| author | wenzelm | 
| Tue, 28 Mar 2023 23:16:27 +0200 | |
| changeset 77738 | e64428b6b170 | 
| parent 74362 | 0135a0c77b64 | 
| child 78517 | 28c1f4f5335f | 
| permissions | -rw-r--r-- | 
| 42067 | 1 | (* Title: HOL/Probability/Information.thy | 
| 2 | Author: Johannes Hölzl, TU München | |
| 3 | Author: Armin Heller, TU München | |
| 4 | *) | |
| 5 | ||
| 61808 | 6 | section \<open>Information theory\<close> | 
| 42067 | 7 | |
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 8 | theory Information | 
| 41413 
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
 wenzelm parents: 
41095diff
changeset | 9 | imports | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 10 | Independent_Family | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 11 | begin | 
| 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 12 | |
| 39097 | 13 | lemma log_le: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> x \<le> y \<Longrightarrow> log a x \<le> log a y" | 
| 14 | by (subst log_le_cancel_iff) auto | |
| 15 | ||
| 16 | lemma log_less: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> x < y \<Longrightarrow> log a x < log a y" | |
| 17 | by (subst log_less_cancel_iff) auto | |
| 18 | ||
| 64267 | 19 | lemma sum_cartesian_product': | 
| 20 | "(\<Sum>x\<in>A \<times> B. f x) = (\<Sum>x\<in>A. sum (\<lambda>y. f (x, y)) B)" | |
| 21 | unfolding sum.cartesian_product by simp | |
| 39097 | 22 | |
| 23 | lemma split_pairs: | |
| 40859 | 24 | "((A, B) = X) \<longleftrightarrow> (fst X = A \<and> snd X = B)" and | 
| 25 | "(X = (A, B)) \<longleftrightarrow> (fst X = A \<and> snd X = B)" by auto | |
| 38656 | 26 | |
| 56994 | 27 | subsection "Information theory" | 
| 38656 | 28 | |
| 40859 | 29 | locale information_space = prob_space + | 
| 38656 | 30 | fixes b :: real assumes b_gt_1: "1 < b" | 
| 31 | ||
| 40859 | 32 | context information_space | 
| 38656 | 33 | begin | 
| 34 | ||
| 69597 | 35 | text \<open>Introduce some simplification rules for logarithm of base \<^term>\<open>b\<close>.\<close> | 
| 40859 | 36 | |
| 37 | lemma log_neg_const: | |
| 38 | assumes "x \<le> 0" | |
| 39 | shows "log b x = log b 0" | |
| 36624 | 40 | proof - | 
| 40859 | 41 |   { fix u :: real
 | 
| 42 | have "x \<le> 0" by fact | |
| 43 | also have "0 < exp u" | |
| 44 | using exp_gt_zero . | |
| 45 | finally have "exp u \<noteq> x" | |
| 46 | by auto } | |
| 47 | then show "log b x = log b 0" | |
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
58876diff
changeset | 48 | by (simp add: log_def ln_real_def) | 
| 38656 | 49 | qed | 
| 50 | ||
| 40859 | 51 | lemma log_mult_eq: | 
| 52 | "log b (A * B) = (if 0 < A * B then log b \<bar>A\<bar> + log b \<bar>B\<bar> else log b 0)" | |
| 53 | using log_mult[of b "\<bar>A\<bar>" "\<bar>B\<bar>"] b_gt_1 log_neg_const[of "A * B"] | |
| 54 | by (auto simp: zero_less_mult_iff mult_le_0_iff) | |
| 38656 | 55 | |
| 40859 | 56 | lemma log_inverse_eq: | 
| 57 | "log b (inverse B) = (if 0 < B then - log b B else log b 0)" | |
| 58 | using log_inverse[of b B] log_neg_const[of "inverse B"] b_gt_1 by simp | |
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 59 | |
| 40859 | 60 | lemma log_divide_eq: | 
| 61 | "log b (A / B) = (if 0 < A * B then log b \<bar>A\<bar> - log b \<bar>B\<bar> else log b 0)" | |
| 62 | unfolding divide_inverse log_mult_eq log_inverse_eq abs_inverse | |
| 63 | by (auto simp: zero_less_mult_iff mult_le_0_iff) | |
| 38656 | 64 | |
| 40859 | 65 | lemmas log_simps = log_mult_eq log_inverse_eq log_divide_eq | 
| 38656 | 66 | |
| 67 | end | |
| 68 | ||
| 39097 | 69 | subsection "Kullback$-$Leibler divergence" | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 70 | |
| 61808 | 71 | text \<open>The Kullback$-$Leibler divergence is also known as relative entropy or | 
| 72 | Kullback$-$Leibler distance.\<close> | |
| 39097 | 73 | |
| 74 | definition | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 75 | "entropy_density b M N = log b \<circ> enn2real \<circ> RN_deriv M N" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 76 | |
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 77 | definition | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 78 | "KL_divergence b M N = integral\<^sup>L N (entropy_density b M N)" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 79 | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 80 | lemma measurable_entropy_density[measurable]: "entropy_density b M N \<in> borel_measurable M" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 81 | unfolding entropy_density_def by auto | 
| 50003 | 82 | |
| 47694 | 83 | lemma (in sigma_finite_measure) KL_density: | 
| 84 | fixes f :: "'a \<Rightarrow> real" | |
| 85 | assumes "1 < b" | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 86 | assumes f[measurable]: "f \<in> borel_measurable M" and nn: "AE x in M. 0 \<le> f x" | 
| 47694 | 87 | shows "KL_divergence b M (density M f) = (\<integral>x. f x * log b (f x) \<partial>M)" | 
| 88 | unfolding KL_divergence_def | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 89 | proof (subst integral_real_density) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 90 | show [measurable]: "entropy_density b M (density M (\<lambda>x. ennreal (f x))) \<in> borel_measurable M" | 
| 49776 | 91 | using f | 
| 50003 | 92 | by (auto simp: comp_def entropy_density_def) | 
| 47694 | 93 | have "density M (RN_deriv M (density M f)) = density M f" | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 94 | using f nn by (intro density_RN_deriv_density) auto | 
| 47694 | 95 | then have eq: "AE x in M. RN_deriv M (density M f) x = f x" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 96 | using f nn by (intro density_unique) auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 97 | show "(\<integral>x. f x * entropy_density b M (density M (\<lambda>x. ennreal (f x))) x \<partial>M) = (\<integral>x. f x * log b (f x) \<partial>M)" | 
| 47694 | 98 | apply (intro integral_cong_AE) | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 99 | apply measurable | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 100 | using eq nn | 
| 47694 | 101 | apply eventually_elim | 
| 102 | apply (auto simp: entropy_density_def) | |
| 103 | done | |
| 104 | qed fact+ | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 105 | |
| 47694 | 106 | lemma (in sigma_finite_measure) KL_density_density: | 
| 107 | fixes f g :: "'a \<Rightarrow> real" | |
| 108 | assumes "1 < b" | |
| 109 | assumes f: "f \<in> borel_measurable M" "AE x in M. 0 \<le> f x" | |
| 110 | assumes g: "g \<in> borel_measurable M" "AE x in M. 0 \<le> g x" | |
| 111 | assumes ac: "AE x in M. f x = 0 \<longrightarrow> g x = 0" | |
| 112 | shows "KL_divergence b (density M f) (density M g) = (\<integral>x. g x * log b (g x / f x) \<partial>M)" | |
| 113 | proof - | |
| 114 | interpret Mf: sigma_finite_measure "density M f" | |
| 115 | using f by (subst sigma_finite_iff_density_finite) auto | |
| 116 | have "KL_divergence b (density M f) (density M g) = | |
| 117 | KL_divergence b (density M f) (density (density M f) (\<lambda>x. g x / f x))" | |
| 118 | using f g ac by (subst density_density_divide) simp_all | |
| 119 | also have "\<dots> = (\<integral>x. (g x / f x) * log b (g x / f x) \<partial>density M f)" | |
| 61808 | 120 | using f g \<open>1 < b\<close> by (intro Mf.KL_density) (auto simp: AE_density) | 
| 47694 | 121 | also have "\<dots> = (\<integral>x. g x * log b (g x / f x) \<partial>M)" | 
| 61808 | 122 | using ac f g \<open>1 < b\<close> by (subst integral_density) (auto intro!: integral_cong_AE) | 
| 47694 | 123 | finally show ?thesis . | 
| 124 | qed | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 125 | |
| 47694 | 126 | lemma (in information_space) KL_gt_0: | 
| 127 | fixes D :: "'a \<Rightarrow> real" | |
| 128 | assumes "prob_space (density M D)" | |
| 129 | assumes D: "D \<in> borel_measurable M" "AE x in M. 0 \<le> D x" | |
| 130 | assumes int: "integrable M (\<lambda>x. D x * log b (D x))" | |
| 131 | assumes A: "density M D \<noteq> M" | |
| 132 | shows "0 < KL_divergence b M (density M D)" | |
| 133 | proof - | |
| 134 | interpret N: prob_space "density M D" by fact | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 135 | |
| 47694 | 136 | obtain A where "A \<in> sets M" "emeasure (density M D) A \<noteq> emeasure M A" | 
| 61808 | 137 | using measure_eqI[of "density M D" M] \<open>density M D \<noteq> M\<close> by auto | 
| 47694 | 138 | |
| 139 |   let ?D_set = "{x\<in>space M. D x \<noteq> 0}"
 | |
| 140 | have [simp, intro]: "?D_set \<in> sets M" | |
| 141 | using D by auto | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 142 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 143 | have D_neg: "(\<integral>\<^sup>+ x. ennreal (- D x) \<partial>M) = 0" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 144 | using D by (subst nn_integral_0_iff_AE) (auto simp: ennreal_neg) | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 145 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 146 | have "(\<integral>\<^sup>+ x. ennreal (D x) \<partial>M) = emeasure (density M D) (space M)" | 
| 56996 | 147 | using D by (simp add: emeasure_density cong: nn_integral_cong) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 148 | then have D_pos: "(\<integral>\<^sup>+ x. ennreal (D x) \<partial>M) = 1" | 
| 47694 | 149 | using N.emeasure_space_1 by simp | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 150 | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 151 | have "integrable M D" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 152 | using D D_pos D_neg unfolding real_integrable_def real_lebesgue_integral_def by simp_all | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 153 | then have "integral\<^sup>L M D = 1" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 154 | using D D_pos D_neg by (simp add: real_lebesgue_integral_def) | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 155 | |
| 47694 | 156 | have "0 \<le> 1 - measure M ?D_set" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 157 | using prob_le_1 by (auto simp: field_simps) | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 158 | also have "\<dots> = (\<integral> x. D x - indicator ?D_set x \<partial>M)" | 
| 61808 | 159 | using \<open>integrable M D\<close> \<open>integral\<^sup>L M D = 1\<close> | 
| 47694 | 160 | by (simp add: emeasure_eq_measure) | 
| 161 | also have "\<dots> < (\<integral> x. D x * (ln b * log b (D x)) \<partial>M)" | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 162 | proof (rule integral_less_AE) | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 163 | show "integrable M (\<lambda>x. D x - indicator ?D_set x)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 164 | using \<open>integrable M D\<close> by (auto simp: less_top[symmetric]) | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 165 | next | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 166 | from integrable_mult_left(1)[OF int, of "ln b"] | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 167 | show "integrable M (\<lambda>x. D x * (ln b * log b (D x)))" | 
| 47694 | 168 | by (simp add: ac_simps) | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 169 | next | 
| 47694 | 170 |     show "emeasure M {x\<in>space M. D x \<noteq> 1 \<and> D x \<noteq> 0} \<noteq> 0"
 | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 171 | proof | 
| 47694 | 172 |       assume eq_0: "emeasure M {x\<in>space M. D x \<noteq> 1 \<and> D x \<noteq> 0} = 0"
 | 
| 173 | then have disj: "AE x in M. D x = 1 \<or> D x = 0" | |
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50003diff
changeset | 174 | using D(1) by (auto intro!: AE_I[OF subset_refl] sets.sets_Collect) | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 175 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 176 |       have "emeasure M {x\<in>space M. D x = 1} = (\<integral>\<^sup>+ x. indicator {x\<in>space M. D x = 1} x \<partial>M)"
 | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 177 | using D(1) by auto | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 178 | also have "\<dots> = (\<integral>\<^sup>+ x. ennreal (D x) \<partial>M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 179 | using disj by (auto intro!: nn_integral_cong_AE simp: indicator_def one_ennreal_def) | 
| 47694 | 180 | finally have "AE x in M. D x = 1" | 
| 181 | using D D_pos by (intro AE_I_eq_1) auto | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 182 | then have "(\<integral>\<^sup>+x. indicator A x\<partial>M) = (\<integral>\<^sup>+x. ennreal (D x) * indicator A x\<partial>M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 183 | by (intro nn_integral_cong_AE) (auto simp: one_ennreal_def[symmetric]) | 
| 47694 | 184 | also have "\<dots> = density M D A" | 
| 61808 | 185 | using \<open>A \<in> sets M\<close> D by (simp add: emeasure_density) | 
| 186 | finally show False using \<open>A \<in> sets M\<close> \<open>emeasure (density M D) A \<noteq> emeasure M A\<close> by simp | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 187 | qed | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 188 |     show "{x\<in>space M. D x \<noteq> 1 \<and> D x \<noteq> 0} \<in> sets M"
 | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50003diff
changeset | 189 | using D(1) by (auto intro: sets.sets_Collect_conj) | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 190 | |
| 47694 | 191 |     show "AE t in M. t \<in> {x\<in>space M. D x \<noteq> 1 \<and> D x \<noteq> 0} \<longrightarrow>
 | 
| 192 | D t - indicator ?D_set t \<noteq> D t * (ln b * log b (D t))" | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 193 | using D(2) | 
| 47694 | 194 | proof (eventually_elim, safe) | 
| 195 | fix t assume Dt: "t \<in> space M" "D t \<noteq> 1" "D t \<noteq> 0" "0 \<le> D t" | |
| 196 | and eq: "D t - indicator ?D_set t = D t * (ln b * log b (D t))" | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 197 | |
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 198 | have "D t - 1 = D t - indicator ?D_set t" | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 199 | using Dt by simp | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 200 | also note eq | 
| 47694 | 201 | also have "D t * (ln b * log b (D t)) = - D t * ln (1 / D t)" | 
| 61808 | 202 | using b_gt_1 \<open>D t \<noteq> 0\<close> \<open>0 \<le> D t\<close> | 
| 47694 | 203 | by (simp add: log_def ln_div less_le) | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 204 | finally have "ln (1 / D t) = 1 / D t - 1" | 
| 61808 | 205 | using \<open>D t \<noteq> 0\<close> by (auto simp: field_simps) | 
| 206 | from ln_eq_minus_one[OF _ this] \<open>D t \<noteq> 0\<close> \<open>0 \<le> D t\<close> \<open>D t \<noteq> 1\<close> | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 207 | show False by auto | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 208 | qed | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 209 | |
| 47694 | 210 | show "AE t in M. D t - indicator ?D_set t \<le> D t * (ln b * log b (D t))" | 
| 211 | using D(2) AE_space | |
| 212 | proof eventually_elim | |
| 213 | fix t assume "t \<in> space M" "0 \<le> D t" | |
| 214 | show "D t - indicator ?D_set t \<le> D t * (ln b * log b (D t))" | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 215 | proof cases | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 216 | assume asm: "D t \<noteq> 0" | 
| 61808 | 217 | then have "0 < D t" using \<open>0 \<le> D t\<close> by auto | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 218 | then have "0 < 1 / D t" by auto | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 219 | have "D t - indicator ?D_set t \<le> - D t * (1 / D t - 1)" | 
| 61808 | 220 | using asm \<open>t \<in> space M\<close> by (simp add: field_simps) | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 221 | also have "- D t * (1 / D t - 1) \<le> - D t * ln (1 / D t)" | 
| 61808 | 222 | using ln_le_minus_one \<open>0 < 1 / D t\<close> by (intro mult_left_mono_neg) auto | 
| 47694 | 223 | also have "\<dots> = D t * (ln b * log b (D t))" | 
| 61808 | 224 | using \<open>0 < D t\<close> b_gt_1 | 
| 47694 | 225 | by (simp_all add: log_def ln_div) | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 226 | finally show ?thesis by simp | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 227 | qed simp | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 228 | qed | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 229 | qed | 
| 47694 | 230 | also have "\<dots> = (\<integral> x. ln b * (D x * log b (D x)) \<partial>M)" | 
| 231 | by (simp add: ac_simps) | |
| 232 | also have "\<dots> = ln b * (\<integral> x. D x * log b (D x) \<partial>M)" | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 233 | using int by simp | 
| 47694 | 234 | finally show ?thesis | 
| 235 | using b_gt_1 D by (subst KL_density) (auto simp: zero_less_mult_iff) | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 236 | qed | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 237 | |
| 47694 | 238 | lemma (in sigma_finite_measure) KL_same_eq_0: "KL_divergence b M M = 0" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 239 | proof - | 
| 47694 | 240 | have "AE x in M. 1 = RN_deriv M M x" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 241 | proof (rule RN_deriv_unique) | 
| 47694 | 242 | show "density M (\<lambda>x. 1) = M" | 
| 243 | apply (auto intro!: measure_eqI emeasure_density) | |
| 244 | apply (subst emeasure_density) | |
| 245 | apply auto | |
| 246 | done | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 247 | qed auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 248 | then have "AE x in M. log b (enn2real (RN_deriv M M x)) = 0" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 249 | by (elim AE_mp) simp | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 250 | from integral_cong_AE[OF _ _ this] | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 251 | have "integral\<^sup>L M (entropy_density b M M) = 0" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 252 | by (simp add: entropy_density_def comp_def) | 
| 47694 | 253 | then show "KL_divergence b M M = 0" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 254 | unfolding KL_divergence_def | 
| 47694 | 255 | by auto | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 256 | qed | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 257 | |
| 47694 | 258 | lemma (in information_space) KL_eq_0_iff_eq: | 
| 259 | fixes D :: "'a \<Rightarrow> real" | |
| 260 | assumes "prob_space (density M D)" | |
| 261 | assumes D: "D \<in> borel_measurable M" "AE x in M. 0 \<le> D x" | |
| 262 | assumes int: "integrable M (\<lambda>x. D x * log b (D x))" | |
| 263 | shows "KL_divergence b M (density M D) = 0 \<longleftrightarrow> density M D = M" | |
| 264 | using KL_same_eq_0[of b] KL_gt_0[OF assms] | |
| 265 | by (auto simp: less_le) | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 266 | |
| 47694 | 267 | lemma (in information_space) KL_eq_0_iff_eq_ac: | 
| 268 | fixes D :: "'a \<Rightarrow> real" | |
| 269 | assumes "prob_space N" | |
| 270 | assumes ac: "absolutely_continuous M N" "sets N = sets M" | |
| 271 | assumes int: "integrable N (entropy_density b M N)" | |
| 272 | shows "KL_divergence b M N = 0 \<longleftrightarrow> N = M" | |
| 41833 
563bea92b2c0
add lemma KL_divergence_vimage, mutual_information_generic
 hoelzl parents: 
41689diff
changeset | 273 | proof - | 
| 47694 | 274 | interpret N: prob_space N by fact | 
| 275 | have "finite_measure N" by unfold_locales | |
| 74362 | 276 | from real_RN_deriv[OF this ac] obtain D | 
| 277 | where D: | |
| 278 | "random_variable borel D" | |
| 279 | "AE x in M. RN_deriv M N x = ennreal (D x)" | |
| 280 | "AE x in N. 0 < D x" | |
| 281 | "\<And>x. 0 \<le> D x" | |
| 282 | by this auto | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 283 | |
| 47694 | 284 | have "N = density M (RN_deriv M N)" | 
| 285 | using ac by (rule density_RN_deriv[symmetric]) | |
| 286 | also have "\<dots> = density M D" | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 287 | using D by (auto intro!: density_cong) | 
| 47694 | 288 | finally have N: "N = density M D" . | 
| 41833 
563bea92b2c0
add lemma KL_divergence_vimage, mutual_information_generic
 hoelzl parents: 
41689diff
changeset | 289 | |
| 47694 | 290 | from absolutely_continuous_AE[OF ac(2,1) D(2)] D b_gt_1 ac measurable_entropy_density | 
| 291 | have "integrable N (\<lambda>x. log b (D x))" | |
| 292 | by (intro integrable_cong_AE[THEN iffD2, OF _ _ _ int]) | |
| 293 | (auto simp: N entropy_density_def) | |
| 294 | with D b_gt_1 have "integrable M (\<lambda>x. D x * log b (D x))" | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 295 | by (subst integrable_real_density[symmetric]) (auto simp: N[symmetric] comp_def) | 
| 61808 | 296 | with \<open>prob_space N\<close> D show ?thesis | 
| 47694 | 297 | unfolding N | 
| 298 | by (intro KL_eq_0_iff_eq) auto | |
| 41833 
563bea92b2c0
add lemma KL_divergence_vimage, mutual_information_generic
 hoelzl parents: 
41689diff
changeset | 299 | qed | 
| 
563bea92b2c0
add lemma KL_divergence_vimage, mutual_information_generic
 hoelzl parents: 
41689diff
changeset | 300 | |
| 47694 | 301 | lemma (in information_space) KL_nonneg: | 
| 302 | assumes "prob_space (density M D)" | |
| 303 | assumes D: "D \<in> borel_measurable M" "AE x in M. 0 \<le> D x" | |
| 304 | assumes int: "integrable M (\<lambda>x. D x * log b (D x))" | |
| 305 | shows "0 \<le> KL_divergence b M (density M D)" | |
| 306 | using KL_gt_0[OF assms] by (cases "density M D = M") (auto simp: KL_same_eq_0) | |
| 40859 | 307 | |
| 47694 | 308 | lemma (in sigma_finite_measure) KL_density_density_nonneg: | 
| 309 | fixes f g :: "'a \<Rightarrow> real" | |
| 310 | assumes "1 < b" | |
| 311 | assumes f: "f \<in> borel_measurable M" "AE x in M. 0 \<le> f x" "prob_space (density M f)" | |
| 312 | assumes g: "g \<in> borel_measurable M" "AE x in M. 0 \<le> g x" "prob_space (density M g)" | |
| 313 | assumes ac: "AE x in M. f x = 0 \<longrightarrow> g x = 0" | |
| 314 | assumes int: "integrable M (\<lambda>x. g x * log b (g x / f x))" | |
| 315 | shows "0 \<le> KL_divergence b (density M f) (density M g)" | |
| 316 | proof - | |
| 317 | interpret Mf: prob_space "density M f" by fact | |
| 61169 | 318 | interpret Mf: information_space "density M f" b by standard fact | 
| 47694 | 319 | have eq: "density (density M f) (\<lambda>x. g x / f x) = density M g" (is "?DD = _") | 
| 320 | using f g ac by (subst density_density_divide) simp_all | |
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 321 | |
| 47694 | 322 | have "0 \<le> KL_divergence b (density M f) (density (density M f) (\<lambda>x. g x / f x))" | 
| 323 | proof (rule Mf.KL_nonneg) | |
| 324 | show "prob_space ?DD" unfolding eq by fact | |
| 325 | from f g show "(\<lambda>x. g x / f x) \<in> borel_measurable (density M f)" | |
| 326 | by auto | |
| 327 | show "AE x in density M f. 0 \<le> g x / f x" | |
| 56571 
f4635657d66f
added divide_nonneg_nonneg and co; made it a simp rule
 hoelzl parents: 
56544diff
changeset | 328 | using f g by (auto simp: AE_density) | 
| 47694 | 329 | show "integrable (density M f) (\<lambda>x. g x / f x * log b (g x / f x))" | 
| 61808 | 330 | using \<open>1 < b\<close> f g ac | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 331 | by (subst integrable_density) | 
| 47694 | 332 | (auto intro!: integrable_cong_AE[THEN iffD2, OF _ _ _ int] measurable_If) | 
| 333 | qed | |
| 334 | also have "\<dots> = KL_divergence b (density M f) (density M g)" | |
| 335 | using f g ac by (subst density_density_divide) simp_all | |
| 336 | finally show ?thesis . | |
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 337 | qed | 
| 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 338 | |
| 61808 | 339 | subsection \<open>Finite Entropy\<close> | 
| 49803 | 340 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 341 | definition (in information_space) finite_entropy :: "'b measure \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> real) \<Rightarrow> bool"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 342 | where | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 343 | "finite_entropy S X f \<longleftrightarrow> | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 344 | distributed M S X f \<and> | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 345 | integrable S (\<lambda>x. f x * log b (f x)) \<and> | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 346 | (\<forall>x\<in>space S. 0 \<le> f x)" | 
| 49803 | 347 | |
| 348 | lemma (in information_space) finite_entropy_simple_function: | |
| 349 | assumes X: "simple_function M X" | |
| 350 |   shows "finite_entropy (count_space (X`space M)) X (\<lambda>a. measure M {x \<in> space M. X x = a})"
 | |
| 351 | unfolding finite_entropy_def | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 352 | proof safe | 
| 49803 | 353 | have [simp]: "finite (X ` space M)" | 
| 354 | using X by (auto simp: simple_function_def) | |
| 355 | then show "integrable (count_space (X ` space M)) | |
| 356 |      (\<lambda>x. prob {xa \<in> space M. X xa = x} * log b (prob {xa \<in> space M. X xa = x}))"
 | |
| 357 | by (rule integrable_count_space) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 358 |   have d: "distributed M (count_space (X ` space M)) X (\<lambda>x. ennreal (if x \<in> X`space M then prob {xa \<in> space M. X xa = x} else 0))"
 | 
| 49803 | 359 | by (rule distributed_simple_function_superset[OF X]) (auto intro!: arg_cong[where f=prob]) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 360 |   show "distributed M (count_space (X ` space M)) X (\<lambda>x. ennreal (prob {xa \<in> space M. X xa = x}))"
 | 
| 49803 | 361 | by (rule distributed_cong_density[THEN iffD1, OF _ _ _ d]) auto | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 362 | qed (rule measure_nonneg) | 
| 49803 | 363 | |
| 364 | lemma ac_fst: | |
| 365 | assumes "sigma_finite_measure T" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 366 | shows "absolutely_continuous S (distr (S \<Otimes>\<^sub>M T) S fst)" | 
| 49803 | 367 | proof - | 
| 368 | interpret sigma_finite_measure T by fact | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53015diff
changeset | 369 |   { fix A assume A: "A \<in> sets S" "emeasure S A = 0"
 | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53015diff
changeset | 370 | then have "fst -` A \<inter> space (S \<Otimes>\<^sub>M T) = A \<times> space T" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50003diff
changeset | 371 | by (auto simp: space_pair_measure dest!: sets.sets_into_space) | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53015diff
changeset | 372 | with A have "emeasure (S \<Otimes>\<^sub>M T) (fst -` A \<inter> space (S \<Otimes>\<^sub>M T)) = 0" | 
| 49803 | 373 | by (simp add: emeasure_pair_measure_Times) } | 
| 374 | then show ?thesis | |
| 375 | unfolding absolutely_continuous_def | |
| 376 | apply (auto simp: null_sets_distr_iff) | |
| 377 | apply (auto simp: null_sets_def intro!: measurable_sets) | |
| 378 | done | |
| 379 | qed | |
| 380 | ||
| 381 | lemma ac_snd: | |
| 382 | assumes "sigma_finite_measure T" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 383 | shows "absolutely_continuous T (distr (S \<Otimes>\<^sub>M T) T snd)" | 
| 49803 | 384 | proof - | 
| 385 | interpret sigma_finite_measure T by fact | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53015diff
changeset | 386 |   { fix A assume A: "A \<in> sets T" "emeasure T A = 0"
 | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53015diff
changeset | 387 | then have "snd -` A \<inter> space (S \<Otimes>\<^sub>M T) = space S \<times> A" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50003diff
changeset | 388 | by (auto simp: space_pair_measure dest!: sets.sets_into_space) | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53015diff
changeset | 389 | with A have "emeasure (S \<Otimes>\<^sub>M T) (snd -` A \<inter> space (S \<Otimes>\<^sub>M T)) = 0" | 
| 49803 | 390 | by (simp add: emeasure_pair_measure_Times) } | 
| 391 | then show ?thesis | |
| 392 | unfolding absolutely_continuous_def | |
| 393 | apply (auto simp: null_sets_distr_iff) | |
| 394 | apply (auto simp: null_sets_def intro!: measurable_sets) | |
| 395 | done | |
| 396 | qed | |
| 397 | ||
| 398 | lemma (in information_space) finite_entropy_integrable: | |
| 399 | "finite_entropy S X Px \<Longrightarrow> integrable S (\<lambda>x. Px x * log b (Px x))" | |
| 400 | unfolding finite_entropy_def by auto | |
| 401 | ||
| 402 | lemma (in information_space) finite_entropy_distributed: | |
| 403 | "finite_entropy S X Px \<Longrightarrow> distributed M S X Px" | |
| 404 | unfolding finite_entropy_def by auto | |
| 405 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 406 | lemma (in information_space) finite_entropy_nn: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 407 | "finite_entropy S X Px \<Longrightarrow> x \<in> space S \<Longrightarrow> 0 \<le> Px x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 408 | by (auto simp: finite_entropy_def) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 409 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 410 | lemma (in information_space) finite_entropy_measurable: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 411 | "finite_entropy S X Px \<Longrightarrow> Px \<in> S \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 412 | using distributed_real_measurable[of S Px M X] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 413 | finite_entropy_nn[of S X Px] finite_entropy_distributed[of S X Px] by auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 414 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 415 | lemma (in information_space) subdensity_finite_entropy: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 416 | fixes g :: "'b \<Rightarrow> real" and f :: "'c \<Rightarrow> real" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 417 | assumes T: "T \<in> measurable P Q" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 418 | assumes f: "finite_entropy P X f" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 419 | assumes g: "finite_entropy Q Y g" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 420 | assumes Y: "Y = T \<circ> X" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 421 | shows "AE x in P. g (T x) = 0 \<longrightarrow> f x = 0" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 422 | using subdensity[OF T, of M X "\<lambda>x. ennreal (f x)" Y "\<lambda>x. ennreal (g x)"] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 423 | finite_entropy_distributed[OF f] finite_entropy_distributed[OF g] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 424 | finite_entropy_nn[OF f] finite_entropy_nn[OF g] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 425 | assms | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 426 | by auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 427 | |
| 49803 | 428 | lemma (in information_space) finite_entropy_integrable_transform: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 429 | "finite_entropy S X Px \<Longrightarrow> distributed M T Y Py \<Longrightarrow> (\<And>x. x \<in> space T \<Longrightarrow> 0 \<le> Py x) \<Longrightarrow> | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 430 | X = (\<lambda>x. f (Y x)) \<Longrightarrow> f \<in> measurable T S \<Longrightarrow> integrable T (\<lambda>x. Py x * log b (Px (f x)))" | 
| 49803 | 431 | using distributed_transform_integrable[of M T Y Py S X Px f "\<lambda>x. log b (Px x)"] | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 432 | using distributed_real_measurable[of S Px M X] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 433 | by (auto simp: finite_entropy_def) | 
| 49803 | 434 | |
| 61808 | 435 | subsection \<open>Mutual Information\<close> | 
| 39097 | 436 | |
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 437 | definition (in prob_space) | 
| 38656 | 438 | "mutual_information b S T X Y = | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 439 | KL_divergence b (distr M S X \<Otimes>\<^sub>M distr M T Y) (distr M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)))" | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 440 | |
| 47694 | 441 | lemma (in information_space) mutual_information_indep_vars: | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 442 | fixes S T X Y | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 443 | defines "P \<equiv> distr M S X \<Otimes>\<^sub>M distr M T Y" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 444 | defines "Q \<equiv> distr M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x))" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 445 | shows "indep_var S X T Y \<longleftrightarrow> | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 446 | (random_variable S X \<and> random_variable T Y \<and> | 
| 47694 | 447 | absolutely_continuous P Q \<and> integrable Q (entropy_density b P Q) \<and> | 
| 448 | mutual_information b S T X Y = 0)" | |
| 449 | unfolding indep_var_distribution_eq | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 450 | proof safe | 
| 50003 | 451 | assume rv[measurable]: "random_variable S X" "random_variable T Y" | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 452 | |
| 47694 | 453 | interpret X: prob_space "distr M S X" | 
| 454 | by (rule prob_space_distr) fact | |
| 455 | interpret Y: prob_space "distr M T Y" | |
| 456 | by (rule prob_space_distr) fact | |
| 61169 | 457 | interpret XY: pair_prob_space "distr M S X" "distr M T Y" by standard | 
| 458 | interpret P: information_space P b unfolding P_def by standard (rule b_gt_1) | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 459 | |
| 47694 | 460 | interpret Q: prob_space Q unfolding Q_def | 
| 50003 | 461 | by (rule prob_space_distr) simp | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 462 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 463 |   { assume "distr M S X \<Otimes>\<^sub>M distr M T Y = distr M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x))"
 | 
| 47694 | 464 | then have [simp]: "Q = P" unfolding Q_def P_def by simp | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 465 | |
| 47694 | 466 | show ac: "absolutely_continuous P Q" by (simp add: absolutely_continuous_def) | 
| 467 | then have ed: "entropy_density b P Q \<in> borel_measurable P" | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 468 | by simp | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 469 | |
| 47694 | 470 | have "AE x in P. 1 = RN_deriv P Q x" | 
| 471 | proof (rule P.RN_deriv_unique) | |
| 472 | show "density P (\<lambda>x. 1) = Q" | |
| 61808 | 473 | unfolding \<open>Q = P\<close> by (intro measure_eqI) (auto simp: emeasure_density) | 
| 47694 | 474 | qed auto | 
| 475 | then have ae_0: "AE x in P. entropy_density b P Q x = 0" | |
| 476 | by eventually_elim (auto simp: entropy_density_def) | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 477 | then have "integrable P (entropy_density b P Q) \<longleftrightarrow> integrable Q (\<lambda>x. 0::real)" | 
| 61808 | 478 | using ed unfolding \<open>Q = P\<close> by (intro integrable_cong_AE) auto | 
| 47694 | 479 | then show "integrable Q (entropy_density b P Q)" by simp | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 480 | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 481 | from ae_0 have "mutual_information b S T X Y = (\<integral>x. 0 \<partial>P)" | 
| 61808 | 482 | unfolding mutual_information_def KL_divergence_def P_def[symmetric] Q_def[symmetric] \<open>Q = P\<close> | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 483 | by (intro integral_cong_AE) auto | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 484 | then show "mutual_information b S T X Y = 0" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 485 | by simp } | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 486 | |
| 47694 | 487 |   { assume ac: "absolutely_continuous P Q"
 | 
| 488 | assume int: "integrable Q (entropy_density b P Q)" | |
| 489 | assume I_eq_0: "mutual_information b S T X Y = 0" | |
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 490 | |
| 47694 | 491 | have eq: "Q = P" | 
| 492 | proof (rule P.KL_eq_0_iff_eq_ac[THEN iffD1]) | |
| 493 | show "prob_space Q" by unfold_locales | |
| 494 | show "absolutely_continuous P Q" by fact | |
| 495 | show "integrable Q (entropy_density b P Q)" by fact | |
| 496 | show "sets Q = sets P" by (simp add: P_def Q_def sets_pair_measure) | |
| 497 | show "KL_divergence b P Q = 0" | |
| 498 | using I_eq_0 unfolding mutual_information_def by (simp add: P_def Q_def) | |
| 499 | qed | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 500 | then show "distr M S X \<Otimes>\<^sub>M distr M T Y = distr M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x))" | 
| 47694 | 501 | unfolding P_def Q_def .. } | 
| 43340 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 502 | qed | 
| 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 hoelzl parents: 
42148diff
changeset | 503 | |
| 40859 | 504 | abbreviation (in information_space) | 
| 505 |   mutual_information_Pow ("\<I>'(_ ; _')") where
 | |
| 47694 | 506 | "\<I>(X ; Y) \<equiv> mutual_information b (count_space (X`space M)) (count_space (Y`space M)) X Y" | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 507 | |
| 47694 | 508 | lemma (in information_space) | 
| 509 | fixes Pxy :: "'b \<times> 'c \<Rightarrow> real" and Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real" | |
| 49803 | 510 | assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" | 
| 511 | assumes Fx: "finite_entropy S X Px" and Fy: "finite_entropy T Y Py" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 512 | assumes Fxy: "finite_entropy (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy" | 
| 49803 | 513 | defines "f \<equiv> \<lambda>x. Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x)))" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 514 | shows mutual_information_distr': "mutual_information b S T X Y = integral\<^sup>L (S \<Otimes>\<^sub>M T) f" (is "?M = ?R") | 
| 49803 | 515 | and mutual_information_nonneg': "0 \<le> mutual_information b S T X Y" | 
| 516 | proof - | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 517 | have Px: "distributed M S X Px" and Px_nn: "\<And>x. x \<in> space S \<Longrightarrow> 0 \<le> Px x" | 
| 49803 | 518 | using Fx by (auto simp: finite_entropy_def) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 519 | have Py: "distributed M T Y Py" and Py_nn: "\<And>x. x \<in> space T \<Longrightarrow> 0 \<le> Py x" | 
| 49803 | 520 | using Fy by (auto simp: finite_entropy_def) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 521 | have Pxy: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 522 | and Pxy_nn: "\<And>x. x \<in> space (S \<Otimes>\<^sub>M T) \<Longrightarrow> 0 \<le> Pxy x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 523 | "\<And>x y. x \<in> space S \<Longrightarrow> y \<in> space T \<Longrightarrow> 0 \<le> Pxy (x, y)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 524 | using Fxy by (auto simp: finite_entropy_def space_pair_measure) | 
| 49803 | 525 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 526 | have [measurable]: "Px \<in> S \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 527 | using Px Px_nn by (intro distributed_real_measurable) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 528 | have [measurable]: "Py \<in> T \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 529 | using Py Py_nn by (intro distributed_real_measurable) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 530 | have measurable_Pxy[measurable]: "Pxy \<in> (S \<Otimes>\<^sub>M T) \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 531 | using Pxy Pxy_nn by (intro distributed_real_measurable) (auto simp: space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 532 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 533 | have X[measurable]: "random_variable S X" | 
| 50003 | 534 | using Px by auto | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 535 | have Y[measurable]: "random_variable T Y" | 
| 50003 | 536 | using Py by auto | 
| 49803 | 537 | interpret S: sigma_finite_measure S by fact | 
| 538 | interpret T: sigma_finite_measure T by fact | |
| 539 | interpret ST: pair_sigma_finite S T .. | |
| 540 | interpret X: prob_space "distr M S X" using X by (rule prob_space_distr) | |
| 541 | interpret Y: prob_space "distr M T Y" using Y by (rule prob_space_distr) | |
| 542 | interpret XY: pair_prob_space "distr M S X" "distr M T Y" .. | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 543 | let ?P = "S \<Otimes>\<^sub>M T" | 
| 49803 | 544 | let ?D = "distr M ?P (\<lambda>x. (X x, Y x))" | 
| 545 | ||
| 546 |   { fix A assume "A \<in> sets S"
 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 547 | with X[THEN measurable_space] Y[THEN measurable_space] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 548 | have "emeasure (distr M S X) A = emeasure ?D (A \<times> space T)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 549 | by (auto simp: emeasure_distr intro!: arg_cong[where f="emeasure M"]) } | 
| 49803 | 550 | note marginal_eq1 = this | 
| 551 |   { fix A assume "A \<in> sets T"
 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 552 | with X[THEN measurable_space] Y[THEN measurable_space] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 553 | have "emeasure (distr M T Y) A = emeasure ?D (space S \<times> A)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 554 | by (auto simp: emeasure_distr intro!: arg_cong[where f="emeasure M"]) } | 
| 49803 | 555 | note marginal_eq2 = this | 
| 556 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 557 | have distr_eq: "distr M S X \<Otimes>\<^sub>M distr M T Y = density ?P (\<lambda>x. ennreal (Px (fst x) * Py (snd x)))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 558 | unfolding Px(1)[THEN distributed_distr_eq_density] Py(1)[THEN distributed_distr_eq_density] | 
| 49803 | 559 | proof (subst pair_measure_density) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 560 | show "(\<lambda>x. ennreal (Px x)) \<in> borel_measurable S" "(\<lambda>y. ennreal (Py y)) \<in> borel_measurable T" | 
| 49803 | 561 | using Px Py by (auto simp: distributed_def) | 
| 562 | show "sigma_finite_measure (density T Py)" unfolding Py(1)[THEN distributed_distr_eq_density, symmetric] .. | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 563 | show "density (S \<Otimes>\<^sub>M T) (\<lambda>(x, y). ennreal (Px x) * ennreal (Py y)) = | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 564 | density (S \<Otimes>\<^sub>M T) (\<lambda>x. ennreal (Px (fst x) * Py (snd x)))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 565 | using Px_nn Py_nn by (auto intro!: density_cong simp: distributed_def ennreal_mult space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 566 | qed fact | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 567 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 568 | have M: "?M = KL_divergence b (density ?P (\<lambda>x. ennreal (Px (fst x) * Py (snd x)))) (density ?P (\<lambda>x. ennreal (Pxy x)))" | 
| 49803 | 569 | unfolding mutual_information_def distr_eq Pxy(1)[THEN distributed_distr_eq_density] .. | 
| 570 | ||
| 571 | from Px Py have f: "(\<lambda>x. Px (fst x) * Py (snd x)) \<in> borel_measurable ?P" | |
| 572 | by (intro borel_measurable_times) (auto intro: distributed_real_measurable measurable_fst'' measurable_snd'') | |
| 573 | have PxPy_nonneg: "AE x in ?P. 0 \<le> Px (fst x) * Py (snd x)" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 574 | using Px_nn Py_nn by (auto simp: space_pair_measure) | 
| 49803 | 575 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 576 | have A: "(AE x in ?P. Px (fst x) = 0 \<longrightarrow> Pxy x = 0)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 577 | by (rule subdensity_real[OF measurable_fst Pxy Px]) (insert Px_nn Pxy_nn, auto simp: space_pair_measure) | 
| 49803 | 578 | moreover | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 579 | have B: "(AE x in ?P. Py (snd x) = 0 \<longrightarrow> Pxy x = 0)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 580 | by (rule subdensity_real[OF measurable_snd Pxy Py]) (insert Py_nn Pxy_nn, auto simp: space_pair_measure) | 
| 49803 | 581 | ultimately have ac: "AE x in ?P. Px (fst x) * Py (snd x) = 0 \<longrightarrow> Pxy x = 0" | 
| 582 | by eventually_elim auto | |
| 583 | ||
| 584 | show "?M = ?R" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 585 | unfolding M f_def using Pxy_nn Px_nn Py_nn | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 586 | by (intro ST.KL_density_density b_gt_1 f PxPy_nonneg ac) (auto simp: space_pair_measure) | 
| 49803 | 587 | |
| 588 | have X: "X = fst \<circ> (\<lambda>x. (X x, Y x))" and Y: "Y = snd \<circ> (\<lambda>x. (X x, Y x))" | |
| 589 | by auto | |
| 590 | ||
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 591 | have "integrable (S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Pxy x) - Pxy x * log b (Px (fst x)) - Pxy x * log b (Py (snd x)))" | 
| 49803 | 592 | using finite_entropy_integrable[OF Fxy] | 
| 593 | using finite_entropy_integrable_transform[OF Fx Pxy, of fst] | |
| 594 | using finite_entropy_integrable_transform[OF Fy Pxy, of snd] | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 595 | by (simp add: Pxy_nn) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 596 | moreover have "f \<in> borel_measurable (S \<Otimes>\<^sub>M T)" | 
| 49803 | 597 | unfolding f_def using Px Py Pxy | 
| 598 | by (auto intro: distributed_real_measurable measurable_fst'' measurable_snd'' | |
| 599 | intro!: borel_measurable_times borel_measurable_log borel_measurable_divide) | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 600 | ultimately have int: "integrable (S \<Otimes>\<^sub>M T) f" | 
| 49803 | 601 | apply (rule integrable_cong_AE_imp) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 602 | using A B AE_space | 
| 49803 | 603 | by eventually_elim | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 604 | (auto simp: f_def log_divide_eq log_mult_eq field_simps space_pair_measure Px_nn Py_nn Pxy_nn | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 605 | less_le) | 
| 49803 | 606 | |
| 607 | show "0 \<le> ?M" unfolding M | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 608 | proof (intro ST.KL_density_density_nonneg) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 609 | show "prob_space (density (S \<Otimes>\<^sub>M T) (\<lambda>x. ennreal (Pxy x))) " | 
| 49803 | 610 | unfolding distributed_distr_eq_density[OF Pxy, symmetric] | 
| 611 | using distributed_measurable[OF Pxy] by (rule prob_space_distr) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 612 | show "prob_space (density (S \<Otimes>\<^sub>M T) (\<lambda>x. ennreal (Px (fst x) * Py (snd x))))" | 
| 49803 | 613 | unfolding distr_eq[symmetric] by unfold_locales | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 614 | show "integrable (S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x))))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 615 | using int unfolding f_def . | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 616 | qed (insert ac, auto simp: b_gt_1 Px_nn Py_nn Pxy_nn space_pair_measure) | 
| 49803 | 617 | qed | 
| 618 | ||
| 619 | lemma (in information_space) | |
| 620 | fixes Pxy :: "'b \<times> 'c \<Rightarrow> real" and Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real" | |
| 47694 | 621 | assumes "sigma_finite_measure S" "sigma_finite_measure T" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 622 | assumes Px: "distributed M S X Px" and Px_nn: "\<And>x. x \<in> space S \<Longrightarrow> 0 \<le> Px x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 623 | and Py: "distributed M T Y Py" and Py_nn: "\<And>y. y \<in> space T \<Longrightarrow> 0 \<le> Py y" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 624 | and Pxy: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 625 | and Pxy_nn: "\<And>x y. x \<in> space S \<Longrightarrow> y \<in> space T \<Longrightarrow> 0 \<le> Pxy (x, y)" | 
| 47694 | 626 | defines "f \<equiv> \<lambda>x. Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x)))" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 627 | shows mutual_information_distr: "mutual_information b S T X Y = integral\<^sup>L (S \<Otimes>\<^sub>M T) f" (is "?M = ?R") | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 628 | and mutual_information_nonneg: "integrable (S \<Otimes>\<^sub>M T) f \<Longrightarrow> 0 \<le> mutual_information b S T X Y" | 
| 40859 | 629 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 630 | have X[measurable]: "random_variable S X" | 
| 47694 | 631 | using Px by (auto simp: distributed_def) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 632 | have Y[measurable]: "random_variable T Y" | 
| 47694 | 633 | using Py by (auto simp: distributed_def) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 634 | have [measurable]: "Px \<in> S \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 635 | using Px Px_nn by (intro distributed_real_measurable) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 636 | have [measurable]: "Py \<in> T \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 637 | using Py Py_nn by (intro distributed_real_measurable) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 638 | have measurable_Pxy[measurable]: "Pxy \<in> (S \<Otimes>\<^sub>M T) \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 639 | using Pxy Pxy_nn by (intro distributed_real_measurable) (auto simp: space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 640 | |
| 47694 | 641 | interpret S: sigma_finite_measure S by fact | 
| 642 | interpret T: sigma_finite_measure T by fact | |
| 643 | interpret ST: pair_sigma_finite S T .. | |
| 644 | interpret X: prob_space "distr M S X" using X by (rule prob_space_distr) | |
| 645 | interpret Y: prob_space "distr M T Y" using Y by (rule prob_space_distr) | |
| 646 | interpret XY: pair_prob_space "distr M S X" "distr M T Y" .. | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 647 | let ?P = "S \<Otimes>\<^sub>M T" | 
| 47694 | 648 | let ?D = "distr M ?P (\<lambda>x. (X x, Y x))" | 
| 649 | ||
| 650 |   { fix A assume "A \<in> sets S"
 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 651 | with X[THEN measurable_space] Y[THEN measurable_space] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 652 | have "emeasure (distr M S X) A = emeasure ?D (A \<times> space T)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 653 | by (auto simp: emeasure_distr intro!: arg_cong[where f="emeasure M"]) } | 
| 47694 | 654 | note marginal_eq1 = this | 
| 655 |   { fix A assume "A \<in> sets T"
 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 656 | with X[THEN measurable_space] Y[THEN measurable_space] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 657 | have "emeasure (distr M T Y) A = emeasure ?D (space S \<times> A)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 658 | by (auto simp: emeasure_distr intro!: arg_cong[where f="emeasure M"]) } | 
| 47694 | 659 | note marginal_eq2 = this | 
| 660 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 661 | have distr_eq: "distr M S X \<Otimes>\<^sub>M distr M T Y = density ?P (\<lambda>x. ennreal (Px (fst x) * Py (snd x)))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 662 | unfolding Px(1)[THEN distributed_distr_eq_density] Py(1)[THEN distributed_distr_eq_density] | 
| 47694 | 663 | proof (subst pair_measure_density) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 664 | show "(\<lambda>x. ennreal (Px x)) \<in> borel_measurable S" "(\<lambda>y. ennreal (Py y)) \<in> borel_measurable T" | 
| 47694 | 665 | using Px Py by (auto simp: distributed_def) | 
| 666 | show "sigma_finite_measure (density T Py)" unfolding Py(1)[THEN distributed_distr_eq_density, symmetric] .. | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 667 | show "density (S \<Otimes>\<^sub>M T) (\<lambda>(x, y). ennreal (Px x) * ennreal (Py y)) = | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 668 | density (S \<Otimes>\<^sub>M T) (\<lambda>x. ennreal (Px (fst x) * Py (snd x)))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 669 | using Px_nn Py_nn by (auto intro!: density_cong simp: distributed_def ennreal_mult space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 670 | qed fact | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 671 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 672 | have M: "?M = KL_divergence b (density ?P (\<lambda>x. ennreal (Px (fst x) * Py (snd x)))) (density ?P (\<lambda>x. ennreal (Pxy x)))" | 
| 47694 | 673 | unfolding mutual_information_def distr_eq Pxy(1)[THEN distributed_distr_eq_density] .. | 
| 674 | ||
| 675 | from Px Py have f: "(\<lambda>x. Px (fst x) * Py (snd x)) \<in> borel_measurable ?P" | |
| 676 | by (intro borel_measurable_times) (auto intro: distributed_real_measurable measurable_fst'' measurable_snd'') | |
| 677 | have PxPy_nonneg: "AE x in ?P. 0 \<le> Px (fst x) * Py (snd x)" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 678 | using Px_nn Py_nn by (auto simp: space_pair_measure) | 
| 47694 | 679 | |
| 680 | have "(AE x in ?P. Px (fst x) = 0 \<longrightarrow> Pxy x = 0)" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 681 | by (rule subdensity_real[OF measurable_fst Pxy Px]) (insert Px_nn Pxy_nn, auto simp: space_pair_measure) | 
| 47694 | 682 | moreover | 
| 683 | have "(AE x in ?P. Py (snd x) = 0 \<longrightarrow> Pxy x = 0)" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 684 | by (rule subdensity_real[OF measurable_snd Pxy Py]) (insert Py_nn Pxy_nn, auto simp: space_pair_measure) | 
| 47694 | 685 | ultimately have ac: "AE x in ?P. Px (fst x) * Py (snd x) = 0 \<longrightarrow> Pxy x = 0" | 
| 686 | by eventually_elim auto | |
| 687 | ||
| 688 | show "?M = ?R" | |
| 689 | unfolding M f_def | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 690 | using b_gt_1 f PxPy_nonneg ac Pxy_nn | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 691 | by (intro ST.KL_density_density) (auto simp: space_pair_measure) | 
| 47694 | 692 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 693 | assume int: "integrable (S \<Otimes>\<^sub>M T) f" | 
| 47694 | 694 | show "0 \<le> ?M" unfolding M | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 695 | proof (intro ST.KL_density_density_nonneg) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 696 | show "prob_space (density (S \<Otimes>\<^sub>M T) (\<lambda>x. ennreal (Pxy x))) " | 
| 47694 | 697 | unfolding distributed_distr_eq_density[OF Pxy, symmetric] | 
| 698 | using distributed_measurable[OF Pxy] by (rule prob_space_distr) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 699 | show "prob_space (density (S \<Otimes>\<^sub>M T) (\<lambda>x. ennreal (Px (fst x) * Py (snd x))))" | 
| 47694 | 700 | unfolding distr_eq[symmetric] by unfold_locales | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 701 | show "integrable (S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x))))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 702 | using int unfolding f_def . | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 703 | qed (insert ac, auto simp: b_gt_1 Px_nn Py_nn Pxy_nn space_pair_measure) | 
| 40859 | 704 | qed | 
| 705 | ||
| 706 | lemma (in information_space) | |
| 47694 | 707 | fixes Pxy :: "'b \<times> 'c \<Rightarrow> real" and Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real" | 
| 708 | assumes "sigma_finite_measure S" "sigma_finite_measure T" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 709 | assumes Px[measurable]: "distributed M S X Px" and Px_nn: "\<And>x. x \<in> space S \<Longrightarrow> 0 \<le> Px x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 710 | and Py[measurable]: "distributed M T Y Py" and Py_nn: "\<And>x. x \<in> space T \<Longrightarrow> 0 \<le> Py x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 711 | and Pxy[measurable]: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 712 | and Pxy_nn: "\<And>x. x \<in> space (S \<Otimes>\<^sub>M T) \<Longrightarrow> 0 \<le> Pxy x" | 
| 47694 | 713 | assumes ae: "AE x in S. AE y in T. Pxy (x, y) = Px x * Py y" | 
| 714 | shows mutual_information_eq_0: "mutual_information b S T X Y = 0" | |
| 36624 | 715 | proof - | 
| 47694 | 716 | interpret S: sigma_finite_measure S by fact | 
| 717 | interpret T: sigma_finite_measure T by fact | |
| 718 | interpret ST: pair_sigma_finite S T .. | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 719 | note | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 720 | distributed_real_measurable[OF Px_nn Px, measurable] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 721 | distributed_real_measurable[OF Py_nn Py, measurable] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 722 | distributed_real_measurable[OF Pxy_nn Pxy, measurable] | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 723 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 724 | have "AE x in S \<Otimes>\<^sub>M T. Px (fst x) = 0 \<longrightarrow> Pxy x = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 725 | by (rule subdensity_real[OF measurable_fst Pxy Px]) (auto simp: Px_nn Pxy_nn space_pair_measure) | 
| 47694 | 726 | moreover | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 727 | have "AE x in S \<Otimes>\<^sub>M T. Py (snd x) = 0 \<longrightarrow> Pxy x = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 728 | by (rule subdensity_real[OF measurable_snd Pxy Py]) (auto simp: Py_nn Pxy_nn space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 729 | moreover | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 730 | have "AE x in S \<Otimes>\<^sub>M T. Pxy x = Px (fst x) * Py (snd x)" | 
| 47694 | 731 | by (intro ST.AE_pair_measure) (auto simp: ae intro!: measurable_snd'' measurable_fst'') | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 732 | ultimately have "AE x in S \<Otimes>\<^sub>M T. Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x))) = 0" | 
| 47694 | 733 | by eventually_elim simp | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 734 | then have "(\<integral>x. Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x))) \<partial>(S \<Otimes>\<^sub>M T)) = (\<integral>x. 0 \<partial>(S \<Otimes>\<^sub>M T))" | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 735 | by (intro integral_cong_AE) auto | 
| 47694 | 736 | then show ?thesis | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 737 | by (subst mutual_information_distr[OF assms(1-8)]) (auto simp add: space_pair_measure) | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 738 | qed | 
| 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 739 | |
| 47694 | 740 | lemma (in information_space) mutual_information_simple_distributed: | 
| 741 | assumes X: "simple_distributed M X Px" and Y: "simple_distributed M Y Py" | |
| 742 | assumes XY: "simple_distributed M (\<lambda>x. (X x, Y x)) Pxy" | |
| 743 | shows "\<I>(X ; Y) = (\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x))`space M. Pxy (x, y) * log b (Pxy (x, y) / (Px x * Py y)))" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 744 | proof (subst mutual_information_distr[OF _ _ simple_distributed[OF X] _ simple_distributed[OF Y] _ simple_distributed_joint[OF XY]]) | 
| 47694 | 745 | note fin = simple_distributed_joint_finite[OF XY, simp] | 
| 746 | show "sigma_finite_measure (count_space (X ` space M))" | |
| 747 | by (simp add: sigma_finite_measure_count_space_finite) | |
| 748 | show "sigma_finite_measure (count_space (Y ` space M))" | |
| 749 | by (simp add: sigma_finite_measure_count_space_finite) | |
| 750 | let ?Pxy = "\<lambda>x. (if x \<in> (\<lambda>x. (X x, Y x)) ` space M then Pxy x else 0)" | |
| 751 | let ?f = "\<lambda>x. ?Pxy x * log b (?Pxy x / (Px (fst x) * Py (snd x)))" | |
| 752 | have "\<And>x. ?f x = (if x \<in> (\<lambda>x. (X x, Y x)) ` space M then Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x))) else 0)" | |
| 753 | by auto | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 754 | with fin show "(\<integral> x. ?f x \<partial>(count_space (X ` space M) \<Otimes>\<^sub>M count_space (Y ` space M))) = | 
| 47694 | 755 | (\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x)) ` space M. Pxy (x, y) * log b (Pxy (x, y) / (Px x * Py y)))" | 
| 64267 | 756 | by (auto simp add: pair_measure_count_space lebesgue_integral_count_space_finite sum.If_cases split_beta' | 
| 757 | intro!: sum.cong) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 758 | qed (insert X Y XY, auto simp: simple_distributed_def) | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 759 | |
| 47694 | 760 | lemma (in information_space) | 
| 761 | fixes Pxy :: "'b \<times> 'c \<Rightarrow> real" and Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real" | |
| 762 | assumes Px: "simple_distributed M X Px" and Py: "simple_distributed M Y Py" | |
| 763 | assumes Pxy: "simple_distributed M (\<lambda>x. (X x, Y x)) Pxy" | |
| 764 | assumes ae: "\<forall>x\<in>space M. Pxy (X x, Y x) = Px (X x) * Py (Y x)" | |
| 765 | shows mutual_information_eq_0_simple: "\<I>(X ; Y) = 0" | |
| 766 | proof (subst mutual_information_simple_distributed[OF Px Py Pxy]) | |
| 767 | have "(\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x)) ` space M. Pxy (x, y) * log b (Pxy (x, y) / (Px x * Py y))) = | |
| 768 | (\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x)) ` space M. 0)" | |
| 64267 | 769 | by (intro sum.cong) (auto simp: ae) | 
| 47694 | 770 | then show "(\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x)) ` space M. | 
| 771 | Pxy (x, y) * log b (Pxy (x, y) / (Px x * Py y))) = 0" by simp | |
| 772 | qed | |
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 773 | |
| 61808 | 774 | subsection \<open>Entropy\<close> | 
| 39097 | 775 | |
| 47694 | 776 | definition (in prob_space) entropy :: "real \<Rightarrow> 'b measure \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> real" where
 | 
| 777 | "entropy b S X = - KL_divergence b S (distr M S X)" | |
| 778 | ||
| 40859 | 779 | abbreviation (in information_space) | 
| 780 |   entropy_Pow ("\<H>'(_')") where
 | |
| 47694 | 781 | "\<H>(X) \<equiv> entropy b (count_space (X`space M)) X" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41833diff
changeset | 782 | |
| 49791 | 783 | lemma (in prob_space) distributed_RN_deriv: | 
| 784 | assumes X: "distributed M S X Px" | |
| 785 | shows "AE x in S. RN_deriv S (density S Px) x = Px x" | |
| 786 | proof - | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 787 | note D = distributed_measurable[OF X] distributed_borel_measurable[OF X] | 
| 49791 | 788 | interpret X: prob_space "distr M S X" | 
| 789 | using D(1) by (rule prob_space_distr) | |
| 790 | ||
| 61169 | 791 | have sf: "sigma_finite_measure (distr M S X)" by standard | 
| 49791 | 792 | show ?thesis | 
| 793 | using D | |
| 794 | apply (subst eq_commute) | |
| 795 | apply (intro RN_deriv_unique_sigma_finite) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 796 | apply (auto simp: distributed_distr_eq_density[symmetric, OF X] sf) | 
| 49791 | 797 | done | 
| 798 | qed | |
| 799 | ||
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 800 | lemma (in information_space) | 
| 47694 | 801 | fixes X :: "'a \<Rightarrow> 'b" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 802 | assumes X[measurable]: "distributed M MX X f" and nn: "\<And>x. x \<in> space MX \<Longrightarrow> 0 \<le> f x" | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 803 | shows entropy_distr: "entropy b MX X = - (\<integral>x. f x * log b (f x) \<partial>MX)" (is ?eq) | 
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 804 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 805 | note D = distributed_measurable[OF X] distributed_borel_measurable[OF X] | 
| 49791 | 806 | note ae = distributed_RN_deriv[OF X] | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 807 | note distributed_real_measurable[OF nn X, measurable] | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 808 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 809 | have ae_eq: "AE x in distr M MX X. log b (enn2real (RN_deriv MX (distr M MX X) x)) = | 
| 49785 | 810 | log b (f x)" | 
| 811 | unfolding distributed_distr_eq_density[OF X] | |
| 812 | apply (subst AE_density) | |
| 813 | using D apply simp | |
| 814 | using ae apply eventually_elim | |
| 815 | apply auto | |
| 816 | done | |
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 817 | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 818 | have int_eq: "(\<integral> x. f x * log b (f x) \<partial>MX) = (\<integral> x. log b (f x) \<partial>distr M MX X)" | 
| 49785 | 819 | unfolding distributed_distr_eq_density[OF X] | 
| 820 | using D | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 821 | by (subst integral_density) (auto simp: nn) | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 822 | |
| 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 823 | show ?eq | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 824 | unfolding entropy_def KL_divergence_def entropy_density_def comp_def int_eq neg_equal_iff_equal | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 825 | using ae_eq by (intro integral_cong_AE) (auto simp: nn) | 
| 49786 | 826 | qed | 
| 827 | ||
| 828 | lemma (in information_space) entropy_le: | |
| 829 | fixes Px :: "'b \<Rightarrow> real" and MX :: "'b measure" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 830 | assumes X[measurable]: "distributed M MX X Px" and Px_nn[simp]: "\<And>x. x \<in> space MX \<Longrightarrow> 0 \<le> Px x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 831 |   and fin: "emeasure MX {x \<in> space MX. Px x \<noteq> 0} \<noteq> top"
 | 
| 49786 | 832 | and int: "integrable MX (\<lambda>x. - Px x * log b (Px x))" | 
| 833 |   shows "entropy b MX X \<le> log b (measure MX {x \<in> space MX. Px x \<noteq> 0})"
 | |
| 834 | proof - | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 835 | note Px = distributed_borel_measurable[OF X] | 
| 49786 | 836 | interpret X: prob_space "distr M MX X" | 
| 837 | using distributed_measurable[OF X] by (rule prob_space_distr) | |
| 838 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 839 |   have " - log b (measure MX {x \<in> space MX. Px x \<noteq> 0}) =
 | 
| 49786 | 840 |     - log b (\<integral> x. indicator {x \<in> space MX. Px x \<noteq> 0} x \<partial>MX)"
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 841 | using Px Px_nn fin by (auto simp: measure_def) | 
| 49786 | 842 |   also have "- log b (\<integral> x. indicator {x \<in> space MX. Px x \<noteq> 0} x \<partial>MX) = - log b (\<integral> x. 1 / Px x \<partial>distr M MX X)"
 | 
| 67982 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 843 | proof - | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 844 |     have "integral\<^sup>L MX (indicator {x \<in> space MX. Px x \<noteq> 0}) = LINT x|MX. Px x *\<^sub>R (1 / Px x)"
 | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 845 | by (rule Bochner_Integration.integral_cong) auto | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 846 | also have "... = LINT x|density MX (\<lambda>x. ennreal (Px x)). 1 / Px x" | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 847 | by (rule integral_density [symmetric]) (use Px Px_nn in auto) | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 848 | finally show ?thesis | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 849 | unfolding distributed_distr_eq_density[OF X] by simp | 
| 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 850 | qed | 
| 49786 | 851 | also have "\<dots> \<le> (\<integral> x. - log b (1 / Px x) \<partial>distr M MX X)" | 
| 852 |   proof (rule X.jensens_inequality[of "\<lambda>x. 1 / Px x" "{0<..}" 0 1 "\<lambda>x. - log b x"])
 | |
| 853 |     show "AE x in distr M MX X. 1 / Px x \<in> {0<..}"
 | |
| 854 | unfolding distributed_distr_eq_density[OF X] | |
| 855 | using Px by (auto simp: AE_density) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 856 |     have [simp]: "\<And>x. x \<in> space MX \<Longrightarrow> ennreal (if Px x = 0 then 0 else 1) = indicator {x \<in> space MX. Px x \<noteq> 0} x"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 857 | by (auto simp: one_ennreal_def) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 858 | have "(\<integral>\<^sup>+ x. ennreal (- (if Px x = 0 then 0 else 1)) \<partial>MX) = (\<integral>\<^sup>+ x. 0 \<partial>MX)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 859 | by (intro nn_integral_cong) (auto simp: ennreal_neg) | 
| 49786 | 860 | then show "integrable (distr M MX X) (\<lambda>x. 1 / Px x)" | 
| 861 | unfolding distributed_distr_eq_density[OF X] using Px | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 862 | by (auto simp: nn_integral_density real_integrable_def fin ennreal_neg ennreal_mult[symmetric] | 
| 56996 | 863 | cong: nn_integral_cong) | 
| 49786 | 864 | have "integrable MX (\<lambda>x. Px x * log b (1 / Px x)) = | 
| 865 | integrable MX (\<lambda>x. - Px x * log b (Px x))" | |
| 866 | using Px | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 867 | by (intro integrable_cong_AE) (auto simp: log_divide_eq less_le) | 
| 49786 | 868 | then show "integrable (distr M MX X) (\<lambda>x. - log b (1 / Px x))" | 
| 869 | unfolding distributed_distr_eq_density[OF X] | |
| 870 | using Px int | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 871 | by (subst integrable_real_density) auto | 
| 49786 | 872 | qed (auto simp: minus_log_convex[OF b_gt_1]) | 
| 873 | also have "\<dots> = (\<integral> x. log b (Px x) \<partial>distr M MX X)" | |
| 874 | unfolding distributed_distr_eq_density[OF X] using Px | |
| 875 | by (intro integral_cong_AE) (auto simp: AE_density log_divide_eq) | |
| 876 | also have "\<dots> = - entropy b MX X" | |
| 877 | unfolding distributed_distr_eq_density[OF X] using Px | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 878 | by (subst entropy_distr[OF X]) (auto simp: integral_density) | 
| 49786 | 879 | finally show ?thesis | 
| 880 | by simp | |
| 881 | qed | |
| 882 | ||
| 883 | lemma (in information_space) entropy_le_space: | |
| 884 | fixes Px :: "'b \<Rightarrow> real" and MX :: "'b measure" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 885 | assumes X: "distributed M MX X Px" and Px_nn[simp]: "\<And>x. x \<in> space MX \<Longrightarrow> 0 \<le> Px x" | 
| 49786 | 886 | and fin: "finite_measure MX" | 
| 887 | and int: "integrable MX (\<lambda>x. - Px x * log b (Px x))" | |
| 888 | shows "entropy b MX X \<le> log b (measure MX (space MX))" | |
| 889 | proof - | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 890 | note Px = distributed_borel_measurable[OF X] | 
| 49786 | 891 | interpret finite_measure MX by fact | 
| 892 |   have "entropy b MX X \<le> log b (measure MX {x \<in> space MX. Px x \<noteq> 0})"
 | |
| 893 | using int X by (intro entropy_le) auto | |
| 894 | also have "\<dots> \<le> log b (measure MX (space MX))" | |
| 895 | using Px distributed_imp_emeasure_nonzero[OF X] | |
| 896 | by (intro log_le) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 897 | (auto intro!: finite_measure_mono b_gt_1 less_le[THEN iffD2] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 898 | simp: emeasure_eq_measure cong: conj_cong) | 
| 49786 | 899 | finally show ?thesis . | 
| 900 | qed | |
| 901 | ||
| 47694 | 902 | lemma (in information_space) entropy_uniform: | 
| 49785 | 903 | assumes X: "distributed M MX X (\<lambda>x. indicator A x / measure MX A)" (is "distributed _ _ _ ?f") | 
| 47694 | 904 | shows "entropy b MX X = log b (measure MX A)" | 
| 49785 | 905 | proof (subst entropy_distr[OF X]) | 
| 906 | have [simp]: "emeasure MX A \<noteq> \<infinity>" | |
| 907 | using uniform_distributed_params[OF X] by (auto simp add: measure_def) | |
| 908 | have eq: "(\<integral> x. indicator A x / measure MX A * log b (indicator A x / measure MX A) \<partial>MX) = | |
| 909 | (\<integral> x. (- log b (measure MX A) / measure MX A) * indicator A x \<partial>MX)" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 910 | using uniform_distributed_params[OF X] | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63626diff
changeset | 911 | by (intro Bochner_Integration.integral_cong) (auto split: split_indicator simp: log_divide_eq zero_less_measure_iff) | 
| 49785 | 912 | show "- (\<integral> x. indicator A x / measure MX A * log b (indicator A x / measure MX A) \<partial>MX) = | 
| 913 | log b (measure MX A)" | |
| 914 | unfolding eq using uniform_distributed_params[OF X] | |
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63626diff
changeset | 915 | by (subst Bochner_Integration.integral_mult_right) (auto simp: measure_def less_top[symmetric] intro!: integrable_real_indicator) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 916 | qed simp | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 917 | |
| 47694 | 918 | lemma (in information_space) entropy_simple_distributed: | 
| 49786 | 919 | "simple_distributed M X f \<Longrightarrow> \<H>(X) = - (\<Sum>x\<in>X`space M. f x * log b (f x))" | 
| 920 | by (subst entropy_distr[OF simple_distributed]) | |
| 921 | (auto simp add: lebesgue_integral_count_space_finite) | |
| 39097 | 922 | |
| 40859 | 923 | lemma (in information_space) entropy_le_card_not_0: | 
| 47694 | 924 | assumes X: "simple_distributed M X f" | 
| 925 |   shows "\<H>(X) \<le> log b (card (X ` space M \<inter> {x. f x \<noteq> 0}))"
 | |
| 39097 | 926 | proof - | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 927 | let ?X = "count_space (X`space M)" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 928 |   have "\<H>(X) \<le> log b (measure ?X {x \<in> space ?X. f x \<noteq> 0})"
 | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 929 | by (rule entropy_le[OF simple_distributed[OF X]]) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 930 | (insert X, auto simp: simple_distributed_finite[OF X] subset_eq integrable_count_space emeasure_count_space) | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 931 |   also have "measure ?X {x \<in> space ?X. f x \<noteq> 0} = card (X ` space M \<inter> {x. f x \<noteq> 0})"
 | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 932 | by (simp_all add: simple_distributed_finite[OF X] subset_eq emeasure_count_space measure_def Int_def) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 933 | finally show ?thesis . | 
| 39097 | 934 | qed | 
| 935 | ||
| 40859 | 936 | lemma (in information_space) entropy_le_card: | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 937 | assumes X: "simple_distributed M X f" | 
| 40859 | 938 | shows "\<H>(X) \<le> log b (real (card (X ` space M)))" | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 939 | proof - | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 940 | let ?X = "count_space (X`space M)" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 941 | have "\<H>(X) \<le> log b (measure ?X (space ?X))" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 942 | by (rule entropy_le_space[OF simple_distributed[OF X]]) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 943 | (insert X, auto simp: simple_distributed_finite[OF X] subset_eq integrable_count_space emeasure_count_space finite_measure_count_space) | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 944 | also have "measure ?X (space ?X) = card (X ` space M)" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 945 | by (simp_all add: simple_distributed_finite[OF X] subset_eq emeasure_count_space measure_def) | 
| 39097 | 946 | finally show ?thesis . | 
| 947 | qed | |
| 948 | ||
| 61808 | 949 | subsection \<open>Conditional Mutual Information\<close> | 
| 39097 | 950 | |
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 951 | definition (in prob_space) | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 952 | "conditional_mutual_information b MX MY MZ X Y Z \<equiv> | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 953 | mutual_information b MX (MY \<Otimes>\<^sub>M MZ) X (\<lambda>x. (Y x, Z x)) - | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 954 | mutual_information b MX MZ X Z" | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 955 | |
| 40859 | 956 | abbreviation (in information_space) | 
| 957 |   conditional_mutual_information_Pow ("\<I>'( _ ; _ | _ ')") where
 | |
| 36624 | 958 | "\<I>(X ; Y | Z) \<equiv> conditional_mutual_information b | 
| 47694 | 959 | (count_space (X ` space M)) (count_space (Y ` space M)) (count_space (Z ` space M)) X Y Z" | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 960 | |
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 961 | lemma (in information_space) | 
| 47694 | 962 | assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" and P: "sigma_finite_measure P" | 
| 50003 | 963 | assumes Px[measurable]: "distributed M S X Px" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 964 | and Px_nn[simp]: "\<And>x. x \<in> space S \<Longrightarrow> 0 \<le> Px x" | 
| 50003 | 965 | assumes Pz[measurable]: "distributed M P Z Pz" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 966 | and Pz_nn[simp]: "\<And>z. z \<in> space P \<Longrightarrow> 0 \<le> Pz z" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 967 | assumes Pyz[measurable]: "distributed M (T \<Otimes>\<^sub>M P) (\<lambda>x. (Y x, Z x)) Pyz" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 968 | and Pyz_nn[simp]: "\<And>y z. y \<in> space T \<Longrightarrow> z \<in> space P \<Longrightarrow> 0 \<le> Pyz (y, z)" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 969 | assumes Pxz[measurable]: "distributed M (S \<Otimes>\<^sub>M P) (\<lambda>x. (X x, Z x)) Pxz" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 970 | and Pxz_nn[simp]: "\<And>x z. x \<in> space S \<Longrightarrow> z \<in> space P \<Longrightarrow> 0 \<le> Pxz (x, z)" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 971 | assumes Pxyz[measurable]: "distributed M (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>x. (X x, Y x, Z x)) Pxyz" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 972 | and Pxyz_nn[simp]: "\<And>x y z. x \<in> space S \<Longrightarrow> y \<in> space T \<Longrightarrow> z \<in> space P \<Longrightarrow> 0 \<le> Pxyz (x, y, z)" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 973 | assumes I1: "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Px x * Pyz (y, z))))" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 974 | assumes I2: "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxz (x, z) / (Px x * Pz z)))" | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 975 | shows conditional_mutual_information_generic_eq: "conditional_mutual_information b S T P X Y Z | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 976 | = (\<integral>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Pxz (x, z) * (Pyz (y,z) / Pz z))) \<partial>(S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P))" (is "?eq") | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 977 | and conditional_mutual_information_generic_nonneg: "0 \<le> conditional_mutual_information b S T P X Y Z" (is "?nonneg") | 
| 40859 | 978 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 979 | have [measurable]: "Px \<in> S \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 980 | using Px Px_nn by (intro distributed_real_measurable) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 981 | have [measurable]: "Pz \<in> P \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 982 | using Pz Pz_nn by (intro distributed_real_measurable) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 983 | have measurable_Pyz[measurable]: "Pyz \<in> (T \<Otimes>\<^sub>M P) \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 984 | using Pyz Pyz_nn by (intro distributed_real_measurable) (auto simp: space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 985 | have measurable_Pxz[measurable]: "Pxz \<in> (S \<Otimes>\<^sub>M P) \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 986 | using Pxz Pxz_nn by (intro distributed_real_measurable) (auto simp: space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 987 | have measurable_Pxyz[measurable]: "Pxyz \<in> (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 988 | using Pxyz Pxyz_nn by (intro distributed_real_measurable) (auto simp: space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 989 | |
| 47694 | 990 | interpret S: sigma_finite_measure S by fact | 
| 991 | interpret T: sigma_finite_measure T by fact | |
| 992 | interpret P: sigma_finite_measure P by fact | |
| 993 | interpret TP: pair_sigma_finite T P .. | |
| 994 | interpret SP: pair_sigma_finite S P .. | |
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 995 | interpret ST: pair_sigma_finite S T .. | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 996 | interpret SPT: pair_sigma_finite "S \<Otimes>\<^sub>M P" T .. | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 997 | interpret STP: pair_sigma_finite S "T \<Otimes>\<^sub>M P" .. | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 998 | interpret TPS: pair_sigma_finite "T \<Otimes>\<^sub>M P" S .. | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 999 | have TP: "sigma_finite_measure (T \<Otimes>\<^sub>M P)" .. | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1000 | have SP: "sigma_finite_measure (S \<Otimes>\<^sub>M P)" .. | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1001 | have YZ: "random_variable (T \<Otimes>\<^sub>M P) (\<lambda>x. (Y x, Z x))" | 
| 47694 | 1002 | using Pyz by (simp add: distributed_measurable) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1003 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1004 | from Pxz Pxyz have distr_eq: "distr M (S \<Otimes>\<^sub>M P) (\<lambda>x. (X x, Z x)) = | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1005 | distr (distr M (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>x. (X x, Y x, Z x))) (S \<Otimes>\<^sub>M P) (\<lambda>(x, y, z). (x, z))" | 
| 50003 | 1006 | by (simp add: comp_def distr_distr) | 
| 40859 | 1007 | |
| 47694 | 1008 | have "mutual_information b S P X Z = | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1009 | (\<integral>x. Pxz x * log b (Pxz x / (Px (fst x) * Pz (snd x))) \<partial>(S \<Otimes>\<^sub>M P))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1010 | by (rule mutual_information_distr[OF S P Px Px_nn Pz Pz_nn Pxz Pxz_nn]) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1011 | also have "\<dots> = (\<integral>(x,y,z). Pxyz (x,y,z) * log b (Pxz (x,z) / (Px x * Pz z)) \<partial>(S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P))" | 
| 47694 | 1012 | using b_gt_1 Pxz Px Pz | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1013 | by (subst distributed_transform_integral[OF Pxyz _ Pxz _, where T="\<lambda>(x, y, z). (x, z)"]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1014 | (auto simp: split_beta' space_pair_measure) | 
| 47694 | 1015 | finally have mi_eq: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1016 | "mutual_information b S P X Z = (\<integral>(x,y,z). Pxyz (x,y,z) * log b (Pxz (x,z) / (Px x * Pz z)) \<partial>(S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P))" . | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1017 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1018 | have ae1: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Px (fst x) = 0 \<longrightarrow> Pxyz x = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1019 | by (intro subdensity_real[of fst, OF _ Pxyz Px]) (auto simp: space_pair_measure) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1020 | moreover have ae2: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Pz (snd (snd x)) = 0 \<longrightarrow> Pxyz x = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1021 | by (intro subdensity_real[of "\<lambda>x. snd (snd x)", OF _ Pxyz Pz]) (auto simp: space_pair_measure) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1022 | moreover have ae3: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Pxz (fst x, snd (snd x)) = 0 \<longrightarrow> Pxyz x = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1023 | by (intro subdensity_real[of "\<lambda>x. (fst x, snd (snd x))", OF _ Pxyz Pxz]) (auto simp: space_pair_measure) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1024 | moreover have ae4: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Pyz (snd x) = 0 \<longrightarrow> Pxyz x = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1025 | by (intro subdensity_real[of snd, OF _ Pxyz Pyz]) (auto simp: space_pair_measure) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1026 | ultimately have ae: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. | 
| 47694 | 1027 | Pxyz x * log b (Pxyz x / (Px (fst x) * Pyz (snd x))) - | 
| 1028 | Pxyz x * log b (Pxz (fst x, snd (snd x)) / (Px (fst x) * Pz (snd (snd x)))) = | |
| 1029 | Pxyz x * log b (Pxyz x * Pz (snd (snd x)) / (Pxz (fst x, snd (snd x)) * Pyz (snd x))) " | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1030 | using AE_space | 
| 47694 | 1031 | proof eventually_elim | 
| 60580 | 1032 | case (elim x) | 
| 47694 | 1033 | show ?case | 
| 40859 | 1034 | proof cases | 
| 47694 | 1035 | assume "Pxyz x \<noteq> 0" | 
| 60580 | 1036 | with elim have "0 < Px (fst x)" "0 < Pz (snd (snd x))" "0 < Pxz (fst x, snd (snd x))" | 
| 1037 | "0 < Pyz (snd x)" "0 < Pxyz x" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1038 | by (auto simp: space_pair_measure less_le) | 
| 47694 | 1039 | then show ?thesis | 
| 56544 | 1040 | using b_gt_1 by (simp add: log_simps less_imp_le field_simps) | 
| 40859 | 1041 | qed simp | 
| 1042 | qed | |
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1043 | with I1 I2 show ?eq | 
| 40859 | 1044 | unfolding conditional_mutual_information_def | 
| 47694 | 1045 | apply (subst mi_eq) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1046 | apply (subst mutual_information_distr[OF S TP Px Px_nn Pyz _ Pxyz]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1047 | apply (auto simp: space_pair_measure) | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63626diff
changeset | 1048 | apply (subst Bochner_Integration.integral_diff[symmetric]) | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63626diff
changeset | 1049 | apply (auto intro!: integral_cong_AE simp: split_beta' simp del: Bochner_Integration.integral_diff) | 
| 47694 | 1050 | done | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1051 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1052 | let ?P = "density (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) Pxyz" | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1053 | interpret P: prob_space ?P | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1054 | unfolding distributed_distr_eq_density[OF Pxyz, symmetric] | 
| 50003 | 1055 | by (rule prob_space_distr) simp | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1056 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1057 | let ?Q = "density (T \<Otimes>\<^sub>M P) Pyz" | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1058 | interpret Q: prob_space ?Q | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1059 | unfolding distributed_distr_eq_density[OF Pyz, symmetric] | 
| 50003 | 1060 | by (rule prob_space_distr) simp | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1061 | |
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1062 | let ?f = "\<lambda>(x, y, z). Pxz (x, z) * (Pyz (y, z) / Pz z) / Pxyz (x, y, z)" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1063 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1064 | from subdensity_real[of snd, OF _ Pyz Pz _ AE_I2 AE_I2] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1065 | have aeX1: "AE x in T \<Otimes>\<^sub>M P. Pz (snd x) = 0 \<longrightarrow> Pyz x = 0" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1066 | by (auto simp: comp_def space_pair_measure) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1067 | have aeX2: "AE x in T \<Otimes>\<^sub>M P. 0 \<le> Pz (snd x)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1068 | using Pz by (intro TP.AE_pair_measure) (auto simp: comp_def) | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1069 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1070 | have aeX3: "AE y in T \<Otimes>\<^sub>M P. (\<integral>\<^sup>+ x. ennreal (Pxz (x, snd y)) \<partial>S) = ennreal (Pz (snd y))" | 
| 49788 
3c10763f5cb4
show and use distributed_swap and distributed_jointI
 hoelzl parents: 
49787diff
changeset | 1071 | using Pz distributed_marginal_eq_joint2[OF P S Pz Pxz] | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1072 | by (intro TP.AE_pair_measure) auto | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1073 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1074 | have "(\<integral>\<^sup>+ x. ?f x \<partial>?P) \<le> (\<integral>\<^sup>+ (x, y, z). Pxz (x, z) * (Pyz (y, z) / Pz z) \<partial>(S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1075 | by (subst nn_integral_density) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1076 | (auto intro!: nn_integral_mono simp: space_pair_measure ennreal_mult[symmetric]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1077 | also have "\<dots> = (\<integral>\<^sup>+(y, z). (\<integral>\<^sup>+ x. ennreal (Pxz (x, z)) * ennreal (Pyz (y, z) / Pz z) \<partial>S) \<partial>(T \<Otimes>\<^sub>M P))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1078 | by (subst STP.nn_integral_snd[symmetric]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1079 | (auto simp add: split_beta' ennreal_mult[symmetric] space_pair_measure intro!: nn_integral_cong) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1080 | also have "\<dots> = (\<integral>\<^sup>+x. ennreal (Pyz x) * 1 \<partial>T \<Otimes>\<^sub>M P)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1081 | apply (rule nn_integral_cong_AE) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1082 | using aeX1 aeX2 aeX3 AE_space | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1083 | apply eventually_elim | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1084 | proof (case_tac x, simp add: space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1085 | fix a b assume "Pz b = 0 \<longrightarrow> Pyz (a, b) = 0" "a \<in> space T \<and> b \<in> space P" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1086 | "(\<integral>\<^sup>+ x. ennreal (Pxz (x, b)) \<partial>S) = ennreal (Pz b)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1087 | then show "(\<integral>\<^sup>+ x. ennreal (Pxz (x, b)) * ennreal (Pyz (a, b) / Pz b) \<partial>S) = ennreal (Pyz (a, b))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1088 | by (subst nn_integral_multc) (auto split: prod.split simp: ennreal_mult[symmetric]) | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1089 | qed | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1090 | also have "\<dots> = 1" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1091 | using Q.emeasure_space_1 distributed_distr_eq_density[OF Pyz] | 
| 56996 | 1092 | by (subst nn_integral_density[symmetric]) auto | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1093 | finally have le1: "(\<integral>\<^sup>+ x. ?f x \<partial>?P) \<le> 1" . | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1094 | also have "\<dots> < \<infinity>" by simp | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1095 | finally have fin: "(\<integral>\<^sup>+ x. ?f x \<partial>?P) \<noteq> \<infinity>" by simp | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1096 | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1097 | have pos: "(\<integral>\<^sup>+x. ?f x \<partial>?P) \<noteq> 0" | 
| 56996 | 1098 | apply (subst nn_integral_density) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1099 | apply (simp_all add: split_beta') | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1100 | proof | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1101 | let ?g = "\<lambda>x. ennreal (Pxyz x) * (Pxz (fst x, snd (snd x)) * Pyz (snd x) / (Pz (snd (snd x)) * Pxyz x))" | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1102 | assume "(\<integral>\<^sup>+x. ?g x \<partial>(S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P)) = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1103 | then have "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. ?g x = 0" | 
| 56996 | 1104 | by (intro nn_integral_0_iff_AE[THEN iffD1]) auto | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1105 | then have "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Pxyz x = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1106 | using ae1 ae2 ae3 ae4 AE_space | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1107 | by eventually_elim (auto split: if_split_asm simp: mult_le_0_iff divide_le_0_iff space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1108 | then have "(\<integral>\<^sup>+ x. ennreal (Pxyz x) \<partial>S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) = 0" | 
| 56996 | 1109 | by (subst nn_integral_cong_AE[of _ "\<lambda>x. 0"]) auto | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1110 | with P.emeasure_space_1 show False | 
| 56996 | 1111 | by (subst (asm) emeasure_density) (auto cong: nn_integral_cong) | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1112 | qed | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1113 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1114 | have neg: "(\<integral>\<^sup>+ x. - ?f x \<partial>?P) = 0" | 
| 56996 | 1115 | apply (rule nn_integral_0_iff_AE[THEN iffD2]) | 
| 50003 | 1116 | apply simp | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1117 | apply (subst AE_density) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1118 | apply (auto simp: space_pair_measure ennreal_neg) | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1119 | done | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1120 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1121 | have I3: "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Pxz (x, z) * (Pyz (y,z) / Pz z))))" | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63626diff
changeset | 1122 | apply (rule integrable_cong_AE[THEN iffD1, OF _ _ _ Bochner_Integration.integrable_diff[OF I1 I2]]) | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1123 | using ae | 
| 50003 | 1124 | apply (auto simp: split_beta') | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1125 | done | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1126 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1127 | have "- log b 1 \<le> - log b (integral\<^sup>L ?P ?f)" | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1128 | proof (intro le_imp_neg_le log_le[OF b_gt_1]) | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1129 | have If: "integrable ?P ?f" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1130 | unfolding real_integrable_def | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1131 | proof (intro conjI) | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1132 | from neg show "(\<integral>\<^sup>+ x. - ?f x \<partial>?P) \<noteq> \<infinity>" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1133 | by simp | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1134 | from fin show "(\<integral>\<^sup>+ x. ?f x \<partial>?P) \<noteq> \<infinity>" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1135 | by simp | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1136 | qed simp | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1137 | then have "(\<integral>\<^sup>+ x. ?f x \<partial>?P) = (\<integral>x. ?f x \<partial>?P)" | 
| 56996 | 1138 | apply (rule nn_integral_eq_integral) | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1139 | apply (subst AE_density) | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1140 | apply simp | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1141 | apply (auto simp: space_pair_measure ennreal_neg) | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1142 | done | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1143 | with pos le1 | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1144 | show "0 < (\<integral>x. ?f x \<partial>?P)" "(\<integral>x. ?f x \<partial>?P) \<le> 1" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1145 | by (simp_all add: one_ennreal.rep_eq zero_less_iff_neq_zero[symmetric]) | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1146 | qed | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1147 | also have "- log b (integral\<^sup>L ?P ?f) \<le> (\<integral> x. - log b (?f x) \<partial>?P)" | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1148 |   proof (rule P.jensens_inequality[where a=0 and b=1 and I="{0<..}"])
 | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1149 |     show "AE x in ?P. ?f x \<in> {0<..}"
 | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1150 | unfolding AE_density[OF distributed_borel_measurable[OF Pxyz]] | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1151 | using ae1 ae2 ae3 ae4 AE_space | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1152 | by eventually_elim (auto simp: space_pair_measure less_le) | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1153 | show "integrable ?P ?f" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1154 | unfolding real_integrable_def | 
| 50003 | 1155 | using fin neg by (auto simp: split_beta') | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1156 | show "integrable ?P (\<lambda>x. - log b (?f x))" | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1157 | apply (subst integrable_real_density) | 
| 50003 | 1158 | apply simp | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1159 | apply (auto simp: space_pair_measure) [] | 
| 50003 | 1160 | apply simp | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1161 | apply (rule integrable_cong_AE[THEN iffD1, OF _ _ _ I3]) | 
| 50003 | 1162 | apply simp | 
| 1163 | apply simp | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1164 | using ae1 ae2 ae3 ae4 AE_space | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1165 | apply eventually_elim | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1166 | apply (auto simp: log_divide_eq log_mult_eq zero_le_mult_iff zero_less_mult_iff zero_less_divide_iff field_simps | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1167 | less_le space_pair_measure) | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1168 | done | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1169 | qed (auto simp: b_gt_1 minus_log_convex) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1170 | also have "\<dots> = conditional_mutual_information b S T P X Y Z" | 
| 61808 | 1171 | unfolding \<open>?eq\<close> | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1172 | apply (subst integral_real_density) | 
| 50003 | 1173 | apply simp | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1174 | apply (auto simp: space_pair_measure) [] | 
| 50003 | 1175 | apply simp | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1176 | apply (intro integral_cong_AE) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1177 | using ae1 ae2 ae3 ae4 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1178 | apply (auto simp: log_divide_eq zero_less_mult_iff zero_less_divide_iff field_simps | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1179 | space_pair_measure less_le) | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1180 | done | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1181 | finally show ?nonneg | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1182 | by simp | 
| 40859 | 1183 | qed | 
| 1184 | ||
| 49803 | 1185 | lemma (in information_space) | 
| 1186 | fixes Px :: "_ \<Rightarrow> real" | |
| 1187 | assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" and P: "sigma_finite_measure P" | |
| 1188 | assumes Fx: "finite_entropy S X Px" | |
| 1189 | assumes Fz: "finite_entropy P Z Pz" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1190 | assumes Fyz: "finite_entropy (T \<Otimes>\<^sub>M P) (\<lambda>x. (Y x, Z x)) Pyz" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1191 | assumes Fxz: "finite_entropy (S \<Otimes>\<^sub>M P) (\<lambda>x. (X x, Z x)) Pxz" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1192 | assumes Fxyz: "finite_entropy (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>x. (X x, Y x, Z x)) Pxyz" | 
| 49803 | 1193 | shows conditional_mutual_information_generic_eq': "conditional_mutual_information b S T P X Y Z | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1194 | = (\<integral>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Pxz (x, z) * (Pyz (y,z) / Pz z))) \<partial>(S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P))" (is "?eq") | 
| 49803 | 1195 | and conditional_mutual_information_generic_nonneg': "0 \<le> conditional_mutual_information b S T P X Y Z" (is "?nonneg") | 
| 1196 | proof - | |
| 50003 | 1197 | note Px = Fx[THEN finite_entropy_distributed, measurable] | 
| 1198 | note Pz = Fz[THEN finite_entropy_distributed, measurable] | |
| 1199 | note Pyz = Fyz[THEN finite_entropy_distributed, measurable] | |
| 1200 | note Pxz = Fxz[THEN finite_entropy_distributed, measurable] | |
| 1201 | note Pxyz = Fxyz[THEN finite_entropy_distributed, measurable] | |
| 49803 | 1202 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1203 | note Px_nn = Fx[THEN finite_entropy_nn] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1204 | note Pz_nn = Fz[THEN finite_entropy_nn] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1205 | note Pyz_nn = Fyz[THEN finite_entropy_nn] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1206 | note Pxz_nn = Fxz[THEN finite_entropy_nn] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1207 | note Pxyz_nn = Fxyz[THEN finite_entropy_nn] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1208 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1209 | note Px' = Fx[THEN finite_entropy_measurable, measurable] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1210 | note Pz' = Fz[THEN finite_entropy_measurable, measurable] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1211 | note Pyz' = Fyz[THEN finite_entropy_measurable, measurable] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1212 | note Pxz' = Fxz[THEN finite_entropy_measurable, measurable] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1213 | note Pxyz' = Fxyz[THEN finite_entropy_measurable, measurable] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1214 | |
| 49803 | 1215 | interpret S: sigma_finite_measure S by fact | 
| 1216 | interpret T: sigma_finite_measure T by fact | |
| 1217 | interpret P: sigma_finite_measure P by fact | |
| 1218 | interpret TP: pair_sigma_finite T P .. | |
| 1219 | interpret SP: pair_sigma_finite S P .. | |
| 1220 | interpret ST: pair_sigma_finite S T .. | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1221 | interpret SPT: pair_sigma_finite "S \<Otimes>\<^sub>M P" T .. | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1222 | interpret STP: pair_sigma_finite S "T \<Otimes>\<^sub>M P" .. | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1223 | interpret TPS: pair_sigma_finite "T \<Otimes>\<^sub>M P" S .. | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1224 | have TP: "sigma_finite_measure (T \<Otimes>\<^sub>M P)" .. | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1225 | have SP: "sigma_finite_measure (S \<Otimes>\<^sub>M P)" .. | 
| 49803 | 1226 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1227 | from Pxz Pxyz have distr_eq: "distr M (S \<Otimes>\<^sub>M P) (\<lambda>x. (X x, Z x)) = | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1228 | distr (distr M (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>x. (X x, Y x, Z x))) (S \<Otimes>\<^sub>M P) (\<lambda>(x, y, z). (x, z))" | 
| 50003 | 1229 | by (simp add: distr_distr comp_def) | 
| 49803 | 1230 | |
| 1231 | have "mutual_information b S P X Z = | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1232 | (\<integral>x. Pxz x * log b (Pxz x / (Px (fst x) * Pz (snd x))) \<partial>(S \<Otimes>\<^sub>M P))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1233 | using Px Px_nn Pz Pz_nn Pxz Pxz_nn | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1234 | by (rule mutual_information_distr[OF S P]) (auto simp: space_pair_measure) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1235 | also have "\<dots> = (\<integral>(x,y,z). Pxyz (x,y,z) * log b (Pxz (x,z) / (Px x * Pz z)) \<partial>(S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1236 | using b_gt_1 Pxz Pxz_nn Pxyz Pxyz_nn | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1237 | by (subst distributed_transform_integral[OF Pxyz _ Pxz, where T="\<lambda>(x, y, z). (x, z)"]) | 
| 50003 | 1238 | (auto simp: split_beta') | 
| 49803 | 1239 | finally have mi_eq: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1240 | "mutual_information b S P X Z = (\<integral>(x,y,z). Pxyz (x,y,z) * log b (Pxz (x,z) / (Px x * Pz z)) \<partial>(S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P))" . | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1241 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1242 | have ae1: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Px (fst x) = 0 \<longrightarrow> Pxyz x = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1243 | by (intro subdensity_finite_entropy[of fst, OF _ Fxyz Fx]) auto | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1244 | moreover have ae2: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Pz (snd (snd x)) = 0 \<longrightarrow> Pxyz x = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1245 | by (intro subdensity_finite_entropy[of "\<lambda>x. snd (snd x)", OF _ Fxyz Fz]) auto | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1246 | moreover have ae3: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Pxz (fst x, snd (snd x)) = 0 \<longrightarrow> Pxyz x = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1247 | by (intro subdensity_finite_entropy[of "\<lambda>x. (fst x, snd (snd x))", OF _ Fxyz Fxz]) auto | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1248 | moreover have ae4: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Pyz (snd x) = 0 \<longrightarrow> Pxyz x = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1249 | by (intro subdensity_finite_entropy[of snd, OF _ Fxyz Fyz]) auto | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1250 | ultimately have ae: "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. | 
| 49803 | 1251 | Pxyz x * log b (Pxyz x / (Px (fst x) * Pyz (snd x))) - | 
| 1252 | Pxyz x * log b (Pxz (fst x, snd (snd x)) / (Px (fst x) * Pz (snd (snd x)))) = | |
| 1253 | Pxyz x * log b (Pxyz x * Pz (snd (snd x)) / (Pxz (fst x, snd (snd x)) * Pyz (snd x))) " | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1254 | using AE_space | 
| 49803 | 1255 | proof eventually_elim | 
| 60580 | 1256 | case (elim x) | 
| 49803 | 1257 | show ?case | 
| 1258 | proof cases | |
| 1259 | assume "Pxyz x \<noteq> 0" | |
| 60580 | 1260 | with elim have "0 < Px (fst x)" "0 < Pz (snd (snd x))" "0 < Pxz (fst x, snd (snd x))" | 
| 1261 | "0 < Pyz (snd x)" "0 < Pxyz x" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1262 | using Px_nn Pz_nn Pxz_nn Pyz_nn Pxyz_nn | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1263 | by (auto simp: space_pair_measure less_le) | 
| 49803 | 1264 | then show ?thesis | 
| 56544 | 1265 | using b_gt_1 by (simp add: log_simps less_imp_le field_simps) | 
| 49803 | 1266 | qed simp | 
| 1267 | qed | |
| 1268 | ||
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1269 | have "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) | 
| 49803 | 1270 | (\<lambda>x. Pxyz x * log b (Pxyz x) - Pxyz x * log b (Px (fst x)) - Pxyz x * log b (Pyz (snd x)))" | 
| 1271 | using finite_entropy_integrable[OF Fxyz] | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1272 | using finite_entropy_integrable_transform[OF Fx Pxyz Pxyz_nn, of fst] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1273 | using finite_entropy_integrable_transform[OF Fyz Pxyz Pxyz_nn, of snd] | 
| 49803 | 1274 | by simp | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1275 | moreover have "(\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Px x * Pyz (y, z)))) \<in> borel_measurable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P)" | 
| 50003 | 1276 | using Pxyz Px Pyz by simp | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1277 | ultimately have I1: "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Px x * Pyz (y, z))))" | 
| 49803 | 1278 | apply (rule integrable_cong_AE_imp) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1279 | using ae1 ae4 AE_space | 
| 49803 | 1280 | by eventually_elim | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1281 | (insert Px_nn Pyz_nn Pxyz_nn, | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1282 | auto simp: log_divide_eq log_mult_eq field_simps zero_less_mult_iff space_pair_measure less_le) | 
| 49803 | 1283 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1284 | have "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) | 
| 49803 | 1285 | (\<lambda>x. Pxyz x * log b (Pxz (fst x, snd (snd x))) - Pxyz x * log b (Px (fst x)) - Pxyz x * log b (Pz (snd (snd x))))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1286 | using finite_entropy_integrable_transform[OF Fxz Pxyz Pxyz_nn, of "\<lambda>x. (fst x, snd (snd x))"] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1287 | using finite_entropy_integrable_transform[OF Fx Pxyz Pxyz_nn, of fst] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1288 | using finite_entropy_integrable_transform[OF Fz Pxyz Pxyz_nn, of "snd \<circ> snd"] | 
| 50003 | 1289 | by simp | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1290 | moreover have "(\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxz (x, z) / (Px x * Pz z))) \<in> borel_measurable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P)" | 
| 49803 | 1291 | using Pxyz Px Pz | 
| 50003 | 1292 | by auto | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1293 | ultimately have I2: "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxz (x, z) / (Px x * Pz z)))" | 
| 49803 | 1294 | apply (rule integrable_cong_AE_imp) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1295 | using ae1 ae2 ae3 ae4 AE_space | 
| 49803 | 1296 | by eventually_elim | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1297 | (insert Px_nn Pz_nn Pxz_nn Pyz_nn Pxyz_nn, | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1298 | auto simp: log_divide_eq log_mult_eq field_simps zero_less_mult_iff less_le space_pair_measure) | 
| 49803 | 1299 | |
| 1300 | from ae I1 I2 show ?eq | |
| 1301 | unfolding conditional_mutual_information_def | |
| 1302 | apply (subst mi_eq) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1303 | apply (subst mutual_information_distr[OF S TP Px Px_nn Pyz Pyz_nn Pxyz Pxyz_nn]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1304 | apply simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1305 | apply simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1306 | apply (simp add: space_pair_measure) | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63626diff
changeset | 1307 | apply (subst Bochner_Integration.integral_diff[symmetric]) | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63626diff
changeset | 1308 | apply (auto intro!: integral_cong_AE simp: split_beta' simp del: Bochner_Integration.integral_diff) | 
| 49803 | 1309 | done | 
| 1310 | ||
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1311 | let ?P = "density (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) Pxyz" | 
| 49803 | 1312 | interpret P: prob_space ?P | 
| 50003 | 1313 | unfolding distributed_distr_eq_density[OF Pxyz, symmetric] by (rule prob_space_distr) simp | 
| 49803 | 1314 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1315 | let ?Q = "density (T \<Otimes>\<^sub>M P) Pyz" | 
| 49803 | 1316 | interpret Q: prob_space ?Q | 
| 50003 | 1317 | unfolding distributed_distr_eq_density[OF Pyz, symmetric] by (rule prob_space_distr) simp | 
| 49803 | 1318 | |
| 1319 | let ?f = "\<lambda>(x, y, z). Pxz (x, z) * (Pyz (y, z) / Pz z) / Pxyz (x, y, z)" | |
| 1320 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1321 | from subdensity_finite_entropy[of snd, OF _ Fyz Fz] | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1322 | have aeX1: "AE x in T \<Otimes>\<^sub>M P. Pz (snd x) = 0 \<longrightarrow> Pyz x = 0" by (auto simp: comp_def) | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1323 | have aeX2: "AE x in T \<Otimes>\<^sub>M P. 0 \<le> Pz (snd x)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1324 | using Pz by (intro TP.AE_pair_measure) (auto intro: Pz_nn) | 
| 49803 | 1325 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1326 | have aeX3: "AE y in T \<Otimes>\<^sub>M P. (\<integral>\<^sup>+ x. ennreal (Pxz (x, snd y)) \<partial>S) = ennreal (Pz (snd y))" | 
| 49803 | 1327 | using Pz distributed_marginal_eq_joint2[OF P S Pz Pxz] | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1328 | by (intro TP.AE_pair_measure) (auto ) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1329 | have "(\<integral>\<^sup>+ x. ?f x \<partial>?P) \<le> (\<integral>\<^sup>+ (x, y, z). Pxz (x, z) * (Pyz (y, z) / Pz z) \<partial>(S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1330 | using Px_nn Pz_nn Pxz_nn Pyz_nn Pxyz_nn | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1331 | by (subst nn_integral_density) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1332 | (auto intro!: nn_integral_mono simp: space_pair_measure ennreal_mult[symmetric]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1333 | also have "\<dots> = (\<integral>\<^sup>+(y, z). \<integral>\<^sup>+ x. ennreal (Pxz (x, z)) * ennreal (Pyz (y, z) / Pz z) \<partial>S \<partial>T \<Otimes>\<^sub>M P)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1334 | using Px_nn Pz_nn Pxz_nn Pyz_nn Pxyz_nn | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1335 | by (subst STP.nn_integral_snd[symmetric]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1336 | (auto simp add: split_beta' ennreal_mult[symmetric] space_pair_measure intro!: nn_integral_cong) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1337 | also have "\<dots> = (\<integral>\<^sup>+x. ennreal (Pyz x) * 1 \<partial>T \<Otimes>\<^sub>M P)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1338 | apply (rule nn_integral_cong_AE) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1339 | using aeX1 aeX2 aeX3 AE_space | 
| 49803 | 1340 | apply eventually_elim | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1341 | proof (case_tac x, simp add: space_pair_measure) | 
| 49803 | 1342 | fix a b assume "Pz b = 0 \<longrightarrow> Pyz (a, b) = 0" "0 \<le> Pz b" "a \<in> space T \<and> b \<in> space P" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1343 | "(\<integral>\<^sup>+ x. ennreal (Pxz (x, b)) \<partial>S) = ennreal (Pz b)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1344 | then show "(\<integral>\<^sup>+ x. ennreal (Pxz (x, b)) * ennreal (Pyz (a, b) / Pz b) \<partial>S) = ennreal (Pyz (a, b))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1345 | using Pyz_nn[of "(a,b)"] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1346 | by (subst nn_integral_multc) (auto simp: space_pair_measure ennreal_mult[symmetric]) | 
| 49803 | 1347 | qed | 
| 1348 | also have "\<dots> = 1" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1349 | using Q.emeasure_space_1 Pyz_nn distributed_distr_eq_density[OF Pyz] | 
| 56996 | 1350 | by (subst nn_integral_density[symmetric]) auto | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1351 | finally have le1: "(\<integral>\<^sup>+ x. ?f x \<partial>?P) \<le> 1" . | 
| 49803 | 1352 | also have "\<dots> < \<infinity>" by simp | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1353 | finally have fin: "(\<integral>\<^sup>+ x. ?f x \<partial>?P) \<noteq> \<infinity>" by simp | 
| 49803 | 1354 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1355 | have "(\<integral>\<^sup>+ x. ?f x \<partial>?P) \<noteq> 0" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1356 | using Pxyz_nn | 
| 56996 | 1357 | apply (subst nn_integral_density) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1358 | apply (simp_all add: split_beta' ennreal_mult'[symmetric] cong: nn_integral_cong) | 
| 49803 | 1359 | proof | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1360 | let ?g = "\<lambda>x. ennreal (if Pxyz x = 0 then 0 else Pxz (fst x, snd (snd x)) * Pyz (snd x) / Pz (snd (snd x)))" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1361 | assume "(\<integral>\<^sup>+ x. ?g x \<partial>(S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P)) = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1362 | then have "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. ?g x = 0" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1363 | by (intro nn_integral_0_iff_AE[THEN iffD1]) auto | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1364 | then have "AE x in S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P. Pxyz x = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1365 | using ae1 ae2 ae3 ae4 AE_space | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1366 | by eventually_elim | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1367 | (insert Px_nn Pz_nn Pxz_nn Pyz_nn, | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1368 | auto split: if_split_asm simp: mult_le_0_iff divide_le_0_iff space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1369 | then have "(\<integral>\<^sup>+ x. ennreal (Pxyz x) \<partial>S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) = 0" | 
| 56996 | 1370 | by (subst nn_integral_cong_AE[of _ "\<lambda>x. 0"]) auto | 
| 49803 | 1371 | with P.emeasure_space_1 show False | 
| 56996 | 1372 | by (subst (asm) emeasure_density) (auto cong: nn_integral_cong) | 
| 49803 | 1373 | qed | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1374 | then have pos: "0 < (\<integral>\<^sup>+ x. ?f x \<partial>?P)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1375 | by (simp add: zero_less_iff_neq_zero) | 
| 49803 | 1376 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1377 | have neg: "(\<integral>\<^sup>+ x. - ?f x \<partial>?P) = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1378 | using Pz_nn Pxz_nn Pyz_nn Pxyz_nn | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1379 | by (intro nn_integral_0_iff_AE[THEN iffD2]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1380 | (auto simp: split_beta' AE_density space_pair_measure intro!: AE_I2 ennreal_neg) | 
| 49803 | 1381 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1382 | have I3: "integrable (S \<Otimes>\<^sub>M T \<Otimes>\<^sub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Pxz (x, z) * (Pyz (y,z) / Pz z))))" | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63626diff
changeset | 1383 | apply (rule integrable_cong_AE[THEN iffD1, OF _ _ _ Bochner_Integration.integrable_diff[OF I1 I2]]) | 
| 49803 | 1384 | using ae | 
| 50003 | 1385 | apply (auto simp: split_beta') | 
| 49803 | 1386 | done | 
| 1387 | ||
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1388 | have "- log b 1 \<le> - log b (integral\<^sup>L ?P ?f)" | 
| 49803 | 1389 | proof (intro le_imp_neg_le log_le[OF b_gt_1]) | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1390 | have If: "integrable ?P ?f" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1391 | unfolding real_integrable_def | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1392 | proof (intro conjI) | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1393 | from neg show "(\<integral>\<^sup>+ x. - ?f x \<partial>?P) \<noteq> \<infinity>" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1394 | by simp | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1395 | from fin show "(\<integral>\<^sup>+ x. ?f x \<partial>?P) \<noteq> \<infinity>" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1396 | by simp | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1397 | qed simp | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1398 | then have "(\<integral>\<^sup>+ x. ?f x \<partial>?P) = (\<integral>x. ?f x \<partial>?P)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1399 | using Pz_nn Pxz_nn Pyz_nn Pxyz_nn | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1400 | by (intro nn_integral_eq_integral) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1401 | (auto simp: AE_density space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1402 | with pos le1 | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1403 | show "0 < (\<integral>x. ?f x \<partial>?P)" "(\<integral>x. ?f x \<partial>?P) \<le> 1" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1404 | by (simp_all add: ) | 
| 49803 | 1405 | qed | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1406 | also have "- log b (integral\<^sup>L ?P ?f) \<le> (\<integral> x. - log b (?f x) \<partial>?P)" | 
| 49803 | 1407 |   proof (rule P.jensens_inequality[where a=0 and b=1 and I="{0<..}"])
 | 
| 1408 |     show "AE x in ?P. ?f x \<in> {0<..}"
 | |
| 1409 | unfolding AE_density[OF distributed_borel_measurable[OF Pxyz]] | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1410 | using ae1 ae2 ae3 ae4 AE_space | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1411 | by eventually_elim (insert Pxyz_nn Pyz_nn Pz_nn Pxz_nn, auto simp: space_pair_measure less_le) | 
| 49803 | 1412 | show "integrable ?P ?f" | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1413 | unfolding real_integrable_def | 
| 50003 | 1414 | using fin neg by (auto simp: split_beta') | 
| 49803 | 1415 | show "integrable ?P (\<lambda>x. - log b (?f x))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1416 | using Pz_nn Pxz_nn Pyz_nn Pxyz_nn | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1417 | apply (subst integrable_real_density) | 
| 50003 | 1418 | apply simp | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1419 | apply simp | 
| 50003 | 1420 | apply simp | 
| 49803 | 1421 | apply (rule integrable_cong_AE[THEN iffD1, OF _ _ _ I3]) | 
| 50003 | 1422 | apply simp | 
| 1423 | apply simp | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1424 | using ae1 ae2 ae3 ae4 AE_space | 
| 49803 | 1425 | apply eventually_elim | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1426 | apply (auto simp: log_divide_eq log_mult_eq zero_le_mult_iff zero_less_mult_iff | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1427 | zero_less_divide_iff field_simps space_pair_measure less_le) | 
| 49803 | 1428 | done | 
| 1429 | qed (auto simp: b_gt_1 minus_log_convex) | |
| 1430 | also have "\<dots> = conditional_mutual_information b S T P X Y Z" | |
| 61808 | 1431 | unfolding \<open>?eq\<close> | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1432 | using Pz_nn Pxz_nn Pyz_nn Pxyz_nn | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1433 | apply (subst integral_real_density) | 
| 50003 | 1434 | apply simp | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1435 | apply simp | 
| 50003 | 1436 | apply simp | 
| 49803 | 1437 | apply (intro integral_cong_AE) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1438 | using ae1 ae2 ae3 ae4 AE_space | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1439 | apply (auto simp: log_divide_eq zero_less_mult_iff zero_less_divide_iff | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1440 | field_simps space_pair_measure less_le) | 
| 49803 | 1441 | done | 
| 1442 | finally show ?nonneg | |
| 1443 | by simp | |
| 1444 | qed | |
| 1445 | ||
| 40859 | 1446 | lemma (in information_space) conditional_mutual_information_eq: | 
| 47694 | 1447 | assumes Pz: "simple_distributed M Z Pz" | 
| 1448 | assumes Pyz: "simple_distributed M (\<lambda>x. (Y x, Z x)) Pyz" | |
| 1449 | assumes Pxz: "simple_distributed M (\<lambda>x. (X x, Z x)) Pxz" | |
| 1450 | assumes Pxyz: "simple_distributed M (\<lambda>x. (X x, Y x, Z x)) Pxyz" | |
| 1451 | shows "\<I>(X ; Y | Z) = | |
| 1452 | (\<Sum>(x, y, z)\<in>(\<lambda>x. (X x, Y x, Z x))`space M. Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Pxz (x, z) * (Pyz (y,z) / Pz z))))" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1453 | proof (subst conditional_mutual_information_generic_eq[OF _ _ _ _ _ | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1454 | simple_distributed[OF Pz] _ simple_distributed_joint[OF Pyz] _ simple_distributed_joint[OF Pxz] _ | 
| 47694 | 1455 | simple_distributed_joint2[OF Pxyz]]) | 
| 1456 | note simple_distributed_joint2_finite[OF Pxyz, simp] | |
| 1457 | show "sigma_finite_measure (count_space (X ` space M))" | |
| 1458 | by (simp add: sigma_finite_measure_count_space_finite) | |
| 1459 | show "sigma_finite_measure (count_space (Y ` space M))" | |
| 1460 | by (simp add: sigma_finite_measure_count_space_finite) | |
| 1461 | show "sigma_finite_measure (count_space (Z ` space M))" | |
| 1462 | by (simp add: sigma_finite_measure_count_space_finite) | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1463 | have "count_space (X ` space M) \<Otimes>\<^sub>M count_space (Y ` space M) \<Otimes>\<^sub>M count_space (Z ` space M) = | 
| 47694 | 1464 | count_space (X`space M \<times> Y`space M \<times> Z`space M)" | 
| 1465 | (is "?P = ?C") | |
| 1466 | by (simp add: pair_measure_count_space) | |
| 40859 | 1467 | |
| 47694 | 1468 |   let ?Px = "\<lambda>x. measure M (X -` {x} \<inter> space M)"
 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1469 | have "(\<lambda>x. (X x, Z x)) \<in> measurable M (count_space (X ` space M) \<Otimes>\<^sub>M count_space (Z ` space M))" | 
| 47694 | 1470 | using simple_distributed_joint[OF Pxz] by (rule distributed_measurable) | 
| 1471 | from measurable_comp[OF this measurable_fst] | |
| 1472 | have "random_variable (count_space (X ` space M)) X" | |
| 1473 | by (simp add: comp_def) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1474 | then have "simple_function M X" | 
| 50002 
ce0d316b5b44
add measurability prover; add support for Borel sets
 hoelzl parents: 
49999diff
changeset | 1475 | unfolding simple_function_def by (auto simp: measurable_count_space_eq2) | 
| 47694 | 1476 | then have "simple_distributed M X ?Px" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1477 | by (rule simple_distributedI) (auto simp: measure_nonneg) | 
| 47694 | 1478 | then show "distributed M (count_space (X ` space M)) X ?Px" | 
| 1479 | by (rule simple_distributed) | |
| 1480 | ||
| 1481 | let ?f = "(\<lambda>x. if x \<in> (\<lambda>x. (X x, Y x, Z x)) ` space M then Pxyz x else 0)" | |
| 1482 | let ?g = "(\<lambda>x. if x \<in> (\<lambda>x. (Y x, Z x)) ` space M then Pyz x else 0)" | |
| 1483 | let ?h = "(\<lambda>x. if x \<in> (\<lambda>x. (X x, Z x)) ` space M then Pxz x else 0)" | |
| 1484 | show | |
| 1485 | "integrable ?P (\<lambda>(x, y, z). ?f (x, y, z) * log b (?f (x, y, z) / (?Px x * ?g (y, z))))" | |
| 1486 | "integrable ?P (\<lambda>(x, y, z). ?f (x, y, z) * log b (?h (x, z) / (?Px x * Pz z)))" | |
| 1487 | by (auto intro!: integrable_count_space simp: pair_measure_count_space) | |
| 1488 | let ?i = "\<lambda>x y z. ?f (x, y, z) * log b (?f (x, y, z) / (?h (x, z) * (?g (y, z) / Pz z)))" | |
| 1489 | let ?j = "\<lambda>x y z. Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Pxz (x, z) * (Pyz (y,z) / Pz z)))" | |
| 1490 | have "(\<lambda>(x, y, z). ?i x y z) = (\<lambda>x. if x \<in> (\<lambda>x. (X x, Y x, Z x)) ` space M then ?j (fst x) (fst (snd x)) (snd (snd x)) else 0)" | |
| 1491 | by (auto intro!: ext) | |
| 1492 | then show "(\<integral> (x, y, z). ?i x y z \<partial>?P) = (\<Sum>(x, y, z)\<in>(\<lambda>x. (X x, Y x, Z x)) ` space M. ?j x y z)" | |
| 64267 | 1493 | by (auto intro!: sum.cong simp add: \<open>?P = ?C\<close> lebesgue_integral_count_space_finite simple_distributed_finite sum.If_cases split_beta') | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1494 | qed (insert Pz Pyz Pxz Pxyz, auto intro: measure_nonneg) | 
| 36624 | 1495 | |
| 47694 | 1496 | lemma (in information_space) conditional_mutual_information_nonneg: | 
| 1497 | assumes X: "simple_function M X" and Y: "simple_function M Y" and Z: "simple_function M Z" | |
| 1498 | shows "0 \<le> \<I>(X ; Y | Z)" | |
| 1499 | proof - | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1500 | have [simp]: "count_space (X ` space M) \<Otimes>\<^sub>M count_space (Y ` space M) \<Otimes>\<^sub>M count_space (Z ` space M) = | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1501 | count_space (X`space M \<times> Y`space M \<times> Z`space M)" | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1502 | by (simp add: pair_measure_count_space X Y Z simple_functionD) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1503 | note sf = sigma_finite_measure_count_space_finite[OF simple_functionD(1)] | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1504 | note sd = simple_distributedI[OF _ _ refl] | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1505 | note sp = simple_function_Pair | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1506 | show ?thesis | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1507 | apply (rule conditional_mutual_information_generic_nonneg[OF sf[OF X] sf[OF Y] sf[OF Z]]) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1508 | apply (rule simple_distributed[OF sd[OF X]]) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1509 | apply simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1510 | apply simp | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1511 | apply (rule simple_distributed[OF sd[OF Z]]) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1512 | apply simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1513 | apply simp | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1514 | apply (rule simple_distributed_joint[OF sd[OF sp[OF Y Z]]]) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1515 | apply simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1516 | apply simp | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1517 | apply (rule simple_distributed_joint[OF sd[OF sp[OF X Z]]]) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1518 | apply simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1519 | apply simp | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1520 | apply (rule simple_distributed_joint2[OF sd[OF sp[OF X sp[OF Y Z]]]]) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1521 | apply simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1522 | apply simp | 
| 49787 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1523 | apply (auto intro!: integrable_count_space simp: X Y Z simple_functionD) | 
| 
d8de705b48d4
rule to show that conditional mutual information is non-negative in the continuous case
 hoelzl parents: 
49786diff
changeset | 1524 | done | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 1525 | qed | 
| 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 1526 | |
| 61808 | 1527 | subsection \<open>Conditional Entropy\<close> | 
| 39097 | 1528 | |
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 1529 | definition (in prob_space) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1530 | "conditional_entropy b S T X Y = - (\<integral>(x, y). log b (enn2real (RN_deriv (S \<Otimes>\<^sub>M T) (distr M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x))) (x, y)) / | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1531 | enn2real (RN_deriv T (distr M T Y) y)) \<partial>distr M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)))" | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 1532 | |
| 40859 | 1533 | abbreviation (in information_space) | 
| 1534 |   conditional_entropy_Pow ("\<H>'(_ | _')") where
 | |
| 47694 | 1535 | "\<H>(X | Y) \<equiv> conditional_entropy b (count_space (X`space M)) (count_space (Y`space M)) X Y" | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 1536 | |
| 49791 | 1537 | lemma (in information_space) conditional_entropy_generic_eq: | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1538 | fixes Pxy :: "_ \<Rightarrow> real" and Py :: "'c \<Rightarrow> real" | 
| 49791 | 1539 | assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1540 | assumes Py[measurable]: "distributed M T Y Py" and Py_nn[simp]: "\<And>x. x \<in> space T \<Longrightarrow> 0 \<le> Py x" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1541 | assumes Pxy[measurable]: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1542 | and Pxy_nn[simp]: "\<And>x y. x \<in> space S \<Longrightarrow> y \<in> space T \<Longrightarrow> 0 \<le> Pxy (x, y)" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1543 | shows "conditional_entropy b S T X Y = - (\<integral>(x, y). Pxy (x, y) * log b (Pxy (x, y) / Py y) \<partial>(S \<Otimes>\<^sub>M T))" | 
| 49791 | 1544 | proof - | 
| 1545 | interpret S: sigma_finite_measure S by fact | |
| 1546 | interpret T: sigma_finite_measure T by fact | |
| 1547 | interpret ST: pair_sigma_finite S T .. | |
| 1548 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1549 | have [measurable]: "Py \<in> T \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1550 | using Py Py_nn by (intro distributed_real_measurable) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1551 | have measurable_Pxy[measurable]: "Pxy \<in> (S \<Otimes>\<^sub>M T) \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1552 | using Pxy Pxy_nn by (intro distributed_real_measurable) (auto simp: space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1553 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1554 | have "AE x in density (S \<Otimes>\<^sub>M T) (\<lambda>x. ennreal (Pxy x)). Pxy x = enn2real (RN_deriv (S \<Otimes>\<^sub>M T) (distr M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x))) x)" | 
| 49791 | 1555 | unfolding AE_density[OF distributed_borel_measurable, OF Pxy] | 
| 1556 | unfolding distributed_distr_eq_density[OF Pxy] | |
| 1557 | using distributed_RN_deriv[OF Pxy] | |
| 1558 | by auto | |
| 1559 | moreover | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1560 | have "AE x in density (S \<Otimes>\<^sub>M T) (\<lambda>x. ennreal (Pxy x)). Py (snd x) = enn2real (RN_deriv T (distr M T Y) (snd x))" | 
| 49791 | 1561 | unfolding AE_density[OF distributed_borel_measurable, OF Pxy] | 
| 1562 | unfolding distributed_distr_eq_density[OF Py] | |
| 1563 | apply (rule ST.AE_pair_measure) | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1564 | apply auto | 
| 49791 | 1565 | using distributed_RN_deriv[OF Py] | 
| 1566 | apply auto | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1567 | done | 
| 49791 | 1568 | ultimately | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1569 | have "conditional_entropy b S T X Y = - (\<integral>x. Pxy x * log b (Pxy x / Py (snd x)) \<partial>(S \<Otimes>\<^sub>M T))" | 
| 49791 | 1570 | unfolding conditional_entropy_def neg_equal_iff_equal | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1571 | apply (subst integral_real_density[symmetric]) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1572 | apply (auto simp: distributed_distr_eq_density[OF Pxy] space_pair_measure | 
| 49791 | 1573 | intro!: integral_cong_AE) | 
| 1574 | done | |
| 1575 | then show ?thesis by (simp add: split_beta') | |
| 1576 | qed | |
| 1577 | ||
| 1578 | lemma (in information_space) conditional_entropy_eq_entropy: | |
| 47694 | 1579 | fixes Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real" | 
| 1580 | assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1581 | assumes Py[measurable]: "distributed M T Y Py" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1582 | and Py_nn[simp]: "\<And>x. x \<in> space T \<Longrightarrow> 0 \<le> Py x" | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1583 | assumes Pxy[measurable]: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1584 | and Pxy_nn[simp]: "\<And>x y. x \<in> space S \<Longrightarrow> y \<in> space T \<Longrightarrow> 0 \<le> Pxy (x, y)" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1585 | assumes I1: "integrable (S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Pxy x))" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1586 | assumes I2: "integrable (S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Py (snd x)))" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1587 | shows "conditional_entropy b S T X Y = entropy b (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) - entropy b T Y" | 
| 40859 | 1588 | proof - | 
| 47694 | 1589 | interpret S: sigma_finite_measure S by fact | 
| 1590 | interpret T: sigma_finite_measure T by fact | |
| 1591 | interpret ST: pair_sigma_finite S T .. | |
| 1592 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1593 | have [measurable]: "Py \<in> T \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1594 | using Py Py_nn by (intro distributed_real_measurable) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1595 | have measurable_Pxy[measurable]: "Pxy \<in> (S \<Otimes>\<^sub>M T) \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1596 | using Pxy Pxy_nn by (intro distributed_real_measurable) (auto simp: space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1597 | |
| 47694 | 1598 | have "entropy b T Y = - (\<integral>y. Py y * log b (Py y) \<partial>T)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1599 | by (rule entropy_distr[OF Py Py_nn]) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1600 | also have "\<dots> = - (\<integral>(x,y). Pxy (x,y) * log b (Py y) \<partial>(S \<Otimes>\<^sub>M T))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1601 | using b_gt_1 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1602 | by (subst distributed_transform_integral[OF Pxy _ Py, where T=snd]) | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63626diff
changeset | 1603 | (auto intro!: Bochner_Integration.integral_cong simp: space_pair_measure) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1604 | finally have e_eq: "entropy b T Y = - (\<integral>(x,y). Pxy (x,y) * log b (Py y) \<partial>(S \<Otimes>\<^sub>M T))" . | 
| 49791 | 1605 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1606 | have **: "\<And>x. x \<in> space (S \<Otimes>\<^sub>M T) \<Longrightarrow> 0 \<le> Pxy x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1607 | by (auto simp: space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1608 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1609 | have ae2: "AE x in S \<Otimes>\<^sub>M T. Py (snd x) = 0 \<longrightarrow> Pxy x = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1610 | by (intro subdensity_real[of snd, OF _ Pxy Py]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1611 | (auto intro: measurable_Pair simp: space_pair_measure) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1612 | moreover have ae4: "AE x in S \<Otimes>\<^sub>M T. 0 \<le> Py (snd x)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1613 | using Py by (intro ST.AE_pair_measure) (auto simp: comp_def intro!: measurable_snd'') | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1614 | ultimately have "AE x in S \<Otimes>\<^sub>M T. 0 \<le> Pxy x \<and> 0 \<le> Py (snd x) \<and> | 
| 49790 
6b9b9ebba47d
remove unneeded assumption from conditional_entropy_generic_eq
 hoelzl parents: 
49788diff
changeset | 1615 | (Pxy x = 0 \<or> (Pxy x \<noteq> 0 \<longrightarrow> 0 < Pxy x \<and> 0 < Py (snd x)))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1616 | using AE_space by eventually_elim (auto simp: space_pair_measure less_le) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1617 | then have ae: "AE x in S \<Otimes>\<^sub>M T. | 
| 47694 | 1618 | Pxy x * log b (Pxy x) - Pxy x * log b (Py (snd x)) = Pxy x * log b (Pxy x / Py (snd x))" | 
| 56544 | 1619 | by eventually_elim (auto simp: log_simps field_simps b_gt_1) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1620 | have "conditional_entropy b S T X Y = | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1621 | - (\<integral>x. Pxy x * log b (Pxy x) - Pxy x * log b (Py (snd x)) \<partial>(S \<Otimes>\<^sub>M T))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1622 | unfolding conditional_entropy_generic_eq[OF S T Py Py_nn Pxy Pxy_nn, simplified] neg_equal_iff_equal | 
| 49791 | 1623 | apply (intro integral_cong_AE) | 
| 1624 | using ae | |
| 1625 | apply auto | |
| 47694 | 1626 | done | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1627 | also have "\<dots> = - (\<integral>x. Pxy x * log b (Pxy x) \<partial>(S \<Otimes>\<^sub>M T)) - - (\<integral>x. Pxy x * log b (Py (snd x)) \<partial>(S \<Otimes>\<^sub>M T))" | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63626diff
changeset | 1628 | by (simp add: Bochner_Integration.integral_diff[OF I1 I2]) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1629 | finally show ?thesis | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1630 | using conditional_entropy_generic_eq[OF S T Py Py_nn Pxy Pxy_nn, simplified] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1631 | entropy_distr[OF Pxy **, simplified] e_eq | 
| 49791 | 1632 | by (simp add: split_beta') | 
| 1633 | qed | |
| 1634 | ||
| 1635 | lemma (in information_space) conditional_entropy_eq_entropy_simple: | |
| 1636 | assumes X: "simple_function M X" and Y: "simple_function M Y" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1637 | shows "\<H>(X | Y) = entropy b (count_space (X`space M) \<Otimes>\<^sub>M count_space (Y`space M)) (\<lambda>x. (X x, Y x)) - \<H>(Y)" | 
| 49791 | 1638 | proof - | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1639 | have "count_space (X ` space M) \<Otimes>\<^sub>M count_space (Y ` space M) = count_space (X`space M \<times> Y`space M)" | 
| 49791 | 1640 | (is "?P = ?C") using X Y by (simp add: simple_functionD pair_measure_count_space) | 
| 1641 | show ?thesis | |
| 1642 | by (rule conditional_entropy_eq_entropy sigma_finite_measure_count_space_finite | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1643 | simple_functionD X Y simple_distributed simple_distributedI[OF _ _ refl] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1644 | simple_distributed_joint simple_function_Pair integrable_count_space measure_nonneg)+ | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1645 | (auto simp: \<open>?P = ?C\<close> measure_nonneg intro!: integrable_count_space simple_functionD X Y) | 
| 39097 | 1646 | qed | 
| 1647 | ||
| 40859 | 1648 | lemma (in information_space) conditional_entropy_eq: | 
| 49792 
43f49922811d
remove unnecessary assumption from conditional_entropy_eq
 hoelzl parents: 
49791diff
changeset | 1649 | assumes Y: "simple_distributed M Y Py" | 
| 47694 | 1650 | assumes XY: "simple_distributed M (\<lambda>x. (X x, Y x)) Pxy" | 
| 1651 | shows "\<H>(X | Y) = - (\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x)) ` space M. Pxy (x, y) * log b (Pxy (x, y) / Py y))" | |
| 1652 | proof (subst conditional_entropy_generic_eq[OF _ _ | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1653 | simple_distributed[OF Y] _ simple_distributed_joint[OF XY]]) | 
| 49792 
43f49922811d
remove unnecessary assumption from conditional_entropy_eq
 hoelzl parents: 
49791diff
changeset | 1654 | have "finite ((\<lambda>x. (X x, Y x))`space M)" | 
| 
43f49922811d
remove unnecessary assumption from conditional_entropy_eq
 hoelzl parents: 
49791diff
changeset | 1655 | using XY unfolding simple_distributed_def by auto | 
| 
43f49922811d
remove unnecessary assumption from conditional_entropy_eq
 hoelzl parents: 
49791diff
changeset | 1656 | from finite_imageI[OF this, of fst] | 
| 
43f49922811d
remove unnecessary assumption from conditional_entropy_eq
 hoelzl parents: 
49791diff
changeset | 1657 | have [simp]: "finite (X`space M)" | 
| 56154 
f0a927235162
more complete set of lemmas wrt. image and composition
 haftmann parents: 
53374diff
changeset | 1658 | by (simp add: image_comp comp_def) | 
| 47694 | 1659 | note Y[THEN simple_distributed_finite, simp] | 
| 1660 | show "sigma_finite_measure (count_space (X ` space M))" | |
| 1661 | by (simp add: sigma_finite_measure_count_space_finite) | |
| 1662 | show "sigma_finite_measure (count_space (Y ` space M))" | |
| 1663 | by (simp add: sigma_finite_measure_count_space_finite) | |
| 1664 | let ?f = "(\<lambda>x. if x \<in> (\<lambda>x. (X x, Y x)) ` space M then Pxy x else 0)" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1665 | have "count_space (X ` space M) \<Otimes>\<^sub>M count_space (Y ` space M) = count_space (X`space M \<times> Y`space M)" | 
| 47694 | 1666 | (is "?P = ?C") | 
| 49792 
43f49922811d
remove unnecessary assumption from conditional_entropy_eq
 hoelzl parents: 
49791diff
changeset | 1667 | using Y by (simp add: simple_distributed_finite pair_measure_count_space) | 
| 47694 | 1668 | have eq: "(\<lambda>(x, y). ?f (x, y) * log b (?f (x, y) / Py y)) = | 
| 1669 | (\<lambda>x. if x \<in> (\<lambda>x. (X x, Y x)) ` space M then Pxy x * log b (Pxy x / Py (snd x)) else 0)" | |
| 1670 | by auto | |
| 49792 
43f49922811d
remove unnecessary assumption from conditional_entropy_eq
 hoelzl parents: 
49791diff
changeset | 1671 | from Y show "- (\<integral> (x, y). ?f (x, y) * log b (?f (x, y) / Py y) \<partial>?P) = | 
| 47694 | 1672 | - (\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x)) ` space M. Pxy (x, y) * log b (Pxy (x, y) / Py y))" | 
| 64267 | 1673 | by (auto intro!: sum.cong simp add: \<open>?P = ?C\<close> lebesgue_integral_count_space_finite simple_distributed_finite eq sum.If_cases split_beta') | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1674 | qed (insert Y XY, auto) | 
| 39097 | 1675 | |
| 47694 | 1676 | lemma (in information_space) conditional_mutual_information_eq_conditional_entropy: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 1677 | assumes X: "simple_function M X" and Y: "simple_function M Y" | 
| 47694 | 1678 | shows "\<I>(X ; X | Y) = \<H>(X | Y)" | 
| 1679 | proof - | |
| 63040 | 1680 |   define Py where "Py x = (if x \<in> Y`space M then measure M (Y -` {x} \<inter> space M) else 0)" for x
 | 
| 1681 | define Pxy where "Pxy x = | |
| 1682 |       (if x \<in> (\<lambda>x. (X x, Y x))`space M then measure M ((\<lambda>x. (X x, Y x)) -` {x} \<inter> space M) else 0)"
 | |
| 1683 | for x | |
| 1684 | define Pxxy where "Pxxy x = | |
| 1685 |       (if x \<in> (\<lambda>x. (X x, X x, Y x))`space M then measure M ((\<lambda>x. (X x, X x, Y x)) -` {x} \<inter> space M)
 | |
| 1686 | else 0)" | |
| 1687 | for x | |
| 47694 | 1688 | let ?M = "X`space M \<times> X`space M \<times> Y`space M" | 
| 39097 | 1689 | |
| 47694 | 1690 | note XY = simple_function_Pair[OF X Y] | 
| 1691 | note XXY = simple_function_Pair[OF X XY] | |
| 1692 | have Py: "simple_distributed M Y Py" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1693 | using Y by (rule simple_distributedI) (auto simp: Py_def measure_nonneg) | 
| 47694 | 1694 | have Pxy: "simple_distributed M (\<lambda>x. (X x, Y x)) Pxy" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1695 | using XY by (rule simple_distributedI) (auto simp: Pxy_def measure_nonneg) | 
| 47694 | 1696 | have Pxxy: "simple_distributed M (\<lambda>x. (X x, X x, Y x)) Pxxy" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1697 | using XXY by (rule simple_distributedI) (auto simp: Pxxy_def measure_nonneg) | 
| 47694 | 1698 | have eq: "(\<lambda>x. (X x, X x, Y x)) ` space M = (\<lambda>(x, y). (x, x, y)) ` (\<lambda>x. (X x, Y x)) ` space M" | 
| 1699 | by auto | |
| 1700 | have inj: "\<And>A. inj_on (\<lambda>(x, y). (x, x, y)) A" | |
| 1701 | by (auto simp: inj_on_def) | |
| 1702 | have Pxxy_eq: "\<And>x y. Pxxy (x, x, y) = Pxy (x, y)" | |
| 1703 | by (auto simp: Pxxy_def Pxy_def intro!: arg_cong[where f=prob]) | |
| 1704 | have "AE x in count_space ((\<lambda>x. (X x, Y x))`space M). Py (snd x) = 0 \<longrightarrow> Pxy x = 0" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1705 | using Py Pxy | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1706 | by (intro subdensity_real[of snd, OF _ Pxy[THEN simple_distributed] Py[THEN simple_distributed]]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1707 | (auto intro: measurable_Pair simp: AE_count_space) | 
| 47694 | 1708 | then show ?thesis | 
| 1709 | apply (subst conditional_mutual_information_eq[OF Py Pxy Pxy Pxxy]) | |
| 49792 
43f49922811d
remove unnecessary assumption from conditional_entropy_eq
 hoelzl parents: 
49791diff
changeset | 1710 | apply (subst conditional_entropy_eq[OF Py Pxy]) | 
| 64267 | 1711 | apply (auto intro!: sum.cong simp: Pxxy_eq sum_negf[symmetric] eq sum.reindex[OF inj] | 
| 47694 | 1712 | log_simps zero_less_mult_iff zero_le_mult_iff field_simps mult_less_0_iff AE_count_space) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1713 | using Py[THEN simple_distributed] Pxy[THEN simple_distributed] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1714 | apply (auto simp add: not_le AE_count_space less_le antisym | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1715 | simple_distributed_nonneg[OF Py] simple_distributed_nonneg[OF Pxy]) | 
| 47694 | 1716 | done | 
| 1717 | qed | |
| 1718 | ||
| 1719 | lemma (in information_space) conditional_entropy_nonneg: | |
| 1720 | assumes X: "simple_function M X" and Y: "simple_function M Y" shows "0 \<le> \<H>(X | Y)" | |
| 1721 | using conditional_mutual_information_eq_conditional_entropy[OF X Y] conditional_mutual_information_nonneg[OF X X Y] | |
| 1722 | by simp | |
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 1723 | |
| 61808 | 1724 | subsection \<open>Equalities\<close> | 
| 39097 | 1725 | |
| 47694 | 1726 | lemma (in information_space) mutual_information_eq_entropy_conditional_entropy_distr: | 
| 1727 |   fixes Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real" and Pxy :: "('b \<times> 'c) \<Rightarrow> real"
 | |
| 1728 | assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1729 | assumes Px[measurable]: "distributed M S X Px" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1730 | and Px_nn[simp]: "\<And>x. x \<in> space S \<Longrightarrow> 0 \<le> Px x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1731 | and Py[measurable]: "distributed M T Y Py" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1732 | and Py_nn[simp]: "\<And>x. x \<in> space T \<Longrightarrow> 0 \<le> Py x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1733 | and Pxy[measurable]: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1734 | and Pxy_nn[simp]: "\<And>x y. x \<in> space S \<Longrightarrow> y \<in> space T \<Longrightarrow> 0 \<le> Pxy (x, y)" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1735 | assumes Ix: "integrable(S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Px (fst x)))" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1736 | assumes Iy: "integrable(S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Py (snd x)))" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1737 | assumes Ixy: "integrable(S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Pxy x))" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1738 | shows "mutual_information b S T X Y = entropy b S X + entropy b T Y - entropy b (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x))" | 
| 40859 | 1739 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1740 | have [measurable]: "Px \<in> S \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1741 | using Px Px_nn by (intro distributed_real_measurable) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1742 | have [measurable]: "Py \<in> T \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1743 | using Py Py_nn by (intro distributed_real_measurable) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1744 | have measurable_Pxy[measurable]: "Pxy \<in> (S \<Otimes>\<^sub>M T) \<rightarrow>\<^sub>M borel" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1745 | using Pxy Pxy_nn by (intro distributed_real_measurable) (auto simp: space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1746 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1747 | have X: "entropy b S X = - (\<integral>x. Pxy x * log b (Px (fst x)) \<partial>(S \<Otimes>\<^sub>M T))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1748 | using b_gt_1 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1749 | apply (subst entropy_distr[OF Px Px_nn], simp) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1750 | apply (subst distributed_transform_integral[OF Pxy _ Px, where T=fst]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1751 | apply (auto intro!: integral_cong simp: space_pair_measure) | 
| 47694 | 1752 | done | 
| 1753 | ||
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1754 | have Y: "entropy b T Y = - (\<integral>x. Pxy x * log b (Py (snd x)) \<partial>(S \<Otimes>\<^sub>M T))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1755 | using b_gt_1 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1756 | apply (subst entropy_distr[OF Py Py_nn], simp) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1757 | apply (subst distributed_transform_integral[OF Pxy _ Py, where T=snd]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1758 | apply (auto intro!: integral_cong simp: space_pair_measure) | 
| 47694 | 1759 | done | 
| 1760 | ||
| 1761 | interpret S: sigma_finite_measure S by fact | |
| 1762 | interpret T: sigma_finite_measure T by fact | |
| 1763 | interpret ST: pair_sigma_finite S T .. | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1764 | have ST: "sigma_finite_measure (S \<Otimes>\<^sub>M T)" .. | 
| 47694 | 1765 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1766 | have XY: "entropy b (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) = - (\<integral>x. Pxy x * log b (Pxy x) \<partial>(S \<Otimes>\<^sub>M T))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1767 | by (subst entropy_distr[OF Pxy]) (auto intro!: integral_cong simp: space_pair_measure) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1768 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1769 | have "AE x in S \<Otimes>\<^sub>M T. Px (fst x) = 0 \<longrightarrow> Pxy x = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1770 | by (intro subdensity_real[of fst, OF _ Pxy Px]) (auto intro: measurable_Pair simp: space_pair_measure) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1771 | moreover have "AE x in S \<Otimes>\<^sub>M T. Py (snd x) = 0 \<longrightarrow> Pxy x = 0" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1772 | by (intro subdensity_real[of snd, OF _ Pxy Py]) (auto intro: measurable_Pair simp: space_pair_measure) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1773 | moreover have "AE x in S \<Otimes>\<^sub>M T. 0 \<le> Px (fst x)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1774 | using Px by (intro ST.AE_pair_measure) (auto simp: comp_def intro!: measurable_fst'') | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1775 | moreover have "AE x in S \<Otimes>\<^sub>M T. 0 \<le> Py (snd x)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1776 | using Py by (intro ST.AE_pair_measure) (auto simp: comp_def intro!: measurable_snd'') | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1777 | ultimately have "AE x in S \<Otimes>\<^sub>M T. Pxy x * log b (Pxy x) - Pxy x * log b (Px (fst x)) - Pxy x * log b (Py (snd x)) = | 
| 47694 | 1778 | Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x)))" | 
| 1779 | (is "AE x in _. ?f x = ?g x") | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1780 | using AE_space | 
| 47694 | 1781 | proof eventually_elim | 
| 60580 | 1782 | case (elim x) | 
| 47694 | 1783 | show ?case | 
| 1784 | proof cases | |
| 1785 | assume "Pxy x \<noteq> 0" | |
| 60580 | 1786 | with elim have "0 < Px (fst x)" "0 < Py (snd x)" "0 < Pxy x" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1787 | by (auto simp: space_pair_measure less_le) | 
| 47694 | 1788 | then show ?thesis | 
| 56544 | 1789 | using b_gt_1 by (simp add: log_simps less_imp_le field_simps) | 
| 47694 | 1790 | qed simp | 
| 1791 | qed | |
| 1792 | ||
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1793 | have "entropy b S X + entropy b T Y - entropy b (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) = integral\<^sup>L (S \<Otimes>\<^sub>M T) ?f" | 
| 47694 | 1794 | unfolding X Y XY | 
| 63886 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63626diff
changeset | 1795 | apply (subst Bochner_Integration.integral_diff) | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63626diff
changeset | 1796 | apply (intro Bochner_Integration.integrable_diff Ixy Ix Iy)+ | 
| 
685fb01256af
move Henstock-Kurzweil integration after Lebesgue_Measure; replace content by abbreviation measure lborel
 hoelzl parents: 
63626diff
changeset | 1797 | apply (subst Bochner_Integration.integral_diff) | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56571diff
changeset | 1798 | apply (intro Ixy Ix Iy)+ | 
| 47694 | 1799 | apply (simp add: field_simps) | 
| 1800 | done | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1801 | also have "\<dots> = integral\<^sup>L (S \<Otimes>\<^sub>M T) ?g" | 
| 61808 | 1802 | using \<open>AE x in _. ?f x = ?g x\<close> by (intro integral_cong_AE) auto | 
| 47694 | 1803 | also have "\<dots> = mutual_information b S T X Y" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1804 | by (rule mutual_information_distr[OF S T Px _ Py _ Pxy _ , symmetric]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1805 | (auto simp: space_pair_measure) | 
| 47694 | 1806 | finally show ?thesis .. | 
| 1807 | qed | |
| 1808 | ||
| 49802 
dd8dffaf84b9
continuous version of mutual_information_eq_entropy_conditional_entropy
 hoelzl parents: 
49792diff
changeset | 1809 | lemma (in information_space) mutual_information_eq_entropy_conditional_entropy': | 
| 
dd8dffaf84b9
continuous version of mutual_information_eq_entropy_conditional_entropy
 hoelzl parents: 
49792diff
changeset | 1810 |   fixes Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real" and Pxy :: "('b \<times> 'c) \<Rightarrow> real"
 | 
| 
dd8dffaf84b9
continuous version of mutual_information_eq_entropy_conditional_entropy
 hoelzl parents: 
49792diff
changeset | 1811 | assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1812 | assumes Px: "distributed M S X Px" "\<And>x. x \<in> space S \<Longrightarrow> 0 \<le> Px x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1813 | and Py: "distributed M T Y Py" "\<And>x. x \<in> space T \<Longrightarrow> 0 \<le> Py x" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1814 | assumes Pxy: "distributed M (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1815 | "\<And>x. x \<in> space (S \<Otimes>\<^sub>M T) \<Longrightarrow> 0 \<le> Pxy x" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1816 | assumes Ix: "integrable(S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Px (fst x)))" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1817 | assumes Iy: "integrable(S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Py (snd x)))" | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1818 | assumes Ixy: "integrable(S \<Otimes>\<^sub>M T) (\<lambda>x. Pxy x * log b (Pxy x))" | 
| 49802 
dd8dffaf84b9
continuous version of mutual_information_eq_entropy_conditional_entropy
 hoelzl parents: 
49792diff
changeset | 1819 | shows "mutual_information b S T X Y = entropy b S X - conditional_entropy b S T X Y" | 
| 
dd8dffaf84b9
continuous version of mutual_information_eq_entropy_conditional_entropy
 hoelzl parents: 
49792diff
changeset | 1820 | using | 
| 
dd8dffaf84b9
continuous version of mutual_information_eq_entropy_conditional_entropy
 hoelzl parents: 
49792diff
changeset | 1821 | mutual_information_eq_entropy_conditional_entropy_distr[OF S T Px Py Pxy Ix Iy Ixy] | 
| 
dd8dffaf84b9
continuous version of mutual_information_eq_entropy_conditional_entropy
 hoelzl parents: 
49792diff
changeset | 1822 | conditional_entropy_eq_entropy[OF S T Py Pxy Ixy Iy] | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1823 | by (simp add: space_pair_measure) | 
| 49802 
dd8dffaf84b9
continuous version of mutual_information_eq_entropy_conditional_entropy
 hoelzl parents: 
49792diff
changeset | 1824 | |
| 47694 | 1825 | lemma (in information_space) mutual_information_eq_entropy_conditional_entropy: | 
| 1826 | assumes sf_X: "simple_function M X" and sf_Y: "simple_function M Y" | |
| 1827 | shows "\<I>(X ; Y) = \<H>(X) - \<H>(X | Y)" | |
| 1828 | proof - | |
| 1829 |   have X: "simple_distributed M X (\<lambda>x. measure M (X -` {x} \<inter> space M))"
 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1830 | using sf_X by (rule simple_distributedI) (auto simp: measure_nonneg) | 
| 47694 | 1831 |   have Y: "simple_distributed M Y (\<lambda>x. measure M (Y -` {x} \<inter> space M))"
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1832 | using sf_Y by (rule simple_distributedI) (auto simp: measure_nonneg) | 
| 47694 | 1833 | have sf_XY: "simple_function M (\<lambda>x. (X x, Y x))" | 
| 1834 | using sf_X sf_Y by (rule simple_function_Pair) | |
| 1835 |   then have XY: "simple_distributed M (\<lambda>x. (X x, Y x)) (\<lambda>x. measure M ((\<lambda>x. (X x, Y x)) -` {x} \<inter> space M))"
 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1836 | by (rule simple_distributedI) (auto simp: measure_nonneg) | 
| 47694 | 1837 | from simple_distributed_joint_finite[OF this, simp] | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1838 | have eq: "count_space (X ` space M) \<Otimes>\<^sub>M count_space (Y ` space M) = count_space (X ` space M \<times> Y ` space M)" | 
| 47694 | 1839 | by (simp add: pair_measure_count_space) | 
| 1840 | ||
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1841 | have "\<I>(X ; Y) = \<H>(X) + \<H>(Y) - entropy b (count_space (X`space M) \<Otimes>\<^sub>M count_space (Y`space M)) (\<lambda>x. (X x, Y x))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1842 | using sigma_finite_measure_count_space_finite | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1843 | sigma_finite_measure_count_space_finite | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1844 | simple_distributed[OF X] measure_nonneg simple_distributed[OF Y] measure_nonneg simple_distributed_joint[OF XY] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1845 | by (rule mutual_information_eq_entropy_conditional_entropy_distr) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1846 | (auto simp: eq integrable_count_space measure_nonneg) | 
| 47694 | 1847 | then show ?thesis | 
| 49791 | 1848 | unfolding conditional_entropy_eq_entropy_simple[OF sf_X sf_Y] by simp | 
| 47694 | 1849 | qed | 
| 1850 | ||
| 1851 | lemma (in information_space) mutual_information_nonneg_simple: | |
| 1852 | assumes sf_X: "simple_function M X" and sf_Y: "simple_function M Y" | |
| 1853 | shows "0 \<le> \<I>(X ; Y)" | |
| 1854 | proof - | |
| 1855 |   have X: "simple_distributed M X (\<lambda>x. measure M (X -` {x} \<inter> space M))"
 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1856 | using sf_X by (rule simple_distributedI) (auto simp: measure_nonneg) | 
| 47694 | 1857 |   have Y: "simple_distributed M Y (\<lambda>x. measure M (Y -` {x} \<inter> space M))"
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1858 | using sf_Y by (rule simple_distributedI) (auto simp: measure_nonneg) | 
| 47694 | 1859 | |
| 1860 | have sf_XY: "simple_function M (\<lambda>x. (X x, Y x))" | |
| 1861 | using sf_X sf_Y by (rule simple_function_Pair) | |
| 1862 |   then have XY: "simple_distributed M (\<lambda>x. (X x, Y x)) (\<lambda>x. measure M ((\<lambda>x. (X x, Y x)) -` {x} \<inter> space M))"
 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1863 | by (rule simple_distributedI) (auto simp: measure_nonneg) | 
| 47694 | 1864 | |
| 1865 | from simple_distributed_joint_finite[OF this, simp] | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1866 | have eq: "count_space (X ` space M) \<Otimes>\<^sub>M count_space (Y ` space M) = count_space (X ` space M \<times> Y ` space M)" | 
| 47694 | 1867 | by (simp add: pair_measure_count_space) | 
| 1868 | ||
| 40859 | 1869 | show ?thesis | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1870 | by (rule mutual_information_nonneg[OF _ _ simple_distributed[OF X] _ simple_distributed[OF Y] _ simple_distributed_joint[OF XY]]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1871 | (simp_all add: eq integrable_count_space sigma_finite_measure_count_space_finite measure_nonneg) | 
| 40859 | 1872 | qed | 
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 1873 | |
| 40859 | 1874 | lemma (in information_space) conditional_entropy_less_eq_entropy: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 1875 | assumes X: "simple_function M X" and Z: "simple_function M Z" | 
| 40859 | 1876 | shows "\<H>(X | Z) \<le> \<H>(X)" | 
| 36624 | 1877 | proof - | 
| 47694 | 1878 | have "0 \<le> \<I>(X ; Z)" using X Z by (rule mutual_information_nonneg_simple) | 
| 1879 | also have "\<I>(X ; Z) = \<H>(X) - \<H>(X | Z)" using mutual_information_eq_entropy_conditional_entropy[OF assms] . | |
| 1880 | finally show ?thesis by auto | |
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 1881 | qed | 
| 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 1882 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1883 | lemma (in information_space) | 
| 49803 | 1884 |   fixes Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real" and Pxy :: "('b \<times> 'c) \<Rightarrow> real"
 | 
| 1885 | assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" | |
| 1886 | assumes Px: "finite_entropy S X Px" and Py: "finite_entropy T Y Py" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1887 | assumes Pxy: "finite_entropy (S \<Otimes>\<^sub>M T) (\<lambda>x. (X x, Y x)) Pxy" | 
| 49803 | 1888 | shows "conditional_entropy b S T X Y \<le> entropy b S X" | 
| 1889 | proof - | |
| 1890 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1891 | have "0 \<le> mutual_information b S T X Y" | 
| 49803 | 1892 | by (rule mutual_information_nonneg') fact+ | 
| 1893 | also have "\<dots> = entropy b S X - conditional_entropy b S T X Y" | |
| 1894 | apply (rule mutual_information_eq_entropy_conditional_entropy') | |
| 1895 | using assms | |
| 1896 | by (auto intro!: finite_entropy_integrable finite_entropy_distributed | |
| 1897 | finite_entropy_integrable_transform[OF Px] | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1898 | finite_entropy_integrable_transform[OF Py] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1899 | intro: finite_entropy_nn) | 
| 49803 | 1900 | finally show ?thesis by auto | 
| 1901 | qed | |
| 1902 | ||
| 40859 | 1903 | lemma (in information_space) entropy_chain_rule: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 1904 | assumes X: "simple_function M X" and Y: "simple_function M Y" | 
| 40859 | 1905 | shows "\<H>(\<lambda>x. (X x, Y x)) = \<H>(X) + \<H>(Y|X)" | 
| 1906 | proof - | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1907 | note XY = simple_distributedI[OF simple_function_Pair[OF X Y] measure_nonneg refl] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1908 | note YX = simple_distributedI[OF simple_function_Pair[OF Y X] measure_nonneg refl] | 
| 47694 | 1909 | note simple_distributed_joint_finite[OF this, simp] | 
| 1910 |   let ?f = "\<lambda>x. prob ((\<lambda>x. (X x, Y x)) -` {x} \<inter> space M)"
 | |
| 1911 |   let ?g = "\<lambda>x. prob ((\<lambda>x. (Y x, X x)) -` {x} \<inter> space M)"
 | |
| 1912 |   let ?h = "\<lambda>x. if x \<in> (\<lambda>x. (Y x, X x)) ` space M then prob ((\<lambda>x. (Y x, X x)) -` {x} \<inter> space M) else 0"
 | |
| 1913 | have "\<H>(\<lambda>x. (X x, Y x)) = - (\<Sum>x\<in>(\<lambda>x. (X x, Y x)) ` space M. ?f x * log b (?f x))" | |
| 1914 | using XY by (rule entropy_simple_distributed) | |
| 1915 | also have "\<dots> = - (\<Sum>x\<in>(\<lambda>(x, y). (y, x)) ` (\<lambda>x. (X x, Y x)) ` space M. ?g x * log b (?g x))" | |
| 64267 | 1916 | by (subst (2) sum.reindex) (auto simp: inj_on_def intro!: sum.cong arg_cong[where f="\<lambda>A. prob A * log b (prob A)"]) | 
| 47694 | 1917 | also have "\<dots> = - (\<Sum>x\<in>(\<lambda>x. (Y x, X x)) ` space M. ?h x * log b (?h x))" | 
| 64267 | 1918 | by (auto intro!: sum.cong) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1919 | also have "\<dots> = entropy b (count_space (Y ` space M) \<Otimes>\<^sub>M count_space (X ` space M)) (\<lambda>x. (Y x, X x))" | 
| 49786 | 1920 | by (subst entropy_distr[OF simple_distributed_joint[OF YX]]) | 
| 47694 | 1921 | (auto simp: pair_measure_count_space sigma_finite_measure_count_space_finite lebesgue_integral_count_space_finite | 
| 69654 | 1922 | cong del: sum.cong_simp intro!: sum.mono_neutral_left measure_nonneg) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50419diff
changeset | 1923 | finally have "\<H>(\<lambda>x. (X x, Y x)) = entropy b (count_space (Y ` space M) \<Otimes>\<^sub>M count_space (X ` space M)) (\<lambda>x. (Y x, X x))" . | 
| 47694 | 1924 | then show ?thesis | 
| 49791 | 1925 | unfolding conditional_entropy_eq_entropy_simple[OF Y X] by simp | 
| 36624 | 1926 | qed | 
| 1927 | ||
| 40859 | 1928 | lemma (in information_space) entropy_partition: | 
| 47694 | 1929 | assumes X: "simple_function M X" | 
| 1930 | shows "\<H>(X) = \<H>(f \<circ> X) + \<H>(X|f \<circ> X)" | |
| 36624 | 1931 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1932 | note fX = simple_function_compose[OF X, of f] | 
| 47694 | 1933 | have eq: "(\<lambda>x. ((f \<circ> X) x, X x)) ` space M = (\<lambda>x. (f x, x)) ` X ` space M" by auto | 
| 1934 | have inj: "\<And>A. inj_on (\<lambda>x. (f x, x)) A" | |
| 1935 | by (auto simp: inj_on_def) | |
| 1936 | show ?thesis | |
| 1937 | apply (subst entropy_chain_rule[symmetric, OF fX X]) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1938 | apply (subst entropy_simple_distributed[OF simple_distributedI[OF simple_function_Pair[OF fX X] measure_nonneg refl]]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1939 | apply (subst entropy_simple_distributed[OF simple_distributedI[OF X measure_nonneg refl]]) | 
| 47694 | 1940 | unfolding eq | 
| 64267 | 1941 | apply (subst sum.reindex[OF inj]) | 
| 1942 | apply (auto intro!: sum.cong arg_cong[where f="\<lambda>A. prob A * log b (prob A)"]) | |
| 47694 | 1943 | done | 
| 36624 | 1944 | qed | 
| 1945 | ||
| 40859 | 1946 | corollary (in information_space) entropy_data_processing: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 1947 | assumes X: "simple_function M X" shows "\<H>(f \<circ> X) \<le> \<H>(X)" | 
| 40859 | 1948 | proof - | 
| 47694 | 1949 | note fX = simple_function_compose[OF X, of f] | 
| 1950 | from X have "\<H>(X) = \<H>(f\<circ>X) + \<H>(X|f\<circ>X)" by (rule entropy_partition) | |
| 40859 | 1951 | then show "\<H>(f \<circ> X) \<le> \<H>(X)" | 
| 69661 | 1952 | by (simp only: conditional_entropy_nonneg [OF X fX] le_add_same_cancel1) | 
| 40859 | 1953 | qed | 
| 36624 | 1954 | |
| 40859 | 1955 | corollary (in information_space) entropy_of_inj: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 1956 | assumes X: "simple_function M X" and inj: "inj_on f (X`space M)" | 
| 36624 | 1957 | shows "\<H>(f \<circ> X) = \<H>(X)" | 
| 1958 | proof (rule antisym) | |
| 40859 | 1959 | show "\<H>(f \<circ> X) \<le> \<H>(X)" using entropy_data_processing[OF X] . | 
| 36624 | 1960 | next | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 1961 | have sf: "simple_function M (f \<circ> X)" | 
| 40859 | 1962 | using X by auto | 
| 36624 | 1963 | have "\<H>(X) = \<H>(the_inv_into (X`space M) f \<circ> (f \<circ> X))" | 
| 47694 | 1964 | unfolding o_assoc | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1965 | apply (subst entropy_simple_distributed[OF simple_distributedI[OF X measure_nonneg refl]]) | 
| 47694 | 1966 |     apply (subst entropy_simple_distributed[OF simple_distributedI[OF simple_function_compose[OF X]], where f="\<lambda>x. prob (X -` {x} \<inter> space M)"])
 | 
| 64267 | 1967 | apply (auto intro!: sum.cong arg_cong[where f=prob] image_eqI simp: the_inv_into_f_f[OF inj] comp_def measure_nonneg) | 
| 47694 | 1968 | done | 
| 36624 | 1969 | also have "... \<le> \<H>(f \<circ> X)" | 
| 40859 | 1970 | using entropy_data_processing[OF sf] . | 
| 36624 | 1971 | finally show "\<H>(X) \<le> \<H>(f \<circ> X)" . | 
| 1972 | qed | |
| 1973 | ||
| 36080 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 hoelzl parents: diff
changeset | 1974 | end |