author | paulson |
Sun, 15 Feb 2004 10:46:37 +0100 | |
changeset 14387 | e96d5c42c4b0 |
parent 11701 | 3d51fbf81c17 |
permissions | -rw-r--r-- |
10214 | 1 |
(* Title: HOL/NatArith.ML |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 |
Copyright 1998 University of Cambridge |
|
5 |
||
6 |
Further proofs about elementary arithmetic, using the arithmetic proof |
|
7 |
procedures. |
|
8 |
*) |
|
9 |
||
10 |
(*legacy ...*) |
|
11 |
structure NatArith = struct val thy = the_context () end; |
|
12 |
||
13 |
||
14 |
Goal "m <= m*(m::nat)"; |
|
15 |
by (induct_tac "m" 1); |
|
16 |
by Auto_tac; |
|
17 |
qed "le_square"; |
|
18 |
||
19 |
Goal "(m::nat) <= m*(m*m)"; |
|
20 |
by (induct_tac "m" 1); |
|
21 |
by Auto_tac; |
|
22 |
qed "le_cube"; |
|
23 |
||
24 |
||
25 |
(*** Subtraction laws -- mostly from Clemens Ballarin ***) |
|
26 |
||
27 |
Goal "[| a < (b::nat); c <= a |] ==> a-c < b-c"; |
|
28 |
by (arith_tac 1); |
|
29 |
qed "diff_less_mono"; |
|
30 |
||
31 |
Goal "(i < j-k) = (i+k < (j::nat))"; |
|
32 |
by (arith_tac 1); |
|
33 |
qed "less_diff_conv"; |
|
34 |
||
35 |
Goal "(j-k <= (i::nat)) = (j <= i+k)"; |
|
36 |
by (arith_tac 1); |
|
37 |
qed "le_diff_conv"; |
|
38 |
||
39 |
Goal "k <= j ==> (i <= j-k) = (i+k <= (j::nat))"; |
|
40 |
by (arith_tac 1); |
|
41 |
qed "le_diff_conv2"; |
|
42 |
||
43 |
Goal "i <= (n::nat) ==> n - (n - i) = i"; |
|
44 |
by (arith_tac 1); |
|
45 |
qed "diff_diff_cancel"; |
|
46 |
Addsimps [diff_diff_cancel]; |
|
47 |
||
48 |
Goal "k <= (n::nat) ==> m <= n + m - k"; |
|
49 |
by (arith_tac 1); |
|
50 |
qed "le_add_diff"; |
|
51 |
||
52 |
(*Replaces the previous diff_less and le_diff_less, which had the stronger |
|
53 |
second premise n<=m*) |
|
54 |
Goal "!!m::nat. [| 0<n; 0<m |] ==> m - n < m"; |
|
55 |
by (arith_tac 1); |
|
56 |
qed "diff_less"; |
|
57 |
||
58 |
||
59 |
(** Simplification of relational expressions involving subtraction **) |
|
60 |
||
61 |
Goal "[| k <= m; k <= (n::nat) |] ==> ((m-k) - (n-k)) = (m-n)"; |
|
62 |
by (asm_simp_tac (simpset() addsplits [nat_diff_split]) 1); |
|
63 |
qed "diff_diff_eq"; |
|
64 |
||
65 |
Goal "[| k <= m; k <= (n::nat) |] ==> (m-k = n-k) = (m=n)"; |
|
66 |
by (auto_tac (claset(), simpset() addsplits [nat_diff_split])); |
|
67 |
qed "eq_diff_iff"; |
|
68 |
||
69 |
Goal "[| k <= m; k <= (n::nat) |] ==> (m-k < n-k) = (m<n)"; |
|
70 |
by (auto_tac (claset(), simpset() addsplits [nat_diff_split])); |
|
71 |
qed "less_diff_iff"; |
|
72 |
||
73 |
Goal "[| k <= m; k <= (n::nat) |] ==> (m-k <= n-k) = (m<=n)"; |
|
74 |
by (auto_tac (claset(), simpset() addsplits [nat_diff_split])); |
|
75 |
qed "le_diff_iff"; |
|
76 |
||
77 |
||
78 |
(** (Anti)Monotonicity of subtraction -- by Stephan Merz **) |
|
79 |
||
80 |
(* Monotonicity of subtraction in first argument *) |
|
81 |
Goal "m <= (n::nat) ==> (m-l) <= (n-l)"; |
|
82 |
by (asm_simp_tac (simpset() addsplits [nat_diff_split]) 1); |
|
83 |
qed "diff_le_mono"; |
|
84 |
||
85 |
Goal "m <= (n::nat) ==> (l-n) <= (l-m)"; |
|
86 |
by (asm_simp_tac (simpset() addsplits [nat_diff_split]) 1); |
|
87 |
qed "diff_le_mono2"; |
|
88 |
||
89 |
Goal "[| m < (n::nat); m<l |] ==> (l-n) < (l-m)"; |
|
90 |
by (asm_simp_tac (simpset() addsplits [nat_diff_split]) 1); |
|
91 |
qed "diff_less_mono2"; |
|
92 |
||
93 |
Goal "!!m::nat. [| m-n = 0; n-m = 0 |] ==> m=n"; |
|
94 |
by (asm_full_simp_tac (simpset() addsplits [nat_diff_split]) 1); |
|
95 |
qed "diffs0_imp_equal"; |
|
96 |
||
97 |
(** Lemmas for ex/Factorization **) |
|
98 |
||
11701
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
wenzelm
parents:
11468
diff
changeset
|
99 |
Goal "!!m::nat. [| Suc 0 < n; Suc 0 < m |] ==> Suc 0 < m*n"; |
10214 | 100 |
by (case_tac "m" 1); |
101 |
by Auto_tac; |
|
102 |
qed "one_less_mult"; |
|
103 |
||
11701
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
wenzelm
parents:
11468
diff
changeset
|
104 |
Goal "!!m::nat. [| Suc 0 < n; Suc 0 < m |] ==> n<m*n"; |
10214 | 105 |
by (case_tac "m" 1); |
106 |
by Auto_tac; |
|
107 |
qed "n_less_m_mult_n"; |
|
108 |
||
11701
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
wenzelm
parents:
11468
diff
changeset
|
109 |
Goal "!!m::nat. [| Suc 0 < n; Suc 0 < m |] ==> n<n*m"; |
10214 | 110 |
by (case_tac "m" 1); |
111 |
by Auto_tac; |
|
112 |
qed "n_less_n_mult_m"; |
|
113 |
||
114 |
||
115 |
(** Rewriting to pull differences out **) |
|
116 |
||
117 |
Goal "k<=j --> i - (j - k) = i + (k::nat) - j"; |
|
118 |
by (arith_tac 1); |
|
119 |
qed "diff_diff_right"; |
|
120 |
||
121 |
Goal "k <= j ==> m - Suc (j - k) = m + k - Suc j"; |
|
122 |
by (arith_tac 1); |
|
123 |
qed "diff_Suc_diff_eq1"; |
|
124 |
||
125 |
Goal "k <= j ==> Suc (j - k) - m = Suc j - (k + m)"; |
|
126 |
by (arith_tac 1); |
|
127 |
qed "diff_Suc_diff_eq2"; |
|
128 |
||
129 |
(*The others are |
|
130 |
i - j - k = i - (j + k), |
|
131 |
k <= j ==> j - k + i = j + i - k, |
|
132 |
k <= j ==> i + (j - k) = i + j - k *) |
|
133 |
Addsimps [diff_diff_left, diff_diff_right, diff_add_assoc2 RS sym, |
|
134 |
diff_add_assoc RS sym, diff_Suc_diff_eq1, diff_Suc_diff_eq2]; |
|
135 |
||
11367 | 136 |
|
137 |
||
138 |
(*No analogue of not_less_Least or Least_Suc yet, since it isn't used much*) |
|
139 |