| author | wenzelm | 
| Thu, 20 Sep 2007 20:56:33 +0200 | |
| changeset 24665 | e5bea50b9b89 | 
| parent 24640 | 85a6c200ecd3 | 
| child 24749 | 151b3758f576 | 
| permissions | -rw-r--r-- | 
| 21249 | 1 | (* Title: HOL/Lattices.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Tobias Nipkow | |
| 4 | *) | |
| 5 | ||
| 22454 | 6 | header {* Abstract lattices *}
 | 
| 21249 | 7 | |
| 8 | theory Lattices | |
| 9 | imports Orderings | |
| 10 | begin | |
| 11 | ||
| 12 | subsection{* Lattices *}
 | |
| 13 | ||
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 14 | class lower_semilattice = order + | 
| 21249 | 15 | fixes inf :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<sqinter>" 70) | 
| 22737 | 16 | assumes inf_le1 [simp]: "x \<sqinter> y \<sqsubseteq> x" | 
| 17 | and inf_le2 [simp]: "x \<sqinter> y \<sqsubseteq> y" | |
| 21733 | 18 | and inf_greatest: "x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<sqinter> z" | 
| 21249 | 19 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 20 | class upper_semilattice = order + | 
| 21249 | 21 | fixes sup :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<squnion>" 65) | 
| 22737 | 22 | assumes sup_ge1 [simp]: "x \<sqsubseteq> x \<squnion> y" | 
| 23 | and sup_ge2 [simp]: "y \<sqsubseteq> x \<squnion> y" | |
| 21733 | 24 | and sup_least: "y \<sqsubseteq> x \<Longrightarrow> z \<sqsubseteq> x \<Longrightarrow> y \<squnion> z \<sqsubseteq> x" | 
| 21249 | 25 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 26 | class lattice = lower_semilattice + upper_semilattice | 
| 21249 | 27 | |
| 21733 | 28 | subsubsection{* Intro and elim rules*}
 | 
| 29 | ||
| 30 | context lower_semilattice | |
| 31 | begin | |
| 21249 | 32 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 33 | lemmas antisym_intro [intro!] = antisym | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 34 | lemmas (in -) [rule del] = antisym_intro | 
| 21249 | 35 | |
| 21734 | 36 | lemma le_infI1[intro]: "a \<sqsubseteq> x \<Longrightarrow> a \<sqinter> b \<sqsubseteq> x" | 
| 21733 | 37 | apply(subgoal_tac "a \<sqinter> b \<sqsubseteq> a") | 
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22168diff
changeset | 38 | apply(blast intro: order_trans) | 
| 21733 | 39 | apply simp | 
| 40 | done | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 41 | lemmas (in -) [rule del] = le_infI1 | 
| 21249 | 42 | |
| 21734 | 43 | lemma le_infI2[intro]: "b \<sqsubseteq> x \<Longrightarrow> a \<sqinter> b \<sqsubseteq> x" | 
| 21733 | 44 | apply(subgoal_tac "a \<sqinter> b \<sqsubseteq> b") | 
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22168diff
changeset | 45 | apply(blast intro: order_trans) | 
| 21733 | 46 | apply simp | 
| 47 | done | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 48 | lemmas (in -) [rule del] = le_infI2 | 
| 21733 | 49 | |
| 21734 | 50 | lemma le_infI[intro!]: "x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> b \<Longrightarrow> x \<sqsubseteq> a \<sqinter> b" | 
| 21733 | 51 | by(blast intro: inf_greatest) | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 52 | lemmas (in -) [rule del] = le_infI | 
| 21249 | 53 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 54 | lemma le_infE [elim!]: "x \<sqsubseteq> a \<sqinter> b \<Longrightarrow> (x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> b \<Longrightarrow> P) \<Longrightarrow> P" | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 55 | by (blast intro: order_trans) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 56 | lemmas (in -) [rule del] = le_infE | 
| 21249 | 57 | |
| 21734 | 58 | lemma le_inf_iff [simp]: | 
| 21733 | 59 | "x \<sqsubseteq> y \<sqinter> z = (x \<sqsubseteq> y \<and> x \<sqsubseteq> z)" | 
| 60 | by blast | |
| 61 | ||
| 21734 | 62 | lemma le_iff_inf: "(x \<sqsubseteq> y) = (x \<sqinter> y = x)" | 
| 22168 | 63 | by(blast dest:eq_iff[THEN iffD1]) | 
| 21249 | 64 | |
| 21733 | 65 | end | 
| 66 | ||
| 23878 | 67 | lemma mono_inf: "mono f \<Longrightarrow> f (inf A B) \<le> inf (f A) (f B)" | 
| 68 | by (auto simp add: mono_def) | |
| 69 | ||
| 21733 | 70 | |
| 71 | context upper_semilattice | |
| 72 | begin | |
| 21249 | 73 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 74 | lemmas antisym_intro [intro!] = antisym | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 75 | lemmas (in -) [rule del] = antisym_intro | 
| 21249 | 76 | |
| 21734 | 77 | lemma le_supI1[intro]: "x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> a \<squnion> b" | 
| 21733 | 78 | apply(subgoal_tac "a \<sqsubseteq> a \<squnion> b") | 
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22168diff
changeset | 79 | apply(blast intro: order_trans) | 
| 21733 | 80 | apply simp | 
| 81 | done | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 82 | lemmas (in -) [rule del] = le_supI1 | 
| 21249 | 83 | |
| 21734 | 84 | lemma le_supI2[intro]: "x \<sqsubseteq> b \<Longrightarrow> x \<sqsubseteq> a \<squnion> b" | 
| 21733 | 85 | apply(subgoal_tac "b \<sqsubseteq> a \<squnion> b") | 
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22168diff
changeset | 86 | apply(blast intro: order_trans) | 
| 21733 | 87 | apply simp | 
| 88 | done | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 89 | lemmas (in -) [rule del] = le_supI2 | 
| 21733 | 90 | |
| 21734 | 91 | lemma le_supI[intro!]: "a \<sqsubseteq> x \<Longrightarrow> b \<sqsubseteq> x \<Longrightarrow> a \<squnion> b \<sqsubseteq> x" | 
| 21733 | 92 | by(blast intro: sup_least) | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 93 | lemmas (in -) [rule del] = le_supI | 
| 21249 | 94 | |
| 21734 | 95 | lemma le_supE[elim!]: "a \<squnion> b \<sqsubseteq> x \<Longrightarrow> (a \<sqsubseteq> x \<Longrightarrow> b \<sqsubseteq> x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 96 | by (blast intro: order_trans) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 97 | lemmas (in -) [rule del] = le_supE | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 98 | |
| 21249 | 99 | |
| 21734 | 100 | lemma ge_sup_conv[simp]: | 
| 21733 | 101 | "x \<squnion> y \<sqsubseteq> z = (x \<sqsubseteq> z \<and> y \<sqsubseteq> z)" | 
| 102 | by blast | |
| 103 | ||
| 21734 | 104 | lemma le_iff_sup: "(x \<sqsubseteq> y) = (x \<squnion> y = y)" | 
| 22168 | 105 | by(blast dest:eq_iff[THEN iffD1]) | 
| 21734 | 106 | |
| 21733 | 107 | end | 
| 108 | ||
| 23878 | 109 | lemma mono_sup: "mono f \<Longrightarrow> sup (f A) (f B) \<le> f (sup A B)" | 
| 110 | by (auto simp add: mono_def) | |
| 111 | ||
| 21733 | 112 | |
| 113 | subsubsection{* Equational laws *}
 | |
| 21249 | 114 | |
| 115 | ||
| 21733 | 116 | context lower_semilattice | 
| 117 | begin | |
| 118 | ||
| 119 | lemma inf_commute: "(x \<sqinter> y) = (y \<sqinter> x)" | |
| 120 | by blast | |
| 121 | ||
| 122 | lemma inf_assoc: "(x \<sqinter> y) \<sqinter> z = x \<sqinter> (y \<sqinter> z)" | |
| 123 | by blast | |
| 124 | ||
| 125 | lemma inf_idem[simp]: "x \<sqinter> x = x" | |
| 126 | by blast | |
| 127 | ||
| 128 | lemma inf_left_idem[simp]: "x \<sqinter> (x \<sqinter> y) = x \<sqinter> y" | |
| 129 | by blast | |
| 130 | ||
| 131 | lemma inf_absorb1: "x \<sqsubseteq> y \<Longrightarrow> x \<sqinter> y = x" | |
| 132 | by blast | |
| 133 | ||
| 134 | lemma inf_absorb2: "y \<sqsubseteq> x \<Longrightarrow> x \<sqinter> y = y" | |
| 135 | by blast | |
| 136 | ||
| 137 | lemma inf_left_commute: "x \<sqinter> (y \<sqinter> z) = y \<sqinter> (x \<sqinter> z)" | |
| 138 | by blast | |
| 139 | ||
| 140 | lemmas inf_ACI = inf_commute inf_assoc inf_left_commute inf_left_idem | |
| 141 | ||
| 142 | end | |
| 143 | ||
| 144 | ||
| 145 | context upper_semilattice | |
| 146 | begin | |
| 21249 | 147 | |
| 21733 | 148 | lemma sup_commute: "(x \<squnion> y) = (y \<squnion> x)" | 
| 149 | by blast | |
| 150 | ||
| 151 | lemma sup_assoc: "(x \<squnion> y) \<squnion> z = x \<squnion> (y \<squnion> z)" | |
| 152 | by blast | |
| 153 | ||
| 154 | lemma sup_idem[simp]: "x \<squnion> x = x" | |
| 155 | by blast | |
| 156 | ||
| 157 | lemma sup_left_idem[simp]: "x \<squnion> (x \<squnion> y) = x \<squnion> y" | |
| 158 | by blast | |
| 159 | ||
| 160 | lemma sup_absorb1: "y \<sqsubseteq> x \<Longrightarrow> x \<squnion> y = x" | |
| 161 | by blast | |
| 162 | ||
| 163 | lemma sup_absorb2: "x \<sqsubseteq> y \<Longrightarrow> x \<squnion> y = y" | |
| 164 | by blast | |
| 21249 | 165 | |
| 21733 | 166 | lemma sup_left_commute: "x \<squnion> (y \<squnion> z) = y \<squnion> (x \<squnion> z)" | 
| 167 | by blast | |
| 168 | ||
| 169 | lemmas sup_ACI = sup_commute sup_assoc sup_left_commute sup_left_idem | |
| 170 | ||
| 171 | end | |
| 21249 | 172 | |
| 21733 | 173 | context lattice | 
| 174 | begin | |
| 175 | ||
| 176 | lemma inf_sup_absorb: "x \<sqinter> (x \<squnion> y) = x" | |
| 177 | by(blast intro: antisym inf_le1 inf_greatest sup_ge1) | |
| 178 | ||
| 179 | lemma sup_inf_absorb: "x \<squnion> (x \<sqinter> y) = x" | |
| 180 | by(blast intro: antisym sup_ge1 sup_least inf_le1) | |
| 181 | ||
| 21734 | 182 | lemmas ACI = inf_ACI sup_ACI | 
| 183 | ||
| 22454 | 184 | lemmas inf_sup_ord = inf_le1 inf_le2 sup_ge1 sup_ge2 | 
| 185 | ||
| 21734 | 186 | text{* Towards distributivity *}
 | 
| 21249 | 187 | |
| 21734 | 188 | lemma distrib_sup_le: "x \<squnion> (y \<sqinter> z) \<sqsubseteq> (x \<squnion> y) \<sqinter> (x \<squnion> z)" | 
| 189 | by blast | |
| 190 | ||
| 191 | lemma distrib_inf_le: "(x \<sqinter> y) \<squnion> (x \<sqinter> z) \<sqsubseteq> x \<sqinter> (y \<squnion> z)" | |
| 192 | by blast | |
| 193 | ||
| 194 | ||
| 195 | text{* If you have one of them, you have them all. *}
 | |
| 21249 | 196 | |
| 21733 | 197 | lemma distrib_imp1: | 
| 21249 | 198 | assumes D: "!!x y z. x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" | 
| 199 | shows "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)" | |
| 200 | proof- | |
| 201 | have "x \<squnion> (y \<sqinter> z) = (x \<squnion> (x \<sqinter> z)) \<squnion> (y \<sqinter> z)" by(simp add:sup_inf_absorb) | |
| 202 | also have "\<dots> = x \<squnion> (z \<sqinter> (x \<squnion> y))" by(simp add:D inf_commute sup_assoc) | |
| 203 | also have "\<dots> = ((x \<squnion> y) \<sqinter> x) \<squnion> ((x \<squnion> y) \<sqinter> z)" | |
| 204 | by(simp add:inf_sup_absorb inf_commute) | |
| 205 | also have "\<dots> = (x \<squnion> y) \<sqinter> (x \<squnion> z)" by(simp add:D) | |
| 206 | finally show ?thesis . | |
| 207 | qed | |
| 208 | ||
| 21733 | 209 | lemma distrib_imp2: | 
| 21249 | 210 | assumes D: "!!x y z. x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)" | 
| 211 | shows "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" | |
| 212 | proof- | |
| 213 | have "x \<sqinter> (y \<squnion> z) = (x \<sqinter> (x \<squnion> z)) \<sqinter> (y \<squnion> z)" by(simp add:inf_sup_absorb) | |
| 214 | also have "\<dots> = x \<sqinter> (z \<squnion> (x \<sqinter> y))" by(simp add:D sup_commute inf_assoc) | |
| 215 | also have "\<dots> = ((x \<sqinter> y) \<squnion> x) \<sqinter> ((x \<sqinter> y) \<squnion> z)" | |
| 216 | by(simp add:sup_inf_absorb sup_commute) | |
| 217 | also have "\<dots> = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" by(simp add:D) | |
| 218 | finally show ?thesis . | |
| 219 | qed | |
| 220 | ||
| 21734 | 221 | (* seems unused *) | 
| 222 | lemma modular_le: "x \<sqsubseteq> z \<Longrightarrow> x \<squnion> (y \<sqinter> z) \<sqsubseteq> (x \<squnion> y) \<sqinter> z" | |
| 223 | by blast | |
| 224 | ||
| 21733 | 225 | end | 
| 21249 | 226 | |
| 227 | ||
| 24164 | 228 | subsection {* Distributive lattices *}
 | 
| 21249 | 229 | |
| 22454 | 230 | class distrib_lattice = lattice + | 
| 21249 | 231 | assumes sup_inf_distrib1: "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)" | 
| 232 | ||
| 21733 | 233 | context distrib_lattice | 
| 234 | begin | |
| 235 | ||
| 236 | lemma sup_inf_distrib2: | |
| 21249 | 237 | "(y \<sqinter> z) \<squnion> x = (y \<squnion> x) \<sqinter> (z \<squnion> x)" | 
| 238 | by(simp add:ACI sup_inf_distrib1) | |
| 239 | ||
| 21733 | 240 | lemma inf_sup_distrib1: | 
| 21249 | 241 | "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" | 
| 242 | by(rule distrib_imp2[OF sup_inf_distrib1]) | |
| 243 | ||
| 21733 | 244 | lemma inf_sup_distrib2: | 
| 21249 | 245 | "(y \<squnion> z) \<sqinter> x = (y \<sqinter> x) \<squnion> (z \<sqinter> x)" | 
| 246 | by(simp add:ACI inf_sup_distrib1) | |
| 247 | ||
| 21733 | 248 | lemmas distrib = | 
| 21249 | 249 | sup_inf_distrib1 sup_inf_distrib2 inf_sup_distrib1 inf_sup_distrib2 | 
| 250 | ||
| 21733 | 251 | end | 
| 252 | ||
| 21249 | 253 | |
| 22454 | 254 | subsection {* Uniqueness of inf and sup *}
 | 
| 255 | ||
| 22737 | 256 | lemma (in lower_semilattice) inf_unique: | 
| 22454 | 257 | fixes f (infixl "\<triangle>" 70) | 
| 22737 | 258 | assumes le1: "\<And>x y. x \<triangle> y \<^loc>\<le> x" and le2: "\<And>x y. x \<triangle> y \<^loc>\<le> y" | 
| 259 | and greatest: "\<And>x y z. x \<^loc>\<le> y \<Longrightarrow> x \<^loc>\<le> z \<Longrightarrow> x \<^loc>\<le> y \<triangle> z" | |
| 260 | shows "x \<sqinter> y = x \<triangle> y" | |
| 22454 | 261 | proof (rule antisym) | 
| 23389 | 262 | show "x \<triangle> y \<^loc>\<le> x \<sqinter> y" by (rule le_infI) (rule le1, rule le2) | 
| 22454 | 263 | next | 
| 22737 | 264 | have leI: "\<And>x y z. x \<^loc>\<le> y \<Longrightarrow> x \<^loc>\<le> z \<Longrightarrow> x \<^loc>\<le> y \<triangle> z" by (blast intro: greatest) | 
| 265 | show "x \<sqinter> y \<^loc>\<le> x \<triangle> y" by (rule leI) simp_all | |
| 22454 | 266 | qed | 
| 267 | ||
| 22737 | 268 | lemma (in upper_semilattice) sup_unique: | 
| 22454 | 269 | fixes f (infixl "\<nabla>" 70) | 
| 22737 | 270 | assumes ge1 [simp]: "\<And>x y. x \<^loc>\<le> x \<nabla> y" and ge2: "\<And>x y. y \<^loc>\<le> x \<nabla> y" | 
| 271 | and least: "\<And>x y z. y \<^loc>\<le> x \<Longrightarrow> z \<^loc>\<le> x \<Longrightarrow> y \<nabla> z \<^loc>\<le> x" | |
| 272 | shows "x \<squnion> y = x \<nabla> y" | |
| 22454 | 273 | proof (rule antisym) | 
| 23389 | 274 | show "x \<squnion> y \<^loc>\<le> x \<nabla> y" by (rule le_supI) (rule ge1, rule ge2) | 
| 22454 | 275 | next | 
| 22737 | 276 | have leI: "\<And>x y z. x \<^loc>\<le> z \<Longrightarrow> y \<^loc>\<le> z \<Longrightarrow> x \<nabla> y \<^loc>\<le> z" by (blast intro: least) | 
| 277 | show "x \<nabla> y \<^loc>\<le> x \<squnion> y" by (rule leI) simp_all | |
| 22454 | 278 | qed | 
| 279 | ||
| 280 | ||
| 22916 | 281 | subsection {* @{const min}/@{const max} on linear orders as
 | 
| 282 |   special case of @{const inf}/@{const sup} *}
 | |
| 283 | ||
| 284 | lemma (in linorder) distrib_lattice_min_max: | |
| 23018 
1d29bc31b0cb
no special treatment in naming of locale predicates stemming form classes
 haftmann parents: 
22916diff
changeset | 285 | "distrib_lattice (op \<^loc>\<le>) (op \<^loc><) min max" | 
| 22916 | 286 | proof unfold_locales | 
| 287 | have aux: "\<And>x y \<Colon> 'a. x \<^loc>< y \<Longrightarrow> y \<^loc>\<le> x \<Longrightarrow> x = y" | |
| 288 | by (auto simp add: less_le antisym) | |
| 289 | fix x y z | |
| 290 | show "max x (min y z) = min (max x y) (max x z)" | |
| 291 | unfolding min_def max_def | |
| 24640 
85a6c200ecd3
Simplified proofs due to transitivity reasoner setup.
 ballarin parents: 
24514diff
changeset | 292 | by auto | 
| 22916 | 293 | qed (auto simp add: min_def max_def not_le less_imp_le) | 
| 21249 | 294 | |
| 295 | interpretation min_max: | |
| 22454 | 296 | distrib_lattice ["op \<le> \<Colon> 'a\<Colon>linorder \<Rightarrow> 'a \<Rightarrow> bool" "op <" min max] | 
| 23948 | 297 | by (rule distrib_lattice_min_max) | 
| 21249 | 298 | |
| 22454 | 299 | lemma inf_min: "inf = (min \<Colon> 'a\<Colon>{lower_semilattice, linorder} \<Rightarrow> 'a \<Rightarrow> 'a)"
 | 
| 300 | by (rule ext)+ auto | |
| 21733 | 301 | |
| 22454 | 302 | lemma sup_max: "sup = (max \<Colon> 'a\<Colon>{upper_semilattice, linorder} \<Rightarrow> 'a \<Rightarrow> 'a)"
 | 
| 303 | by (rule ext)+ auto | |
| 21733 | 304 | |
| 21249 | 305 | lemmas le_maxI1 = min_max.sup_ge1 | 
| 306 | lemmas le_maxI2 = min_max.sup_ge2 | |
| 21381 | 307 | |
| 21249 | 308 | lemmas max_ac = min_max.sup_assoc min_max.sup_commute | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 309 | mk_left_commute [of max, OF min_max.sup_assoc min_max.sup_commute] | 
| 21249 | 310 | |
| 311 | lemmas min_ac = min_max.inf_assoc min_max.inf_commute | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 312 | mk_left_commute [of min, OF min_max.inf_assoc min_max.inf_commute] | 
| 21249 | 313 | |
| 22454 | 314 | text {*
 | 
| 315 | Now we have inherited antisymmetry as an intro-rule on all | |
| 316 | linear orders. This is a problem because it applies to bool, which is | |
| 317 | undesirable. | |
| 318 | *} | |
| 319 | ||
| 320 | lemmas [rule del] = min_max.antisym_intro min_max.le_infI min_max.le_supI | |
| 321 | min_max.le_supE min_max.le_infE min_max.le_supI1 min_max.le_supI2 | |
| 322 | min_max.le_infI1 min_max.le_infI2 | |
| 323 | ||
| 324 | ||
| 23878 | 325 | subsection {* Complete lattices *}
 | 
| 326 | ||
| 327 | class complete_lattice = lattice + | |
| 328 |   fixes Inf :: "'a set \<Rightarrow> 'a" ("\<Sqinter>_" [900] 900)
 | |
| 24345 | 329 |     and Sup :: "'a set \<Rightarrow> 'a" ("\<Squnion>_" [900] 900)
 | 
| 23878 | 330 | assumes Inf_lower: "x \<in> A \<Longrightarrow> \<Sqinter>A \<sqsubseteq> x" | 
| 24345 | 331 | and Inf_greatest: "(\<And>x. x \<in> A \<Longrightarrow> z \<sqsubseteq> x) \<Longrightarrow> z \<sqsubseteq> \<Sqinter>A" | 
| 332 | assumes Sup_upper: "x \<in> A \<Longrightarrow> x \<sqsubseteq> \<Squnion>A" | |
| 333 | and Sup_least: "(\<And>x. x \<in> A \<Longrightarrow> x \<sqsubseteq> z) \<Longrightarrow> \<Squnion>A \<sqsubseteq> z" | |
| 23878 | 334 | begin | 
| 335 | ||
| 336 | lemma Inf_Sup: "\<Sqinter>A = \<Squnion>{b. \<forall>a \<in> A. b \<^loc>\<le> a}"
 | |
| 24345 | 337 | by (auto intro: Inf_lower Inf_greatest Sup_upper Sup_least) | 
| 23878 | 338 | |
| 24345 | 339 | lemma Sup_Inf:  "\<Squnion>A = \<Sqinter>{b. \<forall>a \<in> A. a \<^loc>\<le> b}"
 | 
| 340 | by (auto intro: Inf_lower Inf_greatest Sup_upper Sup_least) | |
| 23878 | 341 | |
| 342 | lemma Inf_Univ: "\<Sqinter>UNIV = \<Squnion>{}"
 | |
| 24345 | 343 | unfolding Sup_Inf by auto | 
| 23878 | 344 | |
| 345 | lemma Sup_Univ: "\<Squnion>UNIV = \<Sqinter>{}"
 | |
| 346 | unfolding Inf_Sup by auto | |
| 347 | ||
| 348 | lemma Inf_insert: "\<Sqinter>insert a A = a \<sqinter> \<Sqinter>A" | |
| 349 | apply (rule antisym) | |
| 350 | apply (rule le_infI) | |
| 351 | apply (rule Inf_lower) | |
| 352 | apply simp | |
| 353 | apply (rule Inf_greatest) | |
| 354 | apply (rule Inf_lower) | |
| 355 | apply simp | |
| 356 | apply (rule Inf_greatest) | |
| 357 | apply (erule insertE) | |
| 358 | apply (rule le_infI1) | |
| 359 | apply simp | |
| 360 | apply (rule le_infI2) | |
| 361 | apply (erule Inf_lower) | |
| 362 | done | |
| 363 | ||
| 24345 | 364 | lemma Sup_insert: "\<Squnion>insert a A = a \<squnion> \<Squnion>A" | 
| 23878 | 365 | apply (rule antisym) | 
| 366 | apply (rule Sup_least) | |
| 367 | apply (erule insertE) | |
| 368 | apply (rule le_supI1) | |
| 369 | apply simp | |
| 370 | apply (rule le_supI2) | |
| 371 | apply (erule Sup_upper) | |
| 372 | apply (rule le_supI) | |
| 373 | apply (rule Sup_upper) | |
| 374 | apply simp | |
| 375 | apply (rule Sup_least) | |
| 376 | apply (rule Sup_upper) | |
| 377 | apply simp | |
| 378 | done | |
| 379 | ||
| 380 | lemma Inf_singleton [simp]: | |
| 381 |   "\<Sqinter>{a} = a"
 | |
| 382 | by (auto intro: antisym Inf_lower Inf_greatest) | |
| 383 | ||
| 24345 | 384 | lemma Sup_singleton [simp]: | 
| 23878 | 385 |   "\<Squnion>{a} = a"
 | 
| 386 | by (auto intro: antisym Sup_upper Sup_least) | |
| 387 | ||
| 388 | lemma Inf_insert_simp: | |
| 389 |   "\<Sqinter>insert a A = (if A = {} then a else a \<sqinter> \<Sqinter>A)"
 | |
| 390 |   by (cases "A = {}") (simp_all, simp add: Inf_insert)
 | |
| 391 | ||
| 392 | lemma Sup_insert_simp: | |
| 393 |   "\<Squnion>insert a A = (if A = {} then a else a \<squnion> \<Squnion>A)"
 | |
| 394 |   by (cases "A = {}") (simp_all, simp add: Sup_insert)
 | |
| 395 | ||
| 396 | lemma Inf_binary: | |
| 397 |   "\<Sqinter>{a, b} = a \<sqinter> b"
 | |
| 398 | by (simp add: Inf_insert_simp) | |
| 399 | ||
| 400 | lemma Sup_binary: | |
| 401 |   "\<Squnion>{a, b} = a \<squnion> b"
 | |
| 402 | by (simp add: Sup_insert_simp) | |
| 403 | ||
| 404 | end | |
| 405 | ||
| 406 | definition | |
| 407 | top :: "'a::complete_lattice" | |
| 408 | where | |
| 409 |   "top = Inf {}"
 | |
| 410 | ||
| 411 | definition | |
| 412 | bot :: "'a::complete_lattice" | |
| 413 | where | |
| 414 |   "bot = Sup {}"
 | |
| 415 | ||
| 416 | lemma top_greatest [simp]: "x \<le> top" | |
| 417 | by (unfold top_def, rule Inf_greatest, simp) | |
| 418 | ||
| 419 | lemma bot_least [simp]: "bot \<le> x" | |
| 420 | by (unfold bot_def, rule Sup_least, simp) | |
| 421 | ||
| 422 | definition | |
| 423 |   SUPR :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b::complete_lattice) \<Rightarrow> 'b"
 | |
| 424 | where | |
| 425 | "SUPR A f == Sup (f ` A)" | |
| 426 | ||
| 427 | definition | |
| 428 |   INFI :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b::complete_lattice) \<Rightarrow> 'b"
 | |
| 429 | where | |
| 430 | "INFI A f == Inf (f ` A)" | |
| 431 | ||
| 432 | syntax | |
| 433 |   "_SUP1"     :: "pttrns => 'b => 'b"           ("(3SUP _./ _)" [0, 10] 10)
 | |
| 434 |   "_SUP"      :: "pttrn => 'a set => 'b => 'b"  ("(3SUP _:_./ _)" [0, 10] 10)
 | |
| 435 |   "_INF1"     :: "pttrns => 'b => 'b"           ("(3INF _./ _)" [0, 10] 10)
 | |
| 436 |   "_INF"      :: "pttrn => 'a set => 'b => 'b"  ("(3INF _:_./ _)" [0, 10] 10)
 | |
| 437 | ||
| 438 | translations | |
| 439 | "SUP x y. B" == "SUP x. SUP y. B" | |
| 440 | "SUP x. B" == "CONST SUPR UNIV (%x. B)" | |
| 441 | "SUP x. B" == "SUP x:UNIV. B" | |
| 442 | "SUP x:A. B" == "CONST SUPR A (%x. B)" | |
| 443 | "INF x y. B" == "INF x. INF y. B" | |
| 444 | "INF x. B" == "CONST INFI UNIV (%x. B)" | |
| 445 | "INF x. B" == "INF x:UNIV. B" | |
| 446 | "INF x:A. B" == "CONST INFI A (%x. B)" | |
| 447 | ||
| 448 | (* To avoid eta-contraction of body: *) | |
| 449 | print_translation {*
 | |
| 450 | let | |
| 451 | fun btr' syn (A :: Abs abs :: ts) = | |
| 452 | let val (x,t) = atomic_abs_tr' abs | |
| 453 | in list_comb (Syntax.const syn $ x $ A $ t, ts) end | |
| 454 |   val const_syntax_name = Sign.const_syntax_name @{theory} o fst o dest_Const
 | |
| 455 | in | |
| 456 | [(const_syntax_name @{term SUPR}, btr' "_SUP"),(const_syntax_name @{term "INFI"}, btr' "_INF")]
 | |
| 457 | end | |
| 458 | *} | |
| 459 | ||
| 460 | lemma le_SUPI: "i : A \<Longrightarrow> M i \<le> (SUP i:A. M i)" | |
| 461 | by (auto simp add: SUPR_def intro: Sup_upper) | |
| 462 | ||
| 463 | lemma SUP_leI: "(\<And>i. i : A \<Longrightarrow> M i \<le> u) \<Longrightarrow> (SUP i:A. M i) \<le> u" | |
| 464 | by (auto simp add: SUPR_def intro: Sup_least) | |
| 465 | ||
| 466 | lemma INF_leI: "i : A \<Longrightarrow> (INF i:A. M i) \<le> M i" | |
| 467 | by (auto simp add: INFI_def intro: Inf_lower) | |
| 468 | ||
| 469 | lemma le_INFI: "(\<And>i. i : A \<Longrightarrow> u \<le> M i) \<Longrightarrow> u \<le> (INF i:A. M i)" | |
| 470 | by (auto simp add: INFI_def intro: Inf_greatest) | |
| 471 | ||
| 472 | lemma SUP_const[simp]: "A \<noteq> {} \<Longrightarrow> (SUP i:A. M) = M"
 | |
| 473 | by (auto intro: order_antisym SUP_leI le_SUPI) | |
| 474 | ||
| 475 | lemma INF_const[simp]: "A \<noteq> {} \<Longrightarrow> (INF i:A. M) = M"
 | |
| 476 | by (auto intro: order_antisym INF_leI le_INFI) | |
| 477 | ||
| 478 | ||
| 22454 | 479 | subsection {* Bool as lattice *}
 | 
| 480 | ||
| 481 | instance bool :: distrib_lattice | |
| 482 | inf_bool_eq: "inf P Q \<equiv> P \<and> Q" | |
| 483 | sup_bool_eq: "sup P Q \<equiv> P \<or> Q" | |
| 484 | by intro_classes (auto simp add: inf_bool_eq sup_bool_eq le_bool_def) | |
| 485 | ||
| 23878 | 486 | instance bool :: complete_lattice | 
| 487 | Inf_bool_def: "Inf A \<equiv> \<forall>x\<in>A. x" | |
| 24345 | 488 | Sup_bool_def: "Sup A \<equiv> \<exists>x\<in>A. x" | 
| 489 | by intro_classes (auto simp add: Inf_bool_def Sup_bool_def le_bool_def) | |
| 23878 | 490 | |
| 491 | lemma Inf_empty_bool [simp]: | |
| 492 |   "Inf {}"
 | |
| 493 | unfolding Inf_bool_def by auto | |
| 494 | ||
| 495 | lemma not_Sup_empty_bool [simp]: | |
| 496 |   "\<not> Sup {}"
 | |
| 24345 | 497 | unfolding Sup_bool_def by auto | 
| 23878 | 498 | |
| 499 | lemma top_bool_eq: "top = True" | |
| 500 | by (iprover intro!: order_antisym le_boolI top_greatest) | |
| 501 | ||
| 502 | lemma bot_bool_eq: "bot = False" | |
| 503 | by (iprover intro!: order_antisym le_boolI bot_least) | |
| 504 | ||
| 505 | ||
| 506 | subsection {* Set as lattice *}
 | |
| 507 | ||
| 508 | instance set :: (type) distrib_lattice | |
| 509 | inf_set_eq: "inf A B \<equiv> A \<inter> B" | |
| 510 | sup_set_eq: "sup A B \<equiv> A \<union> B" | |
| 511 | by intro_classes (auto simp add: inf_set_eq sup_set_eq) | |
| 512 | ||
| 513 | lemmas [code func del] = inf_set_eq sup_set_eq | |
| 514 | ||
| 24514 
540eaf87e42d
mono_Int/Un: proper proof, avoid illegal schematic type vars;
 wenzelm parents: 
24345diff
changeset | 515 | lemma mono_Int: "mono f \<Longrightarrow> f (A \<inter> B) \<subseteq> f A \<inter> f B" | 
| 
540eaf87e42d
mono_Int/Un: proper proof, avoid illegal schematic type vars;
 wenzelm parents: 
24345diff
changeset | 516 | apply (fold inf_set_eq sup_set_eq) | 
| 
540eaf87e42d
mono_Int/Un: proper proof, avoid illegal schematic type vars;
 wenzelm parents: 
24345diff
changeset | 517 | apply (erule mono_inf) | 
| 
540eaf87e42d
mono_Int/Un: proper proof, avoid illegal schematic type vars;
 wenzelm parents: 
24345diff
changeset | 518 | done | 
| 23878 | 519 | |
| 24514 
540eaf87e42d
mono_Int/Un: proper proof, avoid illegal schematic type vars;
 wenzelm parents: 
24345diff
changeset | 520 | lemma mono_Un: "mono f \<Longrightarrow> f A \<union> f B \<subseteq> f (A \<union> B)" | 
| 
540eaf87e42d
mono_Int/Un: proper proof, avoid illegal schematic type vars;
 wenzelm parents: 
24345diff
changeset | 521 | apply (fold inf_set_eq sup_set_eq) | 
| 
540eaf87e42d
mono_Int/Un: proper proof, avoid illegal schematic type vars;
 wenzelm parents: 
24345diff
changeset | 522 | apply (erule mono_sup) | 
| 
540eaf87e42d
mono_Int/Un: proper proof, avoid illegal schematic type vars;
 wenzelm parents: 
24345diff
changeset | 523 | done | 
| 23878 | 524 | |
| 525 | instance set :: (type) complete_lattice | |
| 526 | Inf_set_def: "Inf S \<equiv> \<Inter>S" | |
| 24345 | 527 | Sup_set_def: "Sup S \<equiv> \<Union>S" | 
| 528 | by intro_classes (auto simp add: Inf_set_def Sup_set_def) | |
| 23878 | 529 | |
| 24345 | 530 | lemmas [code func del] = Inf_set_def Sup_set_def | 
| 23878 | 531 | |
| 532 | lemma top_set_eq: "top = UNIV" | |
| 533 | by (iprover intro!: subset_antisym subset_UNIV top_greatest) | |
| 534 | ||
| 535 | lemma bot_set_eq: "bot = {}"
 | |
| 536 | by (iprover intro!: subset_antisym empty_subsetI bot_least) | |
| 537 | ||
| 538 | ||
| 539 | subsection {* Fun as lattice *}
 | |
| 540 | ||
| 541 | instance "fun" :: (type, lattice) lattice | |
| 542 | inf_fun_eq: "inf f g \<equiv> (\<lambda>x. inf (f x) (g x))" | |
| 543 | sup_fun_eq: "sup f g \<equiv> (\<lambda>x. sup (f x) (g x))" | |
| 544 | apply intro_classes | |
| 545 | unfolding inf_fun_eq sup_fun_eq | |
| 546 | apply (auto intro: le_funI) | |
| 547 | apply (rule le_funI) | |
| 548 | apply (auto dest: le_funD) | |
| 549 | apply (rule le_funI) | |
| 550 | apply (auto dest: le_funD) | |
| 551 | done | |
| 552 | ||
| 553 | lemmas [code func del] = inf_fun_eq sup_fun_eq | |
| 554 | ||
| 555 | instance "fun" :: (type, distrib_lattice) distrib_lattice | |
| 556 | by default (auto simp add: inf_fun_eq sup_fun_eq sup_inf_distrib1) | |
| 557 | ||
| 558 | instance "fun" :: (type, complete_lattice) complete_lattice | |
| 559 |   Inf_fun_def: "Inf A \<equiv> (\<lambda>x. Inf {y. \<exists>f\<in>A. y = f x})"
 | |
| 24345 | 560 |   Sup_fun_def: "Sup A \<equiv> (\<lambda>x. Sup {y. \<exists>f\<in>A. y = f x})"
 | 
| 561 | by intro_classes | |
| 562 | (auto simp add: Inf_fun_def Sup_fun_def le_fun_def | |
| 563 | intro: Inf_lower Sup_upper Inf_greatest Sup_least) | |
| 23878 | 564 | |
| 24345 | 565 | lemmas [code func del] = Inf_fun_def Sup_fun_def | 
| 23878 | 566 | |
| 567 | lemma Inf_empty_fun: | |
| 568 |   "Inf {} = (\<lambda>_. Inf {})"
 | |
| 569 | by rule (auto simp add: Inf_fun_def) | |
| 570 | ||
| 571 | lemma Sup_empty_fun: | |
| 572 |   "Sup {} = (\<lambda>_. Sup {})"
 | |
| 24345 | 573 | by rule (auto simp add: Sup_fun_def) | 
| 23878 | 574 | |
| 575 | lemma top_fun_eq: "top = (\<lambda>x. top)" | |
| 576 | by (iprover intro!: order_antisym le_funI top_greatest) | |
| 577 | ||
| 578 | lemma bot_fun_eq: "bot = (\<lambda>x. bot)" | |
| 579 | by (iprover intro!: order_antisym le_funI bot_least) | |
| 580 | ||
| 581 | ||
| 582 | text {* redundant bindings *}
 | |
| 22454 | 583 | |
| 584 | lemmas inf_aci = inf_ACI | |
| 585 | lemmas sup_aci = sup_ACI | |
| 586 | ||
| 21249 | 587 | end |