src/HOL/Number_Theory/Residues.thy
author haftmann
Sat, 11 Nov 2017 18:41:08 +0000
changeset 67051 e7e54a0b9197
parent 66954 0230af0f3c59
child 67091 1393c2340eec
permissions -rw-r--r--
dedicated definition for coprimality
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
41959
b460124855b8 tuned headers;
wenzelm
parents: 41541
diff changeset
     1
(*  Title:      HOL/Number_Theory/Residues.thy
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
     2
    Author:     Jeremy Avigad
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
     3
41541
1fa4725c4656 eliminated global prems;
wenzelm
parents: 36350
diff changeset
     4
An algebraic treatment of residue rings, and resulting proofs of
41959
b460124855b8 tuned headers;
wenzelm
parents: 41541
diff changeset
     5
Euler's theorem and Wilson's theorem.
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
     6
*)
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
     7
60526
fad653acf58f isabelle update_cartouches;
wenzelm
parents: 59730
diff changeset
     8
section \<open>Residue rings\<close>
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
     9
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
    10
theory Residues
65416
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65066
diff changeset
    11
imports
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65066
diff changeset
    12
  Cong
66453
cc19f7ca2ed6 session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
wenzelm
parents: 66305
diff changeset
    13
  "HOL-Algebra.More_Group"
cc19f7ca2ed6 session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
wenzelm
parents: 66305
diff changeset
    14
  "HOL-Algebra.More_Ring"
cc19f7ca2ed6 session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
wenzelm
parents: 66305
diff changeset
    15
  "HOL-Algebra.More_Finite_Product"
cc19f7ca2ed6 session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
wenzelm
parents: 66305
diff changeset
    16
  "HOL-Algebra.Multiplicative_Group"
65465
067210a08a22 more fundamental euler's totient function on nat rather than int;
haftmann
parents: 65416
diff changeset
    17
  Totient
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
    18
begin
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
    19
66305
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
    20
definition QuadRes :: "int \<Rightarrow> int \<Rightarrow> bool"
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
    21
  where "QuadRes p a = (\<exists>y. ([y^2 = a] (mod p)))"
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
    22
66305
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
    23
definition Legendre :: "int \<Rightarrow> int \<Rightarrow> int"
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
    24
  where "Legendre a p =
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
    25
    (if ([a = 0] (mod p)) then 0
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
    26
     else if QuadRes p a then 1
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
    27
     else -1)"
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
    28
64282
261d42f0bfac Removed Old_Number_Theory; all theories ported (thanks to Jaime Mendizabal Roche)
eberlm <eberlm@in.tum.de>
parents: 64272
diff changeset
    29
60527
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
    30
subsection \<open>A locale for residue rings\<close>
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
    31
60527
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
    32
definition residue_ring :: "int \<Rightarrow> int ring"
66305
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
    33
  where
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
    34
    "residue_ring m =
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
    35
      \<lparr>carrier = {0..m - 1},
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
    36
       monoid.mult = \<lambda>x y. (x * y) mod m,
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
    37
       one = 1,
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
    38
       zero = 0,
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
    39
       add = \<lambda>x y. (x + y) mod m\<rparr>"
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
    40
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
    41
locale residues =
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
    42
  fixes m :: int and R (structure)
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
    43
  assumes m_gt_one: "m > 1"
60527
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
    44
  defines "R \<equiv> residue_ring m"
44872
a98ef45122f3 misc tuning;
wenzelm
parents: 41959
diff changeset
    45
begin
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
    46
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
    47
lemma abelian_group: "abelian_group R"
65066
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
    48
proof -
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
    49
  have "\<exists>y\<in>{0..m - 1}. (x + y) mod m = 0" if "0 \<le> x" "x < m" for x
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
    50
  proof (cases "x = 0")
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
    51
    case True
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
    52
    with m_gt_one show ?thesis by simp
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
    53
  next
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
    54
    case False
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
    55
    then have "(x + (m - x)) mod m = 0"
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
    56
      by simp
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
    57
    with m_gt_one that show ?thesis
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
    58
      by (metis False atLeastAtMost_iff diff_ge_0_iff_ge diff_left_mono int_one_le_iff_zero_less less_le)
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
    59
  qed
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
    60
  with m_gt_one show ?thesis
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
    61
    by (fastforce simp add: R_def residue_ring_def mod_add_right_eq ac_simps  intro!: abelian_groupI)
65899
ab7d8c999531 removed junk;
wenzelm
parents: 65726
diff changeset
    62
qed
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
    63
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
    64
lemma comm_monoid: "comm_monoid R"
65066
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
    65
  unfolding R_def residue_ring_def
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
    66
  apply (rule comm_monoidI)
65066
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
    67
    using m_gt_one  apply auto
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
    68
  apply (metis mod_mult_right_eq mult.assoc mult.commute)
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
    69
  apply (metis mult.commute)
41541
1fa4725c4656 eliminated global prems;
wenzelm
parents: 36350
diff changeset
    70
  done
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
    71
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
    72
lemma cring: "cring R"
65066
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
    73
  apply (intro cringI abelian_group comm_monoid)
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
    74
  unfolding R_def residue_ring_def
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
    75
  apply (auto simp add: comm_semiring_class.distrib mod_add_eq mod_mult_left_eq)
41541
1fa4725c4656 eliminated global prems;
wenzelm
parents: 36350
diff changeset
    76
  done
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
    77
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
    78
end
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
    79
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
    80
sublocale residues < cring
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
    81
  by (rule cring)
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
    82
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
    83
41541
1fa4725c4656 eliminated global prems;
wenzelm
parents: 36350
diff changeset
    84
context residues
1fa4725c4656 eliminated global prems;
wenzelm
parents: 36350
diff changeset
    85
begin
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
    86
60527
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
    87
text \<open>
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
    88
  These lemmas translate back and forth between internal and
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
    89
  external concepts.
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
    90
\<close>
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
    91
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
    92
lemma res_carrier_eq: "carrier R = {0..m - 1}"
66305
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
    93
  by (auto simp: R_def residue_ring_def)
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
    94
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
    95
lemma res_add_eq: "x \<oplus> y = (x + y) mod m"
66305
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
    96
  by (auto simp: R_def residue_ring_def)
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
    97
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
    98
lemma res_mult_eq: "x \<otimes> y = (x * y) mod m"
66305
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
    99
  by (auto simp: R_def residue_ring_def)
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   100
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   101
lemma res_zero_eq: "\<zero> = 0"
66305
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   102
  by (auto simp: R_def residue_ring_def)
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   103
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   104
lemma res_one_eq: "\<one> = 1"
66305
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   105
  by (auto simp: R_def residue_ring_def units_of_def)
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   106
60527
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   107
lemma res_units_eq: "Units R = {x. 0 < x \<and> x < m \<and> coprime x m}"
65066
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   108
  using m_gt_one
67051
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   109
  apply (auto simp add: Units_def R_def residue_ring_def ac_simps invertible_coprime intro: ccontr)
31952
40501bb2d57c renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
nipkow
parents: 31798
diff changeset
   110
  apply (subst (asm) coprime_iff_invertible'_int)
67051
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   111
   apply (auto simp add: cong_def)
41541
1fa4725c4656 eliminated global prems;
wenzelm
parents: 36350
diff changeset
   112
  done
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   113
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   114
lemma res_neg_eq: "\<ominus> x = (- x) mod m"
65066
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   115
  using m_gt_one unfolding R_def a_inv_def m_inv_def residue_ring_def
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   116
  apply simp
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   117
  apply (rule the_equality)
66305
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   118
   apply (simp add: mod_add_right_eq)
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   119
   apply (simp add: add.commute mod_add_right_eq)
65066
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   120
  apply (metis add.right_neutral minus_add_cancel mod_add_right_eq mod_pos_pos_trivial)
41541
1fa4725c4656 eliminated global prems;
wenzelm
parents: 36350
diff changeset
   121
  done
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   122
44872
a98ef45122f3 misc tuning;
wenzelm
parents: 41959
diff changeset
   123
lemma finite [iff]: "finite (carrier R)"
65416
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65066
diff changeset
   124
  by (simp add: res_carrier_eq)
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   125
44872
a98ef45122f3 misc tuning;
wenzelm
parents: 41959
diff changeset
   126
lemma finite_Units [iff]: "finite (Units R)"
65416
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65066
diff changeset
   127
  by (simp add: finite_ring_finite_units)
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   128
60527
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   129
text \<open>
63167
0909deb8059b isabelle update_cartouches -c -t;
wenzelm
parents: 62348
diff changeset
   130
  The function \<open>a \<mapsto> a mod m\<close> maps the integers to the
60527
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   131
  residue classes. The following lemmas show that this mapping
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   132
  respects addition and multiplication on the integers.
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   133
\<close>
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   134
60527
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   135
lemma mod_in_carrier [iff]: "a mod m \<in> carrier R"
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   136
  unfolding res_carrier_eq
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   137
  using insert m_gt_one by auto
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   138
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   139
lemma add_cong: "(x mod m) \<oplus> (y mod m) = (x + y) mod m"
66305
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   140
  by (auto simp: R_def residue_ring_def mod_simps)
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   141
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   142
lemma mult_cong: "(x mod m) \<otimes> (y mod m) = (x * y) mod m"
66305
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   143
  by (auto simp: R_def residue_ring_def mod_simps)
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   144
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   145
lemma zero_cong: "\<zero> = 0"
66305
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   146
  by (auto simp: R_def residue_ring_def)
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   147
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   148
lemma one_cong: "\<one> = 1 mod m"
66305
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   149
  using m_gt_one by (auto simp: R_def residue_ring_def)
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   150
60527
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   151
(* FIXME revise algebra library to use 1? *)
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   152
lemma pow_cong: "(x mod m) (^) n = x^n mod m"
65066
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   153
  using m_gt_one
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   154
  apply (induct n)
41541
1fa4725c4656 eliminated global prems;
wenzelm
parents: 36350
diff changeset
   155
  apply (auto simp add: nat_pow_def one_cong)
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 55352
diff changeset
   156
  apply (metis mult.commute mult_cong)
41541
1fa4725c4656 eliminated global prems;
wenzelm
parents: 36350
diff changeset
   157
  done
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   158
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   159
lemma neg_cong: "\<ominus> (x mod m) = (- x) mod m"
55352
paulson <lp15@cam.ac.uk>
parents: 55262
diff changeset
   160
  by (metis mod_minus_eq res_neg_eq)
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   161
60528
wenzelm
parents: 60527
diff changeset
   162
lemma (in residues) prod_cong: "finite A \<Longrightarrow> (\<Otimes>i\<in>A. (f i) mod m) = (\<Prod>i\<in>A. f i) mod m"
55352
paulson <lp15@cam.ac.uk>
parents: 55262
diff changeset
   163
  by (induct set: finite) (auto simp: one_cong mult_cong)
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   164
60528
wenzelm
parents: 60527
diff changeset
   165
lemma (in residues) sum_cong: "finite A \<Longrightarrow> (\<Oplus>i\<in>A. (f i) mod m) = (\<Sum>i\<in>A. f i) mod m"
55352
paulson <lp15@cam.ac.uk>
parents: 55262
diff changeset
   166
  by (induct set: finite) (auto simp: zero_cong add_cong)
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   167
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60528
diff changeset
   168
lemma mod_in_res_units [simp]:
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60528
diff changeset
   169
  assumes "1 < m" and "coprime a m"
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60528
diff changeset
   170
  shows "a mod m \<in> Units R"
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60528
diff changeset
   171
proof (cases "a mod m = 0")
66305
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   172
  case True
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   173
  with assms show ?thesis
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60528
diff changeset
   174
    by (auto simp add: res_units_eq gcd_red_int [symmetric])
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60528
diff changeset
   175
next
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60528
diff changeset
   176
  case False
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60528
diff changeset
   177
  from assms have "0 < m" by simp
66305
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   178
  then have "0 \<le> a mod m" by (rule pos_mod_sign [of m a])
60688
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60528
diff changeset
   179
  with False have "0 < a mod m" by simp
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60528
diff changeset
   180
  with assms show ?thesis
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60528
diff changeset
   181
    by (auto simp add: res_units_eq gcd_red_int [symmetric] ac_simps)
01488b559910 avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
haftmann
parents: 60528
diff changeset
   182
qed
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   183
60528
wenzelm
parents: 60527
diff changeset
   184
lemma res_eq_to_cong: "(a mod m) = (b mod m) \<longleftrightarrow> [a = b] (mod m)"
66888
930abfdf8727 algebraic foundation for congruences
haftmann
parents: 66837
diff changeset
   185
  by (auto simp: cong_def)
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   186
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   187
60528
wenzelm
parents: 60527
diff changeset
   188
text \<open>Simplifying with these will translate a ring equation in R to a congruence.\<close>
66305
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   189
lemmas res_to_cong_simps =
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   190
  add_cong mult_cong pow_cong one_cong
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   191
  prod_cong sum_cong neg_cong res_eq_to_cong
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   192
60527
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   193
text \<open>Other useful facts about the residue ring.\<close>
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   194
lemma one_eq_neg_one: "\<one> = \<ominus> \<one> \<Longrightarrow> m = 2"
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   195
  apply (simp add: res_one_eq res_neg_eq)
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 55352
diff changeset
   196
  apply (metis add.commute add_diff_cancel mod_mod_trivial one_add_one uminus_add_conv_diff
60528
wenzelm
parents: 60527
diff changeset
   197
    zero_neq_one zmod_zminus1_eq_if)
41541
1fa4725c4656 eliminated global prems;
wenzelm
parents: 36350
diff changeset
   198
  done
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   199
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   200
end
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   201
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   202
60527
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   203
subsection \<open>Prime residues\<close>
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   204
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   205
locale residues_prime =
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63417
diff changeset
   206
  fixes p :: nat and R (structure)
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   207
  assumes p_prime [intro]: "prime p"
63534
523b488b15c9 Overhaul of prime/multiplicity/prime_factors
eberlm <eberlm@in.tum.de>
parents: 63417
diff changeset
   208
  defines "R \<equiv> residue_ring (int p)"
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   209
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   210
sublocale residues_prime < residues p
65066
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   211
  unfolding R_def residues_def
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   212
  using p_prime apply auto
62348
9a5f43dac883 dropped various legacy fact bindings
haftmann
parents: 60688
diff changeset
   213
  apply (metis (full_types) of_nat_1 of_nat_less_iff prime_gt_1_nat)
41541
1fa4725c4656 eliminated global prems;
wenzelm
parents: 36350
diff changeset
   214
  done
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   215
44872
a98ef45122f3 misc tuning;
wenzelm
parents: 41959
diff changeset
   216
context residues_prime
a98ef45122f3 misc tuning;
wenzelm
parents: 41959
diff changeset
   217
begin
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   218
67051
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   219
lemma p_coprime_left:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   220
  "coprime p a \<longleftrightarrow> \<not> p dvd a"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   221
  using p_prime by (auto intro: prime_imp_coprime dest: coprime_common_divisor)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   222
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   223
lemma p_coprime_right:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   224
  "coprime a p  \<longleftrightarrow> \<not> p dvd a"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   225
  using p_coprime_left [of a] by (simp add: ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   226
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   227
lemma p_coprime_left_int:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   228
  "coprime (int p) a \<longleftrightarrow> \<not> int p dvd a"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   229
  using p_prime by (auto intro: prime_imp_coprime dest: coprime_common_divisor)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   230
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   231
lemma p_coprime_right_int:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   232
  "coprime a (int p) \<longleftrightarrow> \<not> int p dvd a"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   233
  using p_coprime_left_int [of a] by (simp add: ac_simps)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   234
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   235
lemma is_field: "field R"
65066
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   236
proof -
66837
6ba663ff2b1c tuned proofs
haftmann
parents: 66817
diff changeset
   237
  have "0 < x \<Longrightarrow> x < int p \<Longrightarrow> coprime (int p) x" for x
6ba663ff2b1c tuned proofs
haftmann
parents: 66817
diff changeset
   238
    by (rule prime_imp_coprime) (auto simp add: zdvd_not_zless)
65066
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   239
  then show ?thesis
66837
6ba663ff2b1c tuned proofs
haftmann
parents: 66817
diff changeset
   240
    by (intro cring.field_intro2 cring)
6ba663ff2b1c tuned proofs
haftmann
parents: 66817
diff changeset
   241
      (auto simp add: res_carrier_eq res_one_eq res_zero_eq res_units_eq ac_simps)
65066
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   242
qed
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   243
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   244
lemma res_prime_units_eq: "Units R = {1..p - 1}"
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   245
  apply (subst res_units_eq)
67051
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   246
  apply (auto simp add: p_coprime_right_int zdvd_not_zless)
41541
1fa4725c4656 eliminated global prems;
wenzelm
parents: 36350
diff changeset
   247
  done
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   248
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   249
end
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   250
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   251
sublocale residues_prime < field
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   252
  by (rule is_field)
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   253
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   254
60527
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   255
section \<open>Test cases: Euler's theorem and Wilson's theorem\<close>
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   256
60527
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   257
subsection \<open>Euler's theorem\<close>
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   258
67051
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   259
lemma (in residues) totatives_eq:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   260
  "totatives (nat m) = nat ` Units R"
55261
ad3604df6bc6 new lemmas involving phi from Lehmer AFP entry
paulson <lp15@cam.ac.uk>
parents: 55242
diff changeset
   261
proof -
67051
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   262
  from m_gt_one have "\<bar>m\<bar> > 1"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   263
    by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   264
  then have "totatives (nat \<bar>m\<bar>) = nat ` abs ` Units R"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   265
    by (auto simp add: totatives_def res_units_eq image_iff le_less)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   266
      (use m_gt_one zless_nat_eq_int_zless in force)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   267
  moreover have "\<bar>m\<bar> = m" "abs ` Units R = Units R"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   268
    using m_gt_one by (auto simp add: res_units_eq image_iff)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   269
  ultimately show ?thesis
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   270
    by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   271
qed
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   272
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   273
lemma (in residues) totient_eq:
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   274
  "totient (nat m) = card (Units R)"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   275
proof  -
65465
067210a08a22 more fundamental euler's totient function on nat rather than int;
haftmann
parents: 65416
diff changeset
   276
  have *: "inj_on nat (Units R)"
067210a08a22 more fundamental euler's totient function on nat rather than int;
haftmann
parents: 65416
diff changeset
   277
    by (rule inj_onI) (auto simp add: res_units_eq)
67051
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   278
  then show ?thesis
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66954
diff changeset
   279
    by (simp add: totient_def totatives_eq card_image)
55261
ad3604df6bc6 new lemmas involving phi from Lehmer AFP entry
paulson <lp15@cam.ac.uk>
parents: 55242
diff changeset
   280
qed
ad3604df6bc6 new lemmas involving phi from Lehmer AFP entry
paulson <lp15@cam.ac.uk>
parents: 55242
diff changeset
   281
65465
067210a08a22 more fundamental euler's totient function on nat rather than int;
haftmann
parents: 65416
diff changeset
   282
lemma (in residues_prime) totient_eq: "totient p = p - 1"
067210a08a22 more fundamental euler's totient function on nat rather than int;
haftmann
parents: 65416
diff changeset
   283
  using totient_eq by (simp add: res_prime_units_eq)
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   284
65465
067210a08a22 more fundamental euler's totient function on nat rather than int;
haftmann
parents: 65416
diff changeset
   285
lemma (in residues) euler_theorem:
067210a08a22 more fundamental euler's totient function on nat rather than int;
haftmann
parents: 65416
diff changeset
   286
  assumes "coprime a m"
067210a08a22 more fundamental euler's totient function on nat rather than int;
haftmann
parents: 65416
diff changeset
   287
  shows "[a ^ totient (nat m) = 1] (mod m)"
65416
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65066
diff changeset
   288
proof -
65465
067210a08a22 more fundamental euler's totient function on nat rather than int;
haftmann
parents: 65416
diff changeset
   289
  have "a ^ totient (nat m) mod m = 1 mod m"
067210a08a22 more fundamental euler's totient function on nat rather than int;
haftmann
parents: 65416
diff changeset
   290
    by (metis assms finite_Units m_gt_one mod_in_res_units one_cong totient_eq pow_cong units_power_order_eq_one)
65066
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   291
  then show ?thesis
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   292
    using res_eq_to_cong by blast
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   293
qed
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   294
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   295
lemma euler_theorem:
65465
067210a08a22 more fundamental euler's totient function on nat rather than int;
haftmann
parents: 65416
diff changeset
   296
  fixes a m :: nat
067210a08a22 more fundamental euler's totient function on nat rather than int;
haftmann
parents: 65416
diff changeset
   297
  assumes "coprime a m"
067210a08a22 more fundamental euler's totient function on nat rather than int;
haftmann
parents: 65416
diff changeset
   298
  shows "[a ^ totient m = 1] (mod m)"
60527
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   299
proof (cases "m = 0 | m = 1")
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   300
  case True
44872
a98ef45122f3 misc tuning;
wenzelm
parents: 41959
diff changeset
   301
  then show ?thesis by auto
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   302
next
60527
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   303
  case False
41541
1fa4725c4656 eliminated global prems;
wenzelm
parents: 36350
diff changeset
   304
  with assms show ?thesis
66954
0230af0f3c59 removed ancient nat-int transfer
haftmann
parents: 66888
diff changeset
   305
    using residues.euler_theorem [of "int m" "int a"] cong_int_iff
0230af0f3c59 removed ancient nat-int transfer
haftmann
parents: 66888
diff changeset
   306
    by (auto simp add: residues_def gcd_int_def) fastforce
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   307
qed
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   308
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   309
lemma fermat_theorem:
65465
067210a08a22 more fundamental euler's totient function on nat rather than int;
haftmann
parents: 65416
diff changeset
   310
  fixes p a :: nat
067210a08a22 more fundamental euler's totient function on nat rather than int;
haftmann
parents: 65416
diff changeset
   311
  assumes "prime p" and "\<not> p dvd a"
067210a08a22 more fundamental euler's totient function on nat rather than int;
haftmann
parents: 65416
diff changeset
   312
  shows "[a ^ (p - 1) = 1] (mod p)"
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   313
proof -
65465
067210a08a22 more fundamental euler's totient function on nat rather than int;
haftmann
parents: 65416
diff changeset
   314
  from assms prime_imp_coprime [of p a] have "coprime a p"
067210a08a22 more fundamental euler's totient function on nat rather than int;
haftmann
parents: 65416
diff changeset
   315
    by (auto simp add: ac_simps)
067210a08a22 more fundamental euler's totient function on nat rather than int;
haftmann
parents: 65416
diff changeset
   316
  then have "[a ^ totient p = 1] (mod p)"
067210a08a22 more fundamental euler's totient function on nat rather than int;
haftmann
parents: 65416
diff changeset
   317
     by (rule euler_theorem)
067210a08a22 more fundamental euler's totient function on nat rather than int;
haftmann
parents: 65416
diff changeset
   318
  also have "totient p = p - 1"
65726
f5d64d094efe More material on totient function
eberlm <eberlm@in.tum.de>
parents: 65465
diff changeset
   319
    by (rule totient_prime) (rule assms)
65465
067210a08a22 more fundamental euler's totient function on nat rather than int;
haftmann
parents: 65416
diff changeset
   320
  finally show ?thesis .
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   321
qed
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   322
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   323
60526
fad653acf58f isabelle update_cartouches;
wenzelm
parents: 59730
diff changeset
   324
subsection \<open>Wilson's theorem\<close>
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   325
60527
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   326
lemma (in field) inv_pair_lemma: "x \<in> Units R \<Longrightarrow> y \<in> Units R \<Longrightarrow>
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   327
    {x, inv x} \<noteq> {y, inv y} \<Longrightarrow> {x, inv x} \<inter> {y, inv y} = {}"
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   328
  apply auto
55352
paulson <lp15@cam.ac.uk>
parents: 55262
diff changeset
   329
  apply (metis Units_inv_inv)+
41541
1fa4725c4656 eliminated global prems;
wenzelm
parents: 36350
diff changeset
   330
  done
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   331
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   332
lemma (in residues_prime) wilson_theorem1:
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   333
  assumes a: "p > 2"
59730
b7c394c7a619 The factorial function, "fact", now has type "nat => 'a"
paulson <lp15@cam.ac.uk>
parents: 59667
diff changeset
   334
  shows "[fact (p - 1) = (-1::int)] (mod p)"
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   335
proof -
60527
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   336
  let ?Inverse_Pairs = "{{x, inv x}| x. x \<in> Units R - {\<one>, \<ominus> \<one>}}"
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   337
  have UR: "Units R = {\<one>, \<ominus> \<one>} \<union> \<Union>?Inverse_Pairs"
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   338
    by auto
60527
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   339
  have "(\<Otimes>i\<in>Units R. i) = (\<Otimes>i\<in>{\<one>, \<ominus> \<one>}. i) \<otimes> (\<Otimes>i\<in>\<Union>?Inverse_Pairs. i)"
31732
052399f580cf fixed proof
nipkow
parents: 31727
diff changeset
   340
    apply (subst UR)
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   341
    apply (subst finprod_Un_disjoint)
66305
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   342
         apply (auto intro: funcsetI)
60527
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   343
    using inv_one apply auto[1]
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   344
    using inv_eq_neg_one_eq apply auto
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   345
    done
60527
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   346
  also have "(\<Otimes>i\<in>{\<one>, \<ominus> \<one>}. i) = \<ominus> \<one>"
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   347
    apply (subst finprod_insert)
66305
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   348
        apply auto
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   349
    apply (frule one_eq_neg_one)
60527
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   350
    using a apply force
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   351
    done
60527
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   352
  also have "(\<Otimes>i\<in>(\<Union>?Inverse_Pairs). i) = (\<Otimes>A\<in>?Inverse_Pairs. (\<Otimes>y\<in>A. y))"
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   353
    apply (subst finprod_Union_disjoint)
66305
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   354
       apply auto
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   355
     apply (metis Units_inv_inv)+
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   356
    done
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   357
  also have "\<dots> = \<one>"
60527
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   358
    apply (rule finprod_one)
66305
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   359
     apply auto
60527
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   360
    apply (subst finprod_insert)
66305
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   361
        apply auto
55352
paulson <lp15@cam.ac.uk>
parents: 55262
diff changeset
   362
    apply (metis inv_eq_self)
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   363
    done
60527
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   364
  finally have "(\<Otimes>i\<in>Units R. i) = \<ominus> \<one>"
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   365
    by simp
60527
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   366
  also have "(\<Otimes>i\<in>Units R. i) = (\<Otimes>i\<in>Units R. i mod p)"
65066
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   367
    by (rule finprod_cong') (auto simp: res_units_eq)
60527
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   368
  also have "\<dots> = (\<Prod>i\<in>Units R. i) mod p"
65066
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   369
    by (rule prod_cong) auto
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   370
  also have "\<dots> = fact (p - 1) mod p"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 63633
diff changeset
   371
    apply (simp add: fact_prod)
65066
c64d778a593a tidied some messy proofs
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   372
    using assms
55242
413ec965f95d Number_Theory: prime is no longer overloaded, but only for nat. Automatic coercion to int enabled.
paulson <lp15@cam.ac.uk>
parents: 55227
diff changeset
   373
    apply (subst res_prime_units_eq)
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 63633
diff changeset
   374
    apply (simp add: int_prod zmod_int prod_int_eq)
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   375
    done
60527
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   376
  finally have "fact (p - 1) mod p = \<ominus> \<one>" .
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   377
  then show ?thesis
66888
930abfdf8727 algebraic foundation for congruences
haftmann
parents: 66837
diff changeset
   378
    by (simp add: cong_def res_neg_eq res_one_eq zmod_int)
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   379
qed
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   380
55352
paulson <lp15@cam.ac.uk>
parents: 55262
diff changeset
   381
lemma wilson_theorem:
60527
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   382
  assumes "prime p"
eb431a5651fe tuned proofs;
wenzelm
parents: 60526
diff changeset
   383
  shows "[fact (p - 1) = - 1] (mod p)"
55352
paulson <lp15@cam.ac.uk>
parents: 55262
diff changeset
   384
proof (cases "p = 2")
59667
651ea265d568 Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
   385
  case True
55352
paulson <lp15@cam.ac.uk>
parents: 55262
diff changeset
   386
  then show ?thesis
66888
930abfdf8727 algebraic foundation for congruences
haftmann
parents: 66837
diff changeset
   387
    by (simp add: cong_def fact_prod)
55352
paulson <lp15@cam.ac.uk>
parents: 55262
diff changeset
   388
next
paulson <lp15@cam.ac.uk>
parents: 55262
diff changeset
   389
  case False
paulson <lp15@cam.ac.uk>
parents: 55262
diff changeset
   390
  then show ?thesis
paulson <lp15@cam.ac.uk>
parents: 55262
diff changeset
   391
    using assms prime_ge_2_nat
paulson <lp15@cam.ac.uk>
parents: 55262
diff changeset
   392
    by (metis residues_prime.wilson_theorem1 residues_prime.intro le_eq_less_or_eq)
paulson <lp15@cam.ac.uk>
parents: 55262
diff changeset
   393
qed
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   394
66304
cde6ceffcbc7 isabelle update_cartouches -c -t;
wenzelm
parents: 65899
diff changeset
   395
text \<open>
65416
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65066
diff changeset
   396
  This result can be transferred to the multiplicative group of
66305
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   397
  \<open>\<int>/p\<int>\<close> for \<open>p\<close> prime.\<close>
65416
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65066
diff changeset
   398
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65066
diff changeset
   399
lemma mod_nat_int_pow_eq:
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65066
diff changeset
   400
  fixes n :: nat and p a :: int
66305
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   401
  shows "a \<ge> 0 \<Longrightarrow> p \<ge> 0 \<Longrightarrow> (nat a ^ n) mod (nat p) = nat ((a ^ n) mod p)"
65416
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65066
diff changeset
   402
  by (simp add: int_one_le_iff_zero_less nat_mod_distrib order_less_imp_le nat_power_eq[symmetric])
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65066
diff changeset
   403
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65066
diff changeset
   404
theorem residue_prime_mult_group_has_gen :
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65066
diff changeset
   405
 fixes p :: nat
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65066
diff changeset
   406
 assumes prime_p : "prime p"
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65066
diff changeset
   407
 shows "\<exists>a \<in> {1 .. p - 1}. {1 .. p - 1} = {a^i mod p|i . i \<in> UNIV}"
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65066
diff changeset
   408
proof -
66305
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   409
  have "p \<ge> 2"
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   410
    using prime_gt_1_nat[OF prime_p] by simp
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   411
  interpret R: residues_prime p "residue_ring p"
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   412
    by (simp add: residues_prime_def prime_p)
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   413
  have car: "carrier (residue_ring (int p)) - {\<zero>\<^bsub>residue_ring (int p)\<^esub>} = {1 .. int p - 1}"
65416
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65066
diff changeset
   414
    by (auto simp add: R.zero_cong R.res_carrier_eq)
66305
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   415
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   416
  have "x (^)\<^bsub>residue_ring (int p)\<^esub> i = x ^ i mod (int p)"
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   417
    if "x \<in> {1 .. int p - 1}" for x and i :: nat
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   418
    using that R.pow_cong[of x i] by auto
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   419
  moreover
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   420
  obtain a where a: "a \<in> {1 .. int p - 1}"
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   421
    and a_gen: "{1 .. int p - 1} = {a(^)\<^bsub>residue_ring (int p)\<^esub>i|i::nat . i \<in> UNIV}"
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   422
    using field.finite_field_mult_group_has_gen[OF R.is_field]
65416
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65066
diff changeset
   423
    by (auto simp add: car[symmetric] carrier_mult_of)
66305
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   424
  moreover
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   425
  have "nat ` {1 .. int p - 1} = {1 .. p - 1}" (is "?L = ?R")
65416
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65066
diff changeset
   426
  proof
66305
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   427
    have "n \<in> ?R" if "n \<in> ?L" for n
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   428
      using that \<open>p\<ge>2\<close> by force
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   429
    then show "?L \<subseteq> ?R" by blast
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   430
    have "n \<in> ?L" if "n \<in> ?R" for n
66837
6ba663ff2b1c tuned proofs
haftmann
parents: 66817
diff changeset
   431
      using that \<open>p\<ge>2\<close> by (auto intro: rev_image_eqI [of "int n"])
66305
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   432
    then show "?R \<subseteq> ?L" by blast
65416
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65066
diff changeset
   433
  qed
66305
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   434
  moreover
65416
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65066
diff changeset
   435
  have "nat ` {a^i mod (int p) | i::nat. i \<in> UNIV} = {nat a^i mod p | i . i \<in> UNIV}" (is "?L = ?R")
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65066
diff changeset
   436
  proof
66305
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   437
    have "x \<in> ?R" if "x \<in> ?L" for x
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   438
    proof -
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   439
      from that obtain i where i: "x = nat (a^i mod (int p))"
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   440
        by blast
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   441
      then have "x = nat a ^ i mod p"
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   442
        using mod_nat_int_pow_eq[of a "int p" i] a \<open>p\<ge>2\<close> by auto
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   443
      with i show ?thesis by blast
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   444
    qed
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   445
    then show "?L \<subseteq> ?R" by blast
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   446
    have "x \<in> ?L" if "x \<in> ?R" for x
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   447
    proof -
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   448
      from that obtain i where i: "x = nat a^i mod p"
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   449
        by blast
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   450
      with mod_nat_int_pow_eq[of a "int p" i] a \<open>p\<ge>2\<close> show ?thesis
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   451
        by auto
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   452
    qed
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   453
    then show "?R \<subseteq> ?L" by blast
65416
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65066
diff changeset
   454
  qed
66305
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   455
  ultimately have "{1 .. p - 1} = {nat a^i mod p | i. i \<in> UNIV}"
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   456
    by presburger
7454317f883c misc tuning and modernization;
wenzelm
parents: 66304
diff changeset
   457
  moreover from a have "nat a \<in> {1 .. p - 1}" by force
65416
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65066
diff changeset
   458
  ultimately show ?thesis ..
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65066
diff changeset
   459
qed
f707dbcf11e3 more approproiate placement of theories MiscAlgebra and Multiplicate_Group
haftmann
parents: 65066
diff changeset
   460
31719
29f5b20e8ee8 Added NewNumberTheory by Jeremy Avigad
nipkow
parents:
diff changeset
   461
end