author | wenzelm |
Sat, 30 Dec 2023 12:34:27 +0100 | |
changeset 79388 | e6a12ea61f83 |
parent 69593 | 3dda49e08b9d |
permissions | -rw-r--r-- |
17456 | 1 |
(* Title: CCL/ex/Stream.thy |
1474 | 2 |
Author: Martin Coen, Cambridge University Computer Laboratory |
0 | 3 |
Copyright 1993 University of Cambridge |
4 |
*) |
|
5 |
||
60770 | 6 |
section \<open>Programs defined over streams\<close> |
17456 | 7 |
|
8 |
theory Stream |
|
9 |
imports List |
|
10 |
begin |
|
0 | 11 |
|
58977 | 12 |
definition iter1 :: "[i\<Rightarrow>i,i]\<Rightarrow>i" |
42155
ffe99b07c9c0
modernized specifications -- some attempts to avoid wild axiomatizations;
wenzelm
parents:
41526
diff
changeset
|
13 |
where "iter1(f,a) == letrec iter x be x$iter(f(x)) in iter(a)" |
0 | 14 |
|
58977 | 15 |
definition iter2 :: "[i\<Rightarrow>i,i]\<Rightarrow>i" |
42155
ffe99b07c9c0
modernized specifications -- some attempts to avoid wild axiomatizations;
wenzelm
parents:
41526
diff
changeset
|
16 |
where "iter2(f,a) == letrec iter x be x$map(f,iter(x)) in iter(a)" |
20140 | 17 |
|
18 |
(* |
|
19 |
Proving properties about infinite lists using coinduction: |
|
20 |
Lists(A) is the set of all finite and infinite lists of elements of A. |
|
21 |
ILists(A) is the set of infinite lists of elements of A. |
|
22 |
*) |
|
23 |
||
24 |
||
60770 | 25 |
subsection \<open>Map of composition is composition of maps\<close> |
20140 | 26 |
|
27 |
lemma map_comp: |
|
28 |
assumes 1: "l:Lists(A)" |
|
42155
ffe99b07c9c0
modernized specifications -- some attempts to avoid wild axiomatizations;
wenzelm
parents:
41526
diff
changeset
|
29 |
shows "map(f \<circ> g,l) = map(f,map(g,l))" |
58977 | 30 |
apply (eq_coinduct3 "{p. EX x y. p=<x,y> \<and> (EX l:Lists (A) .x=map (f \<circ> g,l) \<and> y=map (f,map (g,l)))}") |
20140 | 31 |
apply (blast intro: 1) |
32 |
apply safe |
|
33 |
apply (drule ListsXH [THEN iffD1]) |
|
58971 | 34 |
apply EQgen |
47966 | 35 |
apply fastforce |
20140 | 36 |
done |
37 |
||
38 |
(*** Mapping the identity function leaves a list unchanged ***) |
|
39 |
||
40 |
lemma map_id: |
|
41 |
assumes 1: "l:Lists(A)" |
|
58977 | 42 |
shows "map(\<lambda>x. x, l) = l" |
43 |
apply (eq_coinduct3 "{p. EX x y. p=<x,y> \<and> (EX l:Lists (A) .x=map (\<lambda>x. x,l) \<and> y=l) }") |
|
20140 | 44 |
apply (blast intro: 1) |
45 |
apply safe |
|
46 |
apply (drule ListsXH [THEN iffD1]) |
|
58971 | 47 |
apply EQgen |
20140 | 48 |
apply blast |
49 |
done |
|
50 |
||
51 |
||
60770 | 52 |
subsection \<open>Mapping distributes over append\<close> |
20140 | 53 |
|
54 |
lemma map_append: |
|
55 |
assumes "l:Lists(A)" |
|
56 |
and "m:Lists(A)" |
|
57 |
shows "map(f,l@m) = map(f,l) @ map(f,m)" |
|
58971 | 58 |
apply (eq_coinduct3 |
58977 | 59 |
"{p. EX x y. p=<x,y> \<and> (EX l:Lists (A). EX m:Lists (A). x=map (f,l@m) \<and> y=map (f,l) @ map (f,m))}") |
41526 | 60 |
apply (blast intro: assms) |
20140 | 61 |
apply safe |
62 |
apply (drule ListsXH [THEN iffD1]) |
|
58971 | 63 |
apply EQgen |
20140 | 64 |
apply (drule ListsXH [THEN iffD1]) |
58971 | 65 |
apply EQgen |
20140 | 66 |
apply blast |
67 |
done |
|
68 |
||
69 |
||
60770 | 70 |
subsection \<open>Append is associative\<close> |
20140 | 71 |
|
72 |
lemma append_assoc: |
|
73 |
assumes "k:Lists(A)" |
|
74 |
and "l:Lists(A)" |
|
75 |
and "m:Lists(A)" |
|
76 |
shows "k @ l @ m = (k @ l) @ m" |
|
58971 | 77 |
apply (eq_coinduct3 |
58977 | 78 |
"{p. EX x y. p=<x,y> \<and> (EX k:Lists (A). EX l:Lists (A). EX m:Lists (A). x=k @ l @ m \<and> y= (k @ l) @ m) }") |
41526 | 79 |
apply (blast intro: assms) |
20140 | 80 |
apply safe |
81 |
apply (drule ListsXH [THEN iffD1]) |
|
58971 | 82 |
apply EQgen |
20140 | 83 |
prefer 2 |
84 |
apply blast |
|
69593 | 85 |
apply (tactic \<open>DEPTH_SOLVE (eresolve_tac \<^context> [XH_to_E @{thm ListsXH}] 1 |
86 |
THEN EQgen_tac \<^context> [] 1)\<close>) |
|
20140 | 87 |
done |
88 |
||
89 |
||
60770 | 90 |
subsection \<open>Appending anything to an infinite list doesn't alter it\<close> |
20140 | 91 |
|
92 |
lemma ilist_append: |
|
93 |
assumes "l:ILists(A)" |
|
94 |
shows "l @ m = l" |
|
58977 | 95 |
apply (eq_coinduct3 "{p. EX x y. p=<x,y> \<and> (EX l:ILists (A) .EX m. x=l@m \<and> y=l)}") |
41526 | 96 |
apply (blast intro: assms) |
20140 | 97 |
apply safe |
98 |
apply (drule IListsXH [THEN iffD1]) |
|
58971 | 99 |
apply EQgen |
20140 | 100 |
apply blast |
101 |
done |
|
102 |
||
103 |
(*** The equivalance of two versions of an iteration function ***) |
|
104 |
(* *) |
|
105 |
(* fun iter1(f,a) = a$iter1(f,f(a)) *) |
|
106 |
(* fun iter2(f,a) = a$map(f,iter2(f,a)) *) |
|
107 |
||
108 |
lemma iter1B: "iter1(f,a) = a$iter1(f,f(a))" |
|
109 |
apply (unfold iter1_def) |
|
110 |
apply (rule letrecB [THEN trans]) |
|
111 |
apply simp |
|
112 |
done |
|
113 |
||
114 |
lemma iter2B: "iter2(f,a) = a $ map(f,iter2(f,a))" |
|
115 |
apply (unfold iter2_def) |
|
116 |
apply (rule letrecB [THEN trans]) |
|
117 |
apply (rule refl) |
|
118 |
done |
|
119 |
||
120 |
lemma iter2Blemma: |
|
58977 | 121 |
"n:Nat \<Longrightarrow> |
20140 | 122 |
map(f) ^ n ` iter2(f,a) = (f ^ n ` a) $ (map(f) ^ n ` map(f,iter2(f,a)))" |
59807 | 123 |
apply (rule_tac P = "\<lambda>x. lhs(x) = rhs" for lhs rhs in iter2B [THEN ssubst]) |
20140 | 124 |
apply (simp add: nmapBcons) |
125 |
done |
|
126 |
||
127 |
lemma iter1_iter2_eq: "iter1(f,a) = iter2(f,a)" |
|
58971 | 128 |
apply (eq_coinduct3 |
58977 | 129 |
"{p. EX x y. p=<x,y> \<and> (EX n:Nat. x=iter1 (f,f^n`a) \<and> y=map (f) ^n`iter2 (f,a))}") |
20140 | 130 |
apply (fast intro!: napplyBzero [symmetric] napplyBzero [symmetric, THEN arg_cong]) |
58971 | 131 |
apply (EQgen iter1B iter2Blemma) |
20140 | 132 |
apply (subst napply_f, assumption) |
133 |
apply (rule_tac f1 = f in napplyBsucc [THEN subst]) |
|
134 |
apply blast |
|
135 |
done |
|
0 | 136 |
|
137 |
end |