| author | blanchet | 
| Fri, 05 Sep 2014 00:41:00 +0200 | |
| changeset 58185 | e6e3b20340be | 
| parent 46911 | 6d2a2f0e904e | 
| child 58889 | 5b7a9633cfa8 | 
| permissions | -rw-r--r-- | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32235 
diff
changeset
 | 
1  | 
(* Title: HOL/UNITY/ListOrder.thy  | 
| 6708 | 2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
3  | 
Copyright 1998 University of Cambridge  | 
|
4  | 
||
| 13798 | 5  | 
Lists are partially ordered by Charpentier's Generalized Prefix Relation  | 
6  | 
(xs,ys) : genPrefix(r)  | 
|
7  | 
if ys = xs' @ zs where length xs = length xs'  | 
|
8  | 
and corresponding elements of xs, xs' are pairwise related by r  | 
|
9  | 
||
10  | 
Also overloads <= and < for lists!  | 
|
| 6708 | 11  | 
*)  | 
12  | 
||
| 13798 | 13  | 
header {*The Prefix Ordering on Lists*}
 | 
14  | 
||
| 27682 | 15  | 
theory ListOrder  | 
16  | 
imports Main  | 
|
17  | 
begin  | 
|
| 13798 | 18  | 
|
| 23767 | 19  | 
inductive_set  | 
| 13798 | 20  | 
  genPrefix :: "('a * 'a)set => ('a list * 'a list)set"
 | 
| 23767 | 21  | 
  for r :: "('a * 'a)set"
 | 
22  | 
where  | 
|
| 13798 | 23  | 
Nil: "([],[]) : genPrefix(r)"  | 
24  | 
||
| 23767 | 25  | 
| prepend: "[| (xs,ys) : genPrefix(r); (x,y) : r |] ==>  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32235 
diff
changeset
 | 
26  | 
(x#xs, y#ys) : genPrefix(r)"  | 
| 13798 | 27  | 
|
| 23767 | 28  | 
| append: "(xs,ys) : genPrefix(r) ==> (xs, ys@zs) : genPrefix(r)"  | 
| 13798 | 29  | 
|
| 27682 | 30  | 
instantiation list :: (type) ord  | 
31  | 
begin  | 
|
| 13798 | 32  | 
|
| 27682 | 33  | 
definition  | 
34  | 
prefix_def: "xs <= zs \<longleftrightarrow> (xs, zs) : genPrefix Id"  | 
|
| 13798 | 35  | 
|
| 27682 | 36  | 
definition  | 
37  | 
strict_prefix_def: "xs < zs \<longleftrightarrow> xs \<le> zs \<and> \<not> zs \<le> (xs :: 'a list)"  | 
|
38  | 
||
39  | 
instance ..  | 
|
| 13798 | 40  | 
|
41  | 
(*Constants for the <= and >= relations, used below in translations*)  | 
|
| 27682 | 42  | 
|
43  | 
end  | 
|
44  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32960 
diff
changeset
 | 
45  | 
definition Le :: "(nat*nat) set" where  | 
| 13798 | 46  | 
    "Le == {(x,y). x <= y}"
 | 
47  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32960 
diff
changeset
 | 
48  | 
definition Ge :: "(nat*nat) set" where  | 
| 13798 | 49  | 
    "Ge == {(x,y). y <= x}"
 | 
50  | 
||
| 23767 | 51  | 
abbreviation  | 
52  | 
pfixLe :: "[nat list, nat list] => bool" (infixl "pfixLe" 50) where  | 
|
53  | 
"xs pfixLe ys == (xs,ys) : genPrefix Le"  | 
|
| 13798 | 54  | 
|
| 23767 | 55  | 
abbreviation  | 
56  | 
pfixGe :: "[nat list, nat list] => bool" (infixl "pfixGe" 50) where  | 
|
57  | 
"xs pfixGe ys == (xs,ys) : genPrefix Ge"  | 
|
| 13798 | 58  | 
|
59  | 
||
60  | 
subsection{*preliminary lemmas*}
 | 
|
61  | 
||
62  | 
lemma Nil_genPrefix [iff]: "([], xs) : genPrefix r"  | 
|
63  | 
by (cut_tac genPrefix.Nil [THEN genPrefix.append], auto)  | 
|
64  | 
||
65  | 
lemma genPrefix_length_le: "(xs,ys) : genPrefix r ==> length xs <= length ys"  | 
|
66  | 
by (erule genPrefix.induct, auto)  | 
|
67  | 
||
68  | 
lemma cdlemma:  | 
|
69  | 
"[| (xs', ys'): genPrefix r |]  | 
|
70  | 
==> (ALL x xs. xs' = x#xs --> (EX y ys. ys' = y#ys & (x,y) : r & (xs, ys) : genPrefix r))"  | 
|
71  | 
apply (erule genPrefix.induct, blast, blast)  | 
|
72  | 
apply (force intro: genPrefix.append)  | 
|
73  | 
done  | 
|
74  | 
||
75  | 
(*As usual converting it to an elimination rule is tiresome*)  | 
|
76  | 
lemma cons_genPrefixE [elim!]:  | 
|
77  | 
"[| (x#xs, zs): genPrefix r;  | 
|
78  | 
!!y ys. [| zs = y#ys; (x,y) : r; (xs, ys) : genPrefix r |] ==> P  | 
|
79  | 
|] ==> P"  | 
|
80  | 
by (drule cdlemma, simp, blast)  | 
|
81  | 
||
82  | 
lemma Cons_genPrefix_Cons [iff]:  | 
|
83  | 
"((x#xs,y#ys) : genPrefix r) = ((x,y) : r & (xs,ys) : genPrefix r)"  | 
|
84  | 
by (blast intro: genPrefix.prepend)  | 
|
85  | 
||
86  | 
||
87  | 
subsection{*genPrefix is a partial order*}
 | 
|
88  | 
||
| 30198 | 89  | 
lemma refl_genPrefix: "refl r ==> refl (genPrefix r)"  | 
90  | 
apply (unfold refl_on_def, auto)  | 
|
| 13798 | 91  | 
apply (induct_tac "x")  | 
92  | 
prefer 2 apply (blast intro: genPrefix.prepend)  | 
|
93  | 
apply (blast intro: genPrefix.Nil)  | 
|
94  | 
done  | 
|
95  | 
||
| 30198 | 96  | 
lemma genPrefix_refl [simp]: "refl r ==> (l,l) : genPrefix r"  | 
97  | 
by (erule refl_onD [OF refl_genPrefix UNIV_I])  | 
|
| 13798 | 98  | 
|
99  | 
lemma genPrefix_mono: "r<=s ==> genPrefix r <= genPrefix s"  | 
|
100  | 
apply clarify  | 
|
101  | 
apply (erule genPrefix.induct)  | 
|
102  | 
apply (auto intro: genPrefix.append)  | 
|
103  | 
done  | 
|
104  | 
||
105  | 
||
106  | 
(** Transitivity **)  | 
|
107  | 
||
108  | 
(*A lemma for proving genPrefix_trans_O*)  | 
|
| 45477 | 109  | 
lemma append_genPrefix:  | 
110  | 
"(xs @ ys, zs) : genPrefix r \<Longrightarrow> (xs, zs) : genPrefix r"  | 
|
111  | 
by (induct xs arbitrary: zs) auto  | 
|
| 13798 | 112  | 
|
113  | 
(*Lemma proving transitivity and more*)  | 
|
| 45477 | 114  | 
lemma genPrefix_trans_O:  | 
115  | 
assumes "(x, y) : genPrefix r"  | 
|
116  | 
shows "\<And>z. (y, z) : genPrefix s \<Longrightarrow> (x, z) : genPrefix (r O s)"  | 
|
117  | 
apply (atomize (full))  | 
|
118  | 
using assms  | 
|
119  | 
apply induct  | 
|
120  | 
apply blast  | 
|
121  | 
apply (blast intro: genPrefix.prepend)  | 
|
122  | 
apply (blast dest: append_genPrefix)  | 
|
123  | 
done  | 
|
| 13798 | 124  | 
|
| 45477 | 125  | 
lemma genPrefix_trans:  | 
126  | 
"(x, y) : genPrefix r \<Longrightarrow> (y, z) : genPrefix r \<Longrightarrow> trans r  | 
|
127  | 
\<Longrightarrow> (x, z) : genPrefix r"  | 
|
128  | 
apply (rule trans_O_subset [THEN genPrefix_mono, THEN subsetD])  | 
|
129  | 
apply assumption  | 
|
130  | 
apply (blast intro: genPrefix_trans_O)  | 
|
131  | 
done  | 
|
| 13798 | 132  | 
|
| 45477 | 133  | 
lemma prefix_genPrefix_trans:  | 
134  | 
"[| x<=y; (y,z) : genPrefix r |] ==> (x, z) : genPrefix r"  | 
|
| 13798 | 135  | 
apply (unfold prefix_def)  | 
| 
32235
 
8f9b8d14fc9f
"more standard" argument order of relation composition (op O)
 
krauss 
parents: 
30198 
diff
changeset
 | 
136  | 
apply (drule genPrefix_trans_O, assumption)  | 
| 
 
8f9b8d14fc9f
"more standard" argument order of relation composition (op O)
 
krauss 
parents: 
30198 
diff
changeset
 | 
137  | 
apply simp  | 
| 13798 | 138  | 
done  | 
139  | 
||
| 45477 | 140  | 
lemma genPrefix_prefix_trans:  | 
141  | 
"[| (x,y) : genPrefix r; y<=z |] ==> (x,z) : genPrefix r"  | 
|
| 13798 | 142  | 
apply (unfold prefix_def)  | 
| 
32235
 
8f9b8d14fc9f
"more standard" argument order of relation composition (op O)
 
krauss 
parents: 
30198 
diff
changeset
 | 
143  | 
apply (drule genPrefix_trans_O, assumption)  | 
| 
 
8f9b8d14fc9f
"more standard" argument order of relation composition (op O)
 
krauss 
parents: 
30198 
diff
changeset
 | 
144  | 
apply simp  | 
| 13798 | 145  | 
done  | 
146  | 
||
147  | 
lemma trans_genPrefix: "trans r ==> trans (genPrefix r)"  | 
|
148  | 
by (blast intro: transI genPrefix_trans)  | 
|
149  | 
||
150  | 
||
151  | 
(** Antisymmetry **)  | 
|
152  | 
||
| 45477 | 153  | 
lemma genPrefix_antisym:  | 
154  | 
assumes 1: "(xs, ys) : genPrefix r"  | 
|
155  | 
and 2: "antisym r"  | 
|
156  | 
and 3: "(ys, xs) : genPrefix r"  | 
|
157  | 
shows "xs = ys"  | 
|
158  | 
using 1 3  | 
|
159  | 
proof induct  | 
|
160  | 
case Nil  | 
|
161  | 
then show ?case by blast  | 
|
162  | 
next  | 
|
163  | 
case prepend  | 
|
164  | 
then show ?case using 2 by (simp add: antisym_def)  | 
|
165  | 
next  | 
|
166  | 
case (append xs ys zs)  | 
|
167  | 
then show ?case  | 
|
168  | 
apply -  | 
|
169  | 
apply (subgoal_tac "length zs = 0", force)  | 
|
170  | 
apply (drule genPrefix_length_le)+  | 
|
171  | 
apply (simp del: length_0_conv)  | 
|
172  | 
done  | 
|
173  | 
qed  | 
|
| 13798 | 174  | 
|
175  | 
lemma antisym_genPrefix: "antisym r ==> antisym (genPrefix r)"  | 
|
| 45477 | 176  | 
by (blast intro: antisymI genPrefix_antisym)  | 
| 13798 | 177  | 
|
178  | 
||
179  | 
subsection{*recursion equations*}
 | 
|
180  | 
||
181  | 
lemma genPrefix_Nil [simp]: "((xs, []) : genPrefix r) = (xs = [])"  | 
|
| 46911 | 182  | 
by (induct xs) auto  | 
| 13798 | 183  | 
|
184  | 
lemma same_genPrefix_genPrefix [simp]:  | 
|
| 30198 | 185  | 
"refl r ==> ((xs@ys, xs@zs) : genPrefix r) = ((ys,zs) : genPrefix r)"  | 
| 46911 | 186  | 
by (induct xs) (simp_all add: refl_on_def)  | 
| 13798 | 187  | 
|
188  | 
lemma genPrefix_Cons:  | 
|
189  | 
"((xs, y#ys) : genPrefix r) =  | 
|
190  | 
(xs=[] | (EX z zs. xs=z#zs & (z,y) : r & (zs,ys) : genPrefix r))"  | 
|
| 46911 | 191  | 
by (cases xs) auto  | 
| 13798 | 192  | 
|
193  | 
lemma genPrefix_take_append:  | 
|
| 30198 | 194  | 
"[| refl r; (xs,ys) : genPrefix r |]  | 
| 13798 | 195  | 
==> (xs@zs, take (length xs) ys @ zs) : genPrefix r"  | 
196  | 
apply (erule genPrefix.induct)  | 
|
197  | 
apply (frule_tac [3] genPrefix_length_le)  | 
|
198  | 
apply (simp_all (no_asm_simp) add: diff_is_0_eq [THEN iffD2])  | 
|
199  | 
done  | 
|
200  | 
||
201  | 
lemma genPrefix_append_both:  | 
|
| 30198 | 202  | 
"[| refl r; (xs,ys) : genPrefix r; length xs = length ys |]  | 
| 13798 | 203  | 
==> (xs@zs, ys @ zs) : genPrefix r"  | 
204  | 
apply (drule genPrefix_take_append, assumption)  | 
|
| 46577 | 205  | 
apply simp  | 
| 13798 | 206  | 
done  | 
207  | 
||
208  | 
||
209  | 
(*NOT suitable for rewriting since [y] has the form y#ys*)  | 
|
210  | 
lemma append_cons_eq: "xs @ y # ys = (xs @ [y]) @ ys"  | 
|
211  | 
by auto  | 
|
212  | 
||
213  | 
lemma aolemma:  | 
|
| 30198 | 214  | 
"[| (xs,ys) : genPrefix r; refl r |]  | 
| 13798 | 215  | 
==> length xs < length ys --> (xs @ [ys ! length xs], ys) : genPrefix r"  | 
216  | 
apply (erule genPrefix.induct)  | 
|
217  | 
apply blast  | 
|
218  | 
apply simp  | 
|
219  | 
txt{*Append case is hardest*}
 | 
|
220  | 
apply simp  | 
|
221  | 
apply (frule genPrefix_length_le [THEN le_imp_less_or_eq])  | 
|
222  | 
apply (erule disjE)  | 
|
223  | 
apply (simp_all (no_asm_simp) add: neq_Nil_conv nth_append)  | 
|
224  | 
apply (blast intro: genPrefix.append, auto)  | 
|
| 15481 | 225  | 
apply (subst append_cons_eq, fast intro: genPrefix_append_both genPrefix.append)  | 
| 13798 | 226  | 
done  | 
227  | 
||
228  | 
lemma append_one_genPrefix:  | 
|
| 30198 | 229  | 
"[| (xs,ys) : genPrefix r; length xs < length ys; refl r |]  | 
| 13798 | 230  | 
==> (xs @ [ys ! length xs], ys) : genPrefix r"  | 
231  | 
by (blast intro: aolemma [THEN mp])  | 
|
232  | 
||
233  | 
||
234  | 
(** Proving the equivalence with Charpentier's definition **)  | 
|
235  | 
||
| 45477 | 236  | 
lemma genPrefix_imp_nth:  | 
237  | 
"i < length xs \<Longrightarrow> (xs, ys) : genPrefix r \<Longrightarrow> (xs ! i, ys ! i) : r"  | 
|
238  | 
apply (induct xs arbitrary: i ys)  | 
|
239  | 
apply auto  | 
|
240  | 
apply (case_tac i)  | 
|
241  | 
apply auto  | 
|
242  | 
done  | 
|
| 13798 | 243  | 
|
| 45477 | 244  | 
lemma nth_imp_genPrefix:  | 
245  | 
"length xs <= length ys \<Longrightarrow>  | 
|
246  | 
(\<forall>i. i < length xs --> (xs ! i, ys ! i) : r) \<Longrightarrow>  | 
|
247  | 
(xs, ys) : genPrefix r"  | 
|
248  | 
apply (induct xs arbitrary: ys)  | 
|
249  | 
apply (simp_all add: less_Suc_eq_0_disj all_conj_distrib)  | 
|
250  | 
apply (case_tac ys)  | 
|
251  | 
apply (force+)  | 
|
252  | 
done  | 
|
| 13798 | 253  | 
|
254  | 
lemma genPrefix_iff_nth:  | 
|
255  | 
"((xs,ys) : genPrefix r) =  | 
|
256  | 
(length xs <= length ys & (ALL i. i < length xs --> (xs!i, ys!i) : r))"  | 
|
257  | 
apply (blast intro: genPrefix_length_le genPrefix_imp_nth nth_imp_genPrefix)  | 
|
258  | 
done  | 
|
259  | 
||
260  | 
||
261  | 
subsection{*The type of lists is partially ordered*}
 | 
|
262  | 
||
| 30198 | 263  | 
declare refl_Id [iff]  | 
| 13798 | 264  | 
antisym_Id [iff]  | 
265  | 
trans_Id [iff]  | 
|
266  | 
||
267  | 
lemma prefix_refl [iff]: "xs <= (xs::'a list)"  | 
|
268  | 
by (simp add: prefix_def)  | 
|
269  | 
||
270  | 
lemma prefix_trans: "!!xs::'a list. [| xs <= ys; ys <= zs |] ==> xs <= zs"  | 
|
271  | 
apply (unfold prefix_def)  | 
|
272  | 
apply (blast intro: genPrefix_trans)  | 
|
273  | 
done  | 
|
274  | 
||
275  | 
lemma prefix_antisym: "!!xs::'a list. [| xs <= ys; ys <= xs |] ==> xs = ys"  | 
|
276  | 
apply (unfold prefix_def)  | 
|
277  | 
apply (blast intro: genPrefix_antisym)  | 
|
278  | 
done  | 
|
279  | 
||
| 27682 | 280  | 
lemma prefix_less_le_not_le: "!!xs::'a list. (xs < zs) = (xs <= zs & \<not> zs \<le> xs)"  | 
| 13798 | 281  | 
by (unfold strict_prefix_def, auto)  | 
| 6708 | 282  | 
|
| 
12338
 
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
 
wenzelm 
parents: 
6810 
diff
changeset
 | 
283  | 
instance list :: (type) order  | 
| 13798 | 284  | 
by (intro_classes,  | 
285  | 
(assumption | rule prefix_refl prefix_trans prefix_antisym  | 
|
| 27682 | 286  | 
prefix_less_le_not_le)+)  | 
| 13798 | 287  | 
|
288  | 
(*Monotonicity of "set" operator WRT prefix*)  | 
|
289  | 
lemma set_mono: "xs <= ys ==> set xs <= set ys"  | 
|
290  | 
apply (unfold prefix_def)  | 
|
291  | 
apply (erule genPrefix.induct, auto)  | 
|
292  | 
done  | 
|
293  | 
||
294  | 
||
295  | 
(** recursion equations **)  | 
|
296  | 
||
297  | 
lemma Nil_prefix [iff]: "[] <= xs"  | 
|
| 46577 | 298  | 
by (simp add: prefix_def)  | 
| 13798 | 299  | 
|
300  | 
lemma prefix_Nil [simp]: "(xs <= []) = (xs = [])"  | 
|
| 46577 | 301  | 
by (simp add: prefix_def)  | 
| 13798 | 302  | 
|
303  | 
lemma Cons_prefix_Cons [simp]: "(x#xs <= y#ys) = (x=y & xs<=ys)"  | 
|
304  | 
by (simp add: prefix_def)  | 
|
305  | 
||
306  | 
lemma same_prefix_prefix [simp]: "(xs@ys <= xs@zs) = (ys <= zs)"  | 
|
307  | 
by (simp add: prefix_def)  | 
|
308  | 
||
309  | 
lemma append_prefix [iff]: "(xs@ys <= xs) = (ys <= [])"  | 
|
310  | 
by (insert same_prefix_prefix [of xs ys "[]"], simp)  | 
|
311  | 
||
312  | 
lemma prefix_appendI [simp]: "xs <= ys ==> xs <= ys@zs"  | 
|
313  | 
apply (unfold prefix_def)  | 
|
314  | 
apply (erule genPrefix.append)  | 
|
315  | 
done  | 
|
316  | 
||
317  | 
lemma prefix_Cons:  | 
|
318  | 
"(xs <= y#ys) = (xs=[] | (? zs. xs=y#zs & zs <= ys))"  | 
|
319  | 
by (simp add: prefix_def genPrefix_Cons)  | 
|
320  | 
||
321  | 
lemma append_one_prefix:  | 
|
322  | 
"[| xs <= ys; length xs < length ys |] ==> xs @ [ys ! length xs] <= ys"  | 
|
323  | 
apply (unfold prefix_def)  | 
|
324  | 
apply (simp add: append_one_genPrefix)  | 
|
325  | 
done  | 
|
326  | 
||
327  | 
lemma prefix_length_le: "xs <= ys ==> length xs <= length ys"  | 
|
328  | 
apply (unfold prefix_def)  | 
|
329  | 
apply (erule genPrefix_length_le)  | 
|
330  | 
done  | 
|
331  | 
||
332  | 
lemma splemma: "xs<=ys ==> xs~=ys --> length xs < length ys"  | 
|
333  | 
apply (unfold prefix_def)  | 
|
334  | 
apply (erule genPrefix.induct, auto)  | 
|
335  | 
done  | 
|
336  | 
||
337  | 
lemma strict_prefix_length_less: "xs < ys ==> length xs < length ys"  | 
|
338  | 
apply (unfold strict_prefix_def)  | 
|
339  | 
apply (blast intro: splemma [THEN mp])  | 
|
340  | 
done  | 
|
341  | 
||
342  | 
lemma mono_length: "mono length"  | 
|
343  | 
by (blast intro: monoI prefix_length_le)  | 
|
344  | 
||
345  | 
(*Equivalence to the definition used in Lex/Prefix.thy*)  | 
|
346  | 
lemma prefix_iff: "(xs <= zs) = (EX ys. zs = xs@ys)"  | 
|
347  | 
apply (unfold prefix_def)  | 
|
348  | 
apply (auto simp add: genPrefix_iff_nth nth_append)  | 
|
349  | 
apply (rule_tac x = "drop (length xs) zs" in exI)  | 
|
350  | 
apply (rule nth_equalityI)  | 
|
351  | 
apply (simp_all (no_asm_simp) add: nth_append)  | 
|
352  | 
done  | 
|
353  | 
||
354  | 
lemma prefix_snoc [simp]: "(xs <= ys@[y]) = (xs = ys@[y] | xs <= ys)"  | 
|
355  | 
apply (simp add: prefix_iff)  | 
|
356  | 
apply (rule iffI)  | 
|
357  | 
apply (erule exE)  | 
|
358  | 
apply (rename_tac "zs")  | 
|
359  | 
apply (rule_tac xs = zs in rev_exhaust)  | 
|
360  | 
apply simp  | 
|
361  | 
apply clarify  | 
|
362  | 
apply (simp del: append_assoc add: append_assoc [symmetric], force)  | 
|
363  | 
done  | 
|
364  | 
||
365  | 
lemma prefix_append_iff:  | 
|
366  | 
"(xs <= ys@zs) = (xs <= ys | (? us. xs = ys@us & us <= zs))"  | 
|
367  | 
apply (rule_tac xs = zs in rev_induct)  | 
|
368  | 
apply force  | 
|
369  | 
apply (simp del: append_assoc add: append_assoc [symmetric], force)  | 
|
370  | 
done  | 
|
371  | 
||
372  | 
(*Although the prefix ordering is not linear, the prefixes of a list  | 
|
373  | 
are linearly ordered.*)  | 
|
| 45477 | 374  | 
lemma common_prefix_linear:  | 
375  | 
fixes xs ys zs :: "'a list"  | 
|
376  | 
shows "xs <= zs \<Longrightarrow> ys <= zs \<Longrightarrow> xs <= ys | ys <= xs"  | 
|
377  | 
by (induct zs rule: rev_induct) auto  | 
|
| 13798 | 378  | 
|
379  | 
subsection{*pfixLe, pfixGe: properties inherited from the translations*}
 | 
|
380  | 
||
381  | 
(** pfixLe **)  | 
|
382  | 
||
| 30198 | 383  | 
lemma refl_Le [iff]: "refl Le"  | 
384  | 
by (unfold refl_on_def Le_def, auto)  | 
|
| 13798 | 385  | 
|
386  | 
lemma antisym_Le [iff]: "antisym Le"  | 
|
387  | 
by (unfold antisym_def Le_def, auto)  | 
|
388  | 
||
389  | 
lemma trans_Le [iff]: "trans Le"  | 
|
390  | 
by (unfold trans_def Le_def, auto)  | 
|
391  | 
||
392  | 
lemma pfixLe_refl [iff]: "x pfixLe x"  | 
|
393  | 
by simp  | 
|
394  | 
||
395  | 
lemma pfixLe_trans: "[| x pfixLe y; y pfixLe z |] ==> x pfixLe z"  | 
|
396  | 
by (blast intro: genPrefix_trans)  | 
|
397  | 
||
398  | 
lemma pfixLe_antisym: "[| x pfixLe y; y pfixLe x |] ==> x = y"  | 
|
399  | 
by (blast intro: genPrefix_antisym)  | 
|
400  | 
||
401  | 
lemma prefix_imp_pfixLe: "xs<=ys ==> xs pfixLe ys"  | 
|
402  | 
apply (unfold prefix_def Le_def)  | 
|
403  | 
apply (blast intro: genPrefix_mono [THEN [2] rev_subsetD])  | 
|
404  | 
done  | 
|
405  | 
||
| 30198 | 406  | 
lemma refl_Ge [iff]: "refl Ge"  | 
407  | 
by (unfold refl_on_def Ge_def, auto)  | 
|
| 13798 | 408  | 
|
409  | 
lemma antisym_Ge [iff]: "antisym Ge"  | 
|
410  | 
by (unfold antisym_def Ge_def, auto)  | 
|
411  | 
||
412  | 
lemma trans_Ge [iff]: "trans Ge"  | 
|
413  | 
by (unfold trans_def Ge_def, auto)  | 
|
414  | 
||
415  | 
lemma pfixGe_refl [iff]: "x pfixGe x"  | 
|
416  | 
by simp  | 
|
417  | 
||
418  | 
lemma pfixGe_trans: "[| x pfixGe y; y pfixGe z |] ==> x pfixGe z"  | 
|
419  | 
by (blast intro: genPrefix_trans)  | 
|
420  | 
||
421  | 
lemma pfixGe_antisym: "[| x pfixGe y; y pfixGe x |] ==> x = y"  | 
|
422  | 
by (blast intro: genPrefix_antisym)  | 
|
423  | 
||
424  | 
lemma prefix_imp_pfixGe: "xs<=ys ==> xs pfixGe ys"  | 
|
425  | 
apply (unfold prefix_def Ge_def)  | 
|
426  | 
apply (blast intro: genPrefix_mono [THEN [2] rev_subsetD])  | 
|
427  | 
done  | 
|
| 6708 | 428  | 
|
429  | 
end  |