| author | wenzelm | 
| Thu, 01 Jan 2009 22:37:34 +0100 | |
| changeset 29300 | e841a9de5445 | 
| parent 28952 | 15a4b2cf8c34 | 
| child 29667 | 53103fc8ffa3 | 
| permissions | -rw-r--r-- | 
| 16959 | 1 | (* Title: Ln.thy | 
| 2 | Author: Jeremy Avigad | |
| 3 | *) | |
| 4 | ||
| 5 | header {* Properties of ln *}
 | |
| 6 | ||
| 7 | theory Ln | |
| 8 | imports Transcendental | |
| 9 | begin | |
| 10 | ||
| 11 | lemma exp_first_two_terms: "exp x = 1 + x + suminf (%n. | |
| 12 | inverse(real (fact (n+2))) * (x ^ (n+2)))" | |
| 13 | proof - | |
| 14 | have "exp x = suminf (%n. inverse(real (fact n)) * (x ^ n))" | |
| 19765 | 15 | by (simp add: exp_def) | 
| 16959 | 16 |   also from summable_exp have "... = (SUM n : {0..<2}. 
 | 
| 17 | inverse(real (fact n)) * (x ^ n)) + suminf (%n. | |
| 18 | inverse(real (fact (n+2))) * (x ^ (n+2)))" (is "_ = ?a + _") | |
| 19 | by (rule suminf_split_initial_segment) | |
| 20 | also have "?a = 1 + x" | |
| 21 | by (simp add: numerals) | |
| 22 | finally show ?thesis . | |
| 23 | qed | |
| 24 | ||
| 25 | lemma exp_tail_after_first_two_terms_summable: | |
| 26 | "summable (%n. inverse(real (fact (n+2))) * (x ^ (n+2)))" | |
| 27 | proof - | |
| 28 | note summable_exp | |
| 29 | thus ?thesis | |
| 30 | by (frule summable_ignore_initial_segment) | |
| 31 | qed | |
| 32 | ||
| 33 | lemma aux1: assumes a: "0 <= x" and b: "x <= 1" | |
| 34 | shows "inverse (real (fact (n + 2))) * x ^ (n + 2) <= (x^2/2) * ((1/2)^n)" | |
| 35 | proof (induct n) | |
| 36 | show "inverse (real (fact (0 + 2))) * x ^ (0 + 2) <= | |
| 37 | x ^ 2 / 2 * (1 / 2) ^ 0" | |
| 23482 | 38 | by (simp add: real_of_nat_Suc power2_eq_square) | 
| 16959 | 39 | next | 
| 40 | fix n | |
| 41 | assume c: "inverse (real (fact (n + 2))) * x ^ (n + 2) | |
| 42 | <= x ^ 2 / 2 * (1 / 2) ^ n" | |
| 43 | show "inverse (real (fact (Suc n + 2))) * x ^ (Suc n + 2) | |
| 44 | <= x ^ 2 / 2 * (1 / 2) ^ Suc n" | |
| 45 | proof - | |
| 46 | have "inverse(real (fact (Suc n + 2))) <= | |
| 47 | (1 / 2) *inverse (real (fact (n+2)))" | |
| 48 | proof - | |
| 49 | have "Suc n + 2 = Suc (n + 2)" by simp | |
| 50 | then have "fact (Suc n + 2) = Suc (n + 2) * fact (n + 2)" | |
| 51 | by simp | |
| 52 | then have "real(fact (Suc n + 2)) = real(Suc (n + 2) * fact (n + 2))" | |
| 53 | apply (rule subst) | |
| 54 | apply (rule refl) | |
| 55 | done | |
| 56 | also have "... = real(Suc (n + 2)) * real(fact (n + 2))" | |
| 57 | by (rule real_of_nat_mult) | |
| 58 | finally have "real (fact (Suc n + 2)) = | |
| 59 | real (Suc (n + 2)) * real (fact (n + 2))" . | |
| 60 | then have "inverse(real (fact (Suc n + 2))) = | |
| 61 | inverse(real (Suc (n + 2))) * inverse(real (fact (n + 2)))" | |
| 62 | apply (rule ssubst) | |
| 63 | apply (rule inverse_mult_distrib) | |
| 64 | done | |
| 65 | also have "... <= (1/2) * inverse(real (fact (n + 2)))" | |
| 66 | apply (rule mult_right_mono) | |
| 67 | apply (subst inverse_eq_divide) | |
| 68 | apply simp | |
| 69 | apply (rule inv_real_of_nat_fact_ge_zero) | |
| 70 | done | |
| 71 | finally show ?thesis . | |
| 72 | qed | |
| 73 | moreover have "x ^ (Suc n + 2) <= x ^ (n + 2)" | |
| 74 | apply (simp add: mult_compare_simps) | |
| 75 | apply (simp add: prems) | |
| 76 | apply (subgoal_tac "0 <= x * (x * x^n)") | |
| 77 | apply force | |
| 78 | apply (rule mult_nonneg_nonneg, rule a)+ | |
| 79 | apply (rule zero_le_power, rule a) | |
| 80 | done | |
| 81 | ultimately have "inverse (real (fact (Suc n + 2))) * x ^ (Suc n + 2) <= | |
| 82 | (1 / 2 * inverse (real (fact (n + 2)))) * x ^ (n + 2)" | |
| 83 | apply (rule mult_mono) | |
| 84 | apply (rule mult_nonneg_nonneg) | |
| 85 | apply simp | |
| 86 | apply (subst inverse_nonnegative_iff_nonnegative) | |
| 27483 
7c58324cd418
use real_of_nat_ge_zero instead of real_of_nat_fact_ge_zero
 huffman parents: 
25875diff
changeset | 87 | apply (rule real_of_nat_ge_zero) | 
| 16959 | 88 | apply (rule zero_le_power) | 
| 23441 | 89 | apply (rule a) | 
| 16959 | 90 | done | 
| 91 | also have "... = 1 / 2 * (inverse (real (fact (n + 2))) * x ^ (n + 2))" | |
| 92 | by simp | |
| 93 | also have "... <= 1 / 2 * (x ^ 2 / 2 * (1 / 2) ^ n)" | |
| 94 | apply (rule mult_left_mono) | |
| 95 | apply (rule prems) | |
| 96 | apply simp | |
| 97 | done | |
| 98 | also have "... = x ^ 2 / 2 * (1 / 2 * (1 / 2) ^ n)" | |
| 99 | by auto | |
| 100 | also have "(1::real) / 2 * (1 / 2) ^ n = (1 / 2) ^ (Suc n)" | |
| 101 | by (rule realpow_Suc [THEN sym]) | |
| 102 | finally show ?thesis . | |
| 103 | qed | |
| 104 | qed | |
| 105 | ||
| 20692 | 106 | lemma aux2: "(%n. (x::real) ^ 2 / 2 * (1 / 2) ^ n) sums x^2" | 
| 16959 | 107 | proof - | 
| 20692 | 108 | have "(%n. (1 / 2::real)^n) sums (1 / (1 - (1/2)))" | 
| 16959 | 109 | apply (rule geometric_sums) | 
| 22998 | 110 | by (simp add: abs_less_iff) | 
| 16959 | 111 | also have "(1::real) / (1 - 1/2) = 2" | 
| 112 | by simp | |
| 20692 | 113 | finally have "(%n. (1 / 2::real)^n) sums 2" . | 
| 16959 | 114 | then have "(%n. x ^ 2 / 2 * (1 / 2) ^ n) sums (x^2 / 2 * 2)" | 
| 115 | by (rule sums_mult) | |
| 116 | also have "x^2 / 2 * 2 = x^2" | |
| 117 | by simp | |
| 118 | finally show ?thesis . | |
| 119 | qed | |
| 120 | ||
| 23114 | 121 | lemma exp_bound: "0 <= (x::real) ==> x <= 1 ==> exp x <= 1 + x + x^2" | 
| 16959 | 122 | proof - | 
| 123 | assume a: "0 <= x" | |
| 124 | assume b: "x <= 1" | |
| 125 | have c: "exp x = 1 + x + suminf (%n. inverse(real (fact (n+2))) * | |
| 126 | (x ^ (n+2)))" | |
| 127 | by (rule exp_first_two_terms) | |
| 128 | moreover have "suminf (%n. inverse(real (fact (n+2))) * (x ^ (n+2))) <= x^2" | |
| 129 | proof - | |
| 130 | have "suminf (%n. inverse(real (fact (n+2))) * (x ^ (n+2))) <= | |
| 131 | suminf (%n. (x^2/2) * ((1/2)^n))" | |
| 132 | apply (rule summable_le) | |
| 133 | apply (auto simp only: aux1 prems) | |
| 134 | apply (rule exp_tail_after_first_two_terms_summable) | |
| 135 | by (rule sums_summable, rule aux2) | |
| 136 | also have "... = x^2" | |
| 137 | by (rule sums_unique [THEN sym], rule aux2) | |
| 138 | finally show ?thesis . | |
| 139 | qed | |
| 140 | ultimately show ?thesis | |
| 141 | by auto | |
| 142 | qed | |
| 143 | ||
| 23114 | 144 | lemma aux4: "0 <= (x::real) ==> x <= 1 ==> exp (x - x^2) <= 1 + x" | 
| 16959 | 145 | proof - | 
| 146 | assume a: "0 <= x" and b: "x <= 1" | |
| 147 | have "exp (x - x^2) = exp x / exp (x^2)" | |
| 148 | by (rule exp_diff) | |
| 149 | also have "... <= (1 + x + x^2) / exp (x ^2)" | |
| 150 | apply (rule divide_right_mono) | |
| 151 | apply (rule exp_bound) | |
| 152 | apply (rule a, rule b) | |
| 153 | apply simp | |
| 154 | done | |
| 155 | also have "... <= (1 + x + x^2) / (1 + x^2)" | |
| 156 | apply (rule divide_left_mono) | |
| 17013 
74bc935273ea
renamed exp_ge_add_one_self2 to exp_ge_add_one_self
 avigad parents: 
16963diff
changeset | 157 | apply (auto simp add: exp_ge_add_one_self_aux) | 
| 16959 | 158 | apply (rule add_nonneg_nonneg) | 
| 159 | apply (insert prems, auto) | |
| 160 | apply (rule mult_pos_pos) | |
| 161 | apply auto | |
| 162 | apply (rule add_pos_nonneg) | |
| 163 | apply auto | |
| 164 | done | |
| 165 | also from a have "... <= 1 + x" | |
| 23482 | 166 | by(simp add:field_simps zero_compare_simps) | 
| 16959 | 167 | finally show ?thesis . | 
| 168 | qed | |
| 169 | ||
| 170 | lemma ln_one_plus_pos_lower_bound: "0 <= x ==> x <= 1 ==> | |
| 171 | x - x^2 <= ln (1 + x)" | |
| 172 | proof - | |
| 173 | assume a: "0 <= x" and b: "x <= 1" | |
| 174 | then have "exp (x - x^2) <= 1 + x" | |
| 175 | by (rule aux4) | |
| 176 | also have "... = exp (ln (1 + x))" | |
| 177 | proof - | |
| 178 | from a have "0 < 1 + x" by auto | |
| 179 | thus ?thesis | |
| 180 | by (auto simp only: exp_ln_iff [THEN sym]) | |
| 181 | qed | |
| 182 | finally have "exp (x - x ^ 2) <= exp (ln (1 + x))" . | |
| 183 | thus ?thesis by (auto simp only: exp_le_cancel_iff) | |
| 184 | qed | |
| 185 | ||
| 186 | lemma ln_one_minus_pos_upper_bound: "0 <= x ==> x < 1 ==> ln (1 - x) <= - x" | |
| 187 | proof - | |
| 188 | assume a: "0 <= (x::real)" and b: "x < 1" | |
| 189 | have "(1 - x) * (1 + x + x^2) = (1 - x^3)" | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23441diff
changeset | 190 | by (simp add: ring_simps power2_eq_square power3_eq_cube) | 
| 16959 | 191 | also have "... <= 1" | 
| 25875 | 192 | by (auto simp add: a) | 
| 16959 | 193 | finally have "(1 - x) * (1 + x + x ^ 2) <= 1" . | 
| 194 | moreover have "0 < 1 + x + x^2" | |
| 195 | apply (rule add_pos_nonneg) | |
| 196 | apply (insert a, auto) | |
| 197 | done | |
| 198 | ultimately have "1 - x <= 1 / (1 + x + x^2)" | |
| 199 | by (elim mult_imp_le_div_pos) | |
| 200 | also have "... <= 1 / exp x" | |
| 201 | apply (rule divide_left_mono) | |
| 202 | apply (rule exp_bound, rule a) | |
| 203 | apply (insert prems, auto) | |
| 204 | apply (rule mult_pos_pos) | |
| 205 | apply (rule add_pos_nonneg) | |
| 206 | apply auto | |
| 207 | done | |
| 208 | also have "... = exp (-x)" | |
| 209 | by (auto simp add: exp_minus real_divide_def) | |
| 210 | finally have "1 - x <= exp (- x)" . | |
| 211 | also have "1 - x = exp (ln (1 - x))" | |
| 212 | proof - | |
| 213 | have "0 < 1 - x" | |
| 214 | by (insert b, auto) | |
| 215 | thus ?thesis | |
| 216 | by (auto simp only: exp_ln_iff [THEN sym]) | |
| 217 | qed | |
| 218 | finally have "exp (ln (1 - x)) <= exp (- x)" . | |
| 219 | thus ?thesis by (auto simp only: exp_le_cancel_iff) | |
| 220 | qed | |
| 221 | ||
| 222 | lemma aux5: "x < 1 ==> ln(1 - x) = - ln(1 + x / (1 - x))" | |
| 223 | proof - | |
| 224 | assume a: "x < 1" | |
| 225 | have "ln(1 - x) = - ln(1 / (1 - x))" | |
| 226 | proof - | |
| 227 | have "ln(1 - x) = - (- ln (1 - x))" | |
| 228 | by auto | |
| 229 | also have "- ln(1 - x) = ln 1 - ln(1 - x)" | |
| 230 | by simp | |
| 231 | also have "... = ln(1 / (1 - x))" | |
| 232 | apply (rule ln_div [THEN sym]) | |
| 233 | by (insert a, auto) | |
| 234 | finally show ?thesis . | |
| 235 | qed | |
| 23482 | 236 | also have " 1 / (1 - x) = 1 + x / (1 - x)" using a by(simp add:field_simps) | 
| 16959 | 237 | finally show ?thesis . | 
| 238 | qed | |
| 239 | ||
| 240 | lemma ln_one_minus_pos_lower_bound: "0 <= x ==> x <= (1 / 2) ==> | |
| 241 | - x - 2 * x^2 <= ln (1 - x)" | |
| 242 | proof - | |
| 243 | assume a: "0 <= x" and b: "x <= (1 / 2)" | |
| 244 | from b have c: "x < 1" | |
| 245 | by auto | |
| 246 | then have "ln (1 - x) = - ln (1 + x / (1 - x))" | |
| 247 | by (rule aux5) | |
| 248 | also have "- (x / (1 - x)) <= ..." | |
| 249 | proof - | |
| 250 | have "ln (1 + x / (1 - x)) <= x / (1 - x)" | |
| 251 | apply (rule ln_add_one_self_le_self) | |
| 252 | apply (rule divide_nonneg_pos) | |
| 253 | by (insert a c, auto) | |
| 254 | thus ?thesis | |
| 255 | by auto | |
| 256 | qed | |
| 257 | also have "- (x / (1 - x)) = -x / (1 - x)" | |
| 258 | by auto | |
| 259 | finally have d: "- x / (1 - x) <= ln (1 - x)" . | |
| 23482 | 260 | have "0 < 1 - x" using prems by simp | 
| 261 | hence e: "-x - 2 * x^2 <= - x / (1 - x)" | |
| 262 | using mult_right_le_one_le[of "x*x" "2*x"] prems | |
| 263 | by(simp add:field_simps power2_eq_square) | |
| 16959 | 264 | from e d show "- x - 2 * x^2 <= ln (1 - x)" | 
| 265 | by (rule order_trans) | |
| 266 | qed | |
| 267 | ||
| 23114 | 268 | lemma exp_ge_add_one_self [simp]: "1 + (x::real) <= exp x" | 
| 16959 | 269 | apply (case_tac "0 <= x") | 
| 17013 
74bc935273ea
renamed exp_ge_add_one_self2 to exp_ge_add_one_self
 avigad parents: 
16963diff
changeset | 270 | apply (erule exp_ge_add_one_self_aux) | 
| 16959 | 271 | apply (case_tac "x <= -1") | 
| 272 | apply (subgoal_tac "1 + x <= 0") | |
| 273 | apply (erule order_trans) | |
| 274 | apply simp | |
| 275 | apply simp | |
| 276 | apply (subgoal_tac "1 + x = exp(ln (1 + x))") | |
| 277 | apply (erule ssubst) | |
| 278 | apply (subst exp_le_cancel_iff) | |
| 279 | apply (subgoal_tac "ln (1 - (- x)) <= - (- x)") | |
| 280 | apply simp | |
| 281 | apply (rule ln_one_minus_pos_upper_bound) | |
| 282 | apply auto | |
| 283 | done | |
| 284 | ||
| 285 | lemma ln_add_one_self_le_self2: "-1 < x ==> ln(1 + x) <= x" | |
| 286 | apply (subgoal_tac "x = ln (exp x)") | |
| 287 | apply (erule ssubst)back | |
| 288 | apply (subst ln_le_cancel_iff) | |
| 289 | apply auto | |
| 290 | done | |
| 291 | ||
| 292 | lemma abs_ln_one_plus_x_minus_x_bound_nonneg: | |
| 293 | "0 <= x ==> x <= 1 ==> abs(ln (1 + x) - x) <= x^2" | |
| 294 | proof - | |
| 23441 | 295 | assume x: "0 <= x" | 
| 16959 | 296 | assume "x <= 1" | 
| 23441 | 297 | from x have "ln (1 + x) <= x" | 
| 16959 | 298 | by (rule ln_add_one_self_le_self) | 
| 299 | then have "ln (1 + x) - x <= 0" | |
| 300 | by simp | |
| 301 | then have "abs(ln(1 + x) - x) = - (ln(1 + x) - x)" | |
| 302 | by (rule abs_of_nonpos) | |
| 303 | also have "... = x - ln (1 + x)" | |
| 304 | by simp | |
| 305 | also have "... <= x^2" | |
| 306 | proof - | |
| 307 | from prems have "x - x^2 <= ln (1 + x)" | |
| 308 | by (intro ln_one_plus_pos_lower_bound) | |
| 309 | thus ?thesis | |
| 310 | by simp | |
| 311 | qed | |
| 312 | finally show ?thesis . | |
| 313 | qed | |
| 314 | ||
| 315 | lemma abs_ln_one_plus_x_minus_x_bound_nonpos: | |
| 316 | "-(1 / 2) <= x ==> x <= 0 ==> abs(ln (1 + x) - x) <= 2 * x^2" | |
| 317 | proof - | |
| 318 | assume "-(1 / 2) <= x" | |
| 319 | assume "x <= 0" | |
| 320 | have "abs(ln (1 + x) - x) = x - ln(1 - (-x))" | |
| 321 | apply (subst abs_of_nonpos) | |
| 322 | apply simp | |
| 323 | apply (rule ln_add_one_self_le_self2) | |
| 324 | apply (insert prems, auto) | |
| 325 | done | |
| 326 | also have "... <= 2 * x^2" | |
| 327 | apply (subgoal_tac "- (-x) - 2 * (-x)^2 <= ln (1 - (-x))") | |
| 328 | apply (simp add: compare_rls) | |
| 329 | apply (rule ln_one_minus_pos_lower_bound) | |
| 330 | apply (insert prems, auto) | |
| 331 | done | |
| 332 | finally show ?thesis . | |
| 333 | qed | |
| 334 | ||
| 335 | lemma abs_ln_one_plus_x_minus_x_bound: | |
| 336 | "abs x <= 1 / 2 ==> abs(ln (1 + x) - x) <= 2 * x^2" | |
| 337 | apply (case_tac "0 <= x") | |
| 338 | apply (rule order_trans) | |
| 339 | apply (rule abs_ln_one_plus_x_minus_x_bound_nonneg) | |
| 340 | apply auto | |
| 341 | apply (rule abs_ln_one_plus_x_minus_x_bound_nonpos) | |
| 342 | apply auto | |
| 343 | done | |
| 344 | ||
| 345 | lemma DERIV_ln: "0 < x ==> DERIV ln x :> 1 / x" | |
| 346 | apply (unfold deriv_def, unfold LIM_def, clarsimp) | |
| 347 | apply (rule exI) | |
| 348 | apply (rule conjI) | |
| 349 | prefer 2 | |
| 350 | apply clarsimp | |
| 20563 | 351 | apply (subgoal_tac "(ln (x + xa) - ln x) / xa - (1 / x) = | 
| 16959 | 352 | (ln (1 + xa / x) - xa / x) / xa") | 
| 353 | apply (erule ssubst) | |
| 354 | apply (subst abs_divide) | |
| 355 | apply (rule mult_imp_div_pos_less) | |
| 356 | apply force | |
| 357 | apply (rule order_le_less_trans) | |
| 358 | apply (rule abs_ln_one_plus_x_minus_x_bound) | |
| 359 | apply (subst abs_divide) | |
| 360 | apply (subst abs_of_pos, assumption) | |
| 361 | apply (erule mult_imp_div_pos_le) | |
| 362 | apply (subgoal_tac "abs xa < min (x / 2) (r * x^2 / 2)") | |
| 363 | apply force | |
| 364 | apply assumption | |
| 20432 
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
 webertj parents: 
20256diff
changeset | 365 | apply (simp add: power2_eq_square mult_compare_simps) | 
| 16959 | 366 | apply (rule mult_imp_div_pos_less) | 
| 367 | apply (rule mult_pos_pos, assumption, assumption) | |
| 368 | apply (subgoal_tac "xa * xa = abs xa * abs xa") | |
| 369 | apply (erule ssubst) | |
| 370 | apply (subgoal_tac "abs xa * (abs xa * 2) < abs xa * (r * (x * x))") | |
| 371 | apply (simp only: mult_ac) | |
| 372 | apply (rule mult_strict_left_mono) | |
| 373 | apply (erule conjE, assumption) | |
| 374 | apply force | |
| 375 | apply simp | |
| 376 | apply (subst ln_div [THEN sym]) | |
| 377 | apply arith | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23441diff
changeset | 378 | apply (auto simp add: ring_simps add_frac_eq frac_eq_eq | 
| 16959 | 379 | add_divide_distrib power2_eq_square) | 
| 380 | apply (rule mult_pos_pos, assumption)+ | |
| 381 | apply assumption | |
| 382 | done | |
| 383 | ||
| 384 | lemma ln_x_over_x_mono: "exp 1 <= x ==> x <= y ==> (ln y / y) <= (ln x / x)" | |
| 385 | proof - | |
| 386 | assume "exp 1 <= x" and "x <= y" | |
| 387 | have a: "0 < x" and b: "0 < y" | |
| 388 | apply (insert prems) | |
| 23114 | 389 | apply (subgoal_tac "0 < exp (1::real)") | 
| 16959 | 390 | apply arith | 
| 391 | apply auto | |
| 23114 | 392 | apply (subgoal_tac "0 < exp (1::real)") | 
| 16959 | 393 | apply arith | 
| 394 | apply auto | |
| 395 | done | |
| 396 | have "x * ln y - x * ln x = x * (ln y - ln x)" | |
| 23477 
f4b83f03cac9
tuned and renamed group_eq_simps and ring_eq_simps
 nipkow parents: 
23441diff
changeset | 397 | by (simp add: ring_simps) | 
| 16959 | 398 | also have "... = x * ln(y / x)" | 
| 399 | apply (subst ln_div) | |
| 400 | apply (rule b, rule a, rule refl) | |
| 401 | done | |
| 402 | also have "y / x = (x + (y - x)) / x" | |
| 403 | by simp | |
| 23482 | 404 | also have "... = 1 + (y - x) / x" using a prems by(simp add:field_simps) | 
| 16959 | 405 | also have "x * ln(1 + (y - x) / x) <= x * ((y - x) / x)" | 
| 406 | apply (rule mult_left_mono) | |
| 407 | apply (rule ln_add_one_self_le_self) | |
| 408 | apply (rule divide_nonneg_pos) | |
| 409 | apply (insert prems a, simp_all) | |
| 410 | done | |
| 23482 | 411 | also have "... = y - x" using a by simp | 
| 412 | also have "... = (y - x) * ln (exp 1)" by simp | |
| 16959 | 413 | also have "... <= (y - x) * ln x" | 
| 414 | apply (rule mult_left_mono) | |
| 415 | apply (subst ln_le_cancel_iff) | |
| 416 | apply force | |
| 417 | apply (rule a) | |
| 418 | apply (rule prems) | |
| 419 | apply (insert prems, simp) | |
| 420 | done | |
| 421 | also have "... = y * ln x - x * ln x" | |
| 422 | by (rule left_diff_distrib) | |
| 423 | finally have "x * ln y <= y * ln x" | |
| 424 | by arith | |
| 23482 | 425 | then have "ln y <= (y * ln x) / x" using a by(simp add:field_simps) | 
| 426 | also have "... = y * (ln x / x)" by simp | |
| 427 | finally show ?thesis using b by(simp add:field_simps) | |
| 16959 | 428 | qed | 
| 429 | ||
| 430 | end |