infinity> \<Longrightarrow> u \<noteq> \<infinity> \<Longrightarrow> \<forall>a\<in>A. l \<le> f a \<and> f a \<le> u \<Longrightarrow> \<bar>SUPREMUM A f\<bar> \<noteq> \<infinity>"
 | 
| 54416 | 1965 | using SUP_upper2[of _ A l f] SUP_least[of A f u] | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1966 | by (cases "SUPREMUM A f") auto | 
| 54416 | 1967 | |
| 1968 | lemma ereal_INF_not_infty: | |
| 1969 | fixes f :: "_ \<Rightarrow> ereal" | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1970 |   shows "A \<noteq> {} \<Longrightarrow> l \<noteq> -\<infinity> \<Longrightarrow> u \<noteq> \<infinity> \<Longrightarrow> \<forall>a\<in>A. l \<le> f a \<and> f a \<le> u \<Longrightarrow> \<bar>INFIMUM A f\<bar> \<noteq> \<infinity>"
 | 
| 54416 | 1971 | using INF_lower2[of _ A f u] INF_greatest[of A l f] | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1972 | by (cases "INFIMUM A f") auto | 
| 54416 | 1973 | |
| 43920 | 1974 | lemma ereal_image_uminus_shift: | 
| 53873 | 1975 | fixes X Y :: "ereal set" | 
| 1976 | shows "uminus ` X = Y \<longleftrightarrow> X = uminus ` Y" | |
| 41973 | 1977 | proof | 
| 1978 | assume "uminus ` X = Y" | |
| 1979 | then have "uminus ` uminus ` X = uminus ` Y" | |
| 1980 | by (simp add: inj_image_eq_iff) | |
| 53873 | 1981 | then show "X = uminus ` Y" | 
| 1982 | by (simp add: image_image) | |
| 41973 | 1983 | qed (simp add: image_image) | 
| 1984 | ||
| 1985 | lemma Sup_eq_MInfty: | |
| 53873 | 1986 | fixes S :: "ereal set" | 
| 1987 |   shows "Sup S = -\<infinity> \<longleftrightarrow> S = {} \<or> S = {-\<infinity>}"
 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1988 | unfolding bot_ereal_def[symmetric] by auto | 
| 41973 | 1989 | |
| 1990 | lemma Inf_eq_PInfty: | |
| 53873 | 1991 | fixes S :: "ereal set" | 
| 1992 |   shows "Inf S = \<infinity> \<longleftrightarrow> S = {} \<or> S = {\<infinity>}"
 | |
| 41973 | 1993 | using Sup_eq_MInfty[of "uminus`S"] | 
| 43920 | 1994 | unfolding ereal_Sup_uminus_image_eq ereal_image_uminus_shift by simp | 
| 41973 | 1995 | |
| 53873 | 1996 | lemma Inf_eq_MInfty: | 
| 1997 | fixes S :: "ereal set" | |
| 1998 | shows "-\<infinity> \<in> S \<Longrightarrow> Inf S = -\<infinity>" | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1999 | unfolding bot_ereal_def[symmetric] by auto | 
| 41973 | 2000 | |
| 43923 | 2001 | lemma Sup_eq_PInfty: | 
| 53873 | 2002 | fixes S :: "ereal set" | 
| 2003 | shows "\<infinity> \<in> S \<Longrightarrow> Sup S = \<infinity>" | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 2004 | unfolding top_ereal_def[symmetric] by auto | 
| 41973 | 2005 | |
| 60771 | 2006 | lemma not_MInfty_nonneg[simp]: "0 \<le> (x::ereal) \<Longrightarrow> x \<noteq> - \<infinity>" | 
| 2007 | by auto | |
| 2008 | ||
| 43920 | 2009 | lemma Sup_ereal_close: | 
| 2010 | fixes e :: ereal | |
| 53873 | 2011 | assumes "0 < e" | 
| 2012 |     and S: "\<bar>Sup S\<bar> \<noteq> \<infinity>" "S \<noteq> {}"
 | |
| 41973 | 2013 | shows "\<exists>x\<in>S. Sup S - e < x" | 
| 41976 | 2014 | using assms by (cases e) (auto intro!: less_Sup_iff[THEN iffD1]) | 
| 41973 | 2015 | |
| 43920 | 2016 | lemma Inf_ereal_close: | 
| 53873 | 2017 | fixes e :: ereal | 
| 2018 | assumes "\<bar>Inf X\<bar> \<noteq> \<infinity>" | |
| 2019 | and "0 < e" | |
| 41973 | 2020 | shows "\<exists>x\<in>X. x < Inf X + e" | 
| 2021 | proof (rule Inf_less_iff[THEN iffD1]) | |
| 53873 | 2022 | show "Inf X < Inf X + e" | 
| 2023 | using assms by (cases e) auto | |
| 41973 | 2024 | qed | 
| 2025 | ||
| 59425 | 2026 | lemma SUP_PInfty: | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2027 | "(\<And>n::nat. \<exists>i\<in>A. ereal (real n) \<le> f i) \<Longrightarrow> (SUP i:A. f i :: ereal) = \<infinity>" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2028 | unfolding top_ereal_def[symmetric] SUP_eq_top_iff | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2029 | by (metis MInfty_neq_PInfty(2) PInfty_neq_ereal(2) less_PInf_Ex_of_nat less_ereal.elims(2) less_le_trans) | 
| 59425 | 2030 | |
| 43920 | 2031 | lemma SUP_nat_Infty: "(SUP i::nat. ereal (real i)) = \<infinity>" | 
| 59425 | 2032 | by (rule SUP_PInfty) auto | 
| 41973 | 2033 | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2034 | lemma SUP_ereal_add_left: | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2035 |   assumes "I \<noteq> {}" "c \<noteq> -\<infinity>"
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2036 | shows "(SUP i:I. f i + c :: ereal) = (SUP i:I. f i) + c" | 
| 63540 | 2037 | proof (cases "(SUP i:I. f i) = - \<infinity>") | 
| 2038 | case True | |
| 2039 | then have "\<And>i. i \<in> I \<Longrightarrow> f i = -\<infinity>" | |
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62101diff
changeset | 2040 | unfolding Sup_eq_MInfty by auto | 
| 63540 | 2041 | with True show ?thesis | 
| 60500 | 2042 |     by (cases c) (auto simp: \<open>I \<noteq> {}\<close>)
 | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2043 | next | 
| 63540 | 2044 | case False | 
| 2045 | then show ?thesis | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2046 | by (subst continuous_at_Sup_mono[where f="\<lambda>x. x + c"]) | 
| 60762 | 2047 |        (auto simp: continuous_at_imp_continuous_at_within continuous_at mono_def ereal_add_mono \<open>I \<noteq> {}\<close> \<open>c \<noteq> -\<infinity>\<close>)
 | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2048 | qed | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2049 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2050 | lemma SUP_ereal_add_right: | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2051 | fixes c :: ereal | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2052 |   shows "I \<noteq> {} \<Longrightarrow> c \<noteq> -\<infinity> \<Longrightarrow> (SUP i:I. c + f i) = c + (SUP i:I. f i)"
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2053 | using SUP_ereal_add_left[of I c f] by (simp add: add.commute) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2054 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2055 | lemma SUP_ereal_minus_right: | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2056 |   assumes "I \<noteq> {}" "c \<noteq> -\<infinity>"
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2057 | shows "(SUP i:I. c - f i :: ereal) = c - (INF i:I. f i)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2058 | using SUP_ereal_add_right[OF assms, of "\<lambda>i. - f i"] | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2059 | by (simp add: ereal_SUP_uminus minus_ereal_def) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2060 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2061 | lemma SUP_ereal_minus_left: | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2062 |   assumes "I \<noteq> {}" "c \<noteq> \<infinity>"
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2063 | shows "(SUP i:I. f i - c:: ereal) = (SUP i:I. f i) - c" | 
| 60500 | 2064 |   using SUP_ereal_add_left[OF \<open>I \<noteq> {}\<close>, of "-c" f] by (simp add: \<open>c \<noteq> \<infinity>\<close> minus_ereal_def)
 | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2065 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2066 | lemma INF_ereal_minus_right: | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2067 |   assumes "I \<noteq> {}" and "\<bar>c\<bar> \<noteq> \<infinity>"
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2068 | shows "(INF i:I. c - f i) = c - (SUP i:I. f i::ereal)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2069 | proof - | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2070 |   { fix b have "(-c) + b = - (c - b)"
 | 
| 60500 | 2071 | using \<open>\<bar>c\<bar> \<noteq> \<infinity>\<close> by (cases c b rule: ereal2_cases) auto } | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2072 | note * = this | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2073 | show ?thesis | 
| 60500 | 2074 |     using SUP_ereal_add_right[OF \<open>I \<noteq> {}\<close>, of "-c" f] \<open>\<bar>c\<bar> \<noteq> \<infinity>\<close>
 | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2075 | by (auto simp add: * ereal_SUP_uminus_eq) | 
| 41973 | 2076 | qed | 
| 2077 | ||
| 43920 | 2078 | lemma SUP_ereal_le_addI: | 
| 43923 | 2079 | fixes f :: "'i \<Rightarrow> ereal" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2080 | assumes "\<And>i. f i + y \<le> z" and "y \<noteq> -\<infinity>" | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 2081 | shows "SUPREMUM UNIV f + y \<le> z" | 
| 60500 | 2082 | unfolding SUP_ereal_add_left[OF UNIV_not_empty \<open>y \<noteq> -\<infinity>\<close>, symmetric] | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2083 | by (rule SUP_least assms)+ | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2084 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2085 | lemma SUP_combine: | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2086 | fixes f :: "'a::semilattice_sup \<Rightarrow> 'a::semilattice_sup \<Rightarrow> 'b::complete_lattice" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2087 | assumes mono: "\<And>a b c d. a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> f a c \<le> f b d" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2088 | shows "(SUP i:UNIV. SUP j:UNIV. f i j) = (SUP i. f i i)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2089 | proof (rule antisym) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2090 | show "(SUP i j. f i j) \<le> (SUP i. f i i)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2091 | by (rule SUP_least SUP_upper2[where i="sup i j" for i j] UNIV_I mono sup_ge1 sup_ge2)+ | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2092 | show "(SUP i. f i i) \<le> (SUP i j. f i j)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2093 | by (rule SUP_least SUP_upper2 UNIV_I mono order_refl)+ | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2094 | qed | 
| 41978 | 2095 | |
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 2096 | lemma SUP_ereal_add: | 
| 43920 | 2097 | fixes f g :: "nat \<Rightarrow> ereal" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2098 | assumes inc: "incseq f" "incseq g" | 
| 53873 | 2099 | and pos: "\<And>i. f i \<noteq> -\<infinity>" "\<And>i. g i \<noteq> -\<infinity>" | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 2100 | shows "(SUP i. f i + g i) = SUPREMUM UNIV f + SUPREMUM UNIV g" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2101 | apply (subst SUP_ereal_add_left[symmetric, OF UNIV_not_empty]) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2102 | apply (metis SUP_upper UNIV_I assms(4) ereal_infty_less_eq(2)) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2103 | apply (subst (2) add.commute) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2104 | apply (subst SUP_ereal_add_left[symmetric, OF UNIV_not_empty assms(3)]) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2105 | apply (subst (2) add.commute) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2106 | apply (rule SUP_combine[symmetric] ereal_add_mono inc[THEN monoD] | assumption)+ | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2107 | done | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2108 | |
| 63968 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2109 | lemma INF_eq_minf: "(INF i:I. f i::ereal) \<noteq> -\<infinity> \<longleftrightarrow> (\<exists>b>-\<infinity>. \<forall>i\<in>I. b \<le> f i)" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2110 | unfolding bot_ereal_def[symmetric] INF_eq_bot_iff by (auto simp: not_less) | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2111 | |
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2112 | lemma INF_ereal_add_left: | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2113 |   assumes "I \<noteq> {}" "c \<noteq> -\<infinity>" "\<And>x. x \<in> I \<Longrightarrow> 0 \<le> f x"
 | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2114 | shows "(INF i:I. f i + c :: ereal) = (INF i:I. f i) + c" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2115 | proof - | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2116 | have "(INF i:I. f i) \<noteq> -\<infinity>" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2117 | unfolding INF_eq_minf using assms by (intro exI[of _ 0]) auto | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2118 | then show ?thesis | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2119 | by (subst continuous_at_Inf_mono[where f="\<lambda>x. x + c"]) | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2120 |        (auto simp: mono_def ereal_add_mono \<open>I \<noteq> {}\<close> \<open>c \<noteq> -\<infinity>\<close> continuous_at_imp_continuous_at_within continuous_at)
 | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2121 | qed | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2122 | |
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2123 | lemma INF_ereal_add_right: | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2124 |   assumes "I \<noteq> {}" "c \<noteq> -\<infinity>" "\<And>x. x \<in> I \<Longrightarrow> 0 \<le> f x"
 | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2125 | shows "(INF i:I. c + f i :: ereal) = c + (INF i:I. f i)" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2126 | using INF_ereal_add_left[OF assms] by (simp add: ac_simps) | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2127 | |
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2128 | lemma INF_ereal_add_directed: | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2129 | fixes f g :: "'a \<Rightarrow> ereal" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2130 | assumes nonneg: "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i" "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> g i" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2131 | assumes directed: "\<And>i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> \<exists>k\<in>I. f i + g j \<ge> f k + g k" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2132 | shows "(INF i:I. f i + g i) = (INF i:I. f i) + (INF i:I. g i)" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2133 | proof cases | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2134 |   assume "I = {}" then show ?thesis
 | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2135 | by (simp add: top_ereal_def) | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2136 | next | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2137 |   assume "I \<noteq> {}"
 | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2138 | show ?thesis | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2139 | proof (rule antisym) | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2140 | show "(INF i:I. f i) + (INF i:I. g i) \<le> (INF i:I. f i + g i)" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2141 | by (rule INF_greatest; intro ereal_add_mono INF_lower) | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2142 | next | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2143 | have "(INF i:I. f i + g i) \<le> (INF i:I. (INF j:I. f i + g j))" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2144 | using directed by (intro INF_greatest) (blast intro: INF_lower2) | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2145 | also have "\<dots> = (INF i:I. f i + (INF i:I. g i))" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2146 |       using nonneg by (intro INF_cong refl INF_ereal_add_right \<open>I \<noteq> {}\<close>) (auto simp: INF_eq_minf intro!: exI[of _ 0])
 | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2147 | also have "\<dots> = (INF i:I. f i) + (INF i:I. g i)" | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2148 |       using nonneg by (intro INF_ereal_add_left \<open>I \<noteq> {}\<close>) (auto simp: INF_eq_minf intro!: exI[of _ 0])
 | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2149 | finally show "(INF i:I. f i + g i) \<le> (INF i:I. f i) + (INF i:I. g i)" . | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2150 | qed | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2151 | qed | 
| 
4359400adfe7
HOL-Analysis: the image of a negligible set under a Lipschitz continuous function is negligible (based on HOL Light proof ported by L. C. Paulson)
 hoelzl parents: 
63952diff
changeset | 2152 | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2153 | lemma INF_ereal_add: | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2154 | fixes f :: "nat \<Rightarrow> ereal" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2155 | assumes "decseq f" "decseq g" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2156 | and fin: "\<And>i. f i \<noteq> \<infinity>" "\<And>i. g i \<noteq> \<infinity>" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2157 | shows "(INF i. f i + g i) = INFIMUM UNIV f + INFIMUM UNIV g" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2158 | proof - | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2159 | have INF_less: "(INF i. f i) < \<infinity>" "(INF i. g i) < \<infinity>" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2160 | using assms unfolding INF_less_iff by auto | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2161 |   { fix a b :: ereal assume "a \<noteq> \<infinity>" "b \<noteq> \<infinity>"
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2162 | then have "- ((- a) + (- b)) = a + b" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2163 | by (cases a b rule: ereal2_cases) auto } | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2164 | note * = this | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2165 | have "(INF i. f i + g i) = (INF i. - ((- f i) + (- g i)))" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2166 | by (simp add: fin *) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2167 | also have "\<dots> = INFIMUM UNIV f + INFIMUM UNIV g" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2168 | unfolding ereal_INF_uminus_eq | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2169 | using assms INF_less | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2170 | by (subst SUP_ereal_add) (auto simp: ereal_SUP_uminus fin *) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2171 | finally show ?thesis . | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2172 | qed | 
| 41978 | 2173 | |
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 2174 | lemma SUP_ereal_add_pos: | 
| 43920 | 2175 | fixes f g :: "nat \<Rightarrow> ereal" | 
| 53873 | 2176 | assumes inc: "incseq f" "incseq g" | 
| 2177 | and pos: "\<And>i. 0 \<le> f i" "\<And>i. 0 \<le> g i" | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 2178 | shows "(SUP i. f i + g i) = SUPREMUM UNIV f + SUPREMUM UNIV g" | 
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 2179 | proof (intro SUP_ereal_add inc) | 
| 53873 | 2180 | fix i | 
| 2181 | show "f i \<noteq> -\<infinity>" "g i \<noteq> -\<infinity>" | |
| 2182 | using pos[of i] by auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 2183 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 2184 | |
| 64267 | 2185 | lemma SUP_ereal_sum: | 
| 43920 | 2186 | fixes f g :: "'a \<Rightarrow> nat \<Rightarrow> ereal" | 
| 53873 | 2187 | assumes "\<And>n. n \<in> A \<Longrightarrow> incseq (f n)" | 
| 2188 | and pos: "\<And>n i. n \<in> A \<Longrightarrow> 0 \<le> f n i" | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 2189 | shows "(SUP i. \<Sum>n\<in>A. f n i) = (\<Sum>n\<in>A. SUPREMUM UNIV (f n))" | 
| 53873 | 2190 | proof (cases "finite A") | 
| 2191 | case True | |
| 2192 | then show ?thesis using assms | |
| 64267 | 2193 | by induct (auto simp: incseq_sumI2 sum_nonneg SUP_ereal_add_pos) | 
| 53873 | 2194 | next | 
| 2195 | case False | |
| 2196 | then show ?thesis by simp | |
| 2197 | qed | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 2198 | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2199 | lemma SUP_ereal_mult_left: | 
| 59000 | 2200 | fixes f :: "'a \<Rightarrow> ereal" | 
| 2201 |   assumes "I \<noteq> {}"
 | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2202 | assumes f: "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i" and c: "0 \<le> c" | 
| 59000 | 2203 | shows "(SUP i:I. c * f i) = c * (SUP i:I. f i)" | 
| 63540 | 2204 | proof (cases "(SUP i: I. f i) = 0") | 
| 2205 | case True | |
| 2206 | then have "\<And>i. i \<in> I \<Longrightarrow> f i = 0" | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2207 | by (metis SUP_upper f antisym) | 
| 63540 | 2208 | with True show ?thesis | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2209 | by simp | 
| 59000 | 2210 | next | 
| 63540 | 2211 | case False | 
| 2212 | then show ?thesis | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2213 | by (subst continuous_at_Sup_mono[where f="\<lambda>x. c * x"]) | 
| 60762 | 2214 |        (auto simp: mono_def continuous_at continuous_at_imp_continuous_at_within \<open>I \<noteq> {}\<close>
 | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2215 | intro!: ereal_mult_left_mono c) | 
| 59000 | 2216 | qed | 
| 2217 | ||
| 61738 
c4f6031f1310
New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
 paulson <lp15@cam.ac.uk> parents: 
61631diff
changeset | 2218 | lemma countable_approach: | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2219 | fixes x :: ereal | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2220 | assumes "x \<noteq> -\<infinity>" | 
| 61969 | 2221 | shows "\<exists>f. incseq f \<and> (\<forall>i::nat. f i < x) \<and> (f \<longlonglongrightarrow> x)" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2222 | proof (cases x) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2223 | case (real r) | 
| 61969 | 2224 | moreover have "(\<lambda>n. r - inverse (real (Suc n))) \<longlonglongrightarrow> r - 0" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2225 | by (intro tendsto_intros LIMSEQ_inverse_real_of_nat) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2226 | ultimately show ?thesis | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2227 | by (intro exI[of _ "\<lambda>n. x - inverse (Suc n)"]) (auto simp: incseq_def) | 
| 61738 
c4f6031f1310
New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
 paulson <lp15@cam.ac.uk> parents: 
61631diff
changeset | 2228 | next | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2229 | case PInf with LIMSEQ_SUP[of "\<lambda>n::nat. ereal (real n)"] show ?thesis | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2230 | by (intro exI[of _ "\<lambda>n. ereal (real n)"]) (auto simp: incseq_def SUP_nat_Infty) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2231 | qed (simp add: assms) | 
| 59000 | 2232 | |
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 2233 | lemma Sup_countable_SUP: | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 2234 |   assumes "A \<noteq> {}"
 | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2235 | shows "\<exists>f::nat \<Rightarrow> ereal. incseq f \<and> range f \<subseteq> A \<and> Sup A = (SUP i. f i)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2236 | proof cases | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2237 | assume "Sup A = -\<infinity>" | 
| 60500 | 2238 |   with \<open>A \<noteq> {}\<close> have "A = {-\<infinity>}"
 | 
| 53873 | 2239 | by (auto simp: Sup_eq_MInfty) | 
| 2240 | then show ?thesis | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2241 | by (auto intro!: exI[of _ "\<lambda>_. -\<infinity>"] simp: bot_ereal_def) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2242 | next | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2243 | assume "Sup A \<noteq> -\<infinity>" | 
| 63060 | 2244 | then obtain l where "incseq l" and l: "l i < Sup A" and l_Sup: "l \<longlonglongrightarrow> Sup A" for i :: nat | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2245 | by (auto dest: countable_approach) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2246 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2247 | have "\<exists>f. \<forall>n. (f n \<in> A \<and> l n \<le> f n) \<and> (f n \<le> f (Suc n))" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2248 | proof (rule dependent_nat_choice) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2249 | show "\<exists>x. x \<in> A \<and> l 0 \<le> x" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2250 | using l[of 0] by (auto simp: less_Sup_iff) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2251 | next | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2252 | fix x n assume "x \<in> A \<and> l n \<le> x" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2253 | moreover from l[of "Suc n"] obtain y where "y \<in> A" "l (Suc n) < y" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2254 | by (auto simp: less_Sup_iff) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2255 | ultimately show "\<exists>y. (y \<in> A \<and> l (Suc n) \<le> y) \<and> x \<le> y" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2256 | by (auto intro!: exI[of _ "max x y"] split: split_max) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2257 | qed | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2258 | then guess f .. note f = this | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2259 | then have "range f \<subseteq> A" "incseq f" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2260 | by (auto simp: incseq_Suc_iff) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2261 | moreover | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2262 | have "(SUP i. f i) = Sup A" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2263 | proof (rule tendsto_unique) | 
| 61969 | 2264 | show "f \<longlonglongrightarrow> (SUP i. f i)" | 
| 60500 | 2265 | by (rule LIMSEQ_SUP \<open>incseq f\<close>)+ | 
| 61969 | 2266 | show "f \<longlonglongrightarrow> Sup A" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2267 | using l f | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2268 | by (intro tendsto_sandwich[OF _ _ l_Sup tendsto_const]) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2269 | (auto simp: Sup_upper) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2270 | qed simp | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2271 | ultimately show ?thesis | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2272 | by auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 2273 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 2274 | |
| 63940 
0d82c4c94014
prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
 hoelzl parents: 
63918diff
changeset | 2275 | lemma Inf_countable_INF: | 
| 
0d82c4c94014
prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
 hoelzl parents: 
63918diff
changeset | 2276 |   assumes "A \<noteq> {}" shows "\<exists>f::nat \<Rightarrow> ereal. decseq f \<and> range f \<subseteq> A \<and> Inf A = (INF i. f i)"
 | 
| 
0d82c4c94014
prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
 hoelzl parents: 
63918diff
changeset | 2277 | proof - | 
| 
0d82c4c94014
prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
 hoelzl parents: 
63918diff
changeset | 2278 | obtain f where "incseq f" "range f \<subseteq> uminus`A" "Sup (uminus`A) = (SUP i. f i)" | 
| 
0d82c4c94014
prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
 hoelzl parents: 
63918diff
changeset | 2279 |     using Sup_countable_SUP[of "uminus ` A"] \<open>A \<noteq> {}\<close> by auto
 | 
| 
0d82c4c94014
prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
 hoelzl parents: 
63918diff
changeset | 2280 | then show ?thesis | 
| 
0d82c4c94014
prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
 hoelzl parents: 
63918diff
changeset | 2281 | by (intro exI[of _ "\<lambda>x. - f x"]) | 
| 
0d82c4c94014
prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
 hoelzl parents: 
63918diff
changeset | 2282 | (auto simp: ereal_Sup_uminus_image_eq ereal_INF_uminus_eq eq_commute[of "- _"]) | 
| 
0d82c4c94014
prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
 hoelzl parents: 
63918diff
changeset | 2283 | qed | 
| 
0d82c4c94014
prove HK-integrable implies Lebesgue measurable; prove HK-integral equals Lebesgue integral for nonneg functions
 hoelzl parents: 
63918diff
changeset | 2284 | |
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 2285 | lemma SUP_countable_SUP: | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 2286 |   "A \<noteq> {} \<Longrightarrow> \<exists>f::nat \<Rightarrow> ereal. range f \<subseteq> g`A \<and> SUPREMUM A g = SUPREMUM UNIV f"
 | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2287 | using Sup_countable_SUP [of "g`A"] by auto | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 2288 | |
| 45934 | 2289 | subsection "Relation to @{typ enat}"
 | 
| 2290 | ||
| 2291 | definition "ereal_of_enat n = (case n of enat n \<Rightarrow> ereal (real n) | \<infinity> \<Rightarrow> \<infinity>)" | |
| 2292 | ||
| 2293 | declare [[coercion "ereal_of_enat :: enat \<Rightarrow> ereal"]] | |
| 2294 | declare [[coercion "(\<lambda>n. ereal (real n)) :: nat \<Rightarrow> ereal"]] | |
| 2295 | ||
| 2296 | lemma ereal_of_enat_simps[simp]: | |
| 2297 | "ereal_of_enat (enat n) = ereal n" | |
| 2298 | "ereal_of_enat \<infinity> = \<infinity>" | |
| 2299 | by (simp_all add: ereal_of_enat_def) | |
| 2300 | ||
| 53873 | 2301 | lemma ereal_of_enat_le_iff[simp]: "ereal_of_enat m \<le> ereal_of_enat n \<longleftrightarrow> m \<le> n" | 
| 2302 | by (cases m n rule: enat2_cases) auto | |
| 45934 | 2303 | |
| 53873 | 2304 | lemma ereal_of_enat_less_iff[simp]: "ereal_of_enat m < ereal_of_enat n \<longleftrightarrow> m < n" | 
| 2305 | by (cases m n rule: enat2_cases) auto | |
| 50819 
5601ae592679
added some ereal_of_enat_* lemmas (from $AFP/thys/Girth_Chromatic)
 noschinl parents: 
50104diff
changeset | 2306 | |
| 53873 | 2307 | lemma numeral_le_ereal_of_enat_iff[simp]: "numeral m \<le> ereal_of_enat n \<longleftrightarrow> numeral m \<le> n" | 
| 59587 
8ea7b22525cb
Removed the obsolete functions "natfloor" and "natceiling"
 nipkow parents: 
59452diff
changeset | 2308 | by (cases n) (auto) | 
| 45934 | 2309 | |
| 53873 | 2310 | lemma numeral_less_ereal_of_enat_iff[simp]: "numeral m < ereal_of_enat n \<longleftrightarrow> numeral m < n" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56537diff
changeset | 2311 | by (cases n) auto | 
| 50819 
5601ae592679
added some ereal_of_enat_* lemmas (from $AFP/thys/Girth_Chromatic)
 noschinl parents: 
50104diff
changeset | 2312 | |
| 53873 | 2313 | lemma ereal_of_enat_ge_zero_cancel_iff[simp]: "0 \<le> ereal_of_enat n \<longleftrightarrow> 0 \<le> n" | 
| 2314 | by (cases n) (auto simp: enat_0[symmetric]) | |
| 45934 | 2315 | |
| 53873 | 2316 | lemma ereal_of_enat_gt_zero_cancel_iff[simp]: "0 < ereal_of_enat n \<longleftrightarrow> 0 < n" | 
| 2317 | by (cases n) (auto simp: enat_0[symmetric]) | |
| 45934 | 2318 | |
| 53873 | 2319 | lemma ereal_of_enat_zero[simp]: "ereal_of_enat 0 = 0" | 
| 2320 | by (auto simp: enat_0[symmetric]) | |
| 45934 | 2321 | |
| 53873 | 2322 | lemma ereal_of_enat_inf[simp]: "ereal_of_enat n = \<infinity> \<longleftrightarrow> n = \<infinity>" | 
| 50819 
5601ae592679
added some ereal_of_enat_* lemmas (from $AFP/thys/Girth_Chromatic)
 noschinl parents: 
50104diff
changeset | 2323 | by (cases n) auto | 
| 
5601ae592679
added some ereal_of_enat_* lemmas (from $AFP/thys/Girth_Chromatic)
 noschinl parents: 
50104diff
changeset | 2324 | |
| 53873 | 2325 | lemma ereal_of_enat_add: "ereal_of_enat (m + n) = ereal_of_enat m + ereal_of_enat n" | 
| 2326 | by (cases m n rule: enat2_cases) auto | |
| 45934 | 2327 | |
| 2328 | lemma ereal_of_enat_sub: | |
| 53873 | 2329 | assumes "n \<le> m" | 
| 2330 | shows "ereal_of_enat (m - n) = ereal_of_enat m - ereal_of_enat n " | |
| 2331 | using assms by (cases m n rule: enat2_cases) auto | |
| 45934 | 2332 | |
| 2333 | lemma ereal_of_enat_mult: | |
| 2334 | "ereal_of_enat (m * n) = ereal_of_enat m * ereal_of_enat n" | |
| 53873 | 2335 | by (cases m n rule: enat2_cases) auto | 
| 45934 | 2336 | |
| 2337 | lemmas ereal_of_enat_pushin = ereal_of_enat_add ereal_of_enat_sub ereal_of_enat_mult | |
| 2338 | lemmas ereal_of_enat_pushout = ereal_of_enat_pushin[symmetric] | |
| 2339 | ||
| 61631 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 2340 | lemma ereal_of_enat_nonneg: "ereal_of_enat n \<ge> 0" | 
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 2341 | by(cases n) simp_all | 
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 2342 | |
| 60637 | 2343 | lemma ereal_of_enat_Sup: | 
| 2344 |   assumes "A \<noteq> {}" shows "ereal_of_enat (Sup A) = (SUP a : A. ereal_of_enat a)"
 | |
| 2345 | proof (intro antisym mono_Sup) | |
| 2346 | show "ereal_of_enat (Sup A) \<le> (SUP a : A. ereal_of_enat a)" | |
| 2347 | proof cases | |
| 2348 | assume "finite A" | |
| 61188 | 2349 |     with \<open>A \<noteq> {}\<close> obtain a where "a \<in> A" "ereal_of_enat (Sup A) = ereal_of_enat a"
 | 
| 60637 | 2350 | using Max_in[of A] by (auto simp: Sup_enat_def simp del: Max_in) | 
| 2351 | then show ?thesis | |
| 2352 | by (auto intro: SUP_upper) | |
| 2353 | next | |
| 2354 | assume "\<not> finite A" | |
| 2355 | have [simp]: "(SUP a : A. ereal_of_enat a) = top" | |
| 2356 | unfolding SUP_eq_top_iff | |
| 2357 | proof safe | |
| 2358 | fix x :: ereal assume "x < top" | |
| 2359 | then obtain n :: nat where "x < n" | |
| 2360 | using less_PInf_Ex_of_nat top_ereal_def by auto | |
| 2361 |       obtain a where "a \<in> A - enat ` {.. n}"
 | |
| 61188 | 2362 | by (metis \<open>\<not> finite A\<close> all_not_in_conv finite_Diff2 finite_atMost finite_imageI finite.emptyI) | 
| 60637 | 2363 | then have "a \<in> A" "ereal n \<le> ereal_of_enat a" | 
| 2364 | by (auto simp: image_iff Ball_def) | |
| 2365 | (metis enat_iless enat_ord_simps(1) ereal_of_enat_less_iff ereal_of_enat_simps(1) less_le not_less) | |
| 61188 | 2366 | with \<open>x < n\<close> show "\<exists>i\<in>A. x < ereal_of_enat i" | 
| 60637 | 2367 | by (auto intro!: bexI[of _ a]) | 
| 2368 | qed | |
| 2369 | show ?thesis | |
| 2370 | by simp | |
| 2371 | qed | |
| 2372 | qed (simp add: mono_def) | |
| 2373 | ||
| 2374 | lemma ereal_of_enat_SUP: | |
| 2375 |   "A \<noteq> {} \<Longrightarrow> ereal_of_enat (SUP a:A. f a) = (SUP a : A. ereal_of_enat (f a))"
 | |
| 2376 | using ereal_of_enat_Sup[of "f`A"] by auto | |
| 45934 | 2377 | |
| 43920 | 2378 | subsection "Limits on @{typ ereal}"
 | 
| 41973 | 2379 | |
| 43920 | 2380 | lemma open_PInfty: "open A \<Longrightarrow> \<infinity> \<in> A \<Longrightarrow> (\<exists>x. {ereal x<..} \<subseteq> A)"
 | 
| 51000 | 2381 | unfolding open_ereal_generated | 
| 2382 | proof (induct rule: generate_topology.induct) | |
| 2383 | case (Int A B) | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 2384 |   then obtain x z where "\<infinity> \<in> A \<Longrightarrow> {ereal x <..} \<subseteq> A" "\<infinity> \<in> B \<Longrightarrow> {ereal z <..} \<subseteq> B"
 | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 2385 | by auto | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 2386 | with Int show ?case | 
| 51000 | 2387 | by (intro exI[of _ "max x z"]) fastforce | 
| 2388 | next | |
| 53873 | 2389 | case (Basis S) | 
| 2390 |   {
 | |
| 2391 | fix x | |
| 2392 | have "x \<noteq> \<infinity> \<Longrightarrow> \<exists>t. x \<le> ereal t" | |
| 2393 | by (cases x) auto | |
| 2394 | } | |
| 2395 | moreover note Basis | |
| 51000 | 2396 | ultimately show ?case | 
| 2397 | by (auto split: ereal.split) | |
| 2398 | qed (fastforce simp add: vimage_Union)+ | |
| 41973 | 2399 | |
| 43920 | 2400 | lemma open_MInfty: "open A \<Longrightarrow> -\<infinity> \<in> A \<Longrightarrow> (\<exists>x. {..<ereal x} \<subseteq> A)"
 | 
| 51000 | 2401 | unfolding open_ereal_generated | 
| 2402 | proof (induct rule: generate_topology.induct) | |
| 2403 | case (Int A B) | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 2404 |   then obtain x z where "-\<infinity> \<in> A \<Longrightarrow> {..< ereal x} \<subseteq> A" "-\<infinity> \<in> B \<Longrightarrow> {..< ereal z} \<subseteq> B"
 | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 2405 | by auto | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 2406 | with Int show ?case | 
| 51000 | 2407 | by (intro exI[of _ "min x z"]) fastforce | 
| 2408 | next | |
| 53873 | 2409 | case (Basis S) | 
| 2410 |   {
 | |
| 2411 | fix x | |
| 2412 | have "x \<noteq> - \<infinity> \<Longrightarrow> \<exists>t. ereal t \<le> x" | |
| 2413 | by (cases x) auto | |
| 2414 | } | |
| 2415 | moreover note Basis | |
| 51000 | 2416 | ultimately show ?case | 
| 2417 | by (auto split: ereal.split) | |
| 2418 | qed (fastforce simp add: vimage_Union)+ | |
| 2419 | ||
| 2420 | lemma open_ereal_vimage: "open S \<Longrightarrow> open (ereal -` S)" | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2421 | by (intro open_vimage continuous_intros) | 
| 51000 | 2422 | |
| 2423 | lemma open_ereal: "open S \<Longrightarrow> open (ereal ` S)" | |
| 2424 | unfolding open_generated_order[where 'a=real] | |
| 2425 | proof (induct rule: generate_topology.induct) | |
| 2426 | case (Basis S) | |
| 53873 | 2427 |   moreover {
 | 
| 2428 | fix x | |
| 2429 |     have "ereal ` {..< x} = { -\<infinity> <..< ereal x }"
 | |
| 2430 | apply auto | |
| 2431 | apply (case_tac xa) | |
| 2432 | apply auto | |
| 2433 | done | |
| 2434 | } | |
| 2435 |   moreover {
 | |
| 2436 | fix x | |
| 2437 |     have "ereal ` {x <..} = { ereal x <..< \<infinity> }"
 | |
| 2438 | apply auto | |
| 2439 | apply (case_tac xa) | |
| 2440 | apply auto | |
| 2441 | done | |
| 2442 | } | |
| 51000 | 2443 | ultimately show ?case | 
| 2444 | by auto | |
| 2445 | qed (auto simp add: image_Union image_Int) | |
| 2446 | ||
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2447 | |
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2448 | lemma eventually_finite: | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2449 | fixes x :: ereal | 
| 61973 | 2450 | assumes "\<bar>x\<bar> \<noteq> \<infinity>" "(f \<longlongrightarrow> x) F" | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2451 | shows "eventually (\<lambda>x. \<bar>f x\<bar> \<noteq> \<infinity>) F" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2452 | proof - | 
| 61973 | 2453 | have "(f \<longlongrightarrow> ereal (real_of_ereal x)) F" | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2454 | using assms by (cases x) auto | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2455 | then have "eventually (\<lambda>x. f x \<in> ereal ` UNIV) F" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2456 | by (rule topological_tendstoD) (auto intro: open_ereal) | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2457 | also have "(\<lambda>x. f x \<in> ereal ` UNIV) = (\<lambda>x. \<bar>f x\<bar> \<noteq> \<infinity>)" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2458 | by auto | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2459 | finally show ?thesis . | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2460 | qed | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2461 | |
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2462 | |
| 53873 | 2463 | lemma open_ereal_def: | 
| 2464 |   "open A \<longleftrightarrow> open (ereal -` A) \<and> (\<infinity> \<in> A \<longrightarrow> (\<exists>x. {ereal x <..} \<subseteq> A)) \<and> (-\<infinity> \<in> A \<longrightarrow> (\<exists>x. {..<ereal x} \<subseteq> A))"
 | |
| 51000 | 2465 | (is "open A \<longleftrightarrow> ?rhs") | 
| 2466 | proof | |
| 53873 | 2467 | assume "open A" | 
| 2468 | then show ?rhs | |
| 51000 | 2469 | using open_PInfty open_MInfty open_ereal_vimage by auto | 
| 2470 | next | |
| 2471 | assume "?rhs" | |
| 2472 |   then obtain x y where A: "open (ereal -` A)" "\<infinity> \<in> A \<Longrightarrow> {ereal x<..} \<subseteq> A" "-\<infinity> \<in> A \<Longrightarrow> {..< ereal y} \<subseteq> A"
 | |
| 2473 | by auto | |
| 2474 |   have *: "A = ereal ` (ereal -` A) \<union> (if \<infinity> \<in> A then {ereal x<..} else {}) \<union> (if -\<infinity> \<in> A then {..< ereal y} else {})"
 | |
| 2475 | using A(2,3) by auto | |
| 2476 | from open_ereal[OF A(1)] show "open A" | |
| 2477 | by (subst *) (auto simp: open_Un) | |
| 2478 | qed | |
| 41973 | 2479 | |
| 53873 | 2480 | lemma open_PInfty2: | 
| 2481 | assumes "open A" | |
| 2482 | and "\<infinity> \<in> A" | |
| 2483 |   obtains x where "{ereal x<..} \<subseteq> A"
 | |
| 41973 | 2484 | using open_PInfty[OF assms] by auto | 
| 2485 | ||
| 53873 | 2486 | lemma open_MInfty2: | 
| 2487 | assumes "open A" | |
| 2488 | and "-\<infinity> \<in> A" | |
| 2489 |   obtains x where "{..<ereal x} \<subseteq> A"
 | |
| 41973 | 2490 | using open_MInfty[OF assms] by auto | 
| 2491 | ||
| 53873 | 2492 | lemma ereal_openE: | 
| 2493 | assumes "open A" | |
| 2494 | obtains x y where "open (ereal -` A)" | |
| 2495 |     and "\<infinity> \<in> A \<Longrightarrow> {ereal x<..} \<subseteq> A"
 | |
| 2496 |     and "-\<infinity> \<in> A \<Longrightarrow> {..<ereal y} \<subseteq> A"
 | |
| 43920 | 2497 | using assms open_ereal_def by auto | 
| 41973 | 2498 | |
| 51000 | 2499 | lemmas open_ereal_lessThan = open_lessThan[where 'a=ereal] | 
| 2500 | lemmas open_ereal_greaterThan = open_greaterThan[where 'a=ereal] | |
| 2501 | lemmas ereal_open_greaterThanLessThan = open_greaterThanLessThan[where 'a=ereal] | |
| 2502 | lemmas closed_ereal_atLeast = closed_atLeast[where 'a=ereal] | |
| 2503 | lemmas closed_ereal_atMost = closed_atMost[where 'a=ereal] | |
| 2504 | lemmas closed_ereal_atLeastAtMost = closed_atLeastAtMost[where 'a=ereal] | |
| 2505 | lemmas closed_ereal_singleton = closed_singleton[where 'a=ereal] | |
| 53873 | 2506 | |
| 43920 | 2507 | lemma ereal_open_cont_interval: | 
| 43923 | 2508 | fixes S :: "ereal set" | 
| 53873 | 2509 | assumes "open S" | 
| 2510 | and "x \<in> S" | |
| 2511 | and "\<bar>x\<bar> \<noteq> \<infinity>" | |
| 2512 |   obtains e where "e > 0" and "{x-e <..< x+e} \<subseteq> S"
 | |
| 2513 | proof - | |
| 60500 | 2514 | from \<open>open S\<close> | 
| 53873 | 2515 | have "open (ereal -` S)" | 
| 2516 | by (rule ereal_openE) | |
| 63060 | 2517 | then obtain e where "e > 0" and e: "dist y (real_of_ereal x) < e \<Longrightarrow> ereal y \<in> S" for y | 
| 41980 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 2518 | using assms unfolding open_dist by force | 
| 41975 | 2519 | show thesis | 
| 2520 | proof (intro that subsetI) | |
| 53873 | 2521 | show "0 < ereal e" | 
| 60500 | 2522 | using \<open>0 < e\<close> by auto | 
| 53873 | 2523 | fix y | 
| 2524 |     assume "y \<in> {x - ereal e<..<x + ereal e}"
 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2525 | with assms obtain t where "y = ereal t" "dist t (real_of_ereal x) < e" | 
| 53873 | 2526 | by (cases y) (auto simp: dist_real_def) | 
| 2527 | then show "y \<in> S" | |
| 2528 | using e[of t] by auto | |
| 41975 | 2529 | qed | 
| 41973 | 2530 | qed | 
| 2531 | ||
| 43920 | 2532 | lemma ereal_open_cont_interval2: | 
| 43923 | 2533 | fixes S :: "ereal set" | 
| 53873 | 2534 | assumes "open S" | 
| 2535 | and "x \<in> S" | |
| 2536 | and x: "\<bar>x\<bar> \<noteq> \<infinity>" | |
| 2537 |   obtains a b where "a < x" and "x < b" and "{a <..< b} \<subseteq> S"
 | |
| 53381 | 2538 | proof - | 
| 2539 |   obtain e where "0 < e" "{x - e<..<x + e} \<subseteq> S"
 | |
| 2540 | using assms by (rule ereal_open_cont_interval) | |
| 53873 | 2541 | with that[of "x - e" "x + e"] ereal_between[OF x, of e] | 
| 2542 | show thesis | |
| 2543 | by auto | |
| 41973 | 2544 | qed | 
| 2545 | ||
| 60500 | 2546 | subsubsection \<open>Convergent sequences\<close> | 
| 41973 | 2547 | |
| 43920 | 2548 | lemma lim_real_of_ereal[simp]: | 
| 61973 | 2549 | assumes lim: "(f \<longlongrightarrow> ereal x) net" | 
| 2550 | shows "((\<lambda>x. real_of_ereal (f x)) \<longlongrightarrow> x) net" | |
| 41973 | 2551 | proof (intro topological_tendstoI) | 
| 53873 | 2552 | fix S | 
| 2553 | assume "open S" and "x \<in> S" | |
| 43920 | 2554 | then have S: "open S" "ereal x \<in> ereal ` S" | 
| 41973 | 2555 | by (simp_all add: inj_image_mem_iff) | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2556 | show "eventually (\<lambda>x. real_of_ereal (f x) \<in> S) net" | 
| 61810 | 2557 | by (auto intro: eventually_mono [OF lim[THEN topological_tendstoD, OF open_ereal, OF S]]) | 
| 41973 | 2558 | qed | 
| 2559 | ||
| 61973 | 2560 | lemma lim_ereal[simp]: "((\<lambda>n. ereal (f n)) \<longlongrightarrow> ereal x) net \<longleftrightarrow> (f \<longlongrightarrow> x) net" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2561 | by (auto dest!: lim_real_of_ereal) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2562 | |
| 61880 
ff4d33058566
moved some theorems from the CLT proof; reordered some theorems / notation
 hoelzl parents: 
61810diff
changeset | 2563 | lemma convergent_real_imp_convergent_ereal: | 
| 
ff4d33058566
moved some theorems from the CLT proof; reordered some theorems / notation
 hoelzl parents: 
61810diff
changeset | 2564 | assumes "convergent a" | 
| 
ff4d33058566
moved some theorems from the CLT proof; reordered some theorems / notation
 hoelzl parents: 
61810diff
changeset | 2565 | shows "convergent (\<lambda>n. ereal (a n))" and "lim (\<lambda>n. ereal (a n)) = ereal (lim a)" | 
| 
ff4d33058566
moved some theorems from the CLT proof; reordered some theorems / notation
 hoelzl parents: 
61810diff
changeset | 2566 | proof - | 
| 61969 | 2567 | from assms obtain L where L: "a \<longlonglongrightarrow> L" unfolding convergent_def .. | 
| 2568 | hence lim: "(\<lambda>n. ereal (a n)) \<longlonglongrightarrow> ereal L" using lim_ereal by auto | |
| 61880 
ff4d33058566
moved some theorems from the CLT proof; reordered some theorems / notation
 hoelzl parents: 
61810diff
changeset | 2569 | thus "convergent (\<lambda>n. ereal (a n))" unfolding convergent_def .. | 
| 
ff4d33058566
moved some theorems from the CLT proof; reordered some theorems / notation
 hoelzl parents: 
61810diff
changeset | 2570 | thus "lim (\<lambda>n. ereal (a n)) = ereal (lim a)" using lim L limI by metis | 
| 
ff4d33058566
moved some theorems from the CLT proof; reordered some theorems / notation
 hoelzl parents: 
61810diff
changeset | 2571 | qed | 
| 
ff4d33058566
moved some theorems from the CLT proof; reordered some theorems / notation
 hoelzl parents: 
61810diff
changeset | 2572 | |
| 61973 | 2573 | lemma tendsto_PInfty: "(f \<longlongrightarrow> \<infinity>) F \<longleftrightarrow> (\<forall>r. eventually (\<lambda>x. ereal r < f x) F)" | 
| 51022 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 2574 | proof - | 
| 53873 | 2575 |   {
 | 
| 2576 | fix l :: ereal | |
| 2577 | assume "\<forall>r. eventually (\<lambda>x. ereal r < f x) F" | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2578 | from this[THEN spec, of "real_of_ereal l"] have "l \<noteq> \<infinity> \<Longrightarrow> eventually (\<lambda>x. l < f x) F" | 
| 61810 | 2579 | by (cases l) (auto elim: eventually_mono) | 
| 53873 | 2580 | } | 
| 51022 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 2581 | then show ?thesis | 
| 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 2582 | by (auto simp: order_tendsto_iff) | 
| 41973 | 2583 | qed | 
| 2584 | ||
| 62049 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2585 | lemma tendsto_PInfty': "(f \<longlongrightarrow> \<infinity>) F = (\<forall>r>c. eventually (\<lambda>x. ereal r < f x) F)" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2586 | proof (subst tendsto_PInfty, intro iffI allI impI) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2587 | assume A: "\<forall>r>c. eventually (\<lambda>x. ereal r < f x) F" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2588 | fix r :: real | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2589 | from A have A: "eventually (\<lambda>x. ereal r < f x) F" if "r > c" for r using that by blast | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2590 | show "eventually (\<lambda>x. ereal r < f x) F" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2591 | proof (cases "r > c") | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2592 | case False | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2593 | hence B: "ereal r \<le> ereal (c + 1)" by simp | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2594 | have "c < c + 1" by simp | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2595 | from A[OF this] show "eventually (\<lambda>x. ereal r < f x) F" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2596 | by eventually_elim (rule le_less_trans[OF B]) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2597 | qed (simp add: A) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2598 | qed simp | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2599 | |
| 57025 | 2600 | lemma tendsto_PInfty_eq_at_top: | 
| 61973 | 2601 | "((\<lambda>z. ereal (f z)) \<longlongrightarrow> \<infinity>) F \<longleftrightarrow> (LIM z F. f z :> at_top)" | 
| 57025 | 2602 | unfolding tendsto_PInfty filterlim_at_top_dense by simp | 
| 2603 | ||
| 61973 | 2604 | lemma tendsto_MInfty: "(f \<longlongrightarrow> -\<infinity>) F \<longleftrightarrow> (\<forall>r. eventually (\<lambda>x. f x < ereal r) F)" | 
| 51000 | 2605 | unfolding tendsto_def | 
| 2606 | proof safe | |
| 53381 | 2607 | fix S :: "ereal set" | 
| 2608 | assume "open S" "-\<infinity> \<in> S" | |
| 2609 |   from open_MInfty[OF this] obtain B where "{..<ereal B} \<subseteq> S" ..
 | |
| 51000 | 2610 | moreover | 
| 2611 | assume "\<forall>r::real. eventually (\<lambda>z. f z < r) F" | |
| 53873 | 2612 |   then have "eventually (\<lambda>z. f z \<in> {..< B}) F"
 | 
| 2613 | by auto | |
| 2614 | ultimately show "eventually (\<lambda>z. f z \<in> S) F" | |
| 61810 | 2615 | by (auto elim!: eventually_mono) | 
| 51000 | 2616 | next | 
| 53873 | 2617 | fix x | 
| 2618 | assume "\<forall>S. open S \<longrightarrow> -\<infinity> \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) F" | |
| 2619 |   from this[rule_format, of "{..< ereal x}"] show "eventually (\<lambda>y. f y < ereal x) F"
 | |
| 2620 | by auto | |
| 41973 | 2621 | qed | 
| 2622 | ||
| 62049 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2623 | lemma tendsto_MInfty': "(f \<longlongrightarrow> -\<infinity>) F = (\<forall>r<c. eventually (\<lambda>x. ereal r > f x) F)" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2624 | proof (subst tendsto_MInfty, intro iffI allI impI) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2625 | assume A: "\<forall>r<c. eventually (\<lambda>x. ereal r > f x) F" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2626 | fix r :: real | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2627 | from A have A: "eventually (\<lambda>x. ereal r > f x) F" if "r < c" for r using that by blast | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2628 | show "eventually (\<lambda>x. ereal r > f x) F" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2629 | proof (cases "r < c") | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2630 | case False | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2631 | hence B: "ereal r \<ge> ereal (c - 1)" by simp | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2632 | have "c > c - 1" by simp | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2633 | from A[OF this] show "eventually (\<lambda>x. ereal r > f x) F" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2634 | by eventually_elim (erule less_le_trans[OF _ B]) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2635 | qed (simp add: A) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2636 | qed simp | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2637 | |
| 61969 | 2638 | lemma Lim_PInfty: "f \<longlonglongrightarrow> \<infinity> \<longleftrightarrow> (\<forall>B. \<exists>N. \<forall>n\<ge>N. f n \<ge> ereal B)" | 
| 51000 | 2639 | unfolding tendsto_PInfty eventually_sequentially | 
| 2640 | proof safe | |
| 53873 | 2641 | fix r | 
| 2642 | assume "\<forall>r. \<exists>N. \<forall>n\<ge>N. ereal r \<le> f n" | |
| 2643 | then obtain N where "\<forall>n\<ge>N. ereal (r + 1) \<le> f n" | |
| 2644 | by blast | |
| 2645 | moreover have "ereal r < ereal (r + 1)" | |
| 2646 | by auto | |
| 51000 | 2647 | ultimately show "\<exists>N. \<forall>n\<ge>N. ereal r < f n" | 
| 2648 | by (blast intro: less_le_trans) | |
| 2649 | qed (blast intro: less_imp_le) | |
| 41973 | 2650 | |
| 61969 | 2651 | lemma Lim_MInfty: "f \<longlonglongrightarrow> -\<infinity> \<longleftrightarrow> (\<forall>B. \<exists>N. \<forall>n\<ge>N. ereal B \<ge> f n)" | 
| 51000 | 2652 | unfolding tendsto_MInfty eventually_sequentially | 
| 2653 | proof safe | |
| 53873 | 2654 | fix r | 
| 2655 | assume "\<forall>r. \<exists>N. \<forall>n\<ge>N. f n \<le> ereal r" | |
| 2656 | then obtain N where "\<forall>n\<ge>N. f n \<le> ereal (r - 1)" | |
| 2657 | by blast | |
| 2658 | moreover have "ereal (r - 1) < ereal r" | |
| 2659 | by auto | |
| 51000 | 2660 | ultimately show "\<exists>N. \<forall>n\<ge>N. f n < ereal r" | 
| 2661 | by (blast intro: le_less_trans) | |
| 2662 | qed (blast intro: less_imp_le) | |
| 41973 | 2663 | |
| 61969 | 2664 | lemma Lim_bounded_PInfty: "f \<longlonglongrightarrow> l \<Longrightarrow> (\<And>n. f n \<le> ereal B) \<Longrightarrow> l \<noteq> \<infinity>" | 
| 51000 | 2665 | using LIMSEQ_le_const2[of f l "ereal B"] by auto | 
| 41973 | 2666 | |
| 61969 | 2667 | lemma Lim_bounded_MInfty: "f \<longlonglongrightarrow> l \<Longrightarrow> (\<And>n. ereal B \<le> f n) \<Longrightarrow> l \<noteq> -\<infinity>" | 
| 51000 | 2668 | using LIMSEQ_le_const[of f l "ereal B"] by auto | 
| 41973 | 2669 | |
| 62049 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2670 | lemma tendsto_zero_erealI: | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2671 | assumes "\<And>e. e > 0 \<Longrightarrow> eventually (\<lambda>x. \<bar>f x\<bar> < ereal e) F" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2672 | shows "(f \<longlongrightarrow> 0) F" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2673 | proof (subst filterlim_cong[OF refl refl]) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2674 | from assms[OF zero_less_one] show "eventually (\<lambda>x. f x = ereal (real_of_ereal (f x))) F" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2675 | by eventually_elim (auto simp: ereal_real) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2676 | hence "eventually (\<lambda>x. abs (real_of_ereal (f x)) < e) F" if "e > 0" for e using assms[OF that] | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2677 | by eventually_elim (simp add: real_less_ereal_iff that) | 
| 62369 | 2678 | hence "((\<lambda>x. real_of_ereal (f x)) \<longlongrightarrow> 0) F" unfolding tendsto_iff | 
| 62049 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2679 | by (auto simp: tendsto_iff dist_real_def) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2680 | thus "((\<lambda>x. ereal (real_of_ereal (f x))) \<longlongrightarrow> 0) F" by (simp add: zero_ereal_def) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2681 | qed | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 2682 | |
| 41973 | 2683 | lemma tendsto_explicit: | 
| 61969 | 2684 | "f \<longlonglongrightarrow> f0 \<longleftrightarrow> (\<forall>S. open S \<longrightarrow> f0 \<in> S \<longrightarrow> (\<exists>N. \<forall>n\<ge>N. f n \<in> S))" | 
| 41973 | 2685 | unfolding tendsto_def eventually_sequentially by auto | 
| 2686 | ||
| 61969 | 2687 | lemma Lim_bounded_PInfty2: "f \<longlonglongrightarrow> l \<Longrightarrow> \<forall>n\<ge>N. f n \<le> ereal B \<Longrightarrow> l \<noteq> \<infinity>" | 
| 51000 | 2688 | using LIMSEQ_le_const2[of f l "ereal B"] by fastforce | 
| 41973 | 2689 | |
| 61969 | 2690 | lemma Lim_bounded_ereal: "f \<longlonglongrightarrow> (l :: 'a::linorder_topology) \<Longrightarrow> \<forall>n\<ge>M. f n \<le> C \<Longrightarrow> l \<le> C" | 
| 51000 | 2691 | by (intro LIMSEQ_le_const2) auto | 
| 41973 | 2692 | |
| 51351 | 2693 | lemma Lim_bounded2_ereal: | 
| 61969 | 2694 | assumes lim:"f \<longlonglongrightarrow> (l :: 'a::linorder_topology)" | 
| 53873 | 2695 | and ge: "\<forall>n\<ge>N. f n \<ge> C" | 
| 2696 | shows "l \<ge> C" | |
| 51351 | 2697 | using ge | 
| 2698 | by (intro tendsto_le[OF trivial_limit_sequentially lim tendsto_const]) | |
| 2699 | (auto simp: eventually_sequentially) | |
| 2700 | ||
| 43920 | 2701 | lemma real_of_ereal_mult[simp]: | 
| 53873 | 2702 | fixes a b :: ereal | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2703 | shows "real_of_ereal (a * b) = real_of_ereal a * real_of_ereal b" | 
| 43920 | 2704 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 2705 | |
| 43920 | 2706 | lemma real_of_ereal_eq_0: | 
| 53873 | 2707 | fixes x :: ereal | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2708 | shows "real_of_ereal x = 0 \<longleftrightarrow> x = \<infinity> \<or> x = -\<infinity> \<or> x = 0" | 
| 41973 | 2709 | by (cases x) auto | 
| 2710 | ||
| 43920 | 2711 | lemma tendsto_ereal_realD: | 
| 2712 | fixes f :: "'a \<Rightarrow> ereal" | |
| 53873 | 2713 | assumes "x \<noteq> 0" | 
| 61973 | 2714 | and tendsto: "((\<lambda>x. ereal (real_of_ereal (f x))) \<longlongrightarrow> x) net" | 
| 2715 | shows "(f \<longlongrightarrow> x) net" | |
| 41973 | 2716 | proof (intro topological_tendstoI) | 
| 53873 | 2717 | fix S | 
| 2718 | assume S: "open S" "x \<in> S" | |
| 60500 | 2719 |   with \<open>x \<noteq> 0\<close> have "open (S - {0})" "x \<in> S - {0}"
 | 
| 53873 | 2720 | by auto | 
| 41973 | 2721 | from tendsto[THEN topological_tendstoD, OF this] | 
| 2722 | show "eventually (\<lambda>x. f x \<in> S) net" | |
| 44142 | 2723 | by (rule eventually_rev_mp) (auto simp: ereal_real) | 
| 41973 | 2724 | qed | 
| 2725 | ||
| 43920 | 2726 | lemma tendsto_ereal_realI: | 
| 2727 | fixes f :: "'a \<Rightarrow> ereal" | |
| 61973 | 2728 | assumes x: "\<bar>x\<bar> \<noteq> \<infinity>" and tendsto: "(f \<longlongrightarrow> x) net" | 
| 2729 | shows "((\<lambda>x. ereal (real_of_ereal (f x))) \<longlongrightarrow> x) net" | |
| 41973 | 2730 | proof (intro topological_tendstoI) | 
| 53873 | 2731 | fix S | 
| 2732 | assume "open S" and "x \<in> S" | |
| 2733 |   with x have "open (S - {\<infinity>, -\<infinity>})" "x \<in> S - {\<infinity>, -\<infinity>}"
 | |
| 2734 | by auto | |
| 41973 | 2735 | from tendsto[THEN topological_tendstoD, OF this] | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2736 | show "eventually (\<lambda>x. ereal (real_of_ereal (f x)) \<in> S) net" | 
| 61810 | 2737 | by (elim eventually_mono) (auto simp: ereal_real) | 
| 41973 | 2738 | qed | 
| 2739 | ||
| 43920 | 2740 | lemma ereal_mult_cancel_left: | 
| 53873 | 2741 | fixes a b c :: ereal | 
| 2742 | shows "a * b = a * c \<longleftrightarrow> (\<bar>a\<bar> = \<infinity> \<and> 0 < b * c) \<or> a = 0 \<or> b = c" | |
| 2743 | by (cases rule: ereal3_cases[of a b c]) (simp_all add: zero_less_mult_iff) | |
| 41973 | 2744 | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2745 | lemma tendsto_add_ereal: | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2746 | fixes x y :: ereal | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2747 | assumes x: "\<bar>x\<bar> \<noteq> \<infinity>" and y: "\<bar>y\<bar> \<noteq> \<infinity>" | 
| 61973 | 2748 | assumes f: "(f \<longlongrightarrow> x) F" and g: "(g \<longlongrightarrow> y) F" | 
| 2749 | shows "((\<lambda>x. f x + g x) \<longlongrightarrow> x + y) F" | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2750 | proof - | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2751 | from x obtain r where x': "x = ereal r" by (cases x) auto | 
| 61973 | 2752 | with f have "((\<lambda>i. real_of_ereal (f i)) \<longlongrightarrow> r) F" by simp | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2753 | moreover | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2754 | from y obtain p where y': "y = ereal p" by (cases y) auto | 
| 61973 | 2755 | with g have "((\<lambda>i. real_of_ereal (g i)) \<longlongrightarrow> p) F" by simp | 
| 2756 | ultimately have "((\<lambda>i. real_of_ereal (f i) + real_of_ereal (g i)) \<longlongrightarrow> r + p) F" | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2757 | by (rule tendsto_add) | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2758 | moreover | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2759 | from eventually_finite[OF x f] eventually_finite[OF y g] | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2760 | have "eventually (\<lambda>x. f x + g x = ereal (real_of_ereal (f x) + real_of_ereal (g x))) F" | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2761 | by eventually_elim auto | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2762 | ultimately show ?thesis | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2763 | by (simp add: x' y' cong: filterlim_cong) | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2764 | qed | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2765 | |
| 62371 | 2766 | lemma tendsto_add_ereal_nonneg: | 
| 2767 | fixes x y :: "ereal" | |
| 2768 | assumes "x \<noteq> -\<infinity>" "y \<noteq> -\<infinity>" "(f \<longlongrightarrow> x) F" "(g \<longlongrightarrow> y) F" | |
| 2769 | shows "((\<lambda>x. f x + g x) \<longlongrightarrow> x + y) F" | |
| 2770 | proof cases | |
| 2771 | assume "x = \<infinity> \<or> y = \<infinity>" | |
| 2772 | moreover | |
| 2773 |   { fix y :: ereal and f g :: "'a \<Rightarrow> ereal" assume "y \<noteq> -\<infinity>" "(f \<longlongrightarrow> \<infinity>) F" "(g \<longlongrightarrow> y) F"
 | |
| 2774 | then obtain y' where "-\<infinity> < y'" "y' < y" | |
| 2775 | using dense[of "-\<infinity>" y] by auto | |
| 2776 | have "((\<lambda>x. f x + g x) \<longlongrightarrow> \<infinity>) F" | |
| 2777 | proof (rule tendsto_sandwich) | |
| 2778 | have "\<forall>\<^sub>F x in F. y' < g x" | |
| 2779 | using order_tendstoD(1)[OF \<open>(g \<longlongrightarrow> y) F\<close> \<open>y' < y\<close>] by auto | |
| 2780 | then show "\<forall>\<^sub>F x in F. f x + y' \<le> f x + g x" | |
| 2781 | by eventually_elim (auto intro!: add_mono) | |
| 2782 | show "\<forall>\<^sub>F n in F. f n + g n \<le> \<infinity>" "((\<lambda>n. \<infinity>) \<longlongrightarrow> \<infinity>) F" | |
| 2783 | by auto | |
| 2784 | show "((\<lambda>x. f x + y') \<longlongrightarrow> \<infinity>) F" | |
| 2785 | using tendsto_cadd_ereal[of y' \<infinity> f F] \<open>(f \<longlongrightarrow> \<infinity>) F\<close> \<open>-\<infinity> < y'\<close> by auto | |
| 2786 | qed } | |
| 2787 | note this[of y f g] this[of x g f] | |
| 2788 | ultimately show ?thesis | |
| 2789 | using assms by (auto simp: add_ac) | |
| 2790 | next | |
| 2791 | assume "\<not> (x = \<infinity> \<or> y = \<infinity>)" | |
| 2792 | with assms tendsto_add_ereal[of x y f F g] | |
| 2793 | show ?thesis | |
| 2794 | by auto | |
| 2795 | qed | |
| 2796 | ||
| 43920 | 2797 | lemma ereal_inj_affinity: | 
| 43923 | 2798 | fixes m t :: ereal | 
| 53873 | 2799 | assumes "\<bar>m\<bar> \<noteq> \<infinity>" | 
| 2800 | and "m \<noteq> 0" | |
| 2801 | and "\<bar>t\<bar> \<noteq> \<infinity>" | |
| 41973 | 2802 | shows "inj_on (\<lambda>x. m * x + t) A" | 
| 2803 | using assms | |
| 43920 | 2804 | by (cases rule: ereal2_cases[of m t]) | 
| 2805 | (auto intro!: inj_onI simp: ereal_add_cancel_right ereal_mult_cancel_left) | |
| 41973 | 2806 | |
| 43920 | 2807 | lemma ereal_PInfty_eq_plus[simp]: | 
| 43923 | 2808 | fixes a b :: ereal | 
| 41973 | 2809 | shows "\<infinity> = a + b \<longleftrightarrow> a = \<infinity> \<or> b = \<infinity>" | 
| 43920 | 2810 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 2811 | |
| 43920 | 2812 | lemma ereal_MInfty_eq_plus[simp]: | 
| 43923 | 2813 | fixes a b :: ereal | 
| 41973 | 2814 | shows "-\<infinity> = a + b \<longleftrightarrow> (a = -\<infinity> \<and> b \<noteq> \<infinity>) \<or> (b = -\<infinity> \<and> a \<noteq> \<infinity>)" | 
| 43920 | 2815 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 2816 | |
| 43920 | 2817 | lemma ereal_less_divide_pos: | 
| 43923 | 2818 | fixes x y :: ereal | 
| 2819 | shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y < z / x \<longleftrightarrow> x * y < z" | |
| 43920 | 2820 | by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps) | 
| 41973 | 2821 | |
| 43920 | 2822 | lemma ereal_divide_less_pos: | 
| 43923 | 2823 | fixes x y z :: ereal | 
| 2824 | shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y / x < z \<longleftrightarrow> y < x * z" | |
| 43920 | 2825 | by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps) | 
| 41973 | 2826 | |
| 43920 | 2827 | lemma ereal_divide_eq: | 
| 43923 | 2828 | fixes a b c :: ereal | 
| 2829 | shows "b \<noteq> 0 \<Longrightarrow> \<bar>b\<bar> \<noteq> \<infinity> \<Longrightarrow> a / b = c \<longleftrightarrow> a = b * c" | |
| 43920 | 2830 | by (cases rule: ereal3_cases[of a b c]) | 
| 41973 | 2831 | (simp_all add: field_simps) | 
| 2832 | ||
| 43923 | 2833 | lemma ereal_inverse_not_MInfty[simp]: "inverse (a::ereal) \<noteq> -\<infinity>" | 
| 41973 | 2834 | by (cases a) auto | 
| 2835 | ||
| 43920 | 2836 | lemma ereal_mult_m1[simp]: "x * ereal (-1) = -x" | 
| 41973 | 2837 | by (cases x) auto | 
| 2838 | ||
| 53873 | 2839 | lemma ereal_real': | 
| 2840 | assumes "\<bar>x\<bar> \<noteq> \<infinity>" | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2841 | shows "ereal (real_of_ereal x) = x" | 
| 41976 | 2842 | using assms by auto | 
| 41973 | 2843 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2844 | lemma real_ereal_id: "real_of_ereal \<circ> ereal = id" | 
| 53873 | 2845 | proof - | 
| 2846 |   {
 | |
| 2847 | fix x | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2848 | have "(real_of_ereal o ereal) x = id x" | 
| 53873 | 2849 | by auto | 
| 2850 | } | |
| 2851 | then show ?thesis | |
| 2852 | using ext by blast | |
| 41973 | 2853 | qed | 
| 2854 | ||
| 43923 | 2855 | lemma open_image_ereal: "open(UNIV-{ \<infinity> , (-\<infinity> :: ereal)})"
 | 
| 53873 | 2856 | by (metis range_ereal open_ereal open_UNIV) | 
| 41973 | 2857 | |
| 43920 | 2858 | lemma ereal_le_distrib: | 
| 53873 | 2859 | fixes a b c :: ereal | 
| 2860 | shows "c * (a + b) \<le> c * a + c * b" | |
| 43920 | 2861 | by (cases rule: ereal3_cases[of a b c]) | 
| 41973 | 2862 | (auto simp add: field_simps not_le mult_le_0_iff mult_less_0_iff) | 
| 2863 | ||
| 43920 | 2864 | lemma ereal_pos_distrib: | 
| 53873 | 2865 | fixes a b c :: ereal | 
| 2866 | assumes "0 \<le> c" | |
| 2867 | and "c \<noteq> \<infinity>" | |
| 2868 | shows "c * (a + b) = c * a + c * b" | |
| 2869 | using assms | |
| 2870 | by (cases rule: ereal3_cases[of a b c]) | |
| 2871 | (auto simp add: field_simps not_le mult_le_0_iff mult_less_0_iff) | |
| 41973 | 2872 | |
| 53873 | 2873 | lemma ereal_max_mono: "(a::ereal) \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> max a c \<le> max b d" | 
| 43920 | 2874 | by (metis sup_ereal_def sup_mono) | 
| 41973 | 2875 | |
| 53873 | 2876 | lemma ereal_max_least: "(a::ereal) \<le> x \<Longrightarrow> c \<le> x \<Longrightarrow> max a c \<le> x" | 
| 43920 | 2877 | by (metis sup_ereal_def sup_least) | 
| 41973 | 2878 | |
| 51000 | 2879 | lemma ereal_LimI_finite: | 
| 2880 | fixes x :: ereal | |
| 2881 | assumes "\<bar>x\<bar> \<noteq> \<infinity>" | |
| 53873 | 2882 | and "\<And>r. 0 < r \<Longrightarrow> \<exists>N. \<forall>n\<ge>N. u n < x + r \<and> x < u n + r" | 
| 61969 | 2883 | shows "u \<longlonglongrightarrow> x" | 
| 51000 | 2884 | proof (rule topological_tendstoI, unfold eventually_sequentially) | 
| 53873 | 2885 | obtain rx where rx: "x = ereal rx" | 
| 2886 | using assms by (cases x) auto | |
| 2887 | fix S | |
| 2888 | assume "open S" and "x \<in> S" | |
| 2889 | then have "open (ereal -` S)" | |
| 2890 | unfolding open_ereal_def by auto | |
| 63060 | 2891 | with \<open>x \<in> S\<close> obtain r where "0 < r" and dist: "dist y rx < r \<Longrightarrow> ereal y \<in> S" for y | 
| 62101 | 2892 | unfolding open_dist rx by auto | 
| 63060 | 2893 | then obtain n | 
| 2894 | where upper: "u N < x + ereal r" | |
| 2895 | and lower: "x < u N + ereal r" | |
| 2896 | if "n \<le> N" for N | |
| 53873 | 2897 | using assms(2)[of "ereal r"] by auto | 
| 2898 | show "\<exists>N. \<forall>n\<ge>N. u n \<in> S" | |
| 51000 | 2899 | proof (safe intro!: exI[of _ n]) | 
| 53873 | 2900 | fix N | 
| 2901 | assume "n \<le> N" | |
| 60500 | 2902 | from upper[OF this] lower[OF this] assms \<open>0 < r\<close> | 
| 53873 | 2903 |     have "u N \<notin> {\<infinity>,(-\<infinity>)}"
 | 
| 2904 | by auto | |
| 2905 | then obtain ra where ra_def: "(u N) = ereal ra" | |
| 2906 | by (cases "u N") auto | |
| 2907 | then have "rx < ra + r" and "ra < rx + r" | |
| 60500 | 2908 | using rx assms \<open>0 < r\<close> lower[OF \<open>n \<le> N\<close>] upper[OF \<open>n \<le> N\<close>] | 
| 53873 | 2909 | by auto | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 2910 | then have "dist (real_of_ereal (u N)) rx < r" | 
| 53873 | 2911 | using rx ra_def | 
| 51000 | 2912 | by (auto simp: dist_real_def abs_diff_less_iff field_simps) | 
| 53873 | 2913 | from dist[OF this] show "u N \<in> S" | 
| 60500 | 2914 |       using \<open>u N  \<notin> {\<infinity>, -\<infinity>}\<close>
 | 
| 62390 | 2915 | by (auto simp: ereal_real split: if_split_asm) | 
| 51000 | 2916 | qed | 
| 2917 | qed | |
| 2918 | ||
| 2919 | lemma tendsto_obtains_N: | |
| 61969 | 2920 | assumes "f \<longlonglongrightarrow> f0" | 
| 53873 | 2921 | assumes "open S" | 
| 2922 | and "f0 \<in> S" | |
| 2923 | obtains N where "\<forall>n\<ge>N. f n \<in> S" | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 2924 | using assms using tendsto_def | 
| 51000 | 2925 | using tendsto_explicit[of f f0] assms by auto | 
| 2926 | ||
| 2927 | lemma ereal_LimI_finite_iff: | |
| 2928 | fixes x :: ereal | |
| 2929 | assumes "\<bar>x\<bar> \<noteq> \<infinity>" | |
| 61969 | 2930 | shows "u \<longlonglongrightarrow> x \<longleftrightarrow> (\<forall>r. 0 < r \<longrightarrow> (\<exists>N. \<forall>n\<ge>N. u n < x + r \<and> x < u n + r))" | 
| 53873 | 2931 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 51000 | 2932 | proof | 
| 61969 | 2933 | assume lim: "u \<longlonglongrightarrow> x" | 
| 53873 | 2934 |   {
 | 
| 2935 | fix r :: ereal | |
| 2936 | assume "r > 0" | |
| 2937 |     then obtain N where "\<forall>n\<ge>N. u n \<in> {x - r <..< x + r}"
 | |
| 51000 | 2938 |        apply (subst tendsto_obtains_N[of u x "{x - r <..< x + r}"])
 | 
| 60500 | 2939 | using lim ereal_between[of x r] assms \<open>r > 0\<close> | 
| 53873 | 2940 | apply auto | 
| 2941 | done | |
| 2942 | then have "\<exists>N. \<forall>n\<ge>N. u n < x + r \<and> x < u n + r" | |
| 2943 | using ereal_minus_less[of r x] | |
| 2944 | by (cases r) auto | |
| 2945 | } | |
| 2946 | then show ?rhs | |
| 2947 | by auto | |
| 51000 | 2948 | next | 
| 53873 | 2949 | assume ?rhs | 
| 61969 | 2950 | then show "u \<longlonglongrightarrow> x" | 
| 51000 | 2951 | using ereal_LimI_finite[of x] assms by auto | 
| 2952 | qed | |
| 2953 | ||
| 51340 
5e6296afe08d
move Liminf / Limsup lemmas on complete_lattices to its own file
 hoelzl parents: 
51329diff
changeset | 2954 | lemma ereal_Limsup_uminus: | 
| 53873 | 2955 | fixes f :: "'a \<Rightarrow> ereal" | 
| 2956 | shows "Limsup net (\<lambda>x. - (f x)) = - Liminf net f" | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2957 | unfolding Limsup_def Liminf_def ereal_SUP_uminus ereal_INF_uminus_eq .. | 
| 51000 | 2958 | |
| 51340 
5e6296afe08d
move Liminf / Limsup lemmas on complete_lattices to its own file
 hoelzl parents: 
51329diff
changeset | 2959 | lemma liminf_bounded_iff: | 
| 
5e6296afe08d
move Liminf / Limsup lemmas on complete_lattices to its own file
 hoelzl parents: 
51329diff
changeset | 2960 | fixes x :: "nat \<Rightarrow> ereal" | 
| 53873 | 2961 | shows "C \<le> liminf x \<longleftrightarrow> (\<forall>B<C. \<exists>N. \<forall>n\<ge>N. B < x n)" | 
| 2962 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 51340 
5e6296afe08d
move Liminf / Limsup lemmas on complete_lattices to its own file
 hoelzl parents: 
51329diff
changeset | 2963 | unfolding le_Liminf_iff eventually_sequentially .. | 
| 51000 | 2964 | |
| 59679 | 2965 | lemma Liminf_add_le: | 
| 2966 | fixes f g :: "_ \<Rightarrow> ereal" | |
| 2967 | assumes F: "F \<noteq> bot" | |
| 2968 | assumes ev: "eventually (\<lambda>x. 0 \<le> f x) F" "eventually (\<lambda>x. 0 \<le> g x) F" | |
| 2969 | shows "Liminf F f + Liminf F g \<le> Liminf F (\<lambda>x. f x + g x)" | |
| 2970 | unfolding Liminf_def | |
| 2971 | proof (subst SUP_ereal_add_left[symmetric]) | |
| 2972 |   let ?F = "{P. eventually P F}"
 | |
| 2973 | let ?INF = "\<lambda>P g. INFIMUM (Collect P) g" | |
| 2974 |   show "?F \<noteq> {}"
 | |
| 2975 | by (auto intro: eventually_True) | |
| 2976 | show "(SUP P:?F. ?INF P g) \<noteq> - \<infinity>" | |
| 2977 | unfolding bot_ereal_def[symmetric] SUP_bot_conv INF_eq_bot_iff | |
| 2978 | by (auto intro!: exI[of _ 0] ev simp: bot_ereal_def) | |
| 2979 | have "(SUP P:?F. ?INF P f + (SUP P:?F. ?INF P g)) \<le> (SUP P:?F. (SUP P':?F. ?INF P f + ?INF P' g))" | |
| 2980 | proof (safe intro!: SUP_mono bexI[of _ "\<lambda>x. P x \<and> 0 \<le> f x" for P]) | |
| 2981 | fix P let ?P' = "\<lambda>x. P x \<and> 0 \<le> f x" | |
| 2982 | assume "eventually P F" | |
| 2983 | with ev show "eventually ?P' F" | |
| 2984 | by eventually_elim auto | |
| 2985 | have "?INF P f + (SUP P:?F. ?INF P g) \<le> ?INF ?P' f + (SUP P:?F. ?INF P g)" | |
| 2986 | by (intro ereal_add_mono INF_mono) auto | |
| 2987 | also have "\<dots> = (SUP P':?F. ?INF ?P' f + ?INF P' g)" | |
| 2988 | proof (rule SUP_ereal_add_right[symmetric]) | |
| 2989 |       show "INFIMUM {x. P x \<and> 0 \<le> f x} f \<noteq> - \<infinity>"
 | |
| 2990 | unfolding bot_ereal_def[symmetric] INF_eq_bot_iff | |
| 2991 | by (auto intro!: exI[of _ 0] ev simp: bot_ereal_def) | |
| 2992 | qed fact | |
| 2993 | finally show "?INF P f + (SUP P:?F. ?INF P g) \<le> (SUP P':?F. ?INF ?P' f + ?INF P' g)" . | |
| 2994 | qed | |
| 2995 | also have "\<dots> \<le> (SUP P:?F. INF x:Collect P. f x + g x)" | |
| 2996 | proof (safe intro!: SUP_least) | |
| 2997 | fix P Q assume *: "eventually P F" "eventually Q F" | |
| 2998 | show "?INF P f + ?INF Q g \<le> (SUP P:?F. INF x:Collect P. f x + g x)" | |
| 2999 | proof (rule SUP_upper2) | |
| 3000 | show "(\<lambda>x. P x \<and> Q x) \<in> ?F" | |
| 3001 | using * by (auto simp: eventually_conj) | |
| 3002 |       show "?INF P f + ?INF Q g \<le> (INF x:{x. P x \<and> Q x}. f x + g x)"
 | |
| 3003 | by (intro INF_greatest ereal_add_mono) (auto intro: INF_lower) | |
| 3004 | qed | |
| 3005 | qed | |
| 3006 | finally show "(SUP P:?F. ?INF P f + (SUP P:?F. ?INF P g)) \<le> (SUP P:?F. INF x:Collect P. f x + g x)" . | |
| 3007 | qed | |
| 3008 | ||
| 60060 | 3009 | lemma Sup_ereal_mult_right': | 
| 3010 |   assumes nonempty: "Y \<noteq> {}"
 | |
| 3011 | and x: "x \<ge> 0" | |
| 3012 | shows "(SUP i:Y. f i) * ereal x = (SUP i:Y. f i * ereal x)" (is "?lhs = ?rhs") | |
| 3013 | proof(cases "x = 0") | |
| 3014 | case True thus ?thesis by(auto simp add: nonempty zero_ereal_def[symmetric]) | |
| 3015 | next | |
| 3016 | case False | |
| 3017 | show ?thesis | |
| 3018 | proof(rule antisym) | |
| 3019 | show "?rhs \<le> ?lhs" | |
| 3020 | by(rule SUP_least)(simp add: ereal_mult_right_mono SUP_upper x) | |
| 3021 | next | |
| 3022 | have "?lhs / ereal x = (SUP i:Y. f i) * (ereal x / ereal x)" by(simp only: ereal_times_divide_eq) | |
| 3023 | also have "\<dots> = (SUP i:Y. f i)" using False by simp | |
| 3024 | also have "\<dots> \<le> ?rhs / x" | |
| 3025 | proof(rule SUP_least) | |
| 3026 | fix i | |
| 3027 | assume "i \<in> Y" | |
| 3028 | have "f i = f i * (ereal x / ereal x)" using False by simp | |
| 3029 | also have "\<dots> = f i * x / x" by(simp only: ereal_times_divide_eq) | |
| 3030 | also from \<open>i \<in> Y\<close> have "f i * x \<le> ?rhs" by(rule SUP_upper) | |
| 3031 | hence "f i * x / x \<le> ?rhs / x" using x False by simp | |
| 3032 | finally show "f i \<le> ?rhs / x" . | |
| 3033 | qed | |
| 3034 | finally have "(?lhs / x) * x \<le> (?rhs / x) * x" | |
| 3035 | by(rule ereal_mult_right_mono)(simp add: x) | |
| 3036 | also have "\<dots> = ?rhs" using False ereal_divide_eq mult.commute by force | |
| 3037 | also have "(?lhs / x) * x = ?lhs" using False ereal_divide_eq mult.commute by force | |
| 3038 | finally show "?lhs \<le> ?rhs" . | |
| 3039 | qed | |
| 3040 | qed | |
| 53873 | 3041 | |
| 61631 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 3042 | lemma Sup_ereal_mult_left': | 
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 3043 |   "\<lbrakk> Y \<noteq> {}; x \<ge> 0 \<rbrakk> \<Longrightarrow> ereal x * (SUP i:Y. f i) = (SUP i:Y. ereal x * f i)"
 | 
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 3044 | by(subst (1 2) mult.commute)(rule Sup_ereal_mult_right') | 
| 
4f7ef088c4ed
add lemmas for extended nats and reals
 Andreas Lochbihler parents: 
61610diff
changeset | 3045 | |
| 60637 | 3046 | lemma sup_continuous_add[order_continuous_intros]: | 
| 3047 | fixes f g :: "'a::complete_lattice \<Rightarrow> ereal" | |
| 3048 | assumes nn: "\<And>x. 0 \<le> f x" "\<And>x. 0 \<le> g x" and cont: "sup_continuous f" "sup_continuous g" | |
| 3049 | shows "sup_continuous (\<lambda>x. f x + g x)" | |
| 3050 | unfolding sup_continuous_def | |
| 3051 | proof safe | |
| 3052 | fix M :: "nat \<Rightarrow> 'a" assume "incseq M" | |
| 3053 | then show "f (SUP i. M i) + g (SUP i. M i) = (SUP i. f (M i) + g (M i))" | |
| 3054 | using SUP_ereal_add_pos[of "\<lambda>i. f (M i)" "\<lambda>i. g (M i)"] nn | |
| 3055 | cont[THEN sup_continuous_mono] cont[THEN sup_continuousD] | |
| 3056 | by (auto simp: mono_def) | |
| 3057 | qed | |
| 3058 | ||
| 3059 | lemma sup_continuous_mult_right[order_continuous_intros]: | |
| 3060 | "0 \<le> c \<Longrightarrow> c < \<infinity> \<Longrightarrow> sup_continuous f \<Longrightarrow> sup_continuous (\<lambda>x. f x * c :: ereal)" | |
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60580diff
changeset | 3061 | by (cases c) (auto simp: sup_continuous_def fun_eq_iff Sup_ereal_mult_right') | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60580diff
changeset | 3062 | |
| 60637 | 3063 | lemma sup_continuous_mult_left[order_continuous_intros]: | 
| 3064 | "0 \<le> c \<Longrightarrow> c < \<infinity> \<Longrightarrow> sup_continuous f \<Longrightarrow> sup_continuous (\<lambda>x. c * f x :: ereal)" | |
| 3065 | using sup_continuous_mult_right[of c f] by (simp add: mult_ac) | |
| 3066 | ||
| 3067 | lemma sup_continuous_ereal_of_enat[order_continuous_intros]: | |
| 3068 | assumes f: "sup_continuous f" shows "sup_continuous (\<lambda>x. ereal_of_enat (f x))" | |
| 3069 | by (rule sup_continuous_compose[OF _ f]) | |
| 3070 | (auto simp: sup_continuous_def ereal_of_enat_SUP) | |
| 3071 | ||
| 60771 | 3072 | subsubsection \<open>Sums\<close> | 
| 3073 | ||
| 3074 | lemma sums_ereal_positive: | |
| 3075 | fixes f :: "nat \<Rightarrow> ereal" | |
| 3076 | assumes "\<And>i. 0 \<le> f i" | |
| 3077 | shows "f sums (SUP n. \<Sum>i<n. f i)" | |
| 3078 | proof - | |
| 3079 | have "incseq (\<lambda>i. \<Sum>j=0..<i. f j)" | |
| 3080 | using ereal_add_mono[OF _ assms] | |
| 3081 | by (auto intro!: incseq_SucI) | |
| 3082 | from LIMSEQ_SUP[OF this] | |
| 3083 | show ?thesis unfolding sums_def | |
| 3084 | by (simp add: atLeast0LessThan) | |
| 3085 | qed | |
| 3086 | ||
| 3087 | lemma summable_ereal_pos: | |
| 3088 | fixes f :: "nat \<Rightarrow> ereal" | |
| 3089 | assumes "\<And>i. 0 \<le> f i" | |
| 3090 | shows "summable f" | |
| 3091 | using sums_ereal_positive[of f, OF assms] | |
| 3092 | unfolding summable_def | |
| 3093 | by auto | |
| 3094 | ||
| 3095 | lemma sums_ereal: "(\<lambda>x. ereal (f x)) sums ereal x \<longleftrightarrow> f sums x" | |
| 3096 | unfolding sums_def by simp | |
| 3097 | ||
| 3098 | lemma suminf_ereal_eq_SUP: | |
| 3099 | fixes f :: "nat \<Rightarrow> ereal" | |
| 3100 | assumes "\<And>i. 0 \<le> f i" | |
| 3101 | shows "(\<Sum>x. f x) = (SUP n. \<Sum>i<n. f i)" | |
| 3102 | using sums_ereal_positive[of f, OF assms, THEN sums_unique] | |
| 3103 | by simp | |
| 3104 | ||
| 3105 | lemma suminf_bound: | |
| 3106 | fixes f :: "nat \<Rightarrow> ereal" | |
| 3107 | assumes "\<forall>N. (\<Sum>n<N. f n) \<le> x" | |
| 3108 | and pos: "\<And>n. 0 \<le> f n" | |
| 3109 | shows "suminf f \<le> x" | |
| 3110 | proof (rule Lim_bounded_ereal) | |
| 3111 | have "summable f" using pos[THEN summable_ereal_pos] . | |
| 61969 | 3112 | then show "(\<lambda>N. \<Sum>n<N. f n) \<longlonglongrightarrow> suminf f" | 
| 60771 | 3113 | by (auto dest!: summable_sums simp: sums_def atLeast0LessThan) | 
| 64267 | 3114 |   show "\<forall>n\<ge>0. sum f {..<n} \<le> x"
 | 
| 60771 | 3115 | using assms by auto | 
| 3116 | qed | |
| 3117 | ||
| 3118 | lemma suminf_bound_add: | |
| 3119 | fixes f :: "nat \<Rightarrow> ereal" | |
| 3120 | assumes "\<forall>N. (\<Sum>n<N. f n) + y \<le> x" | |
| 3121 | and pos: "\<And>n. 0 \<le> f n" | |
| 3122 | and "y \<noteq> -\<infinity>" | |
| 3123 | shows "suminf f + y \<le> x" | |
| 3124 | proof (cases y) | |
| 3125 | case (real r) | |
| 3126 | then have "\<forall>N. (\<Sum>n<N. f n) \<le> x - y" | |
| 3127 | using assms by (simp add: ereal_le_minus) | |
| 3128 | then have "(\<Sum> n. f n) \<le> x - y" | |
| 3129 | using pos by (rule suminf_bound) | |
| 3130 | then show "(\<Sum> n. f n) + y \<le> x" | |
| 3131 | using assms real by (simp add: ereal_le_minus) | |
| 3132 | qed (insert assms, auto) | |
| 3133 | ||
| 3134 | lemma suminf_upper: | |
| 3135 | fixes f :: "nat \<Rightarrow> ereal" | |
| 3136 | assumes "\<And>n. 0 \<le> f n" | |
| 3137 | shows "(\<Sum>n<N. f n) \<le> (\<Sum>n. f n)" | |
| 3138 | unfolding suminf_ereal_eq_SUP [OF assms] | |
| 3139 | by (auto intro: complete_lattice_class.SUP_upper) | |
| 3140 | ||
| 3141 | lemma suminf_0_le: | |
| 3142 | fixes f :: "nat \<Rightarrow> ereal" | |
| 3143 | assumes "\<And>n. 0 \<le> f n" | |
| 3144 | shows "0 \<le> (\<Sum>n. f n)" | |
| 3145 | using suminf_upper[of f 0, OF assms] | |
| 3146 | by simp | |
| 3147 | ||
| 3148 | lemma suminf_le_pos: | |
| 3149 | fixes f g :: "nat \<Rightarrow> ereal" | |
| 3150 | assumes "\<And>N. f N \<le> g N" | |
| 3151 | and "\<And>N. 0 \<le> f N" | |
| 3152 | shows "suminf f \<le> suminf g" | |
| 3153 | proof (safe intro!: suminf_bound) | |
| 3154 | fix n | |
| 3155 |   {
 | |
| 3156 | fix N | |
| 3157 | have "0 \<le> g N" | |
| 3158 | using assms(2,1)[of N] by auto | |
| 3159 | } | |
| 64267 | 3160 |   have "sum f {..<n} \<le> sum g {..<n}"
 | 
| 3161 | using assms by (auto intro: sum_mono) | |
| 60771 | 3162 | also have "\<dots> \<le> suminf g" | 
| 3163 | using \<open>\<And>N. 0 \<le> g N\<close> | |
| 3164 | by (rule suminf_upper) | |
| 64267 | 3165 |   finally show "sum f {..<n} \<le> suminf g" .
 | 
| 60771 | 3166 | qed (rule assms(2)) | 
| 3167 | ||
| 3168 | lemma suminf_half_series_ereal: "(\<Sum>n. (1/2 :: ereal) ^ Suc n) = 1" | |
| 3169 | using sums_ereal[THEN iffD2, OF power_half_series, THEN sums_unique, symmetric] | |
| 3170 | by (simp add: one_ereal_def) | |
| 3171 | ||
| 3172 | lemma suminf_add_ereal: | |
| 3173 | fixes f g :: "nat \<Rightarrow> ereal" | |
| 3174 | assumes "\<And>i. 0 \<le> f i" | |
| 3175 | and "\<And>i. 0 \<le> g i" | |
| 3176 | shows "(\<Sum>i. f i + g i) = suminf f + suminf g" | |
| 3177 | apply (subst (1 2 3) suminf_ereal_eq_SUP) | |
| 64267 | 3178 | unfolding sum.distrib | 
| 3179 | apply (intro assms ereal_add_nonneg_nonneg SUP_ereal_add_pos incseq_sumI sum_nonneg ballI)+ | |
| 60771 | 3180 | done | 
| 3181 | ||
| 3182 | lemma suminf_cmult_ereal: | |
| 3183 | fixes f g :: "nat \<Rightarrow> ereal" | |
| 3184 | assumes "\<And>i. 0 \<le> f i" | |
| 3185 | and "0 \<le> a" | |
| 3186 | shows "(\<Sum>i. a * f i) = a * suminf f" | |
| 64267 | 3187 | by (auto simp: sum_ereal_right_distrib[symmetric] assms | 
| 3188 | ereal_zero_le_0_iff sum_nonneg suminf_ereal_eq_SUP | |
| 60771 | 3189 | intro!: SUP_ereal_mult_left) | 
| 3190 | ||
| 3191 | lemma suminf_PInfty: | |
| 3192 | fixes f :: "nat \<Rightarrow> ereal" | |
| 3193 | assumes "\<And>i. 0 \<le> f i" | |
| 3194 | and "suminf f \<noteq> \<infinity>" | |
| 3195 | shows "f i \<noteq> \<infinity>" | |
| 3196 | proof - | |
| 3197 | from suminf_upper[of f "Suc i", OF assms(1)] assms(2) | |
| 3198 | have "(\<Sum>i<Suc i. f i) \<noteq> \<infinity>" | |
| 3199 | by auto | |
| 3200 | then show ?thesis | |
| 64267 | 3201 | unfolding sum_Pinfty by simp | 
| 60771 | 3202 | qed | 
| 3203 | ||
| 3204 | lemma suminf_PInfty_fun: | |
| 3205 | assumes "\<And>i. 0 \<le> f i" | |
| 3206 | and "suminf f \<noteq> \<infinity>" | |
| 3207 | shows "\<exists>f'. f = (\<lambda>x. ereal (f' x))" | |
| 3208 | proof - | |
| 3209 | have "\<forall>i. \<exists>r. f i = ereal r" | |
| 3210 | proof | |
| 3211 | fix i | |
| 3212 | show "\<exists>r. f i = ereal r" | |
| 3213 | using suminf_PInfty[OF assms] assms(1)[of i] | |
| 3214 | by (cases "f i") auto | |
| 3215 | qed | |
| 3216 | from choice[OF this] show ?thesis | |
| 3217 | by auto | |
| 3218 | qed | |
| 3219 | ||
| 3220 | lemma summable_ereal: | |
| 3221 | assumes "\<And>i. 0 \<le> f i" | |
| 3222 | and "(\<Sum>i. ereal (f i)) \<noteq> \<infinity>" | |
| 3223 | shows "summable f" | |
| 3224 | proof - | |
| 3225 | have "0 \<le> (\<Sum>i. ereal (f i))" | |
| 3226 | using assms by (intro suminf_0_le) auto | |
| 3227 | with assms obtain r where r: "(\<Sum>i. ereal (f i)) = ereal r" | |
| 3228 | by (cases "\<Sum>i. ereal (f i)") auto | |
| 3229 | from summable_ereal_pos[of "\<lambda>x. ereal (f x)"] | |
| 3230 | have "summable (\<lambda>x. ereal (f x))" | |
| 3231 | using assms by auto | |
| 3232 | from summable_sums[OF this] | |
| 3233 | have "(\<lambda>x. ereal (f x)) sums (\<Sum>x. ereal (f x))" | |
| 3234 | by auto | |
| 3235 | then show "summable f" | |
| 3236 | unfolding r sums_ereal summable_def .. | |
| 3237 | qed | |
| 3238 | ||
| 3239 | lemma suminf_ereal: | |
| 3240 | assumes "\<And>i. 0 \<le> f i" | |
| 3241 | and "(\<Sum>i. ereal (f i)) \<noteq> \<infinity>" | |
| 3242 | shows "(\<Sum>i. ereal (f i)) = ereal (suminf f)" | |
| 3243 | proof (rule sums_unique[symmetric]) | |
| 3244 | from summable_ereal[OF assms] | |
| 3245 | show "(\<lambda>x. ereal (f x)) sums (ereal (suminf f))" | |
| 3246 | unfolding sums_ereal | |
| 3247 | using assms | |
| 3248 | by (intro summable_sums summable_ereal) | |
| 3249 | qed | |
| 3250 | ||
| 3251 | lemma suminf_ereal_minus: | |
| 3252 | fixes f g :: "nat \<Rightarrow> ereal" | |
| 3253 | assumes ord: "\<And>i. g i \<le> f i" "\<And>i. 0 \<le> g i" | |
| 3254 | and fin: "suminf f \<noteq> \<infinity>" "suminf g \<noteq> \<infinity>" | |
| 3255 | shows "(\<Sum>i. f i - g i) = suminf f - suminf g" | |
| 3256 | proof - | |
| 3257 |   {
 | |
| 3258 | fix i | |
| 3259 | have "0 \<le> f i" | |
| 3260 | using ord[of i] by auto | |
| 3261 | } | |
| 3262 | moreover | |
| 3263 | from suminf_PInfty_fun[OF \<open>\<And>i. 0 \<le> f i\<close> fin(1)] obtain f' where [simp]: "f = (\<lambda>x. ereal (f' x))" .. | |
| 3264 | from suminf_PInfty_fun[OF \<open>\<And>i. 0 \<le> g i\<close> fin(2)] obtain g' where [simp]: "g = (\<lambda>x. ereal (g' x))" .. | |
| 3265 |   {
 | |
| 3266 | fix i | |
| 3267 | have "0 \<le> f i - g i" | |
| 3268 | using ord[of i] by (auto simp: ereal_le_minus_iff) | |
| 3269 | } | |
| 3270 | moreover | |
| 3271 | have "suminf (\<lambda>i. f i - g i) \<le> suminf f" | |
| 3272 | using assms by (auto intro!: suminf_le_pos simp: field_simps) | |
| 3273 | then have "suminf (\<lambda>i. f i - g i) \<noteq> \<infinity>" | |
| 3274 | using fin by auto | |
| 3275 | ultimately show ?thesis | |
| 3276 | using assms \<open>\<And>i. 0 \<le> f i\<close> | |
| 3277 | apply simp | |
| 3278 | apply (subst (1 2 3) suminf_ereal) | |
| 3279 | apply (auto intro!: suminf_diff[symmetric] summable_ereal) | |
| 3280 | done | |
| 3281 | qed | |
| 3282 | ||
| 3283 | lemma suminf_ereal_PInf [simp]: "(\<Sum>x. \<infinity>::ereal) = \<infinity>" | |
| 3284 | proof - | |
| 3285 | have "(\<Sum>i<Suc 0. \<infinity>) \<le> (\<Sum>x. \<infinity>::ereal)" | |
| 3286 | by (rule suminf_upper) auto | |
| 3287 | then show ?thesis | |
| 3288 | by simp | |
| 3289 | qed | |
| 3290 | ||
| 3291 | lemma summable_real_of_ereal: | |
| 3292 | fixes f :: "nat \<Rightarrow> ereal" | |
| 3293 | assumes f: "\<And>i. 0 \<le> f i" | |
| 3294 | and fin: "(\<Sum>i. f i) \<noteq> \<infinity>" | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 3295 | shows "summable (\<lambda>i. real_of_ereal (f i))" | 
| 60771 | 3296 | proof (rule summable_def[THEN iffD2]) | 
| 3297 | have "0 \<le> (\<Sum>i. f i)" | |
| 3298 | using assms by (auto intro: suminf_0_le) | |
| 3299 | with fin obtain r where r: "ereal r = (\<Sum>i. f i)" | |
| 3300 | by (cases "(\<Sum>i. f i)") auto | |
| 3301 |   {
 | |
| 3302 | fix i | |
| 3303 | have "f i \<noteq> \<infinity>" | |
| 3304 | using f by (intro suminf_PInfty[OF _ fin]) auto | |
| 3305 | then have "\<bar>f i\<bar> \<noteq> \<infinity>" | |
| 3306 | using f[of i] by auto | |
| 3307 | } | |
| 3308 | note fin = this | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 3309 | have "(\<lambda>i. ereal (real_of_ereal (f i))) sums (\<Sum>i. ereal (real_of_ereal (f i)))" | 
| 60771 | 3310 | using f | 
| 3311 | by (auto intro!: summable_ereal_pos simp: ereal_le_real_iff zero_ereal_def) | |
| 3312 | also have "\<dots> = ereal r" | |
| 3313 | using fin r by (auto simp: ereal_real) | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 3314 | finally show "\<exists>r. (\<lambda>i. real_of_ereal (f i)) sums r" | 
| 60771 | 3315 | by (auto simp: sums_ereal) | 
| 3316 | qed | |
| 3317 | ||
| 3318 | lemma suminf_SUP_eq: | |
| 3319 | fixes f :: "nat \<Rightarrow> nat \<Rightarrow> ereal" | |
| 3320 | assumes "\<And>i. incseq (\<lambda>n. f n i)" | |
| 3321 | and "\<And>n i. 0 \<le> f n i" | |
| 3322 | shows "(\<Sum>i. SUP n. f n i) = (SUP n. \<Sum>i. f n i)" | |
| 3323 | proof - | |
| 3324 |   {
 | |
| 3325 | fix n :: nat | |
| 3326 | have "(\<Sum>i<n. SUP k. f k i) = (SUP k. \<Sum>i<n. f k i)" | |
| 3327 | using assms | |
| 64267 | 3328 | by (auto intro!: SUP_ereal_sum [symmetric]) | 
| 60771 | 3329 | } | 
| 3330 | note * = this | |
| 3331 | show ?thesis | |
| 3332 | using assms | |
| 3333 | apply (subst (1 2) suminf_ereal_eq_SUP) | |
| 3334 | unfolding * | |
| 3335 | apply (auto intro!: SUP_upper2) | |
| 3336 | apply (subst SUP_commute) | |
| 3337 | apply rule | |
| 3338 | done | |
| 3339 | qed | |
| 3340 | ||
| 64267 | 3341 | lemma suminf_sum_ereal: | 
| 60771 | 3342 | fixes f :: "_ \<Rightarrow> _ \<Rightarrow> ereal" | 
| 3343 | assumes nonneg: "\<And>i a. a \<in> A \<Longrightarrow> 0 \<le> f i a" | |
| 3344 | shows "(\<Sum>i. \<Sum>a\<in>A. f i a) = (\<Sum>a\<in>A. \<Sum>i. f i a)" | |
| 3345 | proof (cases "finite A") | |
| 3346 | case True | |
| 3347 | then show ?thesis | |
| 3348 | using nonneg | |
| 64267 | 3349 | by induct (simp_all add: suminf_add_ereal sum_nonneg) | 
| 60771 | 3350 | next | 
| 3351 | case False | |
| 3352 | then show ?thesis by simp | |
| 3353 | qed | |
| 3354 | ||
| 3355 | lemma suminf_ereal_eq_0: | |
| 3356 | fixes f :: "nat \<Rightarrow> ereal" | |
| 3357 | assumes nneg: "\<And>i. 0 \<le> f i" | |
| 3358 | shows "(\<Sum>i. f i) = 0 \<longleftrightarrow> (\<forall>i. f i = 0)" | |
| 3359 | proof | |
| 3360 | assume "(\<Sum>i. f i) = 0" | |
| 3361 |   {
 | |
| 3362 | fix i | |
| 3363 | assume "f i \<noteq> 0" | |
| 3364 | with nneg have "0 < f i" | |
| 3365 | by (auto simp: less_le) | |
| 3366 | also have "f i = (\<Sum>j. if j = i then f i else 0)" | |
| 3367 |       by (subst suminf_finite[where N="{i}"]) auto
 | |
| 3368 | also have "\<dots> \<le> (\<Sum>i. f i)" | |
| 3369 | using nneg | |
| 3370 | by (auto intro!: suminf_le_pos) | |
| 3371 | finally have False | |
| 3372 | using \<open>(\<Sum>i. f i) = 0\<close> by auto | |
| 3373 | } | |
| 3374 | then show "\<forall>i. f i = 0" | |
| 3375 | by auto | |
| 3376 | qed simp | |
| 3377 | ||
| 3378 | lemma suminf_ereal_offset_le: | |
| 3379 | fixes f :: "nat \<Rightarrow> ereal" | |
| 3380 | assumes f: "\<And>i. 0 \<le> f i" | |
| 3381 | shows "(\<Sum>i. f (i + k)) \<le> suminf f" | |
| 3382 | proof - | |
| 61969 | 3383 | have "(\<lambda>n. \<Sum>i<n. f (i + k)) \<longlonglongrightarrow> (\<Sum>i. f (i + k))" | 
| 60771 | 3384 | using summable_sums[OF summable_ereal_pos] by (simp add: sums_def atLeast0LessThan f) | 
| 61969 | 3385 | moreover have "(\<lambda>n. \<Sum>i<n. f i) \<longlonglongrightarrow> (\<Sum>i. f i)" | 
| 60771 | 3386 | using summable_sums[OF summable_ereal_pos] by (simp add: sums_def atLeast0LessThan f) | 
| 61969 | 3387 | then have "(\<lambda>n. \<Sum>i<n + k. f i) \<longlonglongrightarrow> (\<Sum>i. f i)" | 
| 60771 | 3388 | by (rule LIMSEQ_ignore_initial_segment) | 
| 3389 | ultimately show ?thesis | |
| 3390 | proof (rule LIMSEQ_le, safe intro!: exI[of _ k]) | |
| 3391 | fix n assume "k \<le> n" | |
| 3392 | have "(\<Sum>i<n. f (i + k)) = (\<Sum>i<n. (f \<circ> (\<lambda>i. i + k)) i)" | |
| 3393 | by simp | |
| 3394 |     also have "\<dots> = (\<Sum>i\<in>(\<lambda>i. i + k) ` {..<n}. f i)"
 | |
| 64267 | 3395 | by (subst sum.reindex) auto | 
| 3396 |     also have "\<dots> \<le> sum f {..<n + k}"
 | |
| 65680 
378a2f11bec9
Simplification of some proofs. Also key lemmas using !! rather than ! in premises
 paulson <lp15@cam.ac.uk> parents: 
64272diff
changeset | 3397 | by (intro sum_mono2) (auto simp: f) | 
| 64267 | 3398 |     finally show "(\<Sum>i<n. f (i + k)) \<le> sum f {..<n + k}" .
 | 
| 60771 | 3399 | qed | 
| 3400 | qed | |
| 3401 | ||
| 3402 | lemma sums_suminf_ereal: "f sums x \<Longrightarrow> (\<Sum>i. ereal (f i)) = ereal x" | |
| 3403 | by (metis sums_ereal sums_unique) | |
| 3404 | ||
| 3405 | lemma suminf_ereal': "summable f \<Longrightarrow> (\<Sum>i. ereal (f i)) = ereal (\<Sum>i. f i)" | |
| 3406 | by (metis sums_ereal sums_unique summable_def) | |
| 3407 | ||
| 3408 | lemma suminf_ereal_finite: "summable f \<Longrightarrow> (\<Sum>i. ereal (f i)) \<noteq> \<infinity>" | |
| 3409 | by (auto simp: sums_ereal[symmetric] summable_def sums_unique[symmetric]) | |
| 3410 | ||
| 3411 | lemma suminf_ereal_finite_neg: | |
| 3412 | assumes "summable f" | |
| 3413 | shows "(\<Sum>x. ereal (f x)) \<noteq> -\<infinity>" | |
| 3414 | proof- | |
| 3415 | from assms obtain x where "f sums x" by blast | |
| 3416 | hence "(\<lambda>x. ereal (f x)) sums ereal x" by (simp add: sums_ereal) | |
| 3417 | from sums_unique[OF this] have "(\<Sum>x. ereal (f x)) = ereal x" .. | |
| 3418 | thus "(\<Sum>x. ereal (f x)) \<noteq> -\<infinity>" by simp_all | |
| 3419 | qed | |
| 3420 | ||
| 60772 | 3421 | lemma SUP_ereal_add_directed: | 
| 3422 | fixes f g :: "'a \<Rightarrow> ereal" | |
| 3423 | assumes nonneg: "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i" "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> g i" | |
| 3424 | assumes directed: "\<And>i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> \<exists>k\<in>I. f i + g j \<le> f k + g k" | |
| 3425 | shows "(SUP i:I. f i + g i) = (SUP i:I. f i) + (SUP i:I. g i)" | |
| 3426 | proof cases | |
| 3427 |   assume "I = {}" then show ?thesis
 | |
| 3428 | by (simp add: bot_ereal_def) | |
| 3429 | next | |
| 3430 |   assume "I \<noteq> {}"
 | |
| 3431 | show ?thesis | |
| 3432 | proof (rule antisym) | |
| 3433 | show "(SUP i:I. f i + g i) \<le> (SUP i:I. f i) + (SUP i:I. g i)" | |
| 3434 | by (rule SUP_least; intro ereal_add_mono SUP_upper) | |
| 3435 | next | |
| 3436 | have "bot < (SUP i:I. g i)" | |
| 3437 |       using \<open>I \<noteq> {}\<close> nonneg(2) by (auto simp: bot_ereal_def less_SUP_iff)
 | |
| 3438 | then have "(SUP i:I. f i) + (SUP i:I. g i) = (SUP i:I. f i + (SUP i:I. g i))" | |
| 3439 |       by (intro SUP_ereal_add_left[symmetric] \<open>I \<noteq> {}\<close>) auto
 | |
| 3440 | also have "\<dots> = (SUP i:I. (SUP j:I. f i + g j))" | |
| 3441 |       using nonneg(1) by (intro SUP_cong refl SUP_ereal_add_right[symmetric] \<open>I \<noteq> {}\<close>) auto
 | |
| 3442 | also have "\<dots> \<le> (SUP i:I. f i + g i)" | |
| 3443 | using directed by (intro SUP_least) (blast intro: SUP_upper2) | |
| 3444 | finally show "(SUP i:I. f i) + (SUP i:I. g i) \<le> (SUP i:I. f i + g i)" . | |
| 3445 | qed | |
| 3446 | qed | |
| 3447 | ||
| 64267 | 3448 | lemma SUP_ereal_sum_directed: | 
| 60772 | 3449 | fixes f g :: "'a \<Rightarrow> 'b \<Rightarrow> ereal" | 
| 3450 |   assumes "I \<noteq> {}"
 | |
| 3451 | assumes directed: "\<And>N i j. N \<subseteq> A \<Longrightarrow> i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> \<exists>k\<in>I. \<forall>n\<in>N. f n i \<le> f n k \<and> f n j \<le> f n k" | |
| 3452 | assumes nonneg: "\<And>n i. i \<in> I \<Longrightarrow> n \<in> A \<Longrightarrow> 0 \<le> f n i" | |
| 3453 | shows "(SUP i:I. \<Sum>n\<in>A. f n i) = (\<Sum>n\<in>A. SUP i:I. f n i)" | |
| 3454 | proof - | |
| 3455 | have "N \<subseteq> A \<Longrightarrow> (SUP i:I. \<Sum>n\<in>N. f n i) = (\<Sum>n\<in>N. SUP i:I. f n i)" for N | |
| 3456 | proof (induction N rule: infinite_finite_induct) | |
| 3457 | case (insert n N) | |
| 3458 | moreover have "(SUP i:I. f n i + (\<Sum>l\<in>N. f l i)) = (SUP i:I. f n i) + (SUP i:I. \<Sum>l\<in>N. f l i)" | |
| 3459 | proof (rule SUP_ereal_add_directed) | |
| 3460 | fix i assume "i \<in> I" then show "0 \<le> f n i" "0 \<le> (\<Sum>l\<in>N. f l i)" | |
| 64267 | 3461 | using insert by (auto intro!: sum_nonneg nonneg) | 
| 60772 | 3462 | next | 
| 3463 | fix i j assume "i \<in> I" "j \<in> I" | |
| 3464 | from directed[OF \<open>insert n N \<subseteq> A\<close> this] guess k .. | |
| 61738 
c4f6031f1310
New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
 paulson <lp15@cam.ac.uk> parents: 
61631diff
changeset | 3465 | then show "\<exists>k\<in>I. f n i + (\<Sum>l\<in>N. f l j) \<le> f n k + (\<Sum>l\<in>N. f l k)" | 
| 64267 | 3466 | by (intro bexI[of _ k]) (auto intro!: ereal_add_mono sum_mono) | 
| 60772 | 3467 | qed | 
| 3468 | ultimately show ?case | |
| 3469 | by simp | |
| 3470 |   qed (simp_all add: SUP_constant \<open>I \<noteq> {}\<close>)
 | |
| 3471 | from this[of A] show ?thesis by simp | |
| 3472 | qed | |
| 3473 | ||
| 3474 | lemma suminf_SUP_eq_directed: | |
| 3475 | fixes f :: "_ \<Rightarrow> nat \<Rightarrow> ereal" | |
| 3476 |   assumes "I \<noteq> {}"
 | |
| 3477 | assumes directed: "\<And>N i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> finite N \<Longrightarrow> \<exists>k\<in>I. \<forall>n\<in>N. f i n \<le> f k n \<and> f j n \<le> f k n" | |
| 3478 | assumes nonneg: "\<And>n i. 0 \<le> f n i" | |
| 3479 | shows "(\<Sum>i. SUP n:I. f n i) = (SUP n:I. \<Sum>i. f n i)" | |
| 3480 | proof (subst (1 2) suminf_ereal_eq_SUP) | |
| 3481 | show "\<And>n i. 0 \<le> f n i" "\<And>i. 0 \<le> (SUP n:I. f n i)" | |
| 3482 |     using \<open>I \<noteq> {}\<close> nonneg by (auto intro: SUP_upper2)
 | |
| 3483 | show "(SUP n. \<Sum>i<n. SUP n:I. f n i) = (SUP n:I. SUP j. \<Sum>i<j. f n i)" | |
| 3484 | apply (subst SUP_commute) | |
| 64267 | 3485 | apply (subst SUP_ereal_sum_directed) | 
| 60772 | 3486 | apply (auto intro!: assms simp: finite_subset) | 
| 3487 | done | |
| 3488 | qed | |
| 3489 | ||
| 60771 | 3490 | lemma ereal_dense3: | 
| 3491 | fixes x y :: ereal | |
| 3492 | shows "x < y \<Longrightarrow> \<exists>r::rat. x < real_of_rat r \<and> real_of_rat r < y" | |
| 3493 | proof (cases x y rule: ereal2_cases, simp_all) | |
| 3494 | fix r q :: real | |
| 3495 | assume "r < q" | |
| 3496 | from Rats_dense_in_real[OF this] show "\<exists>x. r < real_of_rat x \<and> real_of_rat x < q" | |
| 3497 | by (fastforce simp: Rats_def) | |
| 3498 | next | |
| 3499 | fix r :: real | |
| 3500 | show "\<exists>x. r < real_of_rat x" "\<exists>x. real_of_rat x < r" | |
| 3501 | using gt_ex[of r] lt_ex[of r] Rats_dense_in_real | |
| 3502 | by (auto simp: Rats_def) | |
| 3503 | qed | |
| 3504 | ||
| 3505 | lemma continuous_within_ereal[intro, simp]: "x \<in> A \<Longrightarrow> continuous (at x within A) ereal" | |
| 3506 | using continuous_on_eq_continuous_within[of A ereal] | |
| 3507 | by (auto intro: continuous_on_ereal continuous_on_id) | |
| 3508 | ||
| 3509 | lemma ereal_open_uminus: | |
| 3510 | fixes S :: "ereal set" | |
| 3511 | assumes "open S" | |
| 3512 | shows "open (uminus ` S)" | |
| 3513 | using \<open>open S\<close>[unfolded open_generated_order] | |
| 3514 | proof induct | |
| 3515 | have "range uminus = (UNIV :: ereal set)" | |
| 3516 | by (auto simp: image_iff ereal_uminus_eq_reorder) | |
| 3517 | then show "open (range uminus :: ereal set)" | |
| 3518 | by simp | |
| 3519 | qed (auto simp add: image_Union image_Int) | |
| 3520 | ||
| 3521 | lemma ereal_uminus_complement: | |
| 3522 | fixes S :: "ereal set" | |
| 3523 | shows "uminus ` (- S) = - uminus ` S" | |
| 3524 | by (auto intro!: bij_image_Compl_eq surjI[of _ uminus] simp: bij_betw_def) | |
| 3525 | ||
| 3526 | lemma ereal_closed_uminus: | |
| 3527 | fixes S :: "ereal set" | |
| 3528 | assumes "closed S" | |
| 3529 | shows "closed (uminus ` S)" | |
| 3530 | using assms | |
| 3531 | unfolding closed_def ereal_uminus_complement[symmetric] | |
| 3532 | by (rule ereal_open_uminus) | |
| 3533 | ||
| 3534 | lemma ereal_open_affinity_pos: | |
| 3535 | fixes S :: "ereal set" | |
| 3536 | assumes "open S" | |
| 3537 | and m: "m \<noteq> \<infinity>" "0 < m" | |
| 3538 | and t: "\<bar>t\<bar> \<noteq> \<infinity>" | |
| 3539 | shows "open ((\<lambda>x. m * x + t) ` S)" | |
| 3540 | proof - | |
| 3541 | have "open ((\<lambda>x. inverse m * (x + -t)) -` S)" | |
| 3542 | using m t | |
| 3543 | apply (intro open_vimage \<open>open S\<close>) | |
| 3544 | apply (intro continuous_at_imp_continuous_on ballI tendsto_cmult_ereal continuous_at[THEN iffD2] | |
| 3545 | tendsto_ident_at tendsto_add_left_ereal) | |
| 3546 | apply auto | |
| 3547 | done | |
| 3548 | also have "(\<lambda>x. inverse m * (x + -t)) -` S = (\<lambda>x. (x - t) / m) -` S" | |
| 3549 | using m t by (auto simp: divide_ereal_def mult.commute uminus_ereal.simps[symmetric] minus_ereal_def | |
| 3550 | simp del: uminus_ereal.simps) | |
| 3551 | also have "(\<lambda>x. (x - t) / m) -` S = (\<lambda>x. m * x + t) ` S" | |
| 3552 | using m t | |
| 3553 | by (simp add: set_eq_iff image_iff) | |
| 3554 | (metis abs_ereal_less0 abs_ereal_uminus ereal_divide_eq ereal_eq_minus ereal_minus(7,8) | |
| 3555 | ereal_minus_less_minus ereal_mult_eq_PInfty ereal_uminus_uminus ereal_zero_mult) | |
| 3556 | finally show ?thesis . | |
| 3557 | qed | |
| 3558 | ||
| 3559 | lemma ereal_open_affinity: | |
| 3560 | fixes S :: "ereal set" | |
| 3561 | assumes "open S" | |
| 3562 | and m: "\<bar>m\<bar> \<noteq> \<infinity>" "m \<noteq> 0" | |
| 3563 | and t: "\<bar>t\<bar> \<noteq> \<infinity>" | |
| 3564 | shows "open ((\<lambda>x. m * x + t) ` S)" | |
| 3565 | proof cases | |
| 3566 | assume "0 < m" | |
| 3567 | then show ?thesis | |
| 3568 | using ereal_open_affinity_pos[OF \<open>open S\<close> _ _ t, of m] m | |
| 3569 | by auto | |
| 3570 | next | |
| 3571 | assume "\<not> 0 < m" then | |
| 3572 | have "0 < -m" | |
| 3573 | using \<open>m \<noteq> 0\<close> | |
| 3574 | by (cases m) auto | |
| 3575 | then have m: "-m \<noteq> \<infinity>" "0 < -m" | |
| 3576 | using \<open>\<bar>m\<bar> \<noteq> \<infinity>\<close> | |
| 3577 | by (auto simp: ereal_uminus_eq_reorder) | |
| 3578 | from ereal_open_affinity_pos[OF ereal_open_uminus[OF \<open>open S\<close>] m t] show ?thesis | |
| 3579 | unfolding image_image by simp | |
| 3580 | qed | |
| 3581 | ||
| 3582 | lemma open_uminus_iff: | |
| 3583 | fixes S :: "ereal set" | |
| 3584 | shows "open (uminus ` S) \<longleftrightarrow> open S" | |
| 3585 | using ereal_open_uminus[of S] ereal_open_uminus[of "uminus ` S"] | |
| 3586 | by auto | |
| 3587 | ||
| 3588 | lemma ereal_Liminf_uminus: | |
| 3589 | fixes f :: "'a \<Rightarrow> ereal" | |
| 3590 | shows "Liminf net (\<lambda>x. - (f x)) = - Limsup net f" | |
| 3591 | using ereal_Limsup_uminus[of _ "(\<lambda>x. - (f x))"] by auto | |
| 3592 | ||
| 3593 | lemma Liminf_PInfty: | |
| 3594 | fixes f :: "'a \<Rightarrow> ereal" | |
| 3595 | assumes "\<not> trivial_limit net" | |
| 61973 | 3596 | shows "(f \<longlongrightarrow> \<infinity>) net \<longleftrightarrow> Liminf net f = \<infinity>" | 
| 60771 | 3597 | unfolding tendsto_iff_Liminf_eq_Limsup[OF assms] | 
| 3598 | using Liminf_le_Limsup[OF assms, of f] | |
| 3599 | by auto | |
| 3600 | ||
| 3601 | lemma Limsup_MInfty: | |
| 3602 | fixes f :: "'a \<Rightarrow> ereal" | |
| 3603 | assumes "\<not> trivial_limit net" | |
| 61973 | 3604 | shows "(f \<longlongrightarrow> -\<infinity>) net \<longleftrightarrow> Limsup net f = -\<infinity>" | 
| 60771 | 3605 | unfolding tendsto_iff_Liminf_eq_Limsup[OF assms] | 
| 3606 | using Liminf_le_Limsup[OF assms, of f] | |
| 3607 | by auto | |
| 3608 | ||
| 63145 | 3609 | lemma convergent_ereal: \<comment> \<open>RENAME\<close> | 
| 60771 | 3610 |   fixes X :: "nat \<Rightarrow> 'a :: {complete_linorder,linorder_topology}"
 | 
| 3611 | shows "convergent X \<longleftrightarrow> limsup X = liminf X" | |
| 3612 | using tendsto_iff_Liminf_eq_Limsup[of sequentially] | |
| 3613 | by (auto simp: convergent_def) | |
| 3614 | ||
| 3615 | lemma limsup_le_liminf_real: | |
| 3616 | fixes X :: "nat \<Rightarrow> real" and L :: real | |
| 3617 | assumes 1: "limsup X \<le> L" and 2: "L \<le> liminf X" | |
| 61969 | 3618 | shows "X \<longlonglongrightarrow> L" | 
| 60771 | 3619 | proof - | 
| 3620 | from 1 2 have "limsup X \<le> liminf X" by auto | |
| 61738 
c4f6031f1310
New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
 paulson <lp15@cam.ac.uk> parents: 
61631diff
changeset | 3621 | hence 3: "limsup X = liminf X" | 
| 60771 | 3622 | apply (subst eq_iff, rule conjI) | 
| 3623 | by (rule Liminf_le_Limsup, auto) | |
| 3624 | hence 4: "convergent (\<lambda>n. ereal (X n))" | |
| 3625 | by (subst convergent_ereal) | |
| 3626 | hence "limsup X = lim (\<lambda>n. ereal(X n))" | |
| 3627 | by (rule convergent_limsup_cl) | |
| 3628 | also from 1 2 3 have "limsup X = L" by auto | |
| 3629 | finally have "lim (\<lambda>n. ereal(X n)) = L" .. | |
| 61969 | 3630 | hence "(\<lambda>n. ereal (X n)) \<longlonglongrightarrow> L" | 
| 60771 | 3631 | apply (elim subst) | 
| 61738 
c4f6031f1310
New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
 paulson <lp15@cam.ac.uk> parents: 
61631diff
changeset | 3632 | by (subst convergent_LIMSEQ_iff [symmetric], rule 4) | 
| 60771 | 3633 | thus ?thesis by simp | 
| 3634 | qed | |
| 3635 | ||
| 3636 | lemma liminf_PInfty: | |
| 3637 | fixes X :: "nat \<Rightarrow> ereal" | |
| 61969 | 3638 | shows "X \<longlonglongrightarrow> \<infinity> \<longleftrightarrow> liminf X = \<infinity>" | 
| 60771 | 3639 | by (metis Liminf_PInfty trivial_limit_sequentially) | 
| 3640 | ||
| 3641 | lemma limsup_MInfty: | |
| 3642 | fixes X :: "nat \<Rightarrow> ereal" | |
| 61969 | 3643 | shows "X \<longlonglongrightarrow> -\<infinity> \<longleftrightarrow> limsup X = -\<infinity>" | 
| 60771 | 3644 | by (metis Limsup_MInfty trivial_limit_sequentially) | 
| 3645 | ||
| 3646 | lemma ereal_lim_mono: | |
| 3647 | fixes X Y :: "nat \<Rightarrow> 'a::linorder_topology" | |
| 3648 | assumes "\<And>n. N \<le> n \<Longrightarrow> X n \<le> Y n" | |
| 61969 | 3649 | and "X \<longlonglongrightarrow> x" | 
| 3650 | and "Y \<longlonglongrightarrow> y" | |
| 60771 | 3651 | shows "x \<le> y" | 
| 3652 | using assms(1) by (intro LIMSEQ_le[OF assms(2,3)]) auto | |
| 3653 | ||
| 3654 | lemma incseq_le_ereal: | |
| 3655 | fixes X :: "nat \<Rightarrow> 'a::linorder_topology" | |
| 3656 | assumes inc: "incseq X" | |
| 61969 | 3657 | and lim: "X \<longlonglongrightarrow> L" | 
| 60771 | 3658 | shows "X N \<le> L" | 
| 3659 | using inc | |
| 3660 | by (intro ereal_lim_mono[of N, OF _ tendsto_const lim]) (simp add: incseq_def) | |
| 3661 | ||
| 3662 | lemma decseq_ge_ereal: | |
| 3663 | assumes dec: "decseq X" | |
| 61969 | 3664 | and lim: "X \<longlonglongrightarrow> (L::'a::linorder_topology)" | 
| 60771 | 3665 | shows "X N \<ge> L" | 
| 3666 | using dec by (intro ereal_lim_mono[of N, OF _ lim tendsto_const]) (simp add: decseq_def) | |
| 3667 | ||
| 3668 | lemma bounded_abs: | |
| 3669 | fixes a :: real | |
| 3670 | assumes "a \<le> x" | |
| 3671 | and "x \<le> b" | |
| 61945 | 3672 | shows "\<bar>x\<bar> \<le> max \<bar>a\<bar> \<bar>b\<bar>" | 
| 60771 | 3673 | by (metis abs_less_iff assms leI le_max_iff_disj | 
| 3674 | less_eq_real_def less_le_not_le less_minus_iff minus_minus) | |
| 3675 | ||
| 3676 | lemma ereal_Sup_lim: | |
| 3677 |   fixes a :: "'a::{complete_linorder,linorder_topology}"
 | |
| 3678 | assumes "\<And>n. b n \<in> s" | |
| 61969 | 3679 | and "b \<longlonglongrightarrow> a" | 
| 60771 | 3680 | shows "a \<le> Sup s" | 
| 3681 | by (metis Lim_bounded_ereal assms complete_lattice_class.Sup_upper) | |
| 3682 | ||
| 3683 | lemma ereal_Inf_lim: | |
| 3684 |   fixes a :: "'a::{complete_linorder,linorder_topology}"
 | |
| 3685 | assumes "\<And>n. b n \<in> s" | |
| 61969 | 3686 | and "b \<longlonglongrightarrow> a" | 
| 60771 | 3687 | shows "Inf s \<le> a" | 
| 3688 | by (metis Lim_bounded2_ereal assms complete_lattice_class.Inf_lower) | |
| 3689 | ||
| 3690 | lemma SUP_Lim_ereal: | |
| 3691 |   fixes X :: "nat \<Rightarrow> 'a::{complete_linorder,linorder_topology}"
 | |
| 3692 | assumes inc: "incseq X" | |
| 61969 | 3693 | and l: "X \<longlonglongrightarrow> l" | 
| 60771 | 3694 | shows "(SUP n. X n) = l" | 
| 3695 | using LIMSEQ_SUP[OF inc] tendsto_unique[OF trivial_limit_sequentially l] | |
| 3696 | by simp | |
| 3697 | ||
| 3698 | lemma INF_Lim_ereal: | |
| 3699 |   fixes X :: "nat \<Rightarrow> 'a::{complete_linorder,linorder_topology}"
 | |
| 3700 | assumes dec: "decseq X" | |
| 61969 | 3701 | and l: "X \<longlonglongrightarrow> l" | 
| 60771 | 3702 | shows "(INF n. X n) = l" | 
| 3703 | using LIMSEQ_INF[OF dec] tendsto_unique[OF trivial_limit_sequentially l] | |
| 3704 | by simp | |
| 3705 | ||
| 3706 | lemma SUP_eq_LIMSEQ: | |
| 3707 | assumes "mono f" | |
| 61969 | 3708 | shows "(SUP n. ereal (f n)) = ereal x \<longleftrightarrow> f \<longlonglongrightarrow> x" | 
| 60771 | 3709 | proof | 
| 3710 | have inc: "incseq (\<lambda>i. ereal (f i))" | |
| 3711 | using \<open>mono f\<close> unfolding mono_def incseq_def by auto | |
| 3712 |   {
 | |
| 61969 | 3713 | assume "f \<longlonglongrightarrow> x" | 
| 3714 | then have "(\<lambda>i. ereal (f i)) \<longlonglongrightarrow> ereal x" | |
| 60771 | 3715 | by auto | 
| 3716 | from SUP_Lim_ereal[OF inc this] show "(SUP n. ereal (f n)) = ereal x" . | |
| 3717 | next | |
| 3718 | assume "(SUP n. ereal (f n)) = ereal x" | |
| 61969 | 3719 | with LIMSEQ_SUP[OF inc] show "f \<longlonglongrightarrow> x" by auto | 
| 60771 | 3720 | } | 
| 3721 | qed | |
| 3722 | ||
| 3723 | lemma liminf_ereal_cminus: | |
| 3724 | fixes f :: "nat \<Rightarrow> ereal" | |
| 3725 | assumes "c \<noteq> -\<infinity>" | |
| 3726 | shows "liminf (\<lambda>x. c - f x) = c - limsup f" | |
| 3727 | proof (cases c) | |
| 3728 | case PInf | |
| 3729 | then show ?thesis | |
| 3730 | by (simp add: Liminf_const) | |
| 3731 | next | |
| 3732 | case (real r) | |
| 3733 | then show ?thesis | |
| 3734 | unfolding liminf_SUP_INF limsup_INF_SUP | |
| 3735 | apply (subst INF_ereal_minus_right) | |
| 3736 | apply auto | |
| 3737 | apply (subst SUP_ereal_minus_right) | |
| 3738 | apply auto | |
| 3739 | done | |
| 3740 | qed (insert \<open>c \<noteq> -\<infinity>\<close>, simp) | |
| 3741 | ||
| 3742 | ||
| 3743 | subsubsection \<open>Continuity\<close> | |
| 3744 | ||
| 3745 | lemma continuous_at_of_ereal: | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 3746 | "\<bar>x0 :: ereal\<bar> \<noteq> \<infinity> \<Longrightarrow> continuous (at x0) real_of_ereal" | 
| 60771 | 3747 | unfolding continuous_at | 
| 3748 | by (rule lim_real_of_ereal) (simp add: ereal_real) | |
| 3749 | ||
| 3750 | lemma nhds_ereal: "nhds (ereal r) = filtermap ereal (nhds r)" | |
| 3751 | by (simp add: filtermap_nhds_open_map open_ereal continuous_at_of_ereal) | |
| 3752 | ||
| 3753 | lemma at_ereal: "at (ereal r) = filtermap ereal (at r)" | |
| 3754 | by (simp add: filter_eq_iff eventually_at_filter nhds_ereal eventually_filtermap) | |
| 3755 | ||
| 3756 | lemma at_left_ereal: "at_left (ereal r) = filtermap ereal (at_left r)" | |
| 3757 | by (simp add: filter_eq_iff eventually_at_filter nhds_ereal eventually_filtermap) | |
| 3758 | ||
| 3759 | lemma at_right_ereal: "at_right (ereal r) = filtermap ereal (at_right r)" | |
| 3760 | by (simp add: filter_eq_iff eventually_at_filter nhds_ereal eventually_filtermap) | |
| 3761 | ||
| 3762 | lemma | |
| 3763 | shows at_left_PInf: "at_left \<infinity> = filtermap ereal at_top" | |
| 3764 | and at_right_MInf: "at_right (-\<infinity>) = filtermap ereal at_bot" | |
| 3765 | unfolding filter_eq_iff eventually_filtermap eventually_at_top_dense eventually_at_bot_dense | |
| 3766 | eventually_at_left[OF ereal_less(5)] eventually_at_right[OF ereal_less(6)] | |
| 3767 | by (auto simp add: ereal_all_split ereal_ex_split) | |
| 3768 | ||
| 3769 | lemma ereal_tendsto_simps1: | |
| 61973 | 3770 | "((f \<circ> real_of_ereal) \<longlongrightarrow> y) (at_left (ereal x)) \<longleftrightarrow> (f \<longlongrightarrow> y) (at_left x)" | 
| 3771 | "((f \<circ> real_of_ereal) \<longlongrightarrow> y) (at_right (ereal x)) \<longleftrightarrow> (f \<longlongrightarrow> y) (at_right x)" | |
| 3772 | "((f \<circ> real_of_ereal) \<longlongrightarrow> y) (at_left (\<infinity>::ereal)) \<longleftrightarrow> (f \<longlongrightarrow> y) at_top" | |
| 3773 | "((f \<circ> real_of_ereal) \<longlongrightarrow> y) (at_right (-\<infinity>::ereal)) \<longleftrightarrow> (f \<longlongrightarrow> y) at_bot" | |
| 60771 | 3774 | unfolding tendsto_compose_filtermap at_left_ereal at_right_ereal at_left_PInf at_right_MInf | 
| 3775 | by (auto simp: filtermap_filtermap filtermap_ident) | |
| 3776 | ||
| 3777 | lemma ereal_tendsto_simps2: | |
| 61973 | 3778 | "((ereal \<circ> f) \<longlongrightarrow> ereal a) F \<longleftrightarrow> (f \<longlongrightarrow> a) F" | 
| 3779 | "((ereal \<circ> f) \<longlongrightarrow> \<infinity>) F \<longleftrightarrow> (LIM x F. f x :> at_top)" | |
| 3780 | "((ereal \<circ> f) \<longlongrightarrow> -\<infinity>) F \<longleftrightarrow> (LIM x F. f x :> at_bot)" | |
| 60771 | 3781 | unfolding tendsto_PInfty filterlim_at_top_dense tendsto_MInfty filterlim_at_bot_dense | 
| 3782 | using lim_ereal by (simp_all add: comp_def) | |
| 3783 | ||
| 61976 | 3784 | lemma inverse_infty_ereal_tendsto_0: "inverse \<midarrow>\<infinity>\<rightarrow> (0::ereal)" | 
| 61245 | 3785 | proof - | 
| 61973 | 3786 | have **: "((\<lambda>x. ereal (inverse x)) \<longlongrightarrow> ereal 0) at_infinity" | 
| 61245 | 3787 | by (intro tendsto_intros tendsto_inverse_0) | 
| 61738 
c4f6031f1310
New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
 paulson <lp15@cam.ac.uk> parents: 
61631diff
changeset | 3788 | |
| 61245 | 3789 | show ?thesis | 
| 3790 | by (simp add: at_infty_ereal_eq_at_top tendsto_compose_filtermap[symmetric] comp_def) | |
| 3791 | (auto simp: eventually_at_top_linorder exI[of _ 1] zero_ereal_def at_top_le_at_infinity | |
| 3792 | intro!: filterlim_mono_eventually[OF **]) | |
| 3793 | qed | |
| 3794 | ||
| 61738 
c4f6031f1310
New material about paths, winding numbers, etc. Added lemmas to divide_const_simps. Misc tuning.
 paulson <lp15@cam.ac.uk> parents: 
61631diff
changeset | 3795 | lemma inverse_ereal_tendsto_pos: | 
| 61245 | 3796 | fixes x :: ereal assumes "0 < x" | 
| 61976 | 3797 | shows "inverse \<midarrow>x\<rightarrow> inverse x" | 
| 61245 | 3798 | proof (cases x) | 
| 3799 | case (real r) | |
| 61976 | 3800 | with \<open>0 < x\<close> have **: "(\<lambda>x. ereal (inverse x)) \<midarrow>r\<rightarrow> ereal (inverse r)" | 
| 61245 | 3801 | by (auto intro!: tendsto_inverse) | 
| 3802 | from real \<open>0 < x\<close> show ?thesis | |
| 3803 | by (auto simp: at_ereal tendsto_compose_filtermap[symmetric] eventually_at_filter | |
| 3804 | intro!: Lim_transform_eventually[OF _ **] t1_space_nhds) | |
| 3805 | qed (insert \<open>0 < x\<close>, auto intro!: inverse_infty_ereal_tendsto_0) | |
| 3806 | ||
| 61973 | 3807 | lemma inverse_ereal_tendsto_at_right_0: "(inverse \<longlongrightarrow> \<infinity>) (at_right (0::ereal))" | 
| 61245 | 3808 | unfolding tendsto_compose_filtermap[symmetric] at_right_ereal zero_ereal_def | 
| 3809 | by (subst filterlim_cong[OF refl refl, where g="\<lambda>x. ereal (inverse x)"]) | |
| 3810 | (auto simp: eventually_at_filter tendsto_PInfty_eq_at_top filterlim_inverse_at_top_right) | |
| 3811 | ||
| 60771 | 3812 | lemmas ereal_tendsto_simps = ereal_tendsto_simps1 ereal_tendsto_simps2 | 
| 3813 | ||
| 3814 | lemma continuous_at_iff_ereal: | |
| 3815 | fixes f :: "'a::t2_space \<Rightarrow> real" | |
| 3816 | shows "continuous (at x0 within s) f \<longleftrightarrow> continuous (at x0 within s) (ereal \<circ> f)" | |
| 3817 | unfolding continuous_within comp_def lim_ereal .. | |
| 3818 | ||
| 3819 | lemma continuous_on_iff_ereal: | |
| 3820 | fixes f :: "'a::t2_space => real" | |
| 3821 | assumes "open A" | |
| 3822 | shows "continuous_on A f \<longleftrightarrow> continuous_on A (ereal \<circ> f)" | |
| 3823 | unfolding continuous_on_def comp_def lim_ereal .. | |
| 3824 | ||
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 3825 | lemma continuous_on_real: "continuous_on (UNIV - {\<infinity>, -\<infinity>::ereal}) real_of_ereal"
 | 
| 60771 | 3826 | using continuous_at_of_ereal continuous_on_eq_continuous_at open_image_ereal | 
| 3827 | by auto | |
| 3828 | ||
| 3829 | lemma continuous_on_iff_real: | |
| 3830 | fixes f :: "'a::t2_space \<Rightarrow> ereal" | |
| 3831 | assumes *: "\<And>x. x \<in> A \<Longrightarrow> \<bar>f x\<bar> \<noteq> \<infinity>" | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 3832 | shows "continuous_on A f \<longleftrightarrow> continuous_on A (real_of_ereal \<circ> f)" | 
| 60771 | 3833 | proof - | 
| 3834 |   have "f ` A \<subseteq> UNIV - {\<infinity>, -\<infinity>}"
 | |
| 3835 | using assms by force | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 3836 | then have *: "continuous_on (f ` A) real_of_ereal" | 
| 60771 | 3837 | using continuous_on_real by (simp add: continuous_on_subset) | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 3838 | have **: "continuous_on ((real_of_ereal \<circ> f) ` A) ereal" | 
| 60771 | 3839 | by (intro continuous_on_ereal continuous_on_id) | 
| 3840 |   {
 | |
| 3841 | assume "continuous_on A f" | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 3842 | then have "continuous_on A (real_of_ereal \<circ> f)" | 
| 60771 | 3843 | apply (subst continuous_on_compose) | 
| 3844 | using * | |
| 3845 | apply auto | |
| 3846 | done | |
| 3847 | } | |
| 3848 | moreover | |
| 3849 |   {
 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 3850 | assume "continuous_on A (real_of_ereal \<circ> f)" | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 3851 | then have "continuous_on A (ereal \<circ> (real_of_ereal \<circ> f))" | 
| 60771 | 3852 | apply (subst continuous_on_compose) | 
| 3853 | using ** | |
| 3854 | apply auto | |
| 3855 | done | |
| 3856 | then have "continuous_on A f" | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 3857 | apply (subst continuous_on_cong[of _ A _ "ereal \<circ> (real_of_ereal \<circ> f)"]) | 
| 60771 | 3858 | using assms ereal_real | 
| 3859 | apply auto | |
| 3860 | done | |
| 3861 | } | |
| 3862 | ultimately show ?thesis | |
| 3863 | by auto | |
| 3864 | qed | |
| 3865 | ||
| 62049 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3866 | lemma continuous_uminus_ereal [continuous_intros]: "continuous_on (A :: ereal set) uminus" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3867 | unfolding continuous_on_def | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3868 | by (intro ballI tendsto_uminus_ereal[of "\<lambda>x. x::ereal"]) simp | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3869 | |
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3870 | lemma ereal_uminus_atMost [simp]: "uminus ` {..(a::ereal)} = {-a..}"
 | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3871 | proof (intro equalityI subsetI) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3872 |   fix x :: ereal assume "x \<in> {-a..}"
 | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3873 |   hence "-(-x) \<in> uminus ` {..a}" by (intro imageI) (simp add: ereal_uminus_le_reorder)
 | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3874 |   thus "x \<in> uminus ` {..a}" by simp
 | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3875 | qed auto | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3876 | |
| 62369 | 3877 | lemma continuous_on_inverse_ereal [continuous_intros]: | 
| 62049 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3878 |   "continuous_on {0::ereal ..} inverse"
 | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3879 | unfolding continuous_on_def | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3880 | proof clarsimp | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3881 | fix x :: ereal assume "0 \<le> x" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3882 |   moreover have "at 0 within {0 ..} = at_right (0::ereal)"
 | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3883 | by (auto simp: filter_eq_iff eventually_at_filter le_less) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3884 |   moreover have "at x within {0 ..} = at x" if "0 < x"
 | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3885 |     using that by (intro at_within_nhd[of _ "{0<..}"]) auto
 | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3886 |   ultimately show "(inverse \<longlongrightarrow> inverse x) (at x within {0..})"
 | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3887 | by (auto simp: le_less inverse_ereal_tendsto_at_right_0 inverse_ereal_tendsto_pos) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3888 | qed | 
| 62369 | 3889 | |
| 62049 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3890 | lemma continuous_inverse_ereal_nonpos: "continuous_on ({..<0} :: ereal set) inverse"
 | 
| 62369 | 3891 | proof (subst continuous_on_cong[OF refl]) | 
| 62049 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3892 |   have "continuous_on {(0::ereal)<..} inverse"
 | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3893 | by (rule continuous_on_subset[OF continuous_on_inverse_ereal]) auto | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3894 |   thus "continuous_on {..<(0::ereal)} (uminus \<circ> inverse \<circ> uminus)"
 | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3895 | by (intro continuous_intros) simp_all | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3896 | qed simp | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3897 | |
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3898 | lemma tendsto_inverse_ereal: | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3899 | assumes "(f \<longlongrightarrow> (c :: ereal)) F" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3900 | assumes "eventually (\<lambda>x. f x \<ge> 0) F" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3901 | shows "((\<lambda>x. inverse (f x)) \<longlongrightarrow> inverse c) F" | 
| 62369 | 3902 | by (cases "F = bot") | 
| 63952 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63940diff
changeset | 3903 | (auto intro!: tendsto_lowerbound assms | 
| 62049 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3904 | continuous_on_tendsto_compose[OF continuous_on_inverse_ereal]) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3905 | |
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3906 | |
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3907 | subsubsection \<open>liminf and limsup\<close> | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3908 | |
| 62369 | 3909 | lemma Limsup_ereal_mult_right: | 
| 62049 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3910 | assumes "F \<noteq> bot" "(c::real) \<ge> 0" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3911 | shows "Limsup F (\<lambda>n. f n * ereal c) = Limsup F f * ereal c" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3912 | proof (rule Limsup_compose_continuous_mono) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3913 | from assms show "continuous_on UNIV (\<lambda>a. a * ereal c)" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3914 | using tendsto_cmult_ereal[of "ereal c" "\<lambda>x. x" ] | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3915 | by (force simp: continuous_on_def mult_ac) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3916 | qed (insert assms, auto simp: mono_def ereal_mult_right_mono) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3917 | |
| 62369 | 3918 | lemma Liminf_ereal_mult_right: | 
| 62049 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3919 | assumes "F \<noteq> bot" "(c::real) \<ge> 0" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3920 | shows "Liminf F (\<lambda>n. f n * ereal c) = Liminf F f * ereal c" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3921 | proof (rule Liminf_compose_continuous_mono) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3922 | from assms show "continuous_on UNIV (\<lambda>a. a * ereal c)" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3923 | using tendsto_cmult_ereal[of "ereal c" "\<lambda>x. x" ] | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3924 | by (force simp: continuous_on_def mult_ac) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3925 | qed (insert assms, auto simp: mono_def ereal_mult_right_mono) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3926 | |
| 62369 | 3927 | lemma Limsup_ereal_mult_left: | 
| 62049 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3928 | assumes "F \<noteq> bot" "(c::real) \<ge> 0" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3929 | shows "Limsup F (\<lambda>n. ereal c * f n) = ereal c * Limsup F f" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3930 | using Limsup_ereal_mult_right[OF assms] by (subst (1 2) mult.commute) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3931 | |
| 62369 | 3932 | lemma limsup_ereal_mult_right: | 
| 62049 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3933 | "(c::real) \<ge> 0 \<Longrightarrow> limsup (\<lambda>n. f n * ereal c) = limsup f * ereal c" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3934 | by (rule Limsup_ereal_mult_right) simp_all | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3935 | |
| 62369 | 3936 | lemma limsup_ereal_mult_left: | 
| 62049 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3937 | "(c::real) \<ge> 0 \<Longrightarrow> limsup (\<lambda>n. ereal c * f n) = ereal c * limsup f" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3938 | by (subst (1 2) mult.commute, rule limsup_ereal_mult_right) simp_all | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3939 | |
| 62369 | 3940 | lemma Limsup_add_ereal_right: | 
| 62049 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3941 | "F \<noteq> bot \<Longrightarrow> abs c \<noteq> \<infinity> \<Longrightarrow> Limsup F (\<lambda>n. g n + (c :: ereal)) = Limsup F g + c" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3942 | by (rule Limsup_compose_continuous_mono) (auto simp: mono_def ereal_add_mono continuous_on_def) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3943 | |
| 62369 | 3944 | lemma Limsup_add_ereal_left: | 
| 62049 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3945 | "F \<noteq> bot \<Longrightarrow> abs c \<noteq> \<infinity> \<Longrightarrow> Limsup F (\<lambda>n. (c :: ereal) + g n) = c + Limsup F g" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3946 | by (subst (1 2) add.commute) (rule Limsup_add_ereal_right) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3947 | |
| 62369 | 3948 | lemma Liminf_add_ereal_right: | 
| 62049 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3949 | "F \<noteq> bot \<Longrightarrow> abs c \<noteq> \<infinity> \<Longrightarrow> Liminf F (\<lambda>n. g n + (c :: ereal)) = Liminf F g + c" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3950 | by (rule Liminf_compose_continuous_mono) (auto simp: mono_def ereal_add_mono continuous_on_def) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3951 | |
| 62369 | 3952 | lemma Liminf_add_ereal_left: | 
| 62049 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3953 | "F \<noteq> bot \<Longrightarrow> abs c \<noteq> \<infinity> \<Longrightarrow> Liminf F (\<lambda>n. (c :: ereal) + g n) = c + Liminf F g" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3954 | by (subst (1 2) add.commute) (rule Liminf_add_ereal_right) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3955 | |
| 62369 | 3956 | lemma | 
| 62049 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3957 | assumes "F \<noteq> bot" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3958 | assumes nonneg: "eventually (\<lambda>x. f x \<ge> (0::ereal)) F" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3959 | shows Liminf_inverse_ereal: "Liminf F (\<lambda>x. inverse (f x)) = inverse (Limsup F f)" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3960 | and Limsup_inverse_ereal: "Limsup F (\<lambda>x. inverse (f x)) = inverse (Liminf F f)" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3961 | proof - | 
| 63040 | 3962 | define inv where [abs_def]: "inv x = (if x \<le> 0 then \<infinity> else inverse x)" for x :: ereal | 
| 62049 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3963 |   have "continuous_on ({..0} \<union> {0..}) inv" unfolding inv_def
 | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3964 | by (intro continuous_on_If) (auto intro!: continuous_intros) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3965 |   also have "{..0} \<union> {0..} = (UNIV :: ereal set)" by auto
 | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3966 | finally have cont: "continuous_on UNIV inv" . | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3967 | have antimono: "antimono inv" unfolding inv_def antimono_def | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3968 | by (auto intro!: ereal_inverse_antimono) | 
| 62369 | 3969 | |
| 62049 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3970 | have "Liminf F (\<lambda>x. inverse (f x)) = Liminf F (\<lambda>x. inv (f x))" using nonneg | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3971 | by (auto intro!: Liminf_eq elim!: eventually_mono simp: inv_def) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3972 | also have "... = inv (Limsup F f)" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3973 | by (simp add: assms(1) Liminf_compose_continuous_antimono[OF cont antimono]) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3974 | also from assms have "Limsup F f \<ge> 0" by (intro le_Limsup) simp_all | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3975 | hence "inv (Limsup F f) = inverse (Limsup F f)" by (simp add: inv_def) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3976 | finally show "Liminf F (\<lambda>x. inverse (f x)) = inverse (Limsup F f)" . | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3977 | |
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3978 | have "Limsup F (\<lambda>x. inverse (f x)) = Limsup F (\<lambda>x. inv (f x))" using nonneg | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3979 | by (auto intro!: Limsup_eq elim!: eventually_mono simp: inv_def) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3980 | also have "... = inv (Liminf F f)" | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3981 | by (simp add: assms(1) Limsup_compose_continuous_antimono[OF cont antimono]) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3982 | also from assms have "Liminf F f \<ge> 0" by (intro Liminf_bounded) simp_all | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3983 | hence "inv (Liminf F f) = inverse (Liminf F f)" by (simp add: inv_def) | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3984 | finally show "Limsup F (\<lambda>x. inverse (f x)) = inverse (Liminf F f)" . | 
| 
b0f941e207cf
Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
 eberlm parents: 
61976diff
changeset | 3985 | qed | 
| 60771 | 3986 | |
| 63225 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 3987 | lemma ereal_diff_le_mono_left: "\<lbrakk> x \<le> z; 0 \<le> y \<rbrakk> \<Longrightarrow> x - y \<le> (z :: ereal)" | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 3988 | by(cases x y z rule: ereal3_cases) simp_all | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 3989 | |
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 3990 | lemma neg_0_less_iff_less_erea [simp]: "0 < - a \<longleftrightarrow> (a :: ereal) < 0" | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 3991 | by(cases a) simp_all | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 3992 | |
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 3993 | lemma not_infty_ereal: "\<bar>x\<bar> \<noteq> \<infinity> \<longleftrightarrow> (\<exists>x'. x = ereal x')" | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 3994 | by(cases x) simp_all | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 3995 | |
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 3996 | lemma neq_PInf_trans: fixes x y :: ereal shows "\<lbrakk> y \<noteq> \<infinity>; x \<le> y \<rbrakk> \<Longrightarrow> x \<noteq> \<infinity>" | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 3997 | by auto | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 3998 | |
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 3999 | lemma mult_2_ereal: "ereal 2 * x = x + x" | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4000 | by(cases x) simp_all | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4001 | |
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4002 | lemma ereal_diff_le_self: "0 \<le> y \<Longrightarrow> x - y \<le> (x :: ereal)" | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4003 | by(cases x y rule: ereal2_cases) simp_all | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4004 | |
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4005 | lemma ereal_le_add_self: "0 \<le> y \<Longrightarrow> x \<le> x + (y :: ereal)" | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4006 | by(cases x y rule: ereal2_cases) simp_all | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4007 | |
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4008 | lemma ereal_le_add_self2: "0 \<le> y \<Longrightarrow> x \<le> y + (x :: ereal)" | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4009 | by(cases x y rule: ereal2_cases) simp_all | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4010 | |
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4011 | lemma ereal_le_add_mono1: "\<lbrakk> x \<le> y; 0 \<le> (z :: ereal) \<rbrakk> \<Longrightarrow> x \<le> y + z" | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4012 | using add_mono by fastforce | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4013 | |
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4014 | lemma ereal_le_add_mono2: "\<lbrakk> x \<le> z; 0 \<le> (y :: ereal) \<rbrakk> \<Longrightarrow> x \<le> y + z" | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4015 | using add_mono by fastforce | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4016 | |
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4017 | lemma ereal_diff_nonpos: | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4018 | fixes a b :: ereal shows "\<lbrakk> a \<le> b; a = \<infinity> \<Longrightarrow> b \<noteq> \<infinity>; a = -\<infinity> \<Longrightarrow> b \<noteq> -\<infinity> \<rbrakk> \<Longrightarrow> a - b \<le> 0" | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4019 | by (cases rule: ereal2_cases[of a b]) auto | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4020 | |
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4021 | lemma minus_ereal_0 [simp]: "x - ereal 0 = x" | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4022 | by(simp add: zero_ereal_def[symmetric]) | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4023 | |
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4024 | lemma ereal_diff_eq_0_iff: fixes a b :: ereal | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4025 | shows "(\<bar>a\<bar> = \<infinity> \<Longrightarrow> \<bar>b\<bar> \<noteq> \<infinity>) \<Longrightarrow> a - b = 0 \<longleftrightarrow> a = b" | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4026 | by(cases a b rule: ereal2_cases) simp_all | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4027 | |
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4028 | lemma SUP_ereal_eq_0_iff_nonneg: | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4029 | fixes f :: "_ \<Rightarrow> ereal" and A | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4030 | assumes nonneg: "\<forall>x\<in>A. f x \<ge> 0" | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4031 |   and A:"A \<noteq> {}"
 | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4032 | shows "(SUP x:A. f x) = 0 \<longleftrightarrow> (\<forall>x\<in>A. f x = 0)" (is "?lhs \<longleftrightarrow> ?rhs") | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4033 | proof(intro iffI ballI) | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4034 | fix x | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4035 | assume "?lhs" "x \<in> A" | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4036 | from \<open>x \<in> A\<close> have "f x \<le> (SUP x:A. f x)" by(rule SUP_upper) | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4037 | with \<open>?lhs\<close> show "f x = 0" using nonneg \<open>x \<in> A\<close> by auto | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4038 | qed(simp cong: SUP_cong add: A) | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4039 | |
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4040 | lemma ereal_divide_le_posI: | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4041 | fixes x y z :: ereal | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4042 | shows "x > 0 \<Longrightarrow> z \<noteq> - \<infinity> \<Longrightarrow> z \<le> x * y \<Longrightarrow> z / x \<le> y" | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4043 | by (cases rule: ereal3_cases[of x y z])(auto simp: field_simps split: if_split_asm) | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4044 | |
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4045 | lemma add_diff_eq_ereal: fixes x y z :: ereal | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4046 | shows "x + (y - z) = x + y - z" | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4047 | by(cases x y z rule: ereal3_cases) simp_all | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4048 | |
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4049 | lemma ereal_diff_gr0: | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4050 | fixes a b :: ereal shows "a < b \<Longrightarrow> 0 < b - a" | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4051 | by (cases rule: ereal2_cases[of a b]) auto | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4052 | |
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4053 | lemma ereal_minus_minus: fixes x y z :: ereal shows | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4054 | "(\<bar>y\<bar> = \<infinity> \<Longrightarrow> \<bar>z\<bar> \<noteq> \<infinity>) \<Longrightarrow> x - (y - z) = x + z - y" | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4055 | by(cases x y z rule: ereal3_cases) simp_all | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4056 | |
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4057 | lemma diff_add_eq_ereal: fixes a b c :: ereal shows "a - b + c = a + c - b" | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4058 | by(cases a b c rule: ereal3_cases) simp_all | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4059 | |
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4060 | lemma diff_diff_commute_ereal: fixes x y z :: ereal shows "x - y - z = x - z - y" | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4061 | by(cases x y z rule: ereal3_cases) simp_all | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4062 | |
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4063 | lemma ereal_diff_eq_MInfty_iff: fixes x y :: ereal shows "x - y = -\<infinity> \<longleftrightarrow> x = -\<infinity> \<and> y \<noteq> -\<infinity> \<or> y = \<infinity> \<and> \<bar>x\<bar> \<noteq> \<infinity>" | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4064 | by(cases x y rule: ereal2_cases) simp_all | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4065 | |
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4066 | lemma ereal_diff_add_inverse: fixes x y :: ereal shows "\<bar>x\<bar> \<noteq> \<infinity> \<Longrightarrow> x + y - x = y" | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4067 | by(cases x y rule: ereal2_cases) simp_all | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4068 | |
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4069 | lemma tendsto_diff_ereal: | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4070 | fixes x y :: ereal | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4071 | assumes x: "\<bar>x\<bar> \<noteq> \<infinity>" and y: "\<bar>y\<bar> \<noteq> \<infinity>" | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4072 | assumes f: "(f \<longlongrightarrow> x) F" and g: "(g \<longlongrightarrow> y) F" | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4073 | shows "((\<lambda>x. f x - g x) \<longlongrightarrow> x - y) F" | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4074 | proof - | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4075 | from x obtain r where x': "x = ereal r" by (cases x) auto | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4076 | with f have "((\<lambda>i. real_of_ereal (f i)) \<longlongrightarrow> r) F" by simp | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4077 | moreover | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4078 | from y obtain p where y': "y = ereal p" by (cases y) auto | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4079 | with g have "((\<lambda>i. real_of_ereal (g i)) \<longlongrightarrow> p) F" by simp | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4080 | ultimately have "((\<lambda>i. real_of_ereal (f i) - real_of_ereal (g i)) \<longlongrightarrow> r - p) F" | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4081 | by (rule tendsto_diff) | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4082 | moreover | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4083 | from eventually_finite[OF x f] eventually_finite[OF y g] | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4084 | have "eventually (\<lambda>x. f x - g x = ereal (real_of_ereal (f x) - real_of_ereal (g x))) F" | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4085 | by eventually_elim auto | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4086 | ultimately show ?thesis | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4087 | by (simp add: x' y' cong: filterlim_cong) | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4088 | qed | 
| 
19d2be0e5e9f
move ennreal and ereal theorems from MFMC_Countable
 hoelzl parents: 
63145diff
changeset | 4089 | |
| 60500 | 4090 | subsubsection \<open>Tests for code generator\<close> | 
| 43933 | 4091 | |
| 4092 | (* A small list of simple arithmetic expressions *) | |
| 4093 | ||
| 56927 | 4094 | value "- \<infinity> :: ereal" | 
| 4095 | value "\<bar>-\<infinity>\<bar> :: ereal" | |
| 4096 | value "4 + 5 / 4 - ereal 2 :: ereal" | |
| 4097 | value "ereal 3 < \<infinity>" | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61245diff
changeset | 4098 | value "real_of_ereal (\<infinity>::ereal) = 0" | 
| 43933 | 4099 | |
| 41973 | 4100 | end |