| author | wenzelm | 
| Sat, 02 Apr 2016 23:14:08 +0200 | |
| changeset 62825 | e6e80a8bf624 | 
| parent 62626 | de25474ce728 | 
| child 63040 | eb4ddd18d635 | 
| permissions | -rw-r--r-- | 
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 1 | (* Title: HOL/Rings.thy | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 2 | Author: Gertrud Bauer | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 3 | Author: Steven Obua | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 4 | Author: Tobias Nipkow | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 5 | Author: Lawrence C Paulson | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 6 | Author: Markus Wenzel | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 7 | Author: Jeremy Avigad | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 8 | *) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 9 | |
| 60758 | 10 | section \<open>Rings\<close> | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 11 | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 12 | theory Rings | 
| 62366 | 13 | imports Groups Set | 
| 15131 | 14 | begin | 
| 14504 | 15 | |
| 22390 | 16 | class semiring = ab_semigroup_add + semigroup_mult + | 
| 58776 
95e58e04e534
use NO_MATCH-simproc for distribution rules in field_simps, otherwise field_simps on '(a / (c + d)) * (e + f)' can be non-terminating
 hoelzl parents: 
58649diff
changeset | 17 | assumes distrib_right[algebra_simps]: "(a + b) * c = a * c + b * c" | 
| 
95e58e04e534
use NO_MATCH-simproc for distribution rules in field_simps, otherwise field_simps on '(a / (c + d)) * (e + f)' can be non-terminating
 hoelzl parents: 
58649diff
changeset | 18 | assumes distrib_left[algebra_simps]: "a * (b + c) = a * b + a * c" | 
| 25152 | 19 | begin | 
| 20 | ||
| 61799 | 21 | text\<open>For the \<open>combine_numerals\<close> simproc\<close> | 
| 25152 | 22 | lemma combine_common_factor: | 
| 23 | "a * e + (b * e + c) = (a + b) * e + c" | |
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 24 | by (simp add: distrib_right ac_simps) | 
| 25152 | 25 | |
| 26 | end | |
| 14504 | 27 | |
| 22390 | 28 | class mult_zero = times + zero + | 
| 25062 | 29 | assumes mult_zero_left [simp]: "0 * a = 0" | 
| 30 | assumes mult_zero_right [simp]: "a * 0 = 0" | |
| 58195 | 31 | begin | 
| 32 | ||
| 33 | lemma mult_not_zero: | |
| 34 | "a * b \<noteq> 0 \<Longrightarrow> a \<noteq> 0 \<and> b \<noteq> 0" | |
| 35 | by auto | |
| 36 | ||
| 37 | end | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 38 | |
| 58198 | 39 | class semiring_0 = semiring + comm_monoid_add + mult_zero | 
| 40 | ||
| 29904 | 41 | class semiring_0_cancel = semiring + cancel_comm_monoid_add | 
| 25186 | 42 | begin | 
| 14504 | 43 | |
| 25186 | 44 | subclass semiring_0 | 
| 28823 | 45 | proof | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 46 | fix a :: 'a | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 47 | have "0 * a + 0 * a = 0 * a + 0" by (simp add: distrib_right [symmetric]) | 
| 29667 | 48 | thus "0 * a = 0" by (simp only: add_left_cancel) | 
| 25152 | 49 | next | 
| 50 | fix a :: 'a | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 51 | have "a * 0 + a * 0 = a * 0 + 0" by (simp add: distrib_left [symmetric]) | 
| 29667 | 52 | thus "a * 0 = 0" by (simp only: add_left_cancel) | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 53 | qed | 
| 14940 | 54 | |
| 25186 | 55 | end | 
| 25152 | 56 | |
| 22390 | 57 | class comm_semiring = ab_semigroup_add + ab_semigroup_mult + | 
| 25062 | 58 | assumes distrib: "(a + b) * c = a * c + b * c" | 
| 25152 | 59 | begin | 
| 14504 | 60 | |
| 25152 | 61 | subclass semiring | 
| 28823 | 62 | proof | 
| 14738 | 63 | fix a b c :: 'a | 
| 64 | show "(a + b) * c = a * c + b * c" by (simp add: distrib) | |
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 65 | have "a * (b + c) = (b + c) * a" by (simp add: ac_simps) | 
| 14738 | 66 | also have "... = b * a + c * a" by (simp only: distrib) | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 67 | also have "... = a * b + a * c" by (simp add: ac_simps) | 
| 14738 | 68 | finally show "a * (b + c) = a * b + a * c" by blast | 
| 14504 | 69 | qed | 
| 70 | ||
| 25152 | 71 | end | 
| 14504 | 72 | |
| 25152 | 73 | class comm_semiring_0 = comm_semiring + comm_monoid_add + mult_zero | 
| 74 | begin | |
| 75 | ||
| 27516 | 76 | subclass semiring_0 .. | 
| 25152 | 77 | |
| 78 | end | |
| 14504 | 79 | |
| 29904 | 80 | class comm_semiring_0_cancel = comm_semiring + cancel_comm_monoid_add | 
| 25186 | 81 | begin | 
| 14940 | 82 | |
| 27516 | 83 | subclass semiring_0_cancel .. | 
| 14940 | 84 | |
| 28141 
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
 huffman parents: 
27651diff
changeset | 85 | subclass comm_semiring_0 .. | 
| 
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
 huffman parents: 
27651diff
changeset | 86 | |
| 25186 | 87 | end | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 88 | |
| 22390 | 89 | class zero_neq_one = zero + one + | 
| 25062 | 90 | assumes zero_neq_one [simp]: "0 \<noteq> 1" | 
| 26193 | 91 | begin | 
| 92 | ||
| 93 | lemma one_neq_zero [simp]: "1 \<noteq> 0" | |
| 29667 | 94 | by (rule not_sym) (rule zero_neq_one) | 
| 26193 | 95 | |
| 54225 | 96 | definition of_bool :: "bool \<Rightarrow> 'a" | 
| 97 | where | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 98 | "of_bool p = (if p then 1 else 0)" | 
| 54225 | 99 | |
| 100 | lemma of_bool_eq [simp, code]: | |
| 101 | "of_bool False = 0" | |
| 102 | "of_bool True = 1" | |
| 103 | by (simp_all add: of_bool_def) | |
| 104 | ||
| 105 | lemma of_bool_eq_iff: | |
| 106 | "of_bool p = of_bool q \<longleftrightarrow> p = q" | |
| 107 | by (simp add: of_bool_def) | |
| 108 | ||
| 55187 | 109 | lemma split_of_bool [split]: | 
| 110 | "P (of_bool p) \<longleftrightarrow> (p \<longrightarrow> P 1) \<and> (\<not> p \<longrightarrow> P 0)" | |
| 111 | by (cases p) simp_all | |
| 112 | ||
| 113 | lemma split_of_bool_asm: | |
| 114 | "P (of_bool p) \<longleftrightarrow> \<not> (p \<and> \<not> P 1 \<or> \<not> p \<and> \<not> P 0)" | |
| 115 | by (cases p) simp_all | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 116 | |
| 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 117 | end | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 118 | |
| 22390 | 119 | class semiring_1 = zero_neq_one + semiring_0 + monoid_mult | 
| 14504 | 120 | |
| 60758 | 121 | text \<open>Abstract divisibility\<close> | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 122 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 123 | class dvd = times | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 124 | begin | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 125 | |
| 50420 | 126 | definition dvd :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "dvd" 50) where | 
| 37767 | 127 | "b dvd a \<longleftrightarrow> (\<exists>k. a = b * k)" | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 128 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 129 | lemma dvdI [intro?]: "a = b * k \<Longrightarrow> b dvd a" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 130 | unfolding dvd_def .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 131 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 132 | lemma dvdE [elim?]: "b dvd a \<Longrightarrow> (\<And>k. a = b * k \<Longrightarrow> P) \<Longrightarrow> P" | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 133 | unfolding dvd_def by blast | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 134 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 135 | end | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 136 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 137 | context comm_monoid_mult | 
| 25152 | 138 | begin | 
| 14738 | 139 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 140 | subclass dvd . | 
| 25152 | 141 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 142 | lemma dvd_refl [simp]: | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 143 | "a dvd a" | 
| 28559 | 144 | proof | 
| 145 | show "a = a * 1" by simp | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 146 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 147 | |
| 62349 
7c23469b5118
cleansed junk-producing interpretations for gcd/lcm on nat altogether
 haftmann parents: 
62347diff
changeset | 148 | lemma dvd_trans [trans]: | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 149 | assumes "a dvd b" and "b dvd c" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 150 | shows "a dvd c" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 151 | proof - | 
| 28559 | 152 | from assms obtain v where "b = a * v" by (auto elim!: dvdE) | 
| 153 | moreover from assms obtain w where "c = b * w" by (auto elim!: dvdE) | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 154 | ultimately have "c = a * (v * w)" by (simp add: mult.assoc) | 
| 28559 | 155 | then show ?thesis .. | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 156 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 157 | |
| 62366 | 158 | lemma subset_divisors_dvd: | 
| 159 |   "{c. c dvd a} \<subseteq> {c. c dvd b} \<longleftrightarrow> a dvd b"
 | |
| 160 | by (auto simp add: subset_iff intro: dvd_trans) | |
| 161 | ||
| 162 | lemma strict_subset_divisors_dvd: | |
| 163 |   "{c. c dvd a} \<subset> {c. c dvd b} \<longleftrightarrow> a dvd b \<and> \<not> b dvd a"
 | |
| 164 | by (auto simp add: subset_iff intro: dvd_trans) | |
| 165 | ||
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 166 | lemma one_dvd [simp]: | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 167 | "1 dvd a" | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 168 | by (auto intro!: dvdI) | 
| 28559 | 169 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 170 | lemma dvd_mult [simp]: | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 171 | "a dvd c \<Longrightarrow> a dvd (b * c)" | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 172 | by (auto intro!: mult.left_commute dvdI elim!: dvdE) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 173 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 174 | lemma dvd_mult2 [simp]: | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 175 | "a dvd b \<Longrightarrow> a dvd (b * c)" | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 176 | using dvd_mult [of a b c] by (simp add: ac_simps) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 177 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 178 | lemma dvd_triv_right [simp]: | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 179 | "a dvd b * a" | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 180 | by (rule dvd_mult) (rule dvd_refl) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 181 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 182 | lemma dvd_triv_left [simp]: | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 183 | "a dvd a * b" | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 184 | by (rule dvd_mult2) (rule dvd_refl) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 185 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 186 | lemma mult_dvd_mono: | 
| 30042 | 187 | assumes "a dvd b" | 
| 188 | and "c dvd d" | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 189 | shows "a * c dvd b * d" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 190 | proof - | 
| 60758 | 191 | from \<open>a dvd b\<close> obtain b' where "b = a * b'" .. | 
| 192 | moreover from \<open>c dvd d\<close> obtain d' where "d = c * d'" .. | |
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 193 | ultimately have "b * d = (a * c) * (b' * d')" by (simp add: ac_simps) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 194 | then show ?thesis .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 195 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 196 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 197 | lemma dvd_mult_left: | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 198 | "a * b dvd c \<Longrightarrow> a dvd c" | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 199 | by (simp add: dvd_def mult.assoc) blast | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 200 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 201 | lemma dvd_mult_right: | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 202 | "a * b dvd c \<Longrightarrow> b dvd c" | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 203 | using dvd_mult_left [of b a c] by (simp add: ac_simps) | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 204 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 205 | end | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 206 | |
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 207 | class comm_semiring_1 = zero_neq_one + comm_semiring_0 + comm_monoid_mult | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 208 | begin | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 209 | |
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 210 | subclass semiring_1 .. | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 211 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 212 | lemma dvd_0_left_iff [simp]: | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 213 | "0 dvd a \<longleftrightarrow> a = 0" | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 214 | by (auto intro: dvd_refl elim!: dvdE) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 215 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 216 | lemma dvd_0_right [iff]: | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 217 | "a dvd 0" | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 218 | proof | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 219 | show "0 = a * 0" by simp | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 220 | qed | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 221 | |
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 222 | lemma dvd_0_left: | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 223 | "0 dvd a \<Longrightarrow> a = 0" | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 224 | by simp | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 225 | |
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 226 | lemma dvd_add [simp]: | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 227 | assumes "a dvd b" and "a dvd c" | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 228 | shows "a dvd (b + c)" | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 229 | proof - | 
| 60758 | 230 | from \<open>a dvd b\<close> obtain b' where "b = a * b'" .. | 
| 231 | moreover from \<open>a dvd c\<close> obtain c' where "c = a * c'" .. | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 232 | ultimately have "b + c = a * (b' + c')" by (simp add: distrib_left) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 233 | then show ?thesis .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 234 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 235 | |
| 25152 | 236 | end | 
| 14421 
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
 paulson parents: 
14398diff
changeset | 237 | |
| 29904 | 238 | class semiring_1_cancel = semiring + cancel_comm_monoid_add | 
| 239 | + zero_neq_one + monoid_mult | |
| 25267 | 240 | begin | 
| 14940 | 241 | |
| 27516 | 242 | subclass semiring_0_cancel .. | 
| 25512 
4134f7c782e2
using intro_locales instead of unfold_locales if appropriate
 haftmann parents: 
25450diff
changeset | 243 | |
| 27516 | 244 | subclass semiring_1 .. | 
| 25267 | 245 | |
| 246 | end | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 247 | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 248 | class comm_semiring_1_cancel = comm_semiring + cancel_comm_monoid_add + | 
| 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 249 | zero_neq_one + comm_monoid_mult + | 
| 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 250 | assumes right_diff_distrib' [algebra_simps]: "a * (b - c) = a * b - a * c" | 
| 25267 | 251 | begin | 
| 14738 | 252 | |
| 27516 | 253 | subclass semiring_1_cancel .. | 
| 254 | subclass comm_semiring_0_cancel .. | |
| 255 | subclass comm_semiring_1 .. | |
| 25267 | 256 | |
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 257 | lemma left_diff_distrib' [algebra_simps]: | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 258 | "(b - c) * a = b * a - c * a" | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 259 | by (simp add: algebra_simps) | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 260 | |
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 261 | lemma dvd_add_times_triv_left_iff [simp]: | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 262 | "a dvd c * a + b \<longleftrightarrow> a dvd b" | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 263 | proof - | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 264 | have "a dvd a * c + b \<longleftrightarrow> a dvd b" (is "?P \<longleftrightarrow> ?Q") | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 265 | proof | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 266 | assume ?Q then show ?P by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 267 | next | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 268 | assume ?P | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 269 | then obtain d where "a * c + b = a * d" .. | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 270 | then have "a * c + b - a * c = a * d - a * c" by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 271 | then have "b = a * d - a * c" by simp | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 272 | then have "b = a * (d - c)" by (simp add: algebra_simps) | 
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 273 | then show ?Q .. | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 274 | qed | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 275 | then show "a dvd c * a + b \<longleftrightarrow> a dvd b" by (simp add: ac_simps) | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 276 | qed | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 277 | |
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 278 | lemma dvd_add_times_triv_right_iff [simp]: | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 279 | "a dvd b + c * a \<longleftrightarrow> a dvd b" | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 280 | using dvd_add_times_triv_left_iff [of a c b] by (simp add: ac_simps) | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 281 | |
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 282 | lemma dvd_add_triv_left_iff [simp]: | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 283 | "a dvd a + b \<longleftrightarrow> a dvd b" | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 284 | using dvd_add_times_triv_left_iff [of a 1 b] by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 285 | |
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 286 | lemma dvd_add_triv_right_iff [simp]: | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 287 | "a dvd b + a \<longleftrightarrow> a dvd b" | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 288 | using dvd_add_times_triv_right_iff [of a b 1] by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 289 | |
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 290 | lemma dvd_add_right_iff: | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 291 | assumes "a dvd b" | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 292 | shows "a dvd b + c \<longleftrightarrow> a dvd c" (is "?P \<longleftrightarrow> ?Q") | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 293 | proof | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 294 | assume ?P then obtain d where "b + c = a * d" .. | 
| 60758 | 295 | moreover from \<open>a dvd b\<close> obtain e where "b = a * e" .. | 
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 296 | ultimately have "a * e + c = a * d" by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 297 | then have "a * e + c - a * e = a * d - a * e" by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 298 | then have "c = a * d - a * e" by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 299 | then have "c = a * (d - e)" by (simp add: algebra_simps) | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 300 | then show ?Q .. | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 301 | next | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 302 | assume ?Q with assms show ?P by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 303 | qed | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 304 | |
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 305 | lemma dvd_add_left_iff: | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 306 | assumes "a dvd c" | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 307 | shows "a dvd b + c \<longleftrightarrow> a dvd b" | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 308 | using assms dvd_add_right_iff [of a c b] by (simp add: ac_simps) | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 309 | |
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 310 | end | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 311 | |
| 22390 | 312 | class ring = semiring + ab_group_add | 
| 25267 | 313 | begin | 
| 25152 | 314 | |
| 27516 | 315 | subclass semiring_0_cancel .. | 
| 25152 | 316 | |
| 60758 | 317 | text \<open>Distribution rules\<close> | 
| 25152 | 318 | |
| 319 | lemma minus_mult_left: "- (a * b) = - a * b" | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 320 | by (rule minus_unique) (simp add: distrib_right [symmetric]) | 
| 25152 | 321 | |
| 322 | lemma minus_mult_right: "- (a * b) = a * - b" | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 323 | by (rule minus_unique) (simp add: distrib_left [symmetric]) | 
| 25152 | 324 | |
| 60758 | 325 | text\<open>Extract signs from products\<close> | 
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
52435diff
changeset | 326 | lemmas mult_minus_left [simp] = minus_mult_left [symmetric] | 
| 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
52435diff
changeset | 327 | lemmas mult_minus_right [simp] = minus_mult_right [symmetric] | 
| 29407 
5ef7e97fd9e4
move lemmas mult_minus{left,right} inside class ring
 huffman parents: 
29406diff
changeset | 328 | |
| 25152 | 329 | lemma minus_mult_minus [simp]: "- a * - b = a * b" | 
| 29667 | 330 | by simp | 
| 25152 | 331 | |
| 332 | lemma minus_mult_commute: "- a * b = a * - b" | |
| 29667 | 333 | by simp | 
| 334 | ||
| 58776 
95e58e04e534
use NO_MATCH-simproc for distribution rules in field_simps, otherwise field_simps on '(a / (c + d)) * (e + f)' can be non-terminating
 hoelzl parents: 
58649diff
changeset | 335 | lemma right_diff_distrib [algebra_simps]: | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 336 | "a * (b - c) = a * b - a * c" | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 337 | using distrib_left [of a b "-c "] by simp | 
| 29667 | 338 | |
| 58776 
95e58e04e534
use NO_MATCH-simproc for distribution rules in field_simps, otherwise field_simps on '(a / (c + d)) * (e + f)' can be non-terminating
 hoelzl parents: 
58649diff
changeset | 339 | lemma left_diff_distrib [algebra_simps]: | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 340 | "(a - b) * c = a * c - b * c" | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 341 | using distrib_right [of a "- b" c] by simp | 
| 25152 | 342 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
52435diff
changeset | 343 | lemmas ring_distribs = | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 344 | distrib_left distrib_right left_diff_distrib right_diff_distrib | 
| 25152 | 345 | |
| 25230 | 346 | lemma eq_add_iff1: | 
| 347 | "a * e + c = b * e + d \<longleftrightarrow> (a - b) * e + c = d" | |
| 29667 | 348 | by (simp add: algebra_simps) | 
| 25230 | 349 | |
| 350 | lemma eq_add_iff2: | |
| 351 | "a * e + c = b * e + d \<longleftrightarrow> c = (b - a) * e + d" | |
| 29667 | 352 | by (simp add: algebra_simps) | 
| 25230 | 353 | |
| 25152 | 354 | end | 
| 355 | ||
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
52435diff
changeset | 356 | lemmas ring_distribs = | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 357 | distrib_left distrib_right left_diff_distrib right_diff_distrib | 
| 25152 | 358 | |
| 22390 | 359 | class comm_ring = comm_semiring + ab_group_add | 
| 25267 | 360 | begin | 
| 14738 | 361 | |
| 27516 | 362 | subclass ring .. | 
| 28141 
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
 huffman parents: 
27651diff
changeset | 363 | subclass comm_semiring_0_cancel .. | 
| 25267 | 364 | |
| 44350 
63cddfbc5a09
replace lemma realpow_two_diff with new lemma square_diff_square_factored
 huffman parents: 
44346diff
changeset | 365 | lemma square_diff_square_factored: | 
| 
63cddfbc5a09
replace lemma realpow_two_diff with new lemma square_diff_square_factored
 huffman parents: 
44346diff
changeset | 366 | "x * x - y * y = (x + y) * (x - y)" | 
| 
63cddfbc5a09
replace lemma realpow_two_diff with new lemma square_diff_square_factored
 huffman parents: 
44346diff
changeset | 367 | by (simp add: algebra_simps) | 
| 
63cddfbc5a09
replace lemma realpow_two_diff with new lemma square_diff_square_factored
 huffman parents: 
44346diff
changeset | 368 | |
| 25267 | 369 | end | 
| 14738 | 370 | |
| 22390 | 371 | class ring_1 = ring + zero_neq_one + monoid_mult | 
| 25267 | 372 | begin | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 373 | |
| 27516 | 374 | subclass semiring_1_cancel .. | 
| 25267 | 375 | |
| 44346 
00dd3c4dabe0
rename real_squared_diff_one_factored to square_diff_one_factored and move to Rings.thy
 huffman parents: 
44064diff
changeset | 376 | lemma square_diff_one_factored: | 
| 
00dd3c4dabe0
rename real_squared_diff_one_factored to square_diff_one_factored and move to Rings.thy
 huffman parents: 
44064diff
changeset | 377 | "x * x - 1 = (x + 1) * (x - 1)" | 
| 
00dd3c4dabe0
rename real_squared_diff_one_factored to square_diff_one_factored and move to Rings.thy
 huffman parents: 
44064diff
changeset | 378 | by (simp add: algebra_simps) | 
| 
00dd3c4dabe0
rename real_squared_diff_one_factored to square_diff_one_factored and move to Rings.thy
 huffman parents: 
44064diff
changeset | 379 | |
| 25267 | 380 | end | 
| 25152 | 381 | |
| 22390 | 382 | class comm_ring_1 = comm_ring + zero_neq_one + comm_monoid_mult | 
| 25267 | 383 | begin | 
| 14738 | 384 | |
| 27516 | 385 | subclass ring_1 .. | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 386 | subclass comm_semiring_1_cancel | 
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 387 | by unfold_locales (simp add: algebra_simps) | 
| 58647 | 388 | |
| 29465 
b2cfb5d0a59e
change dvd_minus_iff, minus_dvd_iff from [iff] to [simp] (due to problems with Library/Primes.thy)
 huffman parents: 
29461diff
changeset | 389 | lemma dvd_minus_iff [simp]: "x dvd - y \<longleftrightarrow> x dvd y" | 
| 29408 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 390 | proof | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 391 | assume "x dvd - y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 392 | then have "x dvd - 1 * - y" by (rule dvd_mult) | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 393 | then show "x dvd y" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 394 | next | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 395 | assume "x dvd y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 396 | then have "x dvd - 1 * y" by (rule dvd_mult) | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 397 | then show "x dvd - y" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 398 | qed | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 399 | |
| 29465 
b2cfb5d0a59e
change dvd_minus_iff, minus_dvd_iff from [iff] to [simp] (due to problems with Library/Primes.thy)
 huffman parents: 
29461diff
changeset | 400 | lemma minus_dvd_iff [simp]: "- x dvd y \<longleftrightarrow> x dvd y" | 
| 29408 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 401 | proof | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 402 | assume "- x dvd y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 403 | then obtain k where "y = - x * k" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 404 | then have "y = x * - k" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 405 | then show "x dvd y" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 406 | next | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 407 | assume "x dvd y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 408 | then obtain k where "y = x * k" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 409 | then have "y = - x * - k" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 410 | then show "- x dvd y" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 411 | qed | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 412 | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 413 | lemma dvd_diff [simp]: | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 414 | "x dvd y \<Longrightarrow> x dvd z \<Longrightarrow> x dvd (y - z)" | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 415 | using dvd_add [of x y "- z"] by simp | 
| 29409 | 416 | |
| 25267 | 417 | end | 
| 25152 | 418 | |
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 419 | class semiring_no_zero_divisors = semiring_0 + | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 420 | assumes no_zero_divisors: "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> a * b \<noteq> 0" | 
| 25230 | 421 | begin | 
| 422 | ||
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 423 | lemma divisors_zero: | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 424 | assumes "a * b = 0" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 425 | shows "a = 0 \<or> b = 0" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 426 | proof (rule classical) | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 427 | assume "\<not> (a = 0 \<or> b = 0)" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 428 | then have "a \<noteq> 0" and "b \<noteq> 0" by auto | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 429 | with no_zero_divisors have "a * b \<noteq> 0" by blast | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 430 | with assms show ?thesis by simp | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 431 | qed | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 432 | |
| 25230 | 433 | lemma mult_eq_0_iff [simp]: | 
| 58952 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 434 | shows "a * b = 0 \<longleftrightarrow> a = 0 \<or> b = 0" | 
| 25230 | 435 | proof (cases "a = 0 \<or> b = 0") | 
| 436 | case False then have "a \<noteq> 0" and "b \<noteq> 0" by auto | |
| 437 | then show ?thesis using no_zero_divisors by simp | |
| 438 | next | |
| 439 | case True then show ?thesis by auto | |
| 440 | qed | |
| 441 | ||
| 58952 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 442 | end | 
| 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 443 | |
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 444 | class semiring_1_no_zero_divisors = semiring_1 + semiring_no_zero_divisors | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 445 | |
| 60516 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 446 | class semiring_no_zero_divisors_cancel = semiring_no_zero_divisors + | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 447 | assumes mult_cancel_right [simp]: "a * c = b * c \<longleftrightarrow> c = 0 \<or> a = b" | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 448 | and mult_cancel_left [simp]: "c * a = c * b \<longleftrightarrow> c = 0 \<or> a = b" | 
| 58952 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 449 | begin | 
| 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 450 | |
| 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 451 | lemma mult_left_cancel: | 
| 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 452 | "c \<noteq> 0 \<Longrightarrow> c * a = c * b \<longleftrightarrow> a = b" | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 453 | by simp | 
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
55912diff
changeset | 454 | |
| 58952 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 455 | lemma mult_right_cancel: | 
| 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 456 | "c \<noteq> 0 \<Longrightarrow> a * c = b * c \<longleftrightarrow> a = b" | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 457 | by simp | 
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
55912diff
changeset | 458 | |
| 25230 | 459 | end | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 460 | |
| 60516 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 461 | class ring_no_zero_divisors = ring + semiring_no_zero_divisors | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 462 | begin | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 463 | |
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 464 | subclass semiring_no_zero_divisors_cancel | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 465 | proof | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 466 | fix a b c | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 467 | have "a * c = b * c \<longleftrightarrow> (a - b) * c = 0" | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 468 | by (simp add: algebra_simps) | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 469 | also have "\<dots> \<longleftrightarrow> c = 0 \<or> a = b" | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 470 | by auto | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 471 | finally show "a * c = b * c \<longleftrightarrow> c = 0 \<or> a = b" . | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 472 | have "c * a = c * b \<longleftrightarrow> c * (a - b) = 0" | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 473 | by (simp add: algebra_simps) | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 474 | also have "\<dots> \<longleftrightarrow> c = 0 \<or> a = b" | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 475 | by auto | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 476 | finally show "c * a = c * b \<longleftrightarrow> c = 0 \<or> a = b" . | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 477 | qed | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 478 | |
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 479 | end | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 480 | |
| 23544 | 481 | class ring_1_no_zero_divisors = ring_1 + ring_no_zero_divisors | 
| 26274 | 482 | begin | 
| 483 | ||
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 484 | subclass semiring_1_no_zero_divisors .. | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 485 | |
| 36970 | 486 | lemma square_eq_1_iff: | 
| 36821 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 487 | "x * x = 1 \<longleftrightarrow> x = 1 \<or> x = - 1" | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 488 | proof - | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 489 | have "(x - 1) * (x + 1) = x * x - 1" | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 490 | by (simp add: algebra_simps) | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 491 | hence "x * x = 1 \<longleftrightarrow> (x - 1) * (x + 1) = 0" | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 492 | by simp | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 493 | thus ?thesis | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 494 | by (simp add: eq_neg_iff_add_eq_0) | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 495 | qed | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 496 | |
| 26274 | 497 | lemma mult_cancel_right1 [simp]: | 
| 498 | "c = b * c \<longleftrightarrow> c = 0 \<or> b = 1" | |
| 29667 | 499 | by (insert mult_cancel_right [of 1 c b], force) | 
| 26274 | 500 | |
| 501 | lemma mult_cancel_right2 [simp]: | |
| 502 | "a * c = c \<longleftrightarrow> c = 0 \<or> a = 1" | |
| 29667 | 503 | by (insert mult_cancel_right [of a c 1], simp) | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 504 | |
| 26274 | 505 | lemma mult_cancel_left1 [simp]: | 
| 506 | "c = c * b \<longleftrightarrow> c = 0 \<or> b = 1" | |
| 29667 | 507 | by (insert mult_cancel_left [of c 1 b], force) | 
| 26274 | 508 | |
| 509 | lemma mult_cancel_left2 [simp]: | |
| 510 | "c * a = c \<longleftrightarrow> c = 0 \<or> a = 1" | |
| 29667 | 511 | by (insert mult_cancel_left [of c a 1], simp) | 
| 26274 | 512 | |
| 513 | end | |
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 514 | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 515 | class semidom = comm_semiring_1_cancel + semiring_no_zero_divisors | 
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 516 | begin | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 517 | |
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 518 | subclass semiring_1_no_zero_divisors .. | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 519 | |
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 520 | end | 
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 521 | |
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 522 | class idom = comm_ring_1 + semiring_no_zero_divisors | 
| 25186 | 523 | begin | 
| 14421 
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
 paulson parents: 
14398diff
changeset | 524 | |
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 525 | subclass semidom .. | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 526 | |
| 27516 | 527 | subclass ring_1_no_zero_divisors .. | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 528 | |
| 29981 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 529 | lemma dvd_mult_cancel_right [simp]: | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 530 | "a * c dvd b * c \<longleftrightarrow> c = 0 \<or> a dvd b" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 531 | proof - | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 532 | have "a * c dvd b * c \<longleftrightarrow> (\<exists>k. b * c = (a * k) * c)" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 533 | unfolding dvd_def by (simp add: ac_simps) | 
| 29981 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 534 | also have "(\<exists>k. b * c = (a * k) * c) \<longleftrightarrow> c = 0 \<or> a dvd b" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 535 | unfolding dvd_def by simp | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 536 | finally show ?thesis . | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 537 | qed | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 538 | |
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 539 | lemma dvd_mult_cancel_left [simp]: | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 540 | "c * a dvd c * b \<longleftrightarrow> c = 0 \<or> a dvd b" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 541 | proof - | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 542 | have "c * a dvd c * b \<longleftrightarrow> (\<exists>k. b * c = (a * k) * c)" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 543 | unfolding dvd_def by (simp add: ac_simps) | 
| 29981 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 544 | also have "(\<exists>k. b * c = (a * k) * c) \<longleftrightarrow> c = 0 \<or> a dvd b" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 545 | unfolding dvd_def by simp | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 546 | finally show ?thesis . | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 547 | qed | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 548 | |
| 60516 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 549 | lemma square_eq_iff: "a * a = b * b \<longleftrightarrow> a = b \<or> a = - b" | 
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 550 | proof | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 551 | assume "a * a = b * b" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 552 | then have "(a - b) * (a + b) = 0" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 553 | by (simp add: algebra_simps) | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 554 | then show "a = b \<or> a = - b" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 555 | by (simp add: eq_neg_iff_add_eq_0) | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 556 | next | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 557 | assume "a = b \<or> a = - b" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 558 | then show "a * a = b * b" by auto | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 559 | qed | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 560 | |
| 25186 | 561 | end | 
| 25152 | 562 | |
| 60758 | 563 | text \<open> | 
| 35302 | 564 | The theory of partially ordered rings is taken from the books: | 
| 565 |   \begin{itemize}
 | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 566 |   \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979
 | 
| 35302 | 567 |   \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
 | 
| 568 |   \end{itemize}
 | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 569 | Most of the used notions can also be looked up in | 
| 35302 | 570 |   \begin{itemize}
 | 
| 54703 | 571 |   \item @{url "http://www.mathworld.com"} by Eric Weisstein et. al.
 | 
| 35302 | 572 |   \item \emph{Algebra I} by van der Waerden, Springer.
 | 
| 573 |   \end{itemize}
 | |
| 60758 | 574 | \<close> | 
| 35302 | 575 | |
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 576 | class divide = | 
| 60429 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 haftmann parents: 
60353diff
changeset | 577 | fixes divide :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "div" 70) | 
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 578 | |
| 60758 | 579 | setup \<open>Sign.add_const_constraint (@{const_name "divide"}, SOME @{typ "'a \<Rightarrow> 'a \<Rightarrow> 'a"})\<close>
 | 
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 580 | |
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 581 | context semiring | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 582 | begin | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 583 | |
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 584 | lemma [field_simps]: | 
| 60429 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 haftmann parents: 
60353diff
changeset | 585 | shows distrib_left_NO_MATCH: "NO_MATCH (x div y) a \<Longrightarrow> a * (b + c) = a * b + a * c" | 
| 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 haftmann parents: 
60353diff
changeset | 586 | and distrib_right_NO_MATCH: "NO_MATCH (x div y) c \<Longrightarrow> (a + b) * c = a * c + b * c" | 
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 587 | by (rule distrib_left distrib_right)+ | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 588 | |
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 589 | end | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 590 | |
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 591 | context ring | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 592 | begin | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 593 | |
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 594 | lemma [field_simps]: | 
| 60429 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 haftmann parents: 
60353diff
changeset | 595 | shows left_diff_distrib_NO_MATCH: "NO_MATCH (x div y) c \<Longrightarrow> (a - b) * c = a * c - b * c" | 
| 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 haftmann parents: 
60353diff
changeset | 596 | and right_diff_distrib_NO_MATCH: "NO_MATCH (x div y) a \<Longrightarrow> a * (b - c) = a * b - a * c" | 
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 597 | by (rule left_diff_distrib right_diff_distrib)+ | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 598 | |
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 599 | end | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 600 | |
| 60758 | 601 | setup \<open>Sign.add_const_constraint (@{const_name "divide"}, SOME @{typ "'a::divide \<Rightarrow> 'a \<Rightarrow> 'a"})\<close>
 | 
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 602 | |
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 603 | class semidom_divide = semidom + divide + | 
| 60429 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 haftmann parents: 
60353diff
changeset | 604 | assumes nonzero_mult_divide_cancel_right [simp]: "b \<noteq> 0 \<Longrightarrow> (a * b) div b = a" | 
| 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 haftmann parents: 
60353diff
changeset | 605 | assumes divide_zero [simp]: "a div 0 = 0" | 
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 606 | begin | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 607 | |
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 608 | lemma nonzero_mult_divide_cancel_left [simp]: | 
| 60429 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 haftmann parents: 
60353diff
changeset | 609 | "a \<noteq> 0 \<Longrightarrow> (a * b) div a = b" | 
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 610 | using nonzero_mult_divide_cancel_right [of a b] by (simp add: ac_simps) | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 611 | |
| 60516 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 612 | subclass semiring_no_zero_divisors_cancel | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 613 | proof | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 614 | fix a b c | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 615 |   { fix a b c
 | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 616 | show "a * c = b * c \<longleftrightarrow> c = 0 \<or> a = b" | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 617 | proof (cases "c = 0") | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 618 | case True then show ?thesis by simp | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 619 | next | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 620 | case False | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 621 |       { assume "a * c = b * c"
 | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 622 | then have "a * c div c = b * c div c" | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 623 | by simp | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 624 | with False have "a = b" | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 625 | by simp | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 626 | } then show ?thesis by auto | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 627 | qed | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 628 | } | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 629 | from this [of a c b] | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 630 | show "c * a = c * b \<longleftrightarrow> c = 0 \<or> a = b" | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 631 | by (simp add: ac_simps) | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 632 | qed | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 633 | |
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 634 | lemma div_self [simp]: | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 635 | assumes "a \<noteq> 0" | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 636 | shows "a div a = 1" | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 637 | using assms nonzero_mult_divide_cancel_left [of a 1] by simp | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 638 | |
| 60570 | 639 | lemma divide_zero_left [simp]: | 
| 640 | "0 div a = 0" | |
| 641 | proof (cases "a = 0") | |
| 642 | case True then show ?thesis by simp | |
| 643 | next | |
| 644 | case False then have "a * 0 div a = 0" | |
| 645 | by (rule nonzero_mult_divide_cancel_left) | |
| 646 | then show ?thesis by simp | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 647 | qed | 
| 60570 | 648 | |
| 60690 | 649 | lemma divide_1 [simp]: | 
| 650 | "a div 1 = a" | |
| 651 | using nonzero_mult_divide_cancel_left [of 1 a] by simp | |
| 652 | ||
| 60867 | 653 | end | 
| 654 | ||
| 655 | class idom_divide = idom + semidom_divide | |
| 656 | ||
| 657 | class algebraic_semidom = semidom_divide | |
| 658 | begin | |
| 659 | ||
| 660 | text \<open> | |
| 661 |   Class @{class algebraic_semidom} enriches a integral domain
 | |
| 662 | by notions from algebra, like units in a ring. | |
| 663 | It is a separate class to avoid spoiling fields with notions | |
| 664 | which are degenerated there. | |
| 665 | \<close> | |
| 666 | ||
| 60690 | 667 | lemma dvd_times_left_cancel_iff [simp]: | 
| 668 | assumes "a \<noteq> 0" | |
| 669 | shows "a * b dvd a * c \<longleftrightarrow> b dvd c" (is "?P \<longleftrightarrow> ?Q") | |
| 670 | proof | |
| 671 | assume ?P then obtain d where "a * c = a * b * d" .. | |
| 672 | with assms have "c = b * d" by (simp add: ac_simps) | |
| 673 | then show ?Q .. | |
| 674 | next | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 675 | assume ?Q then obtain d where "c = b * d" .. | 
| 60690 | 676 | then have "a * c = a * b * d" by (simp add: ac_simps) | 
| 677 | then show ?P .. | |
| 678 | qed | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 679 | |
| 60690 | 680 | lemma dvd_times_right_cancel_iff [simp]: | 
| 681 | assumes "a \<noteq> 0" | |
| 682 | shows "b * a dvd c * a \<longleftrightarrow> b dvd c" (is "?P \<longleftrightarrow> ?Q") | |
| 683 | using dvd_times_left_cancel_iff [of a b c] assms by (simp add: ac_simps) | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 684 | |
| 60690 | 685 | lemma div_dvd_iff_mult: | 
| 686 | assumes "b \<noteq> 0" and "b dvd a" | |
| 687 | shows "a div b dvd c \<longleftrightarrow> a dvd c * b" | |
| 688 | proof - | |
| 689 | from \<open>b dvd a\<close> obtain d where "a = b * d" .. | |
| 690 | with \<open>b \<noteq> 0\<close> show ?thesis by (simp add: ac_simps) | |
| 691 | qed | |
| 692 | ||
| 693 | lemma dvd_div_iff_mult: | |
| 694 | assumes "c \<noteq> 0" and "c dvd b" | |
| 695 | shows "a dvd b div c \<longleftrightarrow> a * c dvd b" | |
| 696 | proof - | |
| 697 | from \<open>c dvd b\<close> obtain d where "b = c * d" .. | |
| 698 | with \<open>c \<noteq> 0\<close> show ?thesis by (simp add: mult.commute [of a]) | |
| 699 | qed | |
| 700 | ||
| 60867 | 701 | lemma div_dvd_div [simp]: | 
| 702 | assumes "a dvd b" and "a dvd c" | |
| 703 | shows "b div a dvd c div a \<longleftrightarrow> b dvd c" | |
| 704 | proof (cases "a = 0") | |
| 705 | case True with assms show ?thesis by simp | |
| 706 | next | |
| 707 | case False | |
| 708 | moreover from assms obtain k l where "b = a * k" and "c = a * l" | |
| 709 | by (auto elim!: dvdE) | |
| 710 | ultimately show ?thesis by simp | |
| 711 | qed | |
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 712 | |
| 60867 | 713 | lemma div_add [simp]: | 
| 714 | assumes "c dvd a" and "c dvd b" | |
| 715 | shows "(a + b) div c = a div c + b div c" | |
| 716 | proof (cases "c = 0") | |
| 717 | case True then show ?thesis by simp | |
| 718 | next | |
| 719 | case False | |
| 720 | moreover from assms obtain k l where "a = c * k" and "b = c * l" | |
| 721 | by (auto elim!: dvdE) | |
| 722 | moreover have "c * k + c * l = c * (k + l)" | |
| 723 | by (simp add: algebra_simps) | |
| 724 | ultimately show ?thesis | |
| 725 | by simp | |
| 726 | qed | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 727 | |
| 60867 | 728 | lemma div_mult_div_if_dvd: | 
| 729 | assumes "b dvd a" and "d dvd c" | |
| 730 | shows "(a div b) * (c div d) = (a * c) div (b * d)" | |
| 731 | proof (cases "b = 0 \<or> c = 0") | |
| 732 | case True with assms show ?thesis by auto | |
| 733 | next | |
| 734 | case False | |
| 735 | moreover from assms obtain k l where "a = b * k" and "c = d * l" | |
| 736 | by (auto elim!: dvdE) | |
| 737 | moreover have "b * k * (d * l) div (b * d) = (b * d) * (k * l) div (b * d)" | |
| 738 | by (simp add: ac_simps) | |
| 739 | ultimately show ?thesis by simp | |
| 740 | qed | |
| 741 | ||
| 742 | lemma dvd_div_eq_mult: | |
| 743 | assumes "a \<noteq> 0" and "a dvd b" | |
| 744 | shows "b div a = c \<longleftrightarrow> b = c * a" | |
| 745 | proof | |
| 746 | assume "b = c * a" | |
| 747 | then show "b div a = c" by (simp add: assms) | |
| 748 | next | |
| 749 | assume "b div a = c" | |
| 750 | then have "b div a * a = c * a" by simp | |
| 751 | moreover from \<open>a \<noteq> 0\<close> \<open>a dvd b\<close> have "b div a * a = b" | |
| 752 | by (auto elim!: dvdE simp add: ac_simps) | |
| 753 | ultimately show "b = c * a" by simp | |
| 754 | qed | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 755 | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 756 | lemma dvd_div_mult_self [simp]: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 757 | "a dvd b \<Longrightarrow> b div a * a = b" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 758 | by (cases "a = 0") (auto elim: dvdE simp add: ac_simps) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 759 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 760 | lemma dvd_mult_div_cancel [simp]: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 761 | "a dvd b \<Longrightarrow> a * (b div a) = b" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 762 | using dvd_div_mult_self [of a b] by (simp add: ac_simps) | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 763 | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 764 | lemma div_mult_swap: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 765 | assumes "c dvd b" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 766 | shows "a * (b div c) = (a * b) div c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 767 | proof (cases "c = 0") | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 768 | case True then show ?thesis by simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 769 | next | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 770 | case False from assms obtain d where "b = c * d" .. | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 771 | moreover from False have "a * divide (d * c) c = ((a * d) * c) div c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 772 | by simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 773 | ultimately show ?thesis by (simp add: ac_simps) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 774 | qed | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 775 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 776 | lemma dvd_div_mult: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 777 | assumes "c dvd b" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 778 | shows "b div c * a = (b * a) div c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 779 | using assms div_mult_swap [of c b a] by (simp add: ac_simps) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 780 | |
| 60570 | 781 | lemma dvd_div_mult2_eq: | 
| 782 | assumes "b * c dvd a" | |
| 783 | shows "a div (b * c) = a div b div c" | |
| 784 | using assms proof | |
| 785 | fix k | |
| 786 | assume "a = b * c * k" | |
| 787 | then show ?thesis | |
| 788 | by (cases "b = 0 \<or> c = 0") (auto, simp add: ac_simps) | |
| 789 | qed | |
| 790 | ||
| 60867 | 791 | lemma dvd_div_div_eq_mult: | 
| 792 | assumes "a \<noteq> 0" "c \<noteq> 0" and "a dvd b" "c dvd d" | |
| 793 | shows "b div a = d div c \<longleftrightarrow> b * c = a * d" (is "?P \<longleftrightarrow> ?Q") | |
| 794 | proof - | |
| 795 | from assms have "a * c \<noteq> 0" by simp | |
| 796 | then have "?P \<longleftrightarrow> b div a * (a * c) = d div c * (a * c)" | |
| 797 | by simp | |
| 798 | also have "\<dots> \<longleftrightarrow> (a * (b div a)) * c = (c * (d div c)) * a" | |
| 799 | by (simp add: ac_simps) | |
| 800 | also have "\<dots> \<longleftrightarrow> (a * b div a) * c = (c * d div c) * a" | |
| 801 | using assms by (simp add: div_mult_swap) | |
| 802 | also have "\<dots> \<longleftrightarrow> ?Q" | |
| 803 | using assms by (simp add: ac_simps) | |
| 804 | finally show ?thesis . | |
| 805 | qed | |
| 806 | ||
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 807 | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 808 | text \<open>Units: invertible elements in a ring\<close> | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 809 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 810 | abbreviation is_unit :: "'a \<Rightarrow> bool" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 811 | where | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 812 | "is_unit a \<equiv> a dvd 1" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 813 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 814 | lemma not_is_unit_0 [simp]: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 815 | "\<not> is_unit 0" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 816 | by simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 817 | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 818 | lemma unit_imp_dvd [dest]: | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 819 | "is_unit b \<Longrightarrow> b dvd a" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 820 | by (rule dvd_trans [of _ 1]) simp_all | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 821 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 822 | lemma unit_dvdE: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 823 | assumes "is_unit a" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 824 | obtains c where "a \<noteq> 0" and "b = a * c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 825 | proof - | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 826 | from assms have "a dvd b" by auto | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 827 | then obtain c where "b = a * c" .. | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 828 | moreover from assms have "a \<noteq> 0" by auto | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 829 | ultimately show thesis using that by blast | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 830 | qed | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 831 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 832 | lemma dvd_unit_imp_unit: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 833 | "a dvd b \<Longrightarrow> is_unit b \<Longrightarrow> is_unit a" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 834 | by (rule dvd_trans) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 835 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 836 | lemma unit_div_1_unit [simp, intro]: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 837 | assumes "is_unit a" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 838 | shows "is_unit (1 div a)" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 839 | proof - | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 840 | from assms have "1 = 1 div a * a" by simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 841 | then show "is_unit (1 div a)" by (rule dvdI) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 842 | qed | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 843 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 844 | lemma is_unitE [elim?]: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 845 | assumes "is_unit a" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 846 | obtains b where "a \<noteq> 0" and "b \<noteq> 0" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 847 | and "is_unit b" and "1 div a = b" and "1 div b = a" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 848 | and "a * b = 1" and "c div a = c * b" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 849 | proof (rule that) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 850 | def b \<equiv> "1 div a" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 851 | then show "1 div a = b" by simp | 
| 60758 | 852 | from b_def \<open>is_unit a\<close> show "is_unit b" by simp | 
| 853 | from \<open>is_unit a\<close> and \<open>is_unit b\<close> show "a \<noteq> 0" and "b \<noteq> 0" by auto | |
| 854 | from b_def \<open>is_unit a\<close> show "a * b = 1" by simp | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 855 | then have "1 = a * b" .. | 
| 60758 | 856 | with b_def \<open>b \<noteq> 0\<close> show "1 div b = a" by simp | 
| 857 | from \<open>is_unit a\<close> have "a dvd c" .. | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 858 | then obtain d where "c = a * d" .. | 
| 60758 | 859 | with \<open>a \<noteq> 0\<close> \<open>a * b = 1\<close> show "c div a = c * b" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 860 | by (simp add: mult.assoc mult.left_commute [of a]) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 861 | qed | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 862 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 863 | lemma unit_prod [intro]: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 864 | "is_unit a \<Longrightarrow> is_unit b \<Longrightarrow> is_unit (a * b)" | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 865 | by (subst mult_1_left [of 1, symmetric]) (rule mult_dvd_mono) | 
| 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 866 | |
| 62366 | 867 | lemma is_unit_mult_iff: | 
| 868 | "is_unit (a * b) \<longleftrightarrow> is_unit a \<and> is_unit b" (is "?P \<longleftrightarrow> ?Q") | |
| 869 | by (auto dest: dvd_mult_left dvd_mult_right) | |
| 870 | ||
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 871 | lemma unit_div [intro]: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 872 | "is_unit a \<Longrightarrow> is_unit b \<Longrightarrow> is_unit (a div b)" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 873 | by (erule is_unitE [of b a]) (simp add: ac_simps unit_prod) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 874 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 875 | lemma mult_unit_dvd_iff: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 876 | assumes "is_unit b" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 877 | shows "a * b dvd c \<longleftrightarrow> a dvd c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 878 | proof | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 879 | assume "a * b dvd c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 880 | with assms show "a dvd c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 881 | by (simp add: dvd_mult_left) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 882 | next | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 883 | assume "a dvd c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 884 | then obtain k where "c = a * k" .. | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 885 | with assms have "c = (a * b) * (1 div b * k)" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 886 | by (simp add: mult_ac) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 887 | then show "a * b dvd c" by (rule dvdI) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 888 | qed | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 889 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 890 | lemma dvd_mult_unit_iff: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 891 | assumes "is_unit b" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 892 | shows "a dvd c * b \<longleftrightarrow> a dvd c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 893 | proof | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 894 | assume "a dvd c * b" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 895 | with assms have "c * b dvd c * (b * (1 div b))" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 896 | by (subst mult_assoc [symmetric]) simp | 
| 60758 | 897 | also from \<open>is_unit b\<close> have "b * (1 div b) = 1" by (rule is_unitE) simp | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 898 | finally have "c * b dvd c" by simp | 
| 60758 | 899 | with \<open>a dvd c * b\<close> show "a dvd c" by (rule dvd_trans) | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 900 | next | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 901 | assume "a dvd c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 902 | then show "a dvd c * b" by simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 903 | qed | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 904 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 905 | lemma div_unit_dvd_iff: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 906 | "is_unit b \<Longrightarrow> a div b dvd c \<longleftrightarrow> a dvd c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 907 | by (erule is_unitE [of _ a]) (auto simp add: mult_unit_dvd_iff) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 908 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 909 | lemma dvd_div_unit_iff: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 910 | "is_unit b \<Longrightarrow> a dvd c div b \<longleftrightarrow> a dvd c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 911 | by (erule is_unitE [of _ c]) (simp add: dvd_mult_unit_iff) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 912 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 913 | lemmas unit_dvd_iff = mult_unit_dvd_iff div_unit_dvd_iff | 
| 61799 | 914 | dvd_mult_unit_iff dvd_div_unit_iff \<comment> \<open>FIXME consider fact collection\<close> | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 915 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 916 | lemma unit_mult_div_div [simp]: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 917 | "is_unit a \<Longrightarrow> b * (1 div a) = b div a" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 918 | by (erule is_unitE [of _ b]) simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 919 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 920 | lemma unit_div_mult_self [simp]: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 921 | "is_unit a \<Longrightarrow> b div a * a = b" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 922 | by (rule dvd_div_mult_self) auto | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 923 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 924 | lemma unit_div_1_div_1 [simp]: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 925 | "is_unit a \<Longrightarrow> 1 div (1 div a) = a" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 926 | by (erule is_unitE) simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 927 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 928 | lemma unit_div_mult_swap: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 929 | "is_unit c \<Longrightarrow> a * (b div c) = (a * b) div c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 930 | by (erule unit_dvdE [of _ b]) (simp add: mult.left_commute [of _ c]) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 931 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 932 | lemma unit_div_commute: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 933 | "is_unit b \<Longrightarrow> (a div b) * c = (a * c) div b" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 934 | using unit_div_mult_swap [of b c a] by (simp add: ac_simps) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 935 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 936 | lemma unit_eq_div1: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 937 | "is_unit b \<Longrightarrow> a div b = c \<longleftrightarrow> a = c * b" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 938 | by (auto elim: is_unitE) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 939 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 940 | lemma unit_eq_div2: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 941 | "is_unit b \<Longrightarrow> a = c div b \<longleftrightarrow> a * b = c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 942 | using unit_eq_div1 [of b c a] by auto | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 943 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 944 | lemma unit_mult_left_cancel: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 945 | assumes "is_unit a" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 946 | shows "a * b = a * c \<longleftrightarrow> b = c" (is "?P \<longleftrightarrow> ?Q") | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 947 | using assms mult_cancel_left [of a b c] by auto | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 948 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 949 | lemma unit_mult_right_cancel: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 950 | "is_unit a \<Longrightarrow> b * a = c * a \<longleftrightarrow> b = c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 951 | using unit_mult_left_cancel [of a b c] by (auto simp add: ac_simps) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 952 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 953 | lemma unit_div_cancel: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 954 | assumes "is_unit a" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 955 | shows "b div a = c div a \<longleftrightarrow> b = c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 956 | proof - | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 957 | from assms have "is_unit (1 div a)" by simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 958 | then have "b * (1 div a) = c * (1 div a) \<longleftrightarrow> b = c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 959 | by (rule unit_mult_right_cancel) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 960 | with assms show ?thesis by simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 961 | qed | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 962 | |
| 60570 | 963 | lemma is_unit_div_mult2_eq: | 
| 964 | assumes "is_unit b" and "is_unit c" | |
| 965 | shows "a div (b * c) = a div b div c" | |
| 966 | proof - | |
| 967 | from assms have "is_unit (b * c)" by (simp add: unit_prod) | |
| 968 | then have "b * c dvd a" | |
| 969 | by (rule unit_imp_dvd) | |
| 970 | then show ?thesis | |
| 971 | by (rule dvd_div_mult2_eq) | |
| 972 | qed | |
| 973 | ||
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 974 | lemmas unit_simps = mult_unit_dvd_iff div_unit_dvd_iff dvd_mult_unit_iff | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 975 | dvd_div_unit_iff unit_div_mult_swap unit_div_commute | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 976 | unit_mult_left_cancel unit_mult_right_cancel unit_div_cancel | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 977 | unit_eq_div1 unit_eq_div2 | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 978 | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 979 | lemma is_unit_divide_mult_cancel_left: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 980 | assumes "a \<noteq> 0" and "is_unit b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 981 | shows "a div (a * b) = 1 div b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 982 | proof - | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 983 | from assms have "a div (a * b) = a div a div b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 984 | by (simp add: mult_unit_dvd_iff dvd_div_mult2_eq) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 985 | with assms show ?thesis by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 986 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 987 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 988 | lemma is_unit_divide_mult_cancel_right: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 989 | assumes "a \<noteq> 0" and "is_unit b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 990 | shows "a div (b * a) = 1 div b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 991 | using assms is_unit_divide_mult_cancel_left [of a b] by (simp add: ac_simps) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 992 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 993 | end | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 994 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 995 | class normalization_semidom = algebraic_semidom + | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 996 | fixes normalize :: "'a \<Rightarrow> 'a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 997 | and unit_factor :: "'a \<Rightarrow> 'a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 998 | assumes unit_factor_mult_normalize [simp]: "unit_factor a * normalize a = a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 999 | assumes normalize_0 [simp]: "normalize 0 = 0" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1000 | and unit_factor_0 [simp]: "unit_factor 0 = 0" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1001 | assumes is_unit_normalize: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1002 | "is_unit a \<Longrightarrow> normalize a = 1" | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1003 | assumes unit_factor_is_unit [iff]: | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1004 | "a \<noteq> 0 \<Longrightarrow> is_unit (unit_factor a)" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1005 | assumes unit_factor_mult: "unit_factor (a * b) = unit_factor a * unit_factor b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1006 | begin | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1007 | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1008 | text \<open> | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1009 |   Class @{class normalization_semidom} cultivates the idea that
 | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1010 | each integral domain can be split into equivalence classes | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1011 | whose representants are associated, i.e. divide each other. | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1012 |   @{const normalize} specifies a canonical representant for each equivalence
 | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1013 | class. The rationale behind this is that it is easier to reason about equality | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1014 | than equivalences, hence we prefer to think about equality of normalized | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1015 | values rather than associated elements. | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1016 | \<close> | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1017 | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1018 | lemma unit_factor_dvd [simp]: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1019 | "a \<noteq> 0 \<Longrightarrow> unit_factor a dvd b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1020 | by (rule unit_imp_dvd) simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1021 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1022 | lemma unit_factor_self [simp]: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1023 | "unit_factor a dvd a" | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1024 | by (cases "a = 0") simp_all | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1025 | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1026 | lemma normalize_mult_unit_factor [simp]: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1027 | "normalize a * unit_factor a = a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1028 | using unit_factor_mult_normalize [of a] by (simp add: ac_simps) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1029 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1030 | lemma normalize_eq_0_iff [simp]: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1031 | "normalize a = 0 \<longleftrightarrow> a = 0" (is "?P \<longleftrightarrow> ?Q") | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1032 | proof | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1033 | assume ?P | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1034 | moreover have "unit_factor a * normalize a = a" by simp | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1035 | ultimately show ?Q by simp | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1036 | next | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1037 | assume ?Q then show ?P by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1038 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1039 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1040 | lemma unit_factor_eq_0_iff [simp]: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1041 | "unit_factor a = 0 \<longleftrightarrow> a = 0" (is "?P \<longleftrightarrow> ?Q") | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1042 | proof | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1043 | assume ?P | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1044 | moreover have "unit_factor a * normalize a = a" by simp | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1045 | ultimately show ?Q by simp | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1046 | next | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1047 | assume ?Q then show ?P by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1048 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1049 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1050 | lemma is_unit_unit_factor: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1051 | assumes "is_unit a" shows "unit_factor a = a" | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1052 | proof - | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1053 | from assms have "normalize a = 1" by (rule is_unit_normalize) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1054 | moreover from unit_factor_mult_normalize have "unit_factor a * normalize a = a" . | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1055 | ultimately show ?thesis by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1056 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1057 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1058 | lemma unit_factor_1 [simp]: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1059 | "unit_factor 1 = 1" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1060 | by (rule is_unit_unit_factor) simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1061 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1062 | lemma normalize_1 [simp]: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1063 | "normalize 1 = 1" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1064 | by (rule is_unit_normalize) simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1065 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1066 | lemma normalize_1_iff: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1067 | "normalize a = 1 \<longleftrightarrow> is_unit a" (is "?P \<longleftrightarrow> ?Q") | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1068 | proof | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1069 | assume ?Q then show ?P by (rule is_unit_normalize) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1070 | next | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1071 | assume ?P | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1072 | then have "a \<noteq> 0" by auto | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1073 | from \<open>?P\<close> have "unit_factor a * normalize a = unit_factor a * 1" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1074 | by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1075 | then have "unit_factor a = a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1076 | by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1077 | moreover have "is_unit (unit_factor a)" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1078 | using \<open>a \<noteq> 0\<close> by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1079 | ultimately show ?Q by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1080 | qed | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1081 | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1082 | lemma div_normalize [simp]: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1083 | "a div normalize a = unit_factor a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1084 | proof (cases "a = 0") | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1085 | case True then show ?thesis by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1086 | next | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1087 | case False then have "normalize a \<noteq> 0" by simp | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1088 | with nonzero_mult_divide_cancel_right | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1089 | have "unit_factor a * normalize a div normalize a = unit_factor a" by blast | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1090 | then show ?thesis by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1091 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1092 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1093 | lemma div_unit_factor [simp]: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1094 | "a div unit_factor a = normalize a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1095 | proof (cases "a = 0") | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1096 | case True then show ?thesis by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1097 | next | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1098 | case False then have "unit_factor a \<noteq> 0" by simp | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1099 | with nonzero_mult_divide_cancel_left | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1100 | have "unit_factor a * normalize a div unit_factor a = normalize a" by blast | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1101 | then show ?thesis by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1102 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1103 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1104 | lemma normalize_div [simp]: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1105 | "normalize a div a = 1 div unit_factor a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1106 | proof (cases "a = 0") | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1107 | case True then show ?thesis by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1108 | next | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1109 | case False | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1110 | have "normalize a div a = normalize a div (unit_factor a * normalize a)" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1111 | by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1112 | also have "\<dots> = 1 div unit_factor a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1113 | using False by (subst is_unit_divide_mult_cancel_right) simp_all | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1114 | finally show ?thesis . | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1115 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1116 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1117 | lemma mult_one_div_unit_factor [simp]: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1118 | "a * (1 div unit_factor b) = a div unit_factor b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1119 | by (cases "b = 0") simp_all | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1120 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1121 | lemma normalize_mult: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1122 | "normalize (a * b) = normalize a * normalize b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1123 | proof (cases "a = 0 \<or> b = 0") | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1124 | case True then show ?thesis by auto | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1125 | next | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1126 | case False | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1127 | from unit_factor_mult_normalize have "unit_factor (a * b) * normalize (a * b) = a * b" . | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1128 | then have "normalize (a * b) = a * b div unit_factor (a * b)" by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1129 | also have "\<dots> = a * b div unit_factor (b * a)" by (simp add: ac_simps) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1130 | also have "\<dots> = a * b div unit_factor b div unit_factor a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1131 | using False by (simp add: unit_factor_mult is_unit_div_mult2_eq [symmetric]) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1132 | also have "\<dots> = a * (b div unit_factor b) div unit_factor a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1133 | using False by (subst unit_div_mult_swap) simp_all | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1134 | also have "\<dots> = normalize a * normalize b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1135 | using False by (simp add: mult.commute [of a] mult.commute [of "normalize a"] unit_div_mult_swap [symmetric]) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1136 | finally show ?thesis . | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1137 | qed | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1138 | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1139 | lemma unit_factor_idem [simp]: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1140 | "unit_factor (unit_factor a) = unit_factor a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1141 | by (cases "a = 0") (auto intro: is_unit_unit_factor) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1142 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1143 | lemma normalize_unit_factor [simp]: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1144 | "a \<noteq> 0 \<Longrightarrow> normalize (unit_factor a) = 1" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1145 | by (rule is_unit_normalize) simp | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1146 | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1147 | lemma normalize_idem [simp]: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1148 | "normalize (normalize a) = normalize a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1149 | proof (cases "a = 0") | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1150 | case True then show ?thesis by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1151 | next | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1152 | case False | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1153 | have "normalize a = normalize (unit_factor a * normalize a)" by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1154 | also have "\<dots> = normalize (unit_factor a) * normalize (normalize a)" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1155 | by (simp only: normalize_mult) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1156 | finally show ?thesis using False by simp_all | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1157 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1158 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1159 | lemma unit_factor_normalize [simp]: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1160 | assumes "a \<noteq> 0" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1161 | shows "unit_factor (normalize a) = 1" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1162 | proof - | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1163 | from assms have "normalize a \<noteq> 0" by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1164 | have "unit_factor (normalize a) * normalize (normalize a) = normalize a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1165 | by (simp only: unit_factor_mult_normalize) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1166 | then have "unit_factor (normalize a) * normalize a = normalize a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1167 | by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1168 | with \<open>normalize a \<noteq> 0\<close> | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1169 | have "unit_factor (normalize a) * normalize a div normalize a = normalize a div normalize a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1170 | by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1171 | with \<open>normalize a \<noteq> 0\<close> | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1172 | show ?thesis by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1173 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1174 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1175 | lemma dvd_unit_factor_div: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1176 | assumes "b dvd a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1177 | shows "unit_factor (a div b) = unit_factor a div unit_factor b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1178 | proof - | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1179 | from assms have "a = a div b * b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1180 | by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1181 | then have "unit_factor a = unit_factor (a div b * b)" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1182 | by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1183 | then show ?thesis | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1184 | by (cases "b = 0") (simp_all add: unit_factor_mult) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1185 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1186 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1187 | lemma dvd_normalize_div: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1188 | assumes "b dvd a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1189 | shows "normalize (a div b) = normalize a div normalize b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1190 | proof - | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1191 | from assms have "a = a div b * b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1192 | by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1193 | then have "normalize a = normalize (a div b * b)" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1194 | by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1195 | then show ?thesis | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1196 | by (cases "b = 0") (simp_all add: normalize_mult) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1197 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1198 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1199 | lemma normalize_dvd_iff [simp]: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1200 | "normalize a dvd b \<longleftrightarrow> a dvd b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1201 | proof - | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1202 | have "normalize a dvd b \<longleftrightarrow> unit_factor a * normalize a dvd b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1203 | using mult_unit_dvd_iff [of "unit_factor a" "normalize a" b] | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1204 | by (cases "a = 0") simp_all | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1205 | then show ?thesis by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1206 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1207 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1208 | lemma dvd_normalize_iff [simp]: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1209 | "a dvd normalize b \<longleftrightarrow> a dvd b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1210 | proof - | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1211 | have "a dvd normalize b \<longleftrightarrow> a dvd normalize b * unit_factor b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1212 | using dvd_mult_unit_iff [of "unit_factor b" a "normalize b"] | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1213 | by (cases "b = 0") simp_all | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1214 | then show ?thesis by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1215 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1216 | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1217 | text \<open> | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1218 | We avoid an explicit definition of associated elements but prefer | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1219 | explicit normalisation instead. In theory we could define an abbreviation | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1220 |   like @{prop "associated a b \<longleftrightarrow> normalize a = normalize b"} but this is
 | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1221 | counterproductive without suggestive infix syntax, which we do not want | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1222 | to sacrifice for this purpose here. | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1223 | \<close> | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1224 | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1225 | lemma associatedI: | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1226 | assumes "a dvd b" and "b dvd a" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1227 | shows "normalize a = normalize b" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1228 | proof (cases "a = 0 \<or> b = 0") | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1229 | case True with assms show ?thesis by auto | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1230 | next | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1231 | case False | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1232 | from \<open>a dvd b\<close> obtain c where b: "b = a * c" .. | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1233 | moreover from \<open>b dvd a\<close> obtain d where a: "a = b * d" .. | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1234 | ultimately have "b * 1 = b * (c * d)" by (simp add: ac_simps) | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1235 | with False have "1 = c * d" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1236 | unfolding mult_cancel_left by simp | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1237 | then have "is_unit c" and "is_unit d" by auto | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1238 | with a b show ?thesis by (simp add: normalize_mult is_unit_normalize) | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1239 | qed | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1240 | |
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1241 | lemma associatedD1: | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1242 | "normalize a = normalize b \<Longrightarrow> a dvd b" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1243 | using dvd_normalize_iff [of _ b, symmetric] normalize_dvd_iff [of a _, symmetric] | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1244 | by simp | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1245 | |
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1246 | lemma associatedD2: | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1247 | "normalize a = normalize b \<Longrightarrow> b dvd a" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1248 | using dvd_normalize_iff [of _ a, symmetric] normalize_dvd_iff [of b _, symmetric] | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1249 | by simp | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1250 | |
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1251 | lemma associated_unit: | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1252 | "normalize a = normalize b \<Longrightarrow> is_unit a \<Longrightarrow> is_unit b" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1253 | using dvd_unit_imp_unit by (auto dest!: associatedD1 associatedD2) | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1254 | |
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1255 | lemma associated_iff_dvd: | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1256 | "normalize a = normalize b \<longleftrightarrow> a dvd b \<and> b dvd a" (is "?P \<longleftrightarrow> ?Q") | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1257 | proof | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1258 | assume ?Q then show ?P by (auto intro!: associatedI) | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1259 | next | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1260 | assume ?P | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1261 | then have "unit_factor a * normalize a = unit_factor a * normalize b" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1262 | by simp | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1263 | then have *: "normalize b * unit_factor a = a" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1264 | by (simp add: ac_simps) | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1265 | show ?Q | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1266 | proof (cases "a = 0 \<or> b = 0") | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1267 | case True with \<open>?P\<close> show ?thesis by auto | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1268 | next | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1269 | case False | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1270 | then have "b dvd normalize b * unit_factor a" and "normalize b * unit_factor a dvd b" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1271 | by (simp_all add: mult_unit_dvd_iff dvd_mult_unit_iff) | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1272 | with * show ?thesis by simp | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1273 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1274 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1275 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1276 | lemma associated_eqI: | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1277 | assumes "a dvd b" and "b dvd a" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1278 | assumes "normalize a = a" and "normalize b = b" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1279 | shows "a = b" | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1280 | proof - | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1281 | from assms have "normalize a = normalize b" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1282 | unfolding associated_iff_dvd by simp | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1283 | with \<open>normalize a = a\<close> have "a = normalize b" by simp | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1284 | with \<open>normalize b = b\<close> show "a = b" by simp | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1285 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1286 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1287 | end | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1288 | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1289 | class ordered_semiring = semiring + ordered_comm_monoid_add + | 
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 1290 | assumes mult_left_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b" | 
| 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 1291 | assumes mult_right_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * c" | 
| 25230 | 1292 | begin | 
| 1293 | ||
| 1294 | lemma mult_mono: | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 1295 | "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * d" | 
| 25230 | 1296 | apply (erule mult_right_mono [THEN order_trans], assumption) | 
| 1297 | apply (erule mult_left_mono, assumption) | |
| 1298 | done | |
| 1299 | ||
| 1300 | lemma mult_mono': | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 1301 | "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * d" | 
| 25230 | 1302 | apply (rule mult_mono) | 
| 1303 | apply (fast intro: order_trans)+ | |
| 1304 | done | |
| 1305 | ||
| 1306 | end | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 1307 | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1308 | class ordered_semiring_0 = semiring_0 + ordered_semiring | 
| 25267 | 1309 | begin | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1310 | |
| 56536 | 1311 | lemma mult_nonneg_nonneg[simp]: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a * b" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1312 | using mult_left_mono [of 0 b a] by simp | 
| 25230 | 1313 | |
| 1314 | lemma mult_nonneg_nonpos: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> a * b \<le> 0" | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1315 | using mult_left_mono [of b 0 a] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1316 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1317 | lemma mult_nonpos_nonneg: "a \<le> 0 \<Longrightarrow> 0 \<le> b \<Longrightarrow> a * b \<le> 0" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1318 | using mult_right_mono [of a 0 b] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1319 | |
| 61799 | 1320 | text \<open>Legacy - use \<open>mult_nonpos_nonneg\<close>\<close> | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1321 | lemma mult_nonneg_nonpos2: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> b * a \<le> 0" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1322 | by (drule mult_right_mono [of b 0], auto) | 
| 25230 | 1323 | |
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1324 | lemma split_mult_neg_le: "(0 \<le> a \<and> b \<le> 0) \<or> (a \<le> 0 \<and> 0 \<le> b) \<Longrightarrow> a * b \<le> 0" | 
| 29667 | 1325 | by (auto simp add: mult_nonneg_nonpos mult_nonneg_nonpos2) | 
| 25230 | 1326 | |
| 1327 | end | |
| 1328 | ||
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1329 | class ordered_cancel_semiring = ordered_semiring + cancel_comm_monoid_add | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1330 | begin | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1331 | |
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1332 | subclass semiring_0_cancel .. | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1333 | subclass ordered_semiring_0 .. | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1334 | |
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1335 | end | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1336 | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 1337 | class linordered_semiring = ordered_semiring + linordered_cancel_ab_semigroup_add | 
| 25267 | 1338 | begin | 
| 25230 | 1339 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1340 | subclass ordered_cancel_semiring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1341 | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1342 | subclass ordered_cancel_comm_monoid_add .. | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1343 | |
| 25230 | 1344 | lemma mult_left_less_imp_less: | 
| 1345 | "c * a < c * b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b" | |
| 29667 | 1346 | by (force simp add: mult_left_mono not_le [symmetric]) | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1347 | |
| 25230 | 1348 | lemma mult_right_less_imp_less: | 
| 1349 | "a * c < b * c \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b" | |
| 29667 | 1350 | by (force simp add: mult_right_mono not_le [symmetric]) | 
| 23521 | 1351 | |
| 62608 | 1352 | lemma less_eq_add_cancel_left_greater_eq_zero [simp]: | 
| 1353 | "a \<le> a + b \<longleftrightarrow> 0 \<le> b" | |
| 1354 | using add_le_cancel_left [of a 0 b] by simp | |
| 1355 | ||
| 1356 | lemma less_eq_add_cancel_left_less_eq_zero [simp]: | |
| 1357 | "a + b \<le> a \<longleftrightarrow> b \<le> 0" | |
| 1358 | using add_le_cancel_left [of a b 0] by simp | |
| 1359 | ||
| 1360 | lemma less_eq_add_cancel_right_greater_eq_zero [simp]: | |
| 1361 | "a \<le> b + a \<longleftrightarrow> 0 \<le> b" | |
| 1362 | using add_le_cancel_right [of 0 a b] by simp | |
| 1363 | ||
| 1364 | lemma less_eq_add_cancel_right_less_eq_zero [simp]: | |
| 1365 | "b + a \<le> a \<longleftrightarrow> b \<le> 0" | |
| 1366 | using add_le_cancel_right [of b a 0] by simp | |
| 1367 | ||
| 1368 | lemma less_add_cancel_left_greater_zero [simp]: | |
| 1369 | "a < a + b \<longleftrightarrow> 0 < b" | |
| 1370 | using add_less_cancel_left [of a 0 b] by simp | |
| 1371 | ||
| 1372 | lemma less_add_cancel_left_less_zero [simp]: | |
| 1373 | "a + b < a \<longleftrightarrow> b < 0" | |
| 1374 | using add_less_cancel_left [of a b 0] by simp | |
| 1375 | ||
| 1376 | lemma less_add_cancel_right_greater_zero [simp]: | |
| 1377 | "a < b + a \<longleftrightarrow> 0 < b" | |
| 1378 | using add_less_cancel_right [of 0 a b] by simp | |
| 1379 | ||
| 1380 | lemma less_add_cancel_right_less_zero [simp]: | |
| 1381 | "b + a < a \<longleftrightarrow> b < 0" | |
| 1382 | using add_less_cancel_right [of b a 0] by simp | |
| 1383 | ||
| 25186 | 1384 | end | 
| 25152 | 1385 | |
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 1386 | class linordered_semiring_1 = linordered_semiring + semiring_1 | 
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1387 | begin | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1388 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1389 | lemma convex_bound_le: | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1390 | assumes "x \<le> a" "y \<le> a" "0 \<le> u" "0 \<le> v" "u + v = 1" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1391 | shows "u * x + v * y \<le> a" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1392 | proof- | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1393 | from assms have "u * x + v * y \<le> u * a + v * a" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1394 | by (simp add: add_mono mult_left_mono) | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 1395 | thus ?thesis using assms unfolding distrib_right[symmetric] by simp | 
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1396 | qed | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1397 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1398 | end | 
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 1399 | |
| 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 1400 | class linordered_semiring_strict = semiring + comm_monoid_add + linordered_cancel_ab_semigroup_add + | 
| 25062 | 1401 | assumes mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b" | 
| 1402 | assumes mult_strict_right_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> a * c < b * c" | |
| 25267 | 1403 | begin | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14334diff
changeset | 1404 | |
| 27516 | 1405 | subclass semiring_0_cancel .. | 
| 14940 | 1406 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1407 | subclass linordered_semiring | 
| 28823 | 1408 | proof | 
| 23550 | 1409 | fix a b c :: 'a | 
| 1410 | assume A: "a \<le> b" "0 \<le> c" | |
| 1411 | from A show "c * a \<le> c * b" | |
| 25186 | 1412 | unfolding le_less | 
| 1413 | using mult_strict_left_mono by (cases "c = 0") auto | |
| 23550 | 1414 | from A show "a * c \<le> b * c" | 
| 25152 | 1415 | unfolding le_less | 
| 25186 | 1416 | using mult_strict_right_mono by (cases "c = 0") auto | 
| 25152 | 1417 | qed | 
| 1418 | ||
| 25230 | 1419 | lemma mult_left_le_imp_le: | 
| 1420 | "c * a \<le> c * b \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b" | |
| 29667 | 1421 | by (force simp add: mult_strict_left_mono _not_less [symmetric]) | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1422 | |
| 25230 | 1423 | lemma mult_right_le_imp_le: | 
| 1424 | "a * c \<le> b * c \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b" | |
| 29667 | 1425 | by (force simp add: mult_strict_right_mono not_less [symmetric]) | 
| 25230 | 1426 | |
| 56544 | 1427 | lemma mult_pos_pos[simp]: "0 < a \<Longrightarrow> 0 < b \<Longrightarrow> 0 < a * b" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1428 | using mult_strict_left_mono [of 0 b a] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1429 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1430 | lemma mult_pos_neg: "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> a * b < 0" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1431 | using mult_strict_left_mono [of b 0 a] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1432 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1433 | lemma mult_neg_pos: "a < 0 \<Longrightarrow> 0 < b \<Longrightarrow> a * b < 0" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1434 | using mult_strict_right_mono [of a 0 b] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1435 | |
| 61799 | 1436 | text \<open>Legacy - use \<open>mult_neg_pos\<close>\<close> | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1437 | lemma mult_pos_neg2: "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> b * a < 0" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1438 | by (drule mult_strict_right_mono [of b 0], auto) | 
| 25230 | 1439 | |
| 1440 | lemma zero_less_mult_pos: | |
| 1441 | "0 < a * b \<Longrightarrow> 0 < a \<Longrightarrow> 0 < b" | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1442 | apply (cases "b\<le>0") | 
| 25230 | 1443 | apply (auto simp add: le_less not_less) | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1444 | apply (drule_tac mult_pos_neg [of a b]) | 
| 25230 | 1445 | apply (auto dest: less_not_sym) | 
| 1446 | done | |
| 1447 | ||
| 1448 | lemma zero_less_mult_pos2: | |
| 1449 | "0 < b * a \<Longrightarrow> 0 < a \<Longrightarrow> 0 < b" | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1450 | apply (cases "b\<le>0") | 
| 25230 | 1451 | apply (auto simp add: le_less not_less) | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1452 | apply (drule_tac mult_pos_neg2 [of a b]) | 
| 25230 | 1453 | apply (auto dest: less_not_sym) | 
| 1454 | done | |
| 1455 | ||
| 60758 | 1456 | text\<open>Strict monotonicity in both arguments\<close> | 
| 26193 | 1457 | lemma mult_strict_mono: | 
| 1458 | assumes "a < b" and "c < d" and "0 < b" and "0 \<le> c" | |
| 1459 | shows "a * c < b * d" | |
| 1460 | using assms apply (cases "c=0") | |
| 56544 | 1461 | apply (simp) | 
| 26193 | 1462 | apply (erule mult_strict_right_mono [THEN less_trans]) | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1463 | apply (force simp add: le_less) | 
| 26193 | 1464 | apply (erule mult_strict_left_mono, assumption) | 
| 1465 | done | |
| 1466 | ||
| 60758 | 1467 | text\<open>This weaker variant has more natural premises\<close> | 
| 26193 | 1468 | lemma mult_strict_mono': | 
| 1469 | assumes "a < b" and "c < d" and "0 \<le> a" and "0 \<le> c" | |
| 1470 | shows "a * c < b * d" | |
| 29667 | 1471 | by (rule mult_strict_mono) (insert assms, auto) | 
| 26193 | 1472 | |
| 1473 | lemma mult_less_le_imp_less: | |
| 1474 | assumes "a < b" and "c \<le> d" and "0 \<le> a" and "0 < c" | |
| 1475 | shows "a * c < b * d" | |
| 1476 | using assms apply (subgoal_tac "a * c < b * c") | |
| 1477 | apply (erule less_le_trans) | |
| 1478 | apply (erule mult_left_mono) | |
| 1479 | apply simp | |
| 1480 | apply (erule mult_strict_right_mono) | |
| 1481 | apply assumption | |
| 1482 | done | |
| 1483 | ||
| 1484 | lemma mult_le_less_imp_less: | |
| 1485 | assumes "a \<le> b" and "c < d" and "0 < a" and "0 \<le> c" | |
| 1486 | shows "a * c < b * d" | |
| 1487 | using assms apply (subgoal_tac "a * c \<le> b * c") | |
| 1488 | apply (erule le_less_trans) | |
| 1489 | apply (erule mult_strict_left_mono) | |
| 1490 | apply simp | |
| 1491 | apply (erule mult_right_mono) | |
| 1492 | apply simp | |
| 1493 | done | |
| 1494 | ||
| 25230 | 1495 | end | 
| 1496 | ||
| 35097 
4554bb2abfa3
dropped last occurence of the linlinordered accident
 haftmann parents: 
35092diff
changeset | 1497 | class linordered_semiring_1_strict = linordered_semiring_strict + semiring_1 | 
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1498 | begin | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1499 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1500 | subclass linordered_semiring_1 .. | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1501 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1502 | lemma convex_bound_lt: | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1503 | assumes "x < a" "y < a" "0 \<le> u" "0 \<le> v" "u + v = 1" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1504 | shows "u * x + v * y < a" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1505 | proof - | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1506 | from assms have "u * x + v * y < u * a + v * a" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1507 | by (cases "u = 0") | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1508 | (auto intro!: add_less_le_mono mult_strict_left_mono mult_left_mono) | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 1509 | thus ?thesis using assms unfolding distrib_right[symmetric] by simp | 
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1510 | qed | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1511 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1512 | end | 
| 33319 | 1513 | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1514 | class ordered_comm_semiring = comm_semiring_0 + ordered_ab_semigroup_add + | 
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 1515 | assumes comm_mult_left_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b" | 
| 25186 | 1516 | begin | 
| 25152 | 1517 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1518 | subclass ordered_semiring | 
| 28823 | 1519 | proof | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 1520 | fix a b c :: 'a | 
| 23550 | 1521 | assume "a \<le> b" "0 \<le> c" | 
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 1522 | thus "c * a \<le> c * b" by (rule comm_mult_left_mono) | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 1523 | thus "a * c \<le> b * c" by (simp only: mult.commute) | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 1524 | qed | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 1525 | |
| 25267 | 1526 | end | 
| 1527 | ||
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 1528 | class ordered_cancel_comm_semiring = ordered_comm_semiring + cancel_comm_monoid_add | 
| 25267 | 1529 | begin | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 1530 | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 1531 | subclass comm_semiring_0_cancel .. | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1532 | subclass ordered_comm_semiring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1533 | subclass ordered_cancel_semiring .. | 
| 25267 | 1534 | |
| 1535 | end | |
| 1536 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1537 | class linordered_comm_semiring_strict = comm_semiring_0 + linordered_cancel_ab_semigroup_add + | 
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 1538 | assumes comm_mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b" | 
| 25267 | 1539 | begin | 
| 1540 | ||
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 1541 | subclass linordered_semiring_strict | 
| 28823 | 1542 | proof | 
| 23550 | 1543 | fix a b c :: 'a | 
| 1544 | assume "a < b" "0 < c" | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 1545 | thus "c * a < c * b" by (rule comm_mult_strict_left_mono) | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56544diff
changeset | 1546 | thus "a * c < b * c" by (simp only: mult.commute) | 
| 23550 | 1547 | qed | 
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 1548 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1549 | subclass ordered_cancel_comm_semiring | 
| 28823 | 1550 | proof | 
| 23550 | 1551 | fix a b c :: 'a | 
| 1552 | assume "a \<le> b" "0 \<le> c" | |
| 1553 | thus "c * a \<le> c * b" | |
| 25186 | 1554 | unfolding le_less | 
| 26193 | 1555 | using mult_strict_left_mono by (cases "c = 0") auto | 
| 23550 | 1556 | qed | 
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 1557 | |
| 25267 | 1558 | end | 
| 25230 | 1559 | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1560 | class ordered_ring = ring + ordered_cancel_semiring | 
| 25267 | 1561 | begin | 
| 25230 | 1562 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1563 | subclass ordered_ab_group_add .. | 
| 14270 | 1564 | |
| 25230 | 1565 | lemma less_add_iff1: | 
| 1566 | "a * e + c < b * e + d \<longleftrightarrow> (a - b) * e + c < d" | |
| 29667 | 1567 | by (simp add: algebra_simps) | 
| 25230 | 1568 | |
| 1569 | lemma less_add_iff2: | |
| 1570 | "a * e + c < b * e + d \<longleftrightarrow> c < (b - a) * e + d" | |
| 29667 | 1571 | by (simp add: algebra_simps) | 
| 25230 | 1572 | |
| 1573 | lemma le_add_iff1: | |
| 1574 | "a * e + c \<le> b * e + d \<longleftrightarrow> (a - b) * e + c \<le> d" | |
| 29667 | 1575 | by (simp add: algebra_simps) | 
| 25230 | 1576 | |
| 1577 | lemma le_add_iff2: | |
| 1578 | "a * e + c \<le> b * e + d \<longleftrightarrow> c \<le> (b - a) * e + d" | |
| 29667 | 1579 | by (simp add: algebra_simps) | 
| 25230 | 1580 | |
| 1581 | lemma mult_left_mono_neg: | |
| 1582 | "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> c * a \<le> c * b" | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1583 | apply (drule mult_left_mono [of _ _ "- c"]) | 
| 35216 | 1584 | apply simp_all | 
| 25230 | 1585 | done | 
| 1586 | ||
| 1587 | lemma mult_right_mono_neg: | |
| 1588 | "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> a * c \<le> b * c" | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1589 | apply (drule mult_right_mono [of _ _ "- c"]) | 
| 35216 | 1590 | apply simp_all | 
| 25230 | 1591 | done | 
| 1592 | ||
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1593 | lemma mult_nonpos_nonpos: "a \<le> 0 \<Longrightarrow> b \<le> 0 \<Longrightarrow> 0 \<le> a * b" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1594 | using mult_right_mono_neg [of a 0 b] by simp | 
| 25230 | 1595 | |
| 1596 | lemma split_mult_pos_le: | |
| 1597 | "(0 \<le> a \<and> 0 \<le> b) \<or> (a \<le> 0 \<and> b \<le> 0) \<Longrightarrow> 0 \<le> a * b" | |
| 56536 | 1598 | by (auto simp add: mult_nonpos_nonpos) | 
| 25186 | 1599 | |
| 1600 | end | |
| 14270 | 1601 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1602 | class linordered_ring = ring + linordered_semiring + linordered_ab_group_add + abs_if | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1603 | begin | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1604 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1605 | subclass ordered_ring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1606 | |
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1607 | subclass ordered_ab_group_add_abs | 
| 28823 | 1608 | proof | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1609 | fix a b | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1610 | show "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 1611 | by (auto simp add: abs_if not_le not_less algebra_simps simp del: add.commute dest: add_neg_neg add_nonneg_nonneg) | 
| 35216 | 1612 | qed (auto simp add: abs_if) | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1613 | |
| 35631 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 1614 | lemma zero_le_square [simp]: "0 \<le> a * a" | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 1615 | using linear [of 0 a] | 
| 56536 | 1616 | by (auto simp add: mult_nonpos_nonpos) | 
| 35631 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 1617 | |
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 1618 | lemma not_square_less_zero [simp]: "\<not> (a * a < 0)" | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 1619 | by (simp add: not_less) | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 1620 | |
| 61944 | 1621 | proposition abs_eq_iff: "\<bar>x\<bar> = \<bar>y\<bar> \<longleftrightarrow> x = y \<or> x = -y" | 
| 62390 | 1622 | by (auto simp add: abs_if split: if_split_asm) | 
| 61762 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61649diff
changeset | 1623 | |
| 62347 | 1624 | lemma sum_squares_ge_zero: | 
| 1625 | "0 \<le> x * x + y * y" | |
| 1626 | by (intro add_nonneg_nonneg zero_le_square) | |
| 1627 | ||
| 1628 | lemma not_sum_squares_lt_zero: | |
| 1629 | "\<not> x * x + y * y < 0" | |
| 1630 | by (simp add: not_less sum_squares_ge_zero) | |
| 1631 | ||
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1632 | end | 
| 23521 | 1633 | |
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 1634 | class linordered_ring_strict = ring + linordered_semiring_strict | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1635 | + ordered_ab_group_add + abs_if | 
| 25230 | 1636 | begin | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
14341diff
changeset | 1637 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1638 | subclass linordered_ring .. | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1639 | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1640 | lemma mult_strict_left_mono_neg: "b < a \<Longrightarrow> c < 0 \<Longrightarrow> c * a < c * b" | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1641 | using mult_strict_left_mono [of b a "- c"] by simp | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1642 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1643 | lemma mult_strict_right_mono_neg: "b < a \<Longrightarrow> c < 0 \<Longrightarrow> a * c < b * c" | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1644 | using mult_strict_right_mono [of b a "- c"] by simp | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1645 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1646 | lemma mult_neg_neg: "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> 0 < a * b" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1647 | using mult_strict_right_mono_neg [of a 0 b] by simp | 
| 14738 | 1648 | |
| 25917 | 1649 | subclass ring_no_zero_divisors | 
| 28823 | 1650 | proof | 
| 25917 | 1651 | fix a b | 
| 1652 | assume "a \<noteq> 0" then have A: "a < 0 \<or> 0 < a" by (simp add: neq_iff) | |
| 1653 | assume "b \<noteq> 0" then have B: "b < 0 \<or> 0 < b" by (simp add: neq_iff) | |
| 1654 | have "a * b < 0 \<or> 0 < a * b" | |
| 1655 | proof (cases "a < 0") | |
| 1656 | case True note A' = this | |
| 1657 | show ?thesis proof (cases "b < 0") | |
| 1658 | case True with A' | |
| 1659 | show ?thesis by (auto dest: mult_neg_neg) | |
| 1660 | next | |
| 1661 | case False with B have "0 < b" by auto | |
| 1662 | with A' show ?thesis by (auto dest: mult_strict_right_mono) | |
| 1663 | qed | |
| 1664 | next | |
| 1665 | case False with A have A': "0 < a" by auto | |
| 1666 | show ?thesis proof (cases "b < 0") | |
| 1667 | case True with A' | |
| 1668 | show ?thesis by (auto dest: mult_strict_right_mono_neg) | |
| 1669 | next | |
| 1670 | case False with B have "0 < b" by auto | |
| 56544 | 1671 | with A' show ?thesis by auto | 
| 25917 | 1672 | qed | 
| 1673 | qed | |
| 1674 | then show "a * b \<noteq> 0" by (simp add: neq_iff) | |
| 1675 | qed | |
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1676 | |
| 56480 
093ea91498e6
field_simps: better support for negation and division, and power
 hoelzl parents: 
56217diff
changeset | 1677 | lemma zero_less_mult_iff: "0 < a * b \<longleftrightarrow> 0 < a \<and> 0 < b \<or> a < 0 \<and> b < 0" | 
| 
093ea91498e6
field_simps: better support for negation and division, and power
 hoelzl parents: 
56217diff
changeset | 1678 | by (cases a 0 b 0 rule: linorder_cases[case_product linorder_cases]) | 
| 56544 | 1679 | (auto simp add: mult_neg_neg not_less le_less dest: zero_less_mult_pos zero_less_mult_pos2) | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 1680 | |
| 56480 
093ea91498e6
field_simps: better support for negation and division, and power
 hoelzl parents: 
56217diff
changeset | 1681 | lemma zero_le_mult_iff: "0 \<le> a * b \<longleftrightarrow> 0 \<le> a \<and> 0 \<le> b \<or> a \<le> 0 \<and> b \<le> 0" | 
| 
093ea91498e6
field_simps: better support for negation and division, and power
 hoelzl parents: 
56217diff
changeset | 1682 | by (auto simp add: eq_commute [of 0] le_less not_less zero_less_mult_iff) | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 1683 | |
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 1684 | lemma mult_less_0_iff: | 
| 25917 | 1685 | "a * b < 0 \<longleftrightarrow> 0 < a \<and> b < 0 \<or> a < 0 \<and> 0 < b" | 
| 35216 | 1686 | apply (insert zero_less_mult_iff [of "-a" b]) | 
| 1687 | apply force | |
| 25917 | 1688 | done | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 1689 | |
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 1690 | lemma mult_le_0_iff: | 
| 25917 | 1691 | "a * b \<le> 0 \<longleftrightarrow> 0 \<le> a \<and> b \<le> 0 \<or> a \<le> 0 \<and> 0 \<le> b" | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1692 | apply (insert zero_le_mult_iff [of "-a" b]) | 
| 35216 | 1693 | apply force | 
| 25917 | 1694 | done | 
| 1695 | ||
| 60758 | 1696 | text\<open>Cancellation laws for @{term "c*a < c*b"} and @{term "a*c < b*c"},
 | 
| 61799 | 1697 | also with the relations \<open>\<le>\<close> and equality.\<close> | 
| 26193 | 1698 | |
| 60758 | 1699 | text\<open>These ``disjunction'' versions produce two cases when the comparison is | 
| 1700 | an assumption, but effectively four when the comparison is a goal.\<close> | |
| 26193 | 1701 | |
| 1702 | lemma mult_less_cancel_right_disj: | |
| 1703 | "a * c < b * c \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and> b < a" | |
| 1704 | apply (cases "c = 0") | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1705 | apply (auto simp add: neq_iff mult_strict_right_mono | 
| 26193 | 1706 | mult_strict_right_mono_neg) | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1707 | apply (auto simp add: not_less | 
| 26193 | 1708 | not_le [symmetric, of "a*c"] | 
| 1709 | not_le [symmetric, of a]) | |
| 1710 | apply (erule_tac [!] notE) | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1711 | apply (auto simp add: less_imp_le mult_right_mono | 
| 26193 | 1712 | mult_right_mono_neg) | 
| 1713 | done | |
| 1714 | ||
| 1715 | lemma mult_less_cancel_left_disj: | |
| 1716 | "c * a < c * b \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and> b < a" | |
| 1717 | apply (cases "c = 0") | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1718 | apply (auto simp add: neq_iff mult_strict_left_mono | 
| 26193 | 1719 | mult_strict_left_mono_neg) | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1720 | apply (auto simp add: not_less | 
| 26193 | 1721 | not_le [symmetric, of "c*a"] | 
| 1722 | not_le [symmetric, of a]) | |
| 1723 | apply (erule_tac [!] notE) | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1724 | apply (auto simp add: less_imp_le mult_left_mono | 
| 26193 | 1725 | mult_left_mono_neg) | 
| 1726 | done | |
| 1727 | ||
| 60758 | 1728 | text\<open>The ``conjunction of implication'' lemmas produce two cases when the | 
| 1729 | comparison is a goal, but give four when the comparison is an assumption.\<close> | |
| 26193 | 1730 | |
| 1731 | lemma mult_less_cancel_right: | |
| 1732 | "a * c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)" | |
| 1733 | using mult_less_cancel_right_disj [of a c b] by auto | |
| 1734 | ||
| 1735 | lemma mult_less_cancel_left: | |
| 1736 | "c * a < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)" | |
| 1737 | using mult_less_cancel_left_disj [of c a b] by auto | |
| 1738 | ||
| 1739 | lemma mult_le_cancel_right: | |
| 1740 | "a * c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" | |
| 29667 | 1741 | by (simp add: not_less [symmetric] mult_less_cancel_right_disj) | 
| 26193 | 1742 | |
| 1743 | lemma mult_le_cancel_left: | |
| 1744 | "c * a \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" | |
| 29667 | 1745 | by (simp add: not_less [symmetric] mult_less_cancel_left_disj) | 
| 26193 | 1746 | |
| 30649 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1747 | lemma mult_le_cancel_left_pos: | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1748 | "0 < c \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> a \<le> b" | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1749 | by (auto simp: mult_le_cancel_left) | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1750 | |
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1751 | lemma mult_le_cancel_left_neg: | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1752 | "c < 0 \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> b \<le> a" | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1753 | by (auto simp: mult_le_cancel_left) | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1754 | |
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1755 | lemma mult_less_cancel_left_pos: | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1756 | "0 < c \<Longrightarrow> c * a < c * b \<longleftrightarrow> a < b" | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1757 | by (auto simp: mult_less_cancel_left) | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1758 | |
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1759 | lemma mult_less_cancel_left_neg: | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1760 | "c < 0 \<Longrightarrow> c * a < c * b \<longleftrightarrow> b < a" | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1761 | by (auto simp: mult_less_cancel_left) | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1762 | |
| 25917 | 1763 | end | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 1764 | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1765 | lemmas mult_sign_intros = | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1766 | mult_nonneg_nonneg mult_nonneg_nonpos | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1767 | mult_nonpos_nonneg mult_nonpos_nonpos | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1768 | mult_pos_pos mult_pos_neg | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1769 | mult_neg_pos mult_neg_neg | 
| 25230 | 1770 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1771 | class ordered_comm_ring = comm_ring + ordered_comm_semiring | 
| 25267 | 1772 | begin | 
| 25230 | 1773 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1774 | subclass ordered_ring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1775 | subclass ordered_cancel_comm_semiring .. | 
| 25230 | 1776 | |
| 25267 | 1777 | end | 
| 25230 | 1778 | |
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1779 | class zero_less_one = order + zero + one + | 
| 25230 | 1780 | assumes zero_less_one [simp]: "0 < 1" | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1781 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1782 | class linordered_nonzero_semiring = ordered_comm_semiring + monoid_mult + linorder + zero_less_one | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1783 | begin | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1784 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1785 | subclass zero_neq_one | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1786 | proof qed (insert zero_less_one, blast) | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1787 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1788 | subclass comm_semiring_1 | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1789 | proof qed (rule mult_1_left) | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1790 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1791 | lemma zero_le_one [simp]: "0 \<le> 1" | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1792 | by (rule zero_less_one [THEN less_imp_le]) | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1793 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1794 | lemma not_one_le_zero [simp]: "\<not> 1 \<le> 0" | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1795 | by (simp add: not_le) | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1796 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1797 | lemma not_one_less_zero [simp]: "\<not> 1 < 0" | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1798 | by (simp add: not_less) | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1799 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1800 | lemma mult_left_le: "c \<le> 1 \<Longrightarrow> 0 \<le> a \<Longrightarrow> a * c \<le> a" | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1801 | using mult_left_mono[of c 1 a] by simp | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1802 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1803 | lemma mult_le_one: "a \<le> 1 \<Longrightarrow> 0 \<le> b \<Longrightarrow> b \<le> 1 \<Longrightarrow> a * b \<le> 1" | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1804 | using mult_mono[of a 1 b 1] by simp | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1805 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1806 | lemma zero_less_two: "0 < 1 + 1" | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1807 | using add_pos_pos[OF zero_less_one zero_less_one] . | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1808 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1809 | end | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1810 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1811 | class linordered_semidom = semidom + linordered_comm_semiring_strict + zero_less_one + | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1812 | assumes le_add_diff_inverse2 [simp]: "b \<le> a \<Longrightarrow> a - b + b = a" | 
| 25230 | 1813 | begin | 
| 1814 | ||
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1815 | subclass linordered_nonzero_semiring | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1816 | proof qed | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1817 | |
| 60758 | 1818 | text \<open>Addition is the inverse of subtraction.\<close> | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1819 | |
| 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1820 | lemma le_add_diff_inverse [simp]: "b \<le> a \<Longrightarrow> b + (a - b) = a" | 
| 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1821 | by (frule le_add_diff_inverse2) (simp add: add.commute) | 
| 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1822 | |
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1823 | lemma add_diff_inverse: "\<not> a < b \<Longrightarrow> b + (a - b) = a" | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1824 | by simp | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 1825 | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1826 | lemma add_le_imp_le_diff: | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 1827 | shows "i + k \<le> n \<Longrightarrow> i \<le> n - k" | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 1828 | apply (subst add_le_cancel_right [where c=k, symmetric]) | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 1829 | apply (frule le_add_diff_inverse2) | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 1830 | apply (simp only: add.assoc [symmetric]) | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 1831 | using add_implies_diff by fastforce | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 1832 | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1833 | lemma add_le_add_imp_diff_le: | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 1834 | assumes a1: "i + k \<le> n" | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 1835 | and a2: "n \<le> j + k" | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 1836 | shows "\<lbrakk>i + k \<le> n; n \<le> j + k\<rbrakk> \<Longrightarrow> n - k \<le> j" | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 1837 | proof - | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 1838 | have "n - (i + k) + (i + k) = n" | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 1839 | using a1 by simp | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 1840 | moreover have "n - k = n - k - i + i" | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 1841 | using a1 by (simp add: add_le_imp_le_diff) | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 1842 | ultimately show ?thesis | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 1843 | using a2 | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 1844 | apply (simp add: add.assoc [symmetric]) | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 1845 | apply (rule add_le_imp_le_diff [of _ k "j+k", simplified add_diff_cancel_right']) | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 1846 | by (simp add: add.commute diff_diff_add) | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 1847 | qed | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 1848 | |
| 26193 | 1849 | lemma less_1_mult: | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1850 | "1 < m \<Longrightarrow> 1 < n \<Longrightarrow> 1 < m * n" | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1851 | using mult_strict_mono [of 1 m 1 n] by (simp add: less_trans [OF zero_less_one]) | 
| 59000 | 1852 | |
| 25230 | 1853 | end | 
| 1854 | ||
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1855 | class linordered_idom = | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1856 | comm_ring_1 + linordered_comm_semiring_strict + ordered_ab_group_add + abs_if + sgn_if | 
| 25917 | 1857 | begin | 
| 1858 | ||
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1859 | subclass linordered_semiring_1_strict .. | 
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 1860 | subclass linordered_ring_strict .. | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1861 | subclass ordered_comm_ring .. | 
| 27516 | 1862 | subclass idom .. | 
| 25917 | 1863 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1864 | subclass linordered_semidom | 
| 28823 | 1865 | proof | 
| 26193 | 1866 | have "0 \<le> 1 * 1" by (rule zero_le_square) | 
| 1867 | thus "0 < 1" by (simp add: le_less) | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1868 | show "\<And>b a. b \<le> a \<Longrightarrow> a - b + b = a" | 
| 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1869 | by simp | 
| 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1870 | qed | 
| 25917 | 1871 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1872 | lemma linorder_neqE_linordered_idom: | 
| 26193 | 1873 | assumes "x \<noteq> y" obtains "x < y" | "y < x" | 
| 1874 | using assms by (rule neqE) | |
| 1875 | ||
| 60758 | 1876 | text \<open>These cancellation simprules also produce two cases when the comparison is a goal.\<close> | 
| 26274 | 1877 | |
| 1878 | lemma mult_le_cancel_right1: | |
| 1879 | "c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)" | |
| 29667 | 1880 | by (insert mult_le_cancel_right [of 1 c b], simp) | 
| 26274 | 1881 | |
| 1882 | lemma mult_le_cancel_right2: | |
| 1883 | "a * c \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)" | |
| 29667 | 1884 | by (insert mult_le_cancel_right [of a c 1], simp) | 
| 26274 | 1885 | |
| 1886 | lemma mult_le_cancel_left1: | |
| 1887 | "c \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)" | |
| 29667 | 1888 | by (insert mult_le_cancel_left [of c 1 b], simp) | 
| 26274 | 1889 | |
| 1890 | lemma mult_le_cancel_left2: | |
| 1891 | "c * a \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)" | |
| 29667 | 1892 | by (insert mult_le_cancel_left [of c a 1], simp) | 
| 26274 | 1893 | |
| 1894 | lemma mult_less_cancel_right1: | |
| 1895 | "c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)" | |
| 29667 | 1896 | by (insert mult_less_cancel_right [of 1 c b], simp) | 
| 26274 | 1897 | |
| 1898 | lemma mult_less_cancel_right2: | |
| 1899 | "a * c < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)" | |
| 29667 | 1900 | by (insert mult_less_cancel_right [of a c 1], simp) | 
| 26274 | 1901 | |
| 1902 | lemma mult_less_cancel_left1: | |
| 1903 | "c < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)" | |
| 29667 | 1904 | by (insert mult_less_cancel_left [of c 1 b], simp) | 
| 26274 | 1905 | |
| 1906 | lemma mult_less_cancel_left2: | |
| 1907 | "c * a < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)" | |
| 29667 | 1908 | by (insert mult_less_cancel_left [of c a 1], simp) | 
| 26274 | 1909 | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1910 | lemma sgn_sgn [simp]: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1911 | "sgn (sgn a) = sgn a" | 
| 29700 | 1912 | unfolding sgn_if by simp | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1913 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1914 | lemma sgn_0_0: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1915 | "sgn a = 0 \<longleftrightarrow> a = 0" | 
| 29700 | 1916 | unfolding sgn_if by simp | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1917 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1918 | lemma sgn_1_pos: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1919 | "sgn a = 1 \<longleftrightarrow> a > 0" | 
| 35216 | 1920 | unfolding sgn_if by simp | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1921 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1922 | lemma sgn_1_neg: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1923 | "sgn a = - 1 \<longleftrightarrow> a < 0" | 
| 35216 | 1924 | unfolding sgn_if by auto | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1925 | |
| 29940 | 1926 | lemma sgn_pos [simp]: | 
| 1927 | "0 < a \<Longrightarrow> sgn a = 1" | |
| 1928 | unfolding sgn_1_pos . | |
| 1929 | ||
| 1930 | lemma sgn_neg [simp]: | |
| 1931 | "a < 0 \<Longrightarrow> sgn a = - 1" | |
| 1932 | unfolding sgn_1_neg . | |
| 1933 | ||
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1934 | lemma sgn_times: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1935 | "sgn (a * b) = sgn a * sgn b" | 
| 29667 | 1936 | by (auto simp add: sgn_if zero_less_mult_iff) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1937 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1938 | lemma abs_sgn: "\<bar>k\<bar> = k * sgn k" | 
| 29700 | 1939 | unfolding sgn_if abs_if by auto | 
| 1940 | ||
| 29940 | 1941 | lemma sgn_greater [simp]: | 
| 1942 | "0 < sgn a \<longleftrightarrow> 0 < a" | |
| 1943 | unfolding sgn_if by auto | |
| 1944 | ||
| 1945 | lemma sgn_less [simp]: | |
| 1946 | "sgn a < 0 \<longleftrightarrow> a < 0" | |
| 1947 | unfolding sgn_if by auto | |
| 1948 | ||
| 62347 | 1949 | lemma abs_sgn_eq: | 
| 1950 | "\<bar>sgn a\<bar> = (if a = 0 then 0 else 1)" | |
| 1951 | by (simp add: sgn_if) | |
| 1952 | ||
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1953 | lemma abs_dvd_iff [simp]: "\<bar>m\<bar> dvd k \<longleftrightarrow> m dvd k" | 
| 29949 | 1954 | by (simp add: abs_if) | 
| 1955 | ||
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1956 | lemma dvd_abs_iff [simp]: "m dvd \<bar>k\<bar> \<longleftrightarrow> m dvd k" | 
| 29949 | 1957 | by (simp add: abs_if) | 
| 29653 | 1958 | |
| 33676 
802f5e233e48
moved lemma from Algebra/IntRing to Ring_and_Field
 nipkow parents: 
33364diff
changeset | 1959 | lemma dvd_if_abs_eq: | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1960 | "\<bar>l\<bar> = \<bar>k\<bar> \<Longrightarrow> l dvd k" | 
| 33676 
802f5e233e48
moved lemma from Algebra/IntRing to Ring_and_Field
 nipkow parents: 
33364diff
changeset | 1961 | by(subst abs_dvd_iff[symmetric]) simp | 
| 
802f5e233e48
moved lemma from Algebra/IntRing to Ring_and_Field
 nipkow parents: 
33364diff
changeset | 1962 | |
| 60758 | 1963 | text \<open>The following lemmas can be proven in more general structures, but | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1964 | are dangerous as simp rules in absence of @{thm neg_equal_zero},
 | 
| 60758 | 1965 | @{thm neg_less_pos}, @{thm neg_less_eq_nonneg}.\<close>
 | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1966 | |
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1967 | lemma equation_minus_iff_1 [simp, no_atp]: | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1968 | "1 = - a \<longleftrightarrow> a = - 1" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1969 | by (fact equation_minus_iff) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1970 | |
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1971 | lemma minus_equation_iff_1 [simp, no_atp]: | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1972 | "- a = 1 \<longleftrightarrow> a = - 1" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1973 | by (subst minus_equation_iff, auto) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1974 | |
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1975 | lemma le_minus_iff_1 [simp, no_atp]: | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1976 | "1 \<le> - b \<longleftrightarrow> b \<le> - 1" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1977 | by (fact le_minus_iff) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1978 | |
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1979 | lemma minus_le_iff_1 [simp, no_atp]: | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1980 | "- a \<le> 1 \<longleftrightarrow> - 1 \<le> a" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1981 | by (fact minus_le_iff) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1982 | |
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1983 | lemma less_minus_iff_1 [simp, no_atp]: | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1984 | "1 < - b \<longleftrightarrow> b < - 1" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1985 | by (fact less_minus_iff) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1986 | |
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1987 | lemma minus_less_iff_1 [simp, no_atp]: | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1988 | "- a < 1 \<longleftrightarrow> - 1 < a" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1989 | by (fact minus_less_iff) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1990 | |
| 25917 | 1991 | end | 
| 25230 | 1992 | |
| 60758 | 1993 | text \<open>Simprules for comparisons where common factors can be cancelled.\<close> | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1994 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
52435diff
changeset | 1995 | lemmas mult_compare_simps = | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1996 | mult_le_cancel_right mult_le_cancel_left | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1997 | mult_le_cancel_right1 mult_le_cancel_right2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1998 | mult_le_cancel_left1 mult_le_cancel_left2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1999 | mult_less_cancel_right mult_less_cancel_left | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 2000 | mult_less_cancel_right1 mult_less_cancel_right2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 2001 | mult_less_cancel_left1 mult_less_cancel_left2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 2002 | mult_cancel_right mult_cancel_left | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 2003 | mult_cancel_right1 mult_cancel_right2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 2004 | mult_cancel_left1 mult_cancel_left2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 2005 | |
| 60758 | 2006 | text \<open>Reasoning about inequalities with division\<close> | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2007 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2008 | context linordered_semidom | 
| 25193 | 2009 | begin | 
| 2010 | ||
| 2011 | lemma less_add_one: "a < a + 1" | |
| 14293 | 2012 | proof - | 
| 25193 | 2013 | have "a + 0 < a + 1" | 
| 23482 | 2014 | by (blast intro: zero_less_one add_strict_left_mono) | 
| 14293 | 2015 | thus ?thesis by simp | 
| 2016 | qed | |
| 2017 | ||
| 25193 | 2018 | end | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 2019 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2020 | context linordered_idom | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2021 | begin | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 2022 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2023 | lemma mult_right_le_one_le: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2024 | "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> x * y \<le> x" | 
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 2025 | by (rule mult_left_le) | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2026 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2027 | lemma mult_left_le_one_le: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2028 | "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> y * x \<le> x" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2029 | by (auto simp add: mult_le_cancel_right2) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2030 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2031 | end | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2032 | |
| 60758 | 2033 | text \<open>Absolute Value\<close> | 
| 14293 | 2034 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2035 | context linordered_idom | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2036 | begin | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2037 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2038 | lemma mult_sgn_abs: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2039 | "sgn x * \<bar>x\<bar> = x" | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2040 | unfolding abs_if sgn_if by auto | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2041 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2042 | lemma abs_one [simp]: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2043 | "\<bar>1\<bar> = 1" | 
| 44921 | 2044 | by (simp add: abs_if) | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2045 | |
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2046 | end | 
| 24491 | 2047 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2048 | class ordered_ring_abs = ordered_ring + ordered_ab_group_add_abs + | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2049 | assumes abs_eq_mult: | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2050 | "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0) \<Longrightarrow> \<bar>a * b\<bar> = \<bar>a\<bar> * \<bar>b\<bar>" | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2051 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2052 | context linordered_idom | 
| 30961 | 2053 | begin | 
| 2054 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2055 | subclass ordered_ring_abs proof | 
| 35216 | 2056 | qed (auto simp add: abs_if not_less mult_less_0_iff) | 
| 30961 | 2057 | |
| 2058 | lemma abs_mult: | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 2059 | "\<bar>a * b\<bar> = \<bar>a\<bar> * \<bar>b\<bar>" | 
| 30961 | 2060 | by (rule abs_eq_mult) auto | 
| 2061 | ||
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
60867diff
changeset | 2062 | lemma abs_mult_self [simp]: | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2063 | "\<bar>a\<bar> * \<bar>a\<bar> = a * a" | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 2064 | by (simp add: abs_if) | 
| 30961 | 2065 | |
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2066 | lemma abs_mult_less: | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2067 | "\<bar>a\<bar> < c \<Longrightarrow> \<bar>b\<bar> < d \<Longrightarrow> \<bar>a\<bar> * \<bar>b\<bar> < c * d" | 
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2068 | proof - | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2069 | assume ac: "\<bar>a\<bar> < c" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2070 | hence cpos: "0<c" by (blast intro: le_less_trans abs_ge_zero) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2071 | assume "\<bar>b\<bar> < d" | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 2072 | thus ?thesis by (simp add: ac cpos mult_strict_mono) | 
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2073 | qed | 
| 14293 | 2074 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2075 | lemma abs_less_iff: | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 2076 | "\<bar>a\<bar> < b \<longleftrightarrow> a < b \<and> - a < b" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2077 | by (simp add: less_le abs_le_iff) (auto simp add: abs_if) | 
| 14738 | 2078 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2079 | lemma abs_mult_pos: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2080 | "0 \<le> x \<Longrightarrow> \<bar>y\<bar> * x = \<bar>y * x\<bar>" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2081 | by (simp add: abs_mult) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2082 | |
| 51520 
e9b361845809
move real_isLub_unique to isLub_unique in Lubs; real_sum_of_halves to RealDef; abs_diff_less_iff to Rings
 hoelzl parents: 
50420diff
changeset | 2083 | lemma abs_diff_less_iff: | 
| 
e9b361845809
move real_isLub_unique to isLub_unique in Lubs; real_sum_of_halves to RealDef; abs_diff_less_iff to Rings
 hoelzl parents: 
50420diff
changeset | 2084 | "\<bar>x - a\<bar> < r \<longleftrightarrow> a - r < x \<and> x < a + r" | 
| 
e9b361845809
move real_isLub_unique to isLub_unique in Lubs; real_sum_of_halves to RealDef; abs_diff_less_iff to Rings
 hoelzl parents: 
50420diff
changeset | 2085 | by (auto simp add: diff_less_eq ac_simps abs_less_iff) | 
| 
e9b361845809
move real_isLub_unique to isLub_unique in Lubs; real_sum_of_halves to RealDef; abs_diff_less_iff to Rings
 hoelzl parents: 
50420diff
changeset | 2086 | |
| 59865 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59833diff
changeset | 2087 | lemma abs_diff_le_iff: | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59833diff
changeset | 2088 | "\<bar>x - a\<bar> \<le> r \<longleftrightarrow> a - r \<le> x \<and> x \<le> a + r" | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59833diff
changeset | 2089 | by (auto simp add: diff_le_eq ac_simps abs_le_iff) | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59833diff
changeset | 2090 | |
| 62626 
de25474ce728
Contractible sets. Also removal of obsolete theorems and refactoring
 paulson <lp15@cam.ac.uk> parents: 
62608diff
changeset | 2091 | lemma abs_add_one_gt_zero: "0 < 1 + \<bar>x\<bar>" | 
| 
de25474ce728
Contractible sets. Also removal of obsolete theorems and refactoring
 paulson <lp15@cam.ac.uk> parents: 
62608diff
changeset | 2092 | by (force simp: abs_if not_less intro: zero_less_one add_strict_increasing less_trans) | 
| 
de25474ce728
Contractible sets. Also removal of obsolete theorems and refactoring
 paulson <lp15@cam.ac.uk> parents: 
62608diff
changeset | 2093 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2094 | end | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2095 | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2096 | subsection \<open>Dioids\<close> | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2097 | |
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2098 | text \<open>Dioids are the alternative extensions of semirings, a semiring can either be a ring or a dioid | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2099 | but never both.\<close> | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2100 | |
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2101 | class dioid = semiring_1 + canonically_ordered_monoid_add | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2102 | begin | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2103 | |
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2104 | subclass ordered_semiring | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2105 | proof qed (auto simp: le_iff_add distrib_left distrib_right) | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2106 | |
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2107 | end | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2108 | |
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2109 | |
| 59557 | 2110 | hide_fact (open) comm_mult_left_mono comm_mult_strict_left_mono distrib | 
| 2111 | ||
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51520diff
changeset | 2112 | code_identifier | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51520diff
changeset | 2113 | code_module Rings \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith | 
| 33364 | 2114 | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 2115 | end |