| author | wenzelm | 
| Mon, 30 Nov 2009 23:55:19 +0100 | |
| changeset 33929 | e7685297e9da | 
| parent 32263 | 8bc0fd4a23a0 | 
| permissions | -rw-r--r-- | 
| 12516 | 1 | (* Title: HOL/MicroJava/BV/Listn.thy | 
| 10496 | 2 | Author: Tobias Nipkow | 
| 3 | Copyright 2000 TUM | |
| 4 | ||
| 5 | Lists of a fixed length | |
| 6 | *) | |
| 7 | ||
| 12911 | 8 | header {* \isaheader{Fixed Length Lists} *}
 | 
| 10496 | 9 | |
| 32263 | 10 | theory Listn | 
| 11 | imports Err | |
| 12 | begin | |
| 10496 | 13 | |
| 14 | constdefs | |
| 15 | ||
| 13006 | 16 | list :: "nat \<Rightarrow> 'a set \<Rightarrow> 'a list set" | 
| 10496 | 17 | "list n A == {xs. length xs = n & set xs <= A}"
 | 
| 18 | ||
| 13006 | 19 |  le :: "'a ord \<Rightarrow> ('a list)ord"
 | 
| 10496 | 20 | "le r == list_all2 (%x y. x <=_r y)" | 
| 21 | ||
| 13006 | 22 | syntax "@lesublist" :: "'a list \<Rightarrow> 'a ord \<Rightarrow> 'a list \<Rightarrow> bool" | 
| 10496 | 23 |        ("(_ /<=[_] _)" [50, 0, 51] 50)
 | 
| 13006 | 24 | syntax "@lesssublist" :: "'a list \<Rightarrow> 'a ord \<Rightarrow> 'a list \<Rightarrow> bool" | 
| 10496 | 25 |        ("(_ /<[_] _)" [50, 0, 51] 50)
 | 
| 26 | translations | |
| 27 | "x <=[r] y" == "x <=_(Listn.le r) y" | |
| 28 | "x <[r] y" == "x <_(Listn.le r) y" | |
| 29 | ||
| 30 | constdefs | |
| 13006 | 31 |  map2 :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'c list"
 | 
| 10496 | 32 | "map2 f == (%xs ys. map (split f) (zip xs ys))" | 
| 33 | ||
| 13006 | 34 | syntax "@plussublist" :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'b list \<Rightarrow> 'c list"
 | 
| 10496 | 35 |        ("(_ /+[_] _)" [65, 0, 66] 65)
 | 
| 36 | translations "x +[f] y" == "x +_(map2 f) y" | |
| 37 | ||
| 13006 | 38 | consts coalesce :: "'a err list \<Rightarrow> 'a list err" | 
| 10496 | 39 | primrec | 
| 40 | "coalesce [] = OK[]" | |
| 41 | "coalesce (ex#exs) = Err.sup (op #) ex (coalesce exs)" | |
| 42 | ||
| 43 | constdefs | |
| 13006 | 44 | sl :: "nat \<Rightarrow> 'a sl \<Rightarrow> 'a list sl" | 
| 10496 | 45 | "sl n == %(A,r,f). (list n A, le r, map2 f)" | 
| 46 | ||
| 13006 | 47 |  sup :: "('a \<Rightarrow> 'b \<Rightarrow> 'c err) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'c list err"
 | 
| 10496 | 48 | "sup f == %xs ys. if size xs = size ys then coalesce(xs +[f] ys) else Err" | 
| 49 | ||
| 13006 | 50 | upto_esl :: "nat \<Rightarrow> 'a esl \<Rightarrow> 'a list esl" | 
| 10496 | 51 | "upto_esl m == %(A,r,f). (Union{list n A |n. n <= m}, le r, sup f)"
 | 
| 52 | ||
| 53 | lemmas [simp] = set_update_subsetI | |
| 54 | ||
| 55 | lemma unfold_lesub_list: | |
| 56 | "xs <=[r] ys == Listn.le r xs ys" | |
| 57 | by (simp add: lesub_def) | |
| 58 | ||
| 59 | lemma Nil_le_conv [iff]: | |
| 60 | "([] <=[r] ys) = (ys = [])" | |
| 61 | apply (unfold lesub_def Listn.le_def) | |
| 62 | apply simp | |
| 63 | done | |
| 64 | ||
| 65 | lemma Cons_notle_Nil [iff]: | |
| 66 | "~ x#xs <=[r] []" | |
| 67 | apply (unfold lesub_def Listn.le_def) | |
| 68 | apply simp | |
| 69 | done | |
| 70 | ||
| 71 | ||
| 72 | lemma Cons_le_Cons [iff]: | |
| 73 | "x#xs <=[r] y#ys = (x <=_r y & xs <=[r] ys)" | |
| 74 | apply (unfold lesub_def Listn.le_def) | |
| 75 | apply simp | |
| 76 | done | |
| 77 | ||
| 78 | lemma Cons_less_Conss [simp]: | |
| 13006 | 79 | "order r \<Longrightarrow> | 
| 10496 | 80 | x#xs <_(Listn.le r) y#ys = | 
| 81 | (x <_r y & xs <=[r] ys | x = y & xs <_(Listn.le r) ys)" | |
| 82 | apply (unfold lesssub_def) | |
| 83 | apply blast | |
| 84 | done | |
| 85 | ||
| 86 | lemma list_update_le_cong: | |
| 13006 | 87 | "\<lbrakk> i<size xs; xs <=[r] ys; x <=_r y \<rbrakk> \<Longrightarrow> xs[i:=x] <=[r] ys[i:=y]"; | 
| 10496 | 88 | apply (unfold unfold_lesub_list) | 
| 89 | apply (unfold Listn.le_def) | |
| 90 | apply (simp add: list_all2_conv_all_nth nth_list_update) | |
| 91 | done | |
| 92 | ||
| 93 | ||
| 94 | lemma le_listD: | |
| 13006 | 95 | "\<lbrakk> xs <=[r] ys; p < size xs \<rbrakk> \<Longrightarrow> xs!p <=_r ys!p" | 
| 10496 | 96 | apply (unfold Listn.le_def lesub_def) | 
| 97 | apply (simp add: list_all2_conv_all_nth) | |
| 98 | done | |
| 99 | ||
| 100 | lemma le_list_refl: | |
| 13006 | 101 | "!x. x <=_r x \<Longrightarrow> xs <=[r] xs" | 
| 10496 | 102 | apply (unfold unfold_lesub_list) | 
| 103 | apply (simp add: Listn.le_def list_all2_conv_all_nth) | |
| 104 | done | |
| 105 | ||
| 106 | lemma le_list_trans: | |
| 13006 | 107 | "\<lbrakk> order r; xs <=[r] ys; ys <=[r] zs \<rbrakk> \<Longrightarrow> xs <=[r] zs" | 
| 10496 | 108 | apply (unfold unfold_lesub_list) | 
| 109 | apply (simp add: Listn.le_def list_all2_conv_all_nth) | |
| 110 | apply clarify | |
| 111 | apply simp | |
| 112 | apply (blast intro: order_trans) | |
| 113 | done | |
| 114 | ||
| 115 | lemma le_list_antisym: | |
| 13006 | 116 | "\<lbrakk> order r; xs <=[r] ys; ys <=[r] xs \<rbrakk> \<Longrightarrow> xs = ys" | 
| 10496 | 117 | apply (unfold unfold_lesub_list) | 
| 118 | apply (simp add: Listn.le_def list_all2_conv_all_nth) | |
| 119 | apply (rule nth_equalityI) | |
| 120 | apply blast | |
| 121 | apply clarify | |
| 122 | apply simp | |
| 123 | apply (blast intro: order_antisym) | |
| 124 | done | |
| 125 | ||
| 126 | lemma order_listI [simp, intro!]: | |
| 13006 | 127 | "order r \<Longrightarrow> order(Listn.le r)" | 
| 22068 | 128 | apply (subst Semilat.order_def) | 
| 10496 | 129 | apply (blast intro: le_list_refl le_list_trans le_list_antisym | 
| 130 | dest: order_refl) | |
| 131 | done | |
| 132 | ||
| 133 | ||
| 134 | lemma lesub_list_impl_same_size [simp]: | |
| 13006 | 135 | "xs <=[r] ys \<Longrightarrow> size ys = size xs" | 
| 10496 | 136 | apply (unfold Listn.le_def lesub_def) | 
| 137 | apply (simp add: list_all2_conv_all_nth) | |
| 138 | done | |
| 139 | ||
| 140 | lemma lesssub_list_impl_same_size: | |
| 13006 | 141 | "xs <_(Listn.le r) ys \<Longrightarrow> size ys = size xs" | 
| 10496 | 142 | apply (unfold lesssub_def) | 
| 143 | apply auto | |
| 144 | done | |
| 145 | ||
| 13066 | 146 | lemma le_list_appendI: | 
| 147 | "\<And>b c d. a <=[r] b \<Longrightarrow> c <=[r] d \<Longrightarrow> a@c <=[r] b@d" | |
| 148 | apply (induct a) | |
| 149 | apply simp | |
| 150 | apply (case_tac b) | |
| 151 | apply auto | |
| 152 | done | |
| 153 | ||
| 154 | lemma le_listI: | |
| 155 | "length a = length b \<Longrightarrow> (\<And>n. n < length a \<Longrightarrow> a!n <=_r b!n) \<Longrightarrow> a <=[r] b" | |
| 156 | apply (unfold lesub_def Listn.le_def) | |
| 157 | apply (simp add: list_all2_conv_all_nth) | |
| 158 | done | |
| 159 | ||
| 10496 | 160 | lemma listI: | 
| 13006 | 161 | "\<lbrakk> length xs = n; set xs <= A \<rbrakk> \<Longrightarrow> xs : list n A" | 
| 10496 | 162 | apply (unfold list_def) | 
| 163 | apply blast | |
| 164 | done | |
| 165 | ||
| 166 | lemma listE_length [simp]: | |
| 13006 | 167 | "xs : list n A \<Longrightarrow> length xs = n" | 
| 10496 | 168 | apply (unfold list_def) | 
| 169 | apply blast | |
| 170 | done | |
| 171 | ||
| 172 | lemma less_lengthI: | |
| 13006 | 173 | "\<lbrakk> xs : list n A; p < n \<rbrakk> \<Longrightarrow> p < length xs" | 
| 10496 | 174 | by simp | 
| 175 | ||
| 176 | lemma listE_set [simp]: | |
| 13006 | 177 | "xs : list n A \<Longrightarrow> set xs <= A" | 
| 10496 | 178 | apply (unfold list_def) | 
| 179 | apply blast | |
| 180 | done | |
| 181 | ||
| 182 | lemma list_0 [simp]: | |
| 183 |   "list 0 A = {[]}"
 | |
| 184 | apply (unfold list_def) | |
| 185 | apply auto | |
| 186 | done | |
| 187 | ||
| 188 | lemma in_list_Suc_iff: | |
| 15341 
254f6f00b60e
converted to Isar script, simplifying some results
 paulson parents: 
13601diff
changeset | 189 | "(xs : list (Suc n) A) = (\<exists>y\<in> A. \<exists>ys\<in> list n A. xs = y#ys)" | 
| 10496 | 190 | apply (unfold list_def) | 
| 191 | apply (case_tac "xs") | |
| 192 | apply auto | |
| 193 | done | |
| 194 | ||
| 195 | lemma Cons_in_list_Suc [iff]: | |
| 15341 
254f6f00b60e
converted to Isar script, simplifying some results
 paulson parents: 
13601diff
changeset | 196 | "(x#xs : list (Suc n) A) = (x\<in> A & xs : list n A)"; | 
| 10496 | 197 | apply (simp add: in_list_Suc_iff) | 
| 198 | done | |
| 199 | ||
| 200 | lemma list_not_empty: | |
| 15341 
254f6f00b60e
converted to Isar script, simplifying some results
 paulson parents: 
13601diff
changeset | 201 | "\<exists>a. a\<in> A \<Longrightarrow> \<exists>xs. xs : list n A"; | 
| 10496 | 202 | apply (induct "n") | 
| 203 | apply simp | |
| 204 | apply (simp add: in_list_Suc_iff) | |
| 205 | apply blast | |
| 206 | done | |
| 207 | ||
| 208 | ||
| 209 | lemma nth_in [rule_format, simp]: | |
| 13006 | 210 | "!i n. length xs = n \<longrightarrow> set xs <= A \<longrightarrow> i < n \<longrightarrow> (xs!i) : A" | 
| 10496 | 211 | apply (induct "xs") | 
| 212 | apply simp | |
| 213 | apply (simp add: nth_Cons split: nat.split) | |
| 214 | done | |
| 215 | ||
| 216 | lemma listE_nth_in: | |
| 13006 | 217 | "\<lbrakk> xs : list n A; i < n \<rbrakk> \<Longrightarrow> (xs!i) : A" | 
| 10496 | 218 | by auto | 
| 219 | ||
| 13066 | 220 | |
| 221 | lemma listn_Cons_Suc [elim!]: | |
| 222 | "l#xs \<in> list n A \<Longrightarrow> (\<And>n'. n = Suc n' \<Longrightarrow> l \<in> A \<Longrightarrow> xs \<in> list n' A \<Longrightarrow> P) \<Longrightarrow> P" | |
| 223 | by (cases n) auto | |
| 224 | ||
| 225 | lemma listn_appendE [elim!]: | |
| 226 | "a@b \<in> list n A \<Longrightarrow> (\<And>n1 n2. n=n1+n2 \<Longrightarrow> a \<in> list n1 A \<Longrightarrow> b \<in> list n2 A \<Longrightarrow> P) \<Longrightarrow> P" | |
| 227 | proof - | |
| 228 | have "\<And>n. a@b \<in> list n A \<Longrightarrow> \<exists>n1 n2. n=n1+n2 \<and> a \<in> list n1 A \<and> b \<in> list n2 A" | |
| 229 | (is "\<And>n. ?list a n \<Longrightarrow> \<exists>n1 n2. ?P a n n1 n2") | |
| 230 | proof (induct a) | |
| 231 | fix n assume "?list [] n" | |
| 232 | hence "?P [] n 0 n" by simp | |
| 233 | thus "\<exists>n1 n2. ?P [] n n1 n2" by fast | |
| 234 | next | |
| 235 | fix n l ls | |
| 236 | assume "?list (l#ls) n" | |
| 23464 | 237 | then obtain n' where n: "n = Suc n'" "l \<in> A" and list_n': "ls@b \<in> list n' A" by fastsimp | 
| 13066 | 238 | assume "\<And>n. ls @ b \<in> list n A \<Longrightarrow> \<exists>n1 n2. n = n1 + n2 \<and> ls \<in> list n1 A \<and> b \<in> list n2 A" | 
| 23464 | 239 | hence "\<exists>n1 n2. n' = n1 + n2 \<and> ls \<in> list n1 A \<and> b \<in> list n2 A" by this (rule list_n') | 
| 13066 | 240 | then obtain n1 n2 where "n' = n1 + n2" "ls \<in> list n1 A" "b \<in> list n2 A" by fast | 
| 241 | with n have "?P (l#ls) n (n1+1) n2" by simp | |
| 242 | thus "\<exists>n1 n2. ?P (l#ls) n n1 n2" by fastsimp | |
| 243 | qed | |
| 244 | moreover | |
| 245 | assume "a@b \<in> list n A" "\<And>n1 n2. n=n1+n2 \<Longrightarrow> a \<in> list n1 A \<Longrightarrow> b \<in> list n2 A \<Longrightarrow> P" | |
| 246 | ultimately | |
| 247 | show ?thesis by blast | |
| 248 | qed | |
| 249 | ||
| 250 | ||
| 10496 | 251 | lemma listt_update_in_list [simp, intro!]: | 
| 15341 
254f6f00b60e
converted to Isar script, simplifying some results
 paulson parents: 
13601diff
changeset | 252 | "\<lbrakk> xs : list n A; x\<in> A \<rbrakk> \<Longrightarrow> xs[i := x] : list n A" | 
| 10496 | 253 | apply (unfold list_def) | 
| 254 | apply simp | |
| 255 | done | |
| 256 | ||
| 257 | lemma plus_list_Nil [simp]: | |
| 258 | "[] +[f] xs = []" | |
| 259 | apply (unfold plussub_def map2_def) | |
| 260 | apply simp | |
| 261 | done | |
| 262 | ||
| 263 | lemma plus_list_Cons [simp]: | |
| 13006 | 264 | "(x#xs) +[f] ys = (case ys of [] \<Rightarrow> [] | y#ys \<Rightarrow> (x +_f y)#(xs +[f] ys))" | 
| 10496 | 265 | by (simp add: plussub_def map2_def split: list.split) | 
| 266 | ||
| 267 | lemma length_plus_list [rule_format, simp]: | |
| 268 | "!ys. length(xs +[f] ys) = min(length xs) (length ys)" | |
| 269 | apply (induct xs) | |
| 270 | apply simp | |
| 271 | apply clarify | |
| 272 | apply (simp (no_asm_simp) split: list.split) | |
| 273 | done | |
| 274 | ||
| 275 | lemma nth_plus_list [rule_format, simp]: | |
| 13006 | 276 | "!xs ys i. length xs = n \<longrightarrow> length ys = n \<longrightarrow> i<n \<longrightarrow> | 
| 10496 | 277 | (xs +[f] ys)!i = (xs!i) +_f (ys!i)" | 
| 278 | apply (induct n) | |
| 279 | apply simp | |
| 280 | apply clarify | |
| 281 | apply (case_tac xs) | |
| 282 | apply simp | |
| 283 | apply (force simp add: nth_Cons split: list.split nat.split) | |
| 284 | done | |
| 285 | ||
| 286 | ||
| 27681 | 287 | lemma (in Semilat) plus_list_ub1 [rule_format]: | 
| 13074 | 288 | "\<lbrakk> set xs <= A; set ys <= A; size xs = size ys \<rbrakk> | 
| 13006 | 289 | \<Longrightarrow> xs <=[r] xs +[f] ys" | 
| 10496 | 290 | apply (unfold unfold_lesub_list) | 
| 291 | apply (simp add: Listn.le_def list_all2_conv_all_nth) | |
| 292 | done | |
| 293 | ||
| 27681 | 294 | lemma (in Semilat) plus_list_ub2: | 
| 13074 | 295 | "\<lbrakk>set xs <= A; set ys <= A; size xs = size ys \<rbrakk> | 
| 13006 | 296 | \<Longrightarrow> ys <=[r] xs +[f] ys" | 
| 10496 | 297 | apply (unfold unfold_lesub_list) | 
| 298 | apply (simp add: Listn.le_def list_all2_conv_all_nth) | |
| 13074 | 299 | done | 
| 10496 | 300 | |
| 27681 | 301 | lemma (in Semilat) plus_list_lub [rule_format]: | 
| 13074 | 302 | shows "!xs ys zs. set xs <= A \<longrightarrow> set ys <= A \<longrightarrow> set zs <= A | 
| 13006 | 303 | \<longrightarrow> size xs = n & size ys = n \<longrightarrow> | 
| 304 | xs <=[r] zs & ys <=[r] zs \<longrightarrow> xs +[f] ys <=[r] zs" | |
| 10496 | 305 | apply (unfold unfold_lesub_list) | 
| 306 | apply (simp add: Listn.le_def list_all2_conv_all_nth) | |
| 13074 | 307 | done | 
| 10496 | 308 | |
| 27681 | 309 | lemma (in Semilat) list_update_incr [rule_format]: | 
| 15341 
254f6f00b60e
converted to Isar script, simplifying some results
 paulson parents: 
13601diff
changeset | 310 | "x\<in> A \<Longrightarrow> set xs <= A \<longrightarrow> | 
| 13006 | 311 | (!i. i<size xs \<longrightarrow> xs <=[r] xs[i := x +_f xs!i])" | 
| 10496 | 312 | apply (unfold unfold_lesub_list) | 
| 313 | apply (simp add: Listn.le_def list_all2_conv_all_nth) | |
| 314 | apply (induct xs) | |
| 315 | apply simp | |
| 316 | apply (simp add: in_list_Suc_iff) | |
| 317 | apply clarify | |
| 318 | apply (simp add: nth_Cons split: nat.split) | |
| 13074 | 319 | done | 
| 10496 | 320 | |
| 32263 | 321 | lemma equals0I_aux: | 
| 322 | "(\<And>y. A y \<Longrightarrow> False) \<Longrightarrow> A = bot_class.bot" | |
| 323 | by (rule equals0I) (auto simp add: mem_def) | |
| 324 | ||
| 10496 | 325 | lemma acc_le_listI [intro!]: | 
| 13006 | 326 | "\<lbrakk> order r; acc r \<rbrakk> \<Longrightarrow> acc(Listn.le r)" | 
| 10496 | 327 | apply (unfold acc_def) | 
| 328 | apply (subgoal_tac | |
| 22271 | 329 | "wfP (SUP n. (\<lambda>ys xs. size xs = n & size ys = n & xs <_(Listn.le r) ys))") | 
| 330 | apply (erule wfP_subset) | |
| 10496 | 331 | apply (blast intro: lesssub_list_impl_same_size) | 
| 22271 | 332 | apply (rule wfP_SUP) | 
| 10496 | 333 | prefer 2 | 
| 334 | apply clarify | |
| 335 | apply (rename_tac m n) | |
| 336 | apply (case_tac "m=n") | |
| 337 | apply simp | |
| 32263 | 338 | apply (fast intro!: equals0I_aux dest: not_sym) | 
| 10496 | 339 | apply clarify | 
| 340 | apply (rename_tac n) | |
| 341 | apply (induct_tac n) | |
| 342 | apply (simp add: lesssub_def cong: conj_cong) | |
| 343 | apply (rename_tac k) | |
| 22271 | 344 | apply (simp add: wfP_eq_minimal) | 
| 10496 | 345 | apply (simp (no_asm) add: length_Suc_conv cong: conj_cong) | 
| 346 | apply clarify | |
| 347 | apply (rename_tac M m) | |
| 15341 
254f6f00b60e
converted to Isar script, simplifying some results
 paulson parents: 
13601diff
changeset | 348 | apply (case_tac "\<exists>x xs. size xs = k & x#xs : M") | 
| 10496 | 349 | prefer 2 | 
| 350 | apply (erule thin_rl) | |
| 351 | apply (erule thin_rl) | |
| 352 | apply blast | |
| 15341 
254f6f00b60e
converted to Isar script, simplifying some results
 paulson parents: 
13601diff
changeset | 353 | apply (erule_tac x = "{a. \<exists>xs. size xs = k & a#xs:M}" in allE)
 | 
| 10496 | 354 | apply (erule impE) | 
| 355 | apply blast | |
| 15341 
254f6f00b60e
converted to Isar script, simplifying some results
 paulson parents: 
13601diff
changeset | 356 | apply (thin_tac "\<exists>x xs. ?P x xs") | 
| 10496 | 357 | apply clarify | 
| 358 | apply (rename_tac maxA xs) | |
| 359 | apply (erule_tac x = "{ys. size ys = size xs & maxA#ys : M}" in allE)
 | |
| 360 | apply (erule impE) | |
| 361 | apply blast | |
| 362 | apply clarify | |
| 363 | apply (thin_tac "m : M") | |
| 364 | apply (thin_tac "maxA#xs : M") | |
| 365 | apply (rule bexI) | |
| 366 | prefer 2 | |
| 367 | apply assumption | |
| 368 | apply clarify | |
| 369 | apply simp | |
| 370 | apply blast | |
| 371 | done | |
| 372 | ||
| 373 | lemma closed_listI: | |
| 13006 | 374 | "closed S f \<Longrightarrow> closed (list n S) (map2 f)" | 
| 10496 | 375 | apply (unfold closed_def) | 
| 376 | apply (induct n) | |
| 377 | apply simp | |
| 378 | apply clarify | |
| 379 | apply (simp add: in_list_Suc_iff) | |
| 380 | apply clarify | |
| 381 | apply simp | |
| 13074 | 382 | done | 
| 10496 | 383 | |
| 384 | ||
| 13074 | 385 | lemma Listn_sl_aux: | 
| 27611 | 386 | assumes "semilat (A, r, f)" shows "semilat (Listn.sl n (A,r,f))" | 
| 387 | proof - | |
| 29235 | 388 | interpret Semilat A r f using assms by (rule Semilat.intro) | 
| 27611 | 389 | show ?thesis | 
| 10496 | 390 | apply (unfold Listn.sl_def) | 
| 10918 | 391 | apply (simp (no_asm) only: semilat_Def split_conv) | 
| 10496 | 392 | apply (rule conjI) | 
| 393 | apply simp | |
| 394 | apply (rule conjI) | |
| 13074 | 395 | apply (simp only: closedI closed_listI) | 
| 10496 | 396 | apply (simp (no_asm) only: list_def) | 
| 397 | apply (simp (no_asm_simp) add: plus_list_ub1 plus_list_ub2 plus_list_lub) | |
| 13074 | 398 | done | 
| 27611 | 399 | qed | 
| 10496 | 400 | |
| 13074 | 401 | lemma Listn_sl: "\<And>L. semilat L \<Longrightarrow> semilat (Listn.sl n L)" | 
| 402 | by(simp add: Listn_sl_aux split_tupled_all) | |
| 10496 | 403 | |
| 404 | lemma coalesce_in_err_list [rule_format]: | |
| 13006 | 405 | "!xes. xes : list n (err A) \<longrightarrow> coalesce xes : err(list n A)" | 
| 10496 | 406 | apply (induct n) | 
| 407 | apply simp | |
| 408 | apply clarify | |
| 409 | apply (simp add: in_list_Suc_iff) | |
| 410 | apply clarify | |
| 411 | apply (simp (no_asm) add: plussub_def Err.sup_def lift2_def split: err.split) | |
| 412 | apply force | |
| 413 | done | |
| 414 | ||
| 13006 | 415 | lemma lem: "\<And>x xs. x +_(op #) xs = x#xs" | 
| 10496 | 416 | by (simp add: plussub_def) | 
| 417 | ||
| 418 | lemma coalesce_eq_OK1_D [rule_format]: | |
| 13006 | 419 | "semilat(err A, Err.le r, lift2 f) \<Longrightarrow> | 
| 420 | !xs. xs : list n A \<longrightarrow> (!ys. ys : list n A \<longrightarrow> | |
| 421 | (!zs. coalesce (xs +[f] ys) = OK zs \<longrightarrow> xs <=[r] zs))" | |
| 10496 | 422 | apply (induct n) | 
| 423 | apply simp | |
| 424 | apply clarify | |
| 425 | apply (simp add: in_list_Suc_iff) | |
| 426 | apply clarify | |
| 427 | apply (simp split: err.split_asm add: lem Err.sup_def lift2_def) | |
| 428 | apply (force simp add: semilat_le_err_OK1) | |
| 429 | done | |
| 430 | ||
| 431 | lemma coalesce_eq_OK2_D [rule_format]: | |
| 13006 | 432 | "semilat(err A, Err.le r, lift2 f) \<Longrightarrow> | 
| 433 | !xs. xs : list n A \<longrightarrow> (!ys. ys : list n A \<longrightarrow> | |
| 434 | (!zs. coalesce (xs +[f] ys) = OK zs \<longrightarrow> ys <=[r] zs))" | |
| 10496 | 435 | apply (induct n) | 
| 436 | apply simp | |
| 437 | apply clarify | |
| 438 | apply (simp add: in_list_Suc_iff) | |
| 439 | apply clarify | |
| 440 | apply (simp split: err.split_asm add: lem Err.sup_def lift2_def) | |
| 441 | apply (force simp add: semilat_le_err_OK2) | |
| 442 | done | |
| 443 | ||
| 444 | lemma lift2_le_ub: | |
| 15341 
254f6f00b60e
converted to Isar script, simplifying some results
 paulson parents: 
13601diff
changeset | 445 | "\<lbrakk> semilat(err A, Err.le r, lift2 f); x\<in> A; y\<in> A; x +_f y = OK z; | 
| 
254f6f00b60e
converted to Isar script, simplifying some results
 paulson parents: 
13601diff
changeset | 446 | u\<in> A; x <=_r u; y <=_r u \<rbrakk> \<Longrightarrow> z <=_r u" | 
| 10496 | 447 | apply (unfold semilat_Def plussub_def err_def) | 
| 448 | apply (simp add: lift2_def) | |
| 449 | apply clarify | |
| 450 | apply (rotate_tac -3) | |
| 451 | apply (erule thin_rl) | |
| 452 | apply (erule thin_rl) | |
| 453 | apply force | |
| 13074 | 454 | done | 
| 10496 | 455 | |
| 456 | lemma coalesce_eq_OK_ub_D [rule_format]: | |
| 13006 | 457 | "semilat(err A, Err.le r, lift2 f) \<Longrightarrow> | 
| 458 | !xs. xs : list n A \<longrightarrow> (!ys. ys : list n A \<longrightarrow> | |
| 10496 | 459 | (!zs us. coalesce (xs +[f] ys) = OK zs & xs <=[r] us & ys <=[r] us | 
| 13006 | 460 | & us : list n A \<longrightarrow> zs <=[r] us))" | 
| 10496 | 461 | apply (induct n) | 
| 462 | apply simp | |
| 463 | apply clarify | |
| 464 | apply (simp add: in_list_Suc_iff) | |
| 465 | apply clarify | |
| 466 | apply (simp (no_asm_use) split: err.split_asm add: lem Err.sup_def lift2_def) | |
| 467 | apply clarify | |
| 468 | apply (rule conjI) | |
| 469 | apply (blast intro: lift2_le_ub) | |
| 470 | apply blast | |
| 471 | done | |
| 472 | ||
| 473 | lemma lift2_eq_ErrD: | |
| 15341 
254f6f00b60e
converted to Isar script, simplifying some results
 paulson parents: 
13601diff
changeset | 474 | "\<lbrakk> x +_f y = Err; semilat(err A, Err.le r, lift2 f); x\<in> A; y\<in> A \<rbrakk> | 
| 
254f6f00b60e
converted to Isar script, simplifying some results
 paulson parents: 
13601diff
changeset | 475 | \<Longrightarrow> ~(\<exists>u\<in> A. x <=_r u & y <=_r u)" | 
| 10496 | 476 | by (simp add: OK_plus_OK_eq_Err_conv [THEN iffD1]) | 
| 477 | ||
| 478 | ||
| 479 | lemma coalesce_eq_Err_D [rule_format]: | |
| 13006 | 480 | "\<lbrakk> semilat(err A, Err.le r, lift2 f) \<rbrakk> | 
| 15341 
254f6f00b60e
converted to Isar script, simplifying some results
 paulson parents: 
13601diff
changeset | 481 | \<Longrightarrow> !xs. xs\<in> list n A \<longrightarrow> (!ys. ys\<in> list n A \<longrightarrow> | 
| 13006 | 482 | coalesce (xs +[f] ys) = Err \<longrightarrow> | 
| 15341 
254f6f00b60e
converted to Isar script, simplifying some results
 paulson parents: 
13601diff
changeset | 483 | ~(\<exists>zs\<in> list n A. xs <=[r] zs & ys <=[r] zs))" | 
| 10496 | 484 | apply (induct n) | 
| 485 | apply simp | |
| 486 | apply clarify | |
| 487 | apply (simp add: in_list_Suc_iff) | |
| 488 | apply clarify | |
| 489 | apply (simp split: err.split_asm add: lem Err.sup_def lift2_def) | |
| 490 | apply (blast dest: lift2_eq_ErrD) | |
| 491 | done | |
| 492 | ||
| 493 | lemma closed_err_lift2_conv: | |
| 15341 
254f6f00b60e
converted to Isar script, simplifying some results
 paulson parents: 
13601diff
changeset | 494 | "closed (err A) (lift2 f) = (\<forall>x\<in> A. \<forall>y\<in> A. x +_f y : err A)" | 
| 10496 | 495 | apply (unfold closed_def) | 
| 496 | apply (simp add: err_def) | |
| 497 | done | |
| 498 | ||
| 499 | lemma closed_map2_list [rule_format]: | |
| 13006 | 500 | "closed (err A) (lift2 f) \<Longrightarrow> | 
| 15341 
254f6f00b60e
converted to Isar script, simplifying some results
 paulson parents: 
13601diff
changeset | 501 | \<forall>xs. xs : list n A \<longrightarrow> (\<forall>ys. ys : list n A \<longrightarrow> | 
| 10496 | 502 | map2 f xs ys : list n (err A))" | 
| 503 | apply (unfold map2_def) | |
| 504 | apply (induct n) | |
| 505 | apply simp | |
| 506 | apply clarify | |
| 507 | apply (simp add: in_list_Suc_iff) | |
| 508 | apply clarify | |
| 509 | apply (simp add: plussub_def closed_err_lift2_conv) | |
| 13074 | 510 | done | 
| 10496 | 511 | |
| 512 | lemma closed_lift2_sup: | |
| 13006 | 513 | "closed (err A) (lift2 f) \<Longrightarrow> | 
| 10496 | 514 | closed (err (list n A)) (lift2 (sup f))" | 
| 515 | by (fastsimp simp add: closed_def plussub_def sup_def lift2_def | |
| 516 | coalesce_in_err_list closed_map2_list | |
| 517 | split: err.split) | |
| 518 | ||
| 519 | lemma err_semilat_sup: | |
| 13006 | 520 | "err_semilat (A,r,f) \<Longrightarrow> | 
| 10496 | 521 | err_semilat (list n A, Listn.le r, sup f)" | 
| 522 | apply (unfold Err.sl_def) | |
| 10918 | 523 | apply (simp only: split_conv) | 
| 10496 | 524 | apply (simp (no_asm) only: semilat_Def plussub_def) | 
| 27681 | 525 | apply (simp (no_asm_simp) only: Semilat.closedI [OF Semilat.intro] closed_lift2_sup) | 
| 10496 | 526 | apply (rule conjI) | 
| 27681 | 527 | apply (drule Semilat.orderI [OF Semilat.intro]) | 
| 10496 | 528 | apply simp | 
| 529 | apply (simp (no_asm) only: unfold_lesub_err Err.le_def err_def sup_def lift2_def) | |
| 530 | apply (simp (no_asm_simp) add: coalesce_eq_OK1_D coalesce_eq_OK2_D split: err.split) | |
| 531 | apply (blast intro: coalesce_eq_OK_ub_D dest: coalesce_eq_Err_D) | |
| 532 | done | |
| 533 | ||
| 534 | lemma err_semilat_upto_esl: | |
| 13006 | 535 | "\<And>L. err_semilat L \<Longrightarrow> err_semilat(upto_esl m L)" | 
| 10496 | 536 | apply (unfold Listn.upto_esl_def) | 
| 537 | apply (simp (no_asm_simp) only: split_tupled_all) | |
| 538 | apply simp | |
| 539 | apply (fastsimp intro!: err_semilat_UnionI err_semilat_sup | |
| 540 | dest: lesub_list_impl_same_size | |
| 541 | simp add: plussub_def Listn.sup_def) | |
| 542 | done | |
| 543 | ||
| 544 | end |