author | haftmann |
Wed, 08 Jul 2015 14:01:39 +0200 | |
changeset 60686 | ea5bc46c11e6 |
parent 60041 | 6c86d58ab0ca |
child 61975 | b4b11391c676 |
permissions | -rw-r--r-- |
27468 | 1 |
(* Title : HyperNat.thy |
2 |
Author : Jacques D. Fleuriot |
|
3 |
Copyright : 1998 University of Cambridge |
|
4 |
||
5 |
Converted to Isar and polished by lcp |
|
6 |
*) |
|
7 |
||
58878 | 8 |
section{*Hypernatural numbers*} |
27468 | 9 |
|
10 |
theory HyperNat |
|
11 |
imports StarDef |
|
12 |
begin |
|
13 |
||
42463 | 14 |
type_synonym hypnat = "nat star" |
27468 | 15 |
|
16 |
abbreviation |
|
17 |
hypnat_of_nat :: "nat => nat star" where |
|
18 |
"hypnat_of_nat == star_of" |
|
19 |
||
20 |
definition |
|
21 |
hSuc :: "hypnat => hypnat" where |
|
37765 | 22 |
hSuc_def [transfer_unfold]: "hSuc = *f* Suc" |
27468 | 23 |
|
24 |
subsection{*Properties Transferred from Naturals*} |
|
25 |
||
26 |
lemma hSuc_not_zero [iff]: "\<And>m. hSuc m \<noteq> 0" |
|
27 |
by transfer (rule Suc_not_Zero) |
|
28 |
||
29 |
lemma zero_not_hSuc [iff]: "\<And>m. 0 \<noteq> hSuc m" |
|
30 |
by transfer (rule Zero_not_Suc) |
|
31 |
||
32 |
lemma hSuc_hSuc_eq [iff]: "\<And>m n. (hSuc m = hSuc n) = (m = n)" |
|
33 |
by transfer (rule nat.inject) |
|
34 |
||
35 |
lemma zero_less_hSuc [iff]: "\<And>n. 0 < hSuc n" |
|
36 |
by transfer (rule zero_less_Suc) |
|
37 |
||
38 |
lemma hypnat_minus_zero [simp]: "!!z. z - z = (0::hypnat)" |
|
39 |
by transfer (rule diff_self_eq_0) |
|
40 |
||
41 |
lemma hypnat_diff_0_eq_0 [simp]: "!!n. (0::hypnat) - n = 0" |
|
42 |
by transfer (rule diff_0_eq_0) |
|
43 |
||
44 |
lemma hypnat_add_is_0 [iff]: "!!m n. (m+n = (0::hypnat)) = (m=0 & n=0)" |
|
45 |
by transfer (rule add_is_0) |
|
46 |
||
47 |
lemma hypnat_diff_diff_left: "!!i j k. (i::hypnat) - j - k = i - (j+k)" |
|
48 |
by transfer (rule diff_diff_left) |
|
49 |
||
50 |
lemma hypnat_diff_commute: "!!i j k. (i::hypnat) - j - k = i-k-j" |
|
51 |
by transfer (rule diff_commute) |
|
52 |
||
53 |
lemma hypnat_diff_add_inverse [simp]: "!!m n. ((n::hypnat) + m) - n = m" |
|
54 |
by transfer (rule diff_add_inverse) |
|
55 |
||
56 |
lemma hypnat_diff_add_inverse2 [simp]: "!!m n. ((m::hypnat) + n) - n = m" |
|
57 |
by transfer (rule diff_add_inverse2) |
|
58 |
||
59 |
lemma hypnat_diff_cancel [simp]: "!!k m n. ((k::hypnat) + m) - (k+n) = m - n" |
|
60 |
by transfer (rule diff_cancel) |
|
61 |
||
62 |
lemma hypnat_diff_cancel2 [simp]: "!!k m n. ((m::hypnat) + k) - (n+k) = m - n" |
|
63 |
by transfer (rule diff_cancel2) |
|
64 |
||
65 |
lemma hypnat_diff_add_0 [simp]: "!!m n. (n::hypnat) - (n+m) = (0::hypnat)" |
|
66 |
by transfer (rule diff_add_0) |
|
67 |
||
68 |
lemma hypnat_diff_mult_distrib: "!!k m n. ((m::hypnat) - n) * k = (m * k) - (n * k)" |
|
69 |
by transfer (rule diff_mult_distrib) |
|
70 |
||
71 |
lemma hypnat_diff_mult_distrib2: "!!k m n. (k::hypnat) * (m - n) = (k * m) - (k * n)" |
|
72 |
by transfer (rule diff_mult_distrib2) |
|
73 |
||
74 |
lemma hypnat_le_zero_cancel [iff]: "!!n. (n \<le> (0::hypnat)) = (n = 0)" |
|
75 |
by transfer (rule le_0_eq) |
|
76 |
||
77 |
lemma hypnat_mult_is_0 [simp]: "!!m n. (m*n = (0::hypnat)) = (m=0 | n=0)" |
|
78 |
by transfer (rule mult_is_0) |
|
79 |
||
80 |
lemma hypnat_diff_is_0_eq [simp]: "!!m n. ((m::hypnat) - n = 0) = (m \<le> n)" |
|
81 |
by transfer (rule diff_is_0_eq) |
|
82 |
||
83 |
lemma hypnat_not_less0 [iff]: "!!n. ~ n < (0::hypnat)" |
|
84 |
by transfer (rule not_less0) |
|
85 |
||
86 |
lemma hypnat_less_one [iff]: |
|
87 |
"!!n. (n < (1::hypnat)) = (n=0)" |
|
88 |
by transfer (rule less_one) |
|
89 |
||
90 |
lemma hypnat_add_diff_inverse: "!!m n. ~ m<n ==> n+(m-n) = (m::hypnat)" |
|
91 |
by transfer (rule add_diff_inverse) |
|
92 |
||
93 |
lemma hypnat_le_add_diff_inverse [simp]: "!!m n. n \<le> m ==> n+(m-n) = (m::hypnat)" |
|
94 |
by transfer (rule le_add_diff_inverse) |
|
95 |
||
96 |
lemma hypnat_le_add_diff_inverse2 [simp]: "!!m n. n\<le>m ==> (m-n)+n = (m::hypnat)" |
|
97 |
by transfer (rule le_add_diff_inverse2) |
|
98 |
||
99 |
declare hypnat_le_add_diff_inverse2 [OF order_less_imp_le] |
|
100 |
||
101 |
lemma hypnat_le0 [iff]: "!!n. (0::hypnat) \<le> n" |
|
102 |
by transfer (rule le0) |
|
103 |
||
104 |
lemma hypnat_le_add1 [simp]: "!!x n. (x::hypnat) \<le> x + n" |
|
105 |
by transfer (rule le_add1) |
|
106 |
||
107 |
lemma hypnat_add_self_le [simp]: "!!x n. (x::hypnat) \<le> n + x" |
|
108 |
by transfer (rule le_add2) |
|
109 |
||
110 |
lemma hypnat_add_one_self_less [simp]: "(x::hypnat) < x + (1::hypnat)" |
|
111 |
by (insert add_strict_left_mono [OF zero_less_one], auto) |
|
112 |
||
113 |
lemma hypnat_neq0_conv [iff]: "!!n. (n \<noteq> 0) = (0 < (n::hypnat))" |
|
114 |
by transfer (rule neq0_conv) |
|
115 |
||
116 |
lemma hypnat_gt_zero_iff: "((0::hypnat) < n) = ((1::hypnat) \<le> n)" |
|
117 |
by (auto simp add: linorder_not_less [symmetric]) |
|
118 |
||
119 |
lemma hypnat_gt_zero_iff2: "(0 < n) = (\<exists>m. n = m + (1::hypnat))" |
|
120 |
apply safe |
|
121 |
apply (rule_tac x = "n - (1::hypnat) " in exI) |
|
122 |
apply (simp add: hypnat_gt_zero_iff) |
|
123 |
apply (insert add_le_less_mono [OF _ zero_less_one, of 0], auto) |
|
124 |
done |
|
125 |
||
126 |
lemma hypnat_add_self_not_less: "~ (x + y < (x::hypnat))" |
|
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
42463
diff
changeset
|
127 |
by (simp add: linorder_not_le [symmetric] add.commute [of x]) |
27468 | 128 |
|
129 |
lemma hypnat_diff_split: |
|
130 |
"P(a - b::hypnat) = ((a<b --> P 0) & (ALL d. a = b + d --> P d))" |
|
131 |
-- {* elimination of @{text -} on @{text hypnat} *} |
|
132 |
proof (cases "a<b" rule: case_split) |
|
133 |
case True |
|
134 |
thus ?thesis |
|
135 |
by (auto simp add: hypnat_add_self_not_less order_less_imp_le |
|
136 |
hypnat_diff_is_0_eq [THEN iffD2]) |
|
137 |
next |
|
138 |
case False |
|
139 |
thus ?thesis |
|
140 |
by (auto simp add: linorder_not_less dest: order_le_less_trans) |
|
141 |
qed |
|
142 |
||
143 |
subsection{*Properties of the set of embedded natural numbers*} |
|
144 |
||
145 |
lemma of_nat_eq_star_of [simp]: "of_nat = star_of" |
|
146 |
proof |
|
147 |
fix n :: nat |
|
148 |
show "of_nat n = star_of n" by transfer simp |
|
149 |
qed |
|
150 |
||
151 |
lemma Nats_eq_Standard: "(Nats :: nat star set) = Standard" |
|
152 |
by (auto simp add: Nats_def Standard_def) |
|
153 |
||
154 |
lemma hypnat_of_nat_mem_Nats [simp]: "hypnat_of_nat n \<in> Nats" |
|
155 |
by (simp add: Nats_eq_Standard) |
|
156 |
||
157 |
lemma hypnat_of_nat_one [simp]: "hypnat_of_nat (Suc 0) = (1::hypnat)" |
|
158 |
by transfer simp |
|
159 |
||
160 |
lemma hypnat_of_nat_Suc [simp]: |
|
161 |
"hypnat_of_nat (Suc n) = hypnat_of_nat n + (1::hypnat)" |
|
162 |
by transfer simp |
|
163 |
||
164 |
lemma of_nat_eq_add [rule_format]: |
|
165 |
"\<forall>d::hypnat. of_nat m = of_nat n + d --> d \<in> range of_nat" |
|
166 |
apply (induct n) |
|
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
42463
diff
changeset
|
167 |
apply (auto simp add: add.assoc) |
27468 | 168 |
apply (case_tac x) |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
42463
diff
changeset
|
169 |
apply (auto simp add: add.commute [of 1]) |
27468 | 170 |
done |
171 |
||
172 |
lemma Nats_diff [simp]: "[|a \<in> Nats; b \<in> Nats|] ==> (a-b :: hypnat) \<in> Nats" |
|
173 |
by (simp add: Nats_eq_Standard) |
|
174 |
||
175 |
||
176 |
subsection{*Infinite Hypernatural Numbers -- @{term HNatInfinite}*} |
|
177 |
||
178 |
definition |
|
179 |
(* the set of infinite hypernatural numbers *) |
|
180 |
HNatInfinite :: "hypnat set" where |
|
181 |
"HNatInfinite = {n. n \<notin> Nats}" |
|
182 |
||
183 |
lemma Nats_not_HNatInfinite_iff: "(x \<in> Nats) = (x \<notin> HNatInfinite)" |
|
184 |
by (simp add: HNatInfinite_def) |
|
185 |
||
186 |
lemma HNatInfinite_not_Nats_iff: "(x \<in> HNatInfinite) = (x \<notin> Nats)" |
|
187 |
by (simp add: HNatInfinite_def) |
|
188 |
||
189 |
lemma star_of_neq_HNatInfinite: "N \<in> HNatInfinite \<Longrightarrow> star_of n \<noteq> N" |
|
190 |
by (auto simp add: HNatInfinite_def Nats_eq_Standard) |
|
191 |
||
192 |
lemma star_of_Suc_lessI: |
|
193 |
"\<And>N. \<lbrakk>star_of n < N; star_of (Suc n) \<noteq> N\<rbrakk> \<Longrightarrow> star_of (Suc n) < N" |
|
194 |
by transfer (rule Suc_lessI) |
|
195 |
||
196 |
lemma star_of_less_HNatInfinite: |
|
197 |
assumes N: "N \<in> HNatInfinite" |
|
198 |
shows "star_of n < N" |
|
199 |
proof (induct n) |
|
200 |
case 0 |
|
201 |
from N have "star_of 0 \<noteq> N" by (rule star_of_neq_HNatInfinite) |
|
202 |
thus "star_of 0 < N" by simp |
|
203 |
next |
|
204 |
case (Suc n) |
|
205 |
from N have "star_of (Suc n) \<noteq> N" by (rule star_of_neq_HNatInfinite) |
|
206 |
with Suc show "star_of (Suc n) < N" by (rule star_of_Suc_lessI) |
|
207 |
qed |
|
208 |
||
209 |
lemma star_of_le_HNatInfinite: "N \<in> HNatInfinite \<Longrightarrow> star_of n \<le> N" |
|
210 |
by (rule star_of_less_HNatInfinite [THEN order_less_imp_le]) |
|
211 |
||
212 |
subsubsection {* Closure Rules *} |
|
213 |
||
214 |
lemma Nats_less_HNatInfinite: "\<lbrakk>x \<in> Nats; y \<in> HNatInfinite\<rbrakk> \<Longrightarrow> x < y" |
|
215 |
by (auto simp add: Nats_def star_of_less_HNatInfinite) |
|
216 |
||
217 |
lemma Nats_le_HNatInfinite: "\<lbrakk>x \<in> Nats; y \<in> HNatInfinite\<rbrakk> \<Longrightarrow> x \<le> y" |
|
218 |
by (rule Nats_less_HNatInfinite [THEN order_less_imp_le]) |
|
219 |
||
220 |
lemma zero_less_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 0 < x" |
|
221 |
by (simp add: Nats_less_HNatInfinite) |
|
222 |
||
223 |
lemma one_less_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 1 < x" |
|
224 |
by (simp add: Nats_less_HNatInfinite) |
|
225 |
||
226 |
lemma one_le_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 1 \<le> x" |
|
227 |
by (simp add: Nats_le_HNatInfinite) |
|
228 |
||
229 |
lemma zero_not_mem_HNatInfinite [simp]: "0 \<notin> HNatInfinite" |
|
230 |
by (simp add: HNatInfinite_def) |
|
231 |
||
232 |
lemma Nats_downward_closed: |
|
233 |
"\<lbrakk>x \<in> Nats; (y::hypnat) \<le> x\<rbrakk> \<Longrightarrow> y \<in> Nats" |
|
234 |
apply (simp only: linorder_not_less [symmetric]) |
|
235 |
apply (erule contrapos_np) |
|
236 |
apply (drule HNatInfinite_not_Nats_iff [THEN iffD2]) |
|
237 |
apply (erule (1) Nats_less_HNatInfinite) |
|
238 |
done |
|
239 |
||
240 |
lemma HNatInfinite_upward_closed: |
|
241 |
"\<lbrakk>x \<in> HNatInfinite; x \<le> y\<rbrakk> \<Longrightarrow> y \<in> HNatInfinite" |
|
242 |
apply (simp only: HNatInfinite_not_Nats_iff) |
|
243 |
apply (erule contrapos_nn) |
|
244 |
apply (erule (1) Nats_downward_closed) |
|
245 |
done |
|
246 |
||
247 |
lemma HNatInfinite_add: "x \<in> HNatInfinite \<Longrightarrow> x + y \<in> HNatInfinite" |
|
248 |
apply (erule HNatInfinite_upward_closed) |
|
249 |
apply (rule hypnat_le_add1) |
|
250 |
done |
|
251 |
||
252 |
lemma HNatInfinite_add_one: "x \<in> HNatInfinite \<Longrightarrow> x + 1 \<in> HNatInfinite" |
|
253 |
by (rule HNatInfinite_add) |
|
254 |
||
255 |
lemma HNatInfinite_diff: |
|
256 |
"\<lbrakk>x \<in> HNatInfinite; y \<in> Nats\<rbrakk> \<Longrightarrow> x - y \<in> HNatInfinite" |
|
257 |
apply (frule (1) Nats_le_HNatInfinite) |
|
258 |
apply (simp only: HNatInfinite_not_Nats_iff) |
|
259 |
apply (erule contrapos_nn) |
|
260 |
apply (drule (1) Nats_add, simp) |
|
261 |
done |
|
262 |
||
263 |
lemma HNatInfinite_is_Suc: "x \<in> HNatInfinite ==> \<exists>y. x = y + (1::hypnat)" |
|
264 |
apply (rule_tac x = "x - (1::hypnat) " in exI) |
|
265 |
apply (simp add: Nats_le_HNatInfinite) |
|
266 |
done |
|
267 |
||
268 |
||
269 |
subsection{*Existence of an infinite hypernatural number*} |
|
270 |
||
271 |
definition |
|
272 |
(* omega is in fact an infinite hypernatural number = [<1,2,3,...>] *) |
|
273 |
whn :: hypnat where |
|
274 |
hypnat_omega_def: "whn = star_n (%n::nat. n)" |
|
275 |
||
276 |
lemma hypnat_of_nat_neq_whn: "hypnat_of_nat n \<noteq> whn" |
|
60041 | 277 |
by (simp add: FreeUltrafilterNat.singleton' hypnat_omega_def star_of_def star_n_eq_iff) |
27468 | 278 |
|
279 |
lemma whn_neq_hypnat_of_nat: "whn \<noteq> hypnat_of_nat n" |
|
60041 | 280 |
by (simp add: FreeUltrafilterNat.singleton hypnat_omega_def star_of_def star_n_eq_iff) |
27468 | 281 |
|
282 |
lemma whn_not_Nats [simp]: "whn \<notin> Nats" |
|
283 |
by (simp add: Nats_def image_def whn_neq_hypnat_of_nat) |
|
284 |
||
285 |
lemma HNatInfinite_whn [simp]: "whn \<in> HNatInfinite" |
|
286 |
by (simp add: HNatInfinite_def) |
|
287 |
||
60041 | 288 |
lemma lemma_unbounded_set [simp]: "eventually (\<lambda>n::nat. m < n) \<U>" |
289 |
by (rule filter_leD[OF FreeUltrafilterNat.le_cofinite]) |
|
290 |
(auto simp add: cofinite_eq_sequentially eventually_at_top_dense) |
|
27468 | 291 |
|
292 |
lemma hypnat_of_nat_eq: |
|
293 |
"hypnat_of_nat m = star_n (%n::nat. m)" |
|
294 |
by (simp add: star_of_def) |
|
295 |
||
296 |
lemma SHNat_eq: "Nats = {n. \<exists>N. n = hypnat_of_nat N}" |
|
297 |
by (simp add: Nats_def image_def) |
|
298 |
||
299 |
lemma Nats_less_whn: "n \<in> Nats \<Longrightarrow> n < whn" |
|
300 |
by (simp add: Nats_less_HNatInfinite) |
|
301 |
||
302 |
lemma Nats_le_whn: "n \<in> Nats \<Longrightarrow> n \<le> whn" |
|
303 |
by (simp add: Nats_le_HNatInfinite) |
|
304 |
||
305 |
lemma hypnat_of_nat_less_whn [simp]: "hypnat_of_nat n < whn" |
|
306 |
by (simp add: Nats_less_whn) |
|
307 |
||
308 |
lemma hypnat_of_nat_le_whn [simp]: "hypnat_of_nat n \<le> whn" |
|
309 |
by (simp add: Nats_le_whn) |
|
310 |
||
311 |
lemma hypnat_zero_less_hypnat_omega [simp]: "0 < whn" |
|
312 |
by (simp add: Nats_less_whn) |
|
313 |
||
314 |
lemma hypnat_one_less_hypnat_omega [simp]: "1 < whn" |
|
315 |
by (simp add: Nats_less_whn) |
|
316 |
||
317 |
||
318 |
subsubsection{*Alternative characterization of the set of infinite hypernaturals*} |
|
319 |
||
320 |
text{* @{term "HNatInfinite = {N. \<forall>n \<in> Nats. n < N}"}*} |
|
321 |
||
322 |
(*??delete? similar reasoning in hypnat_omega_gt_SHNat above*) |
|
323 |
lemma HNatInfinite_FreeUltrafilterNat_lemma: |
|
60041 | 324 |
assumes "\<forall>N::nat. eventually (\<lambda>n. f n \<noteq> N) \<U>" |
325 |
shows "eventually (\<lambda>n. N < f n) \<U>" |
|
27468 | 326 |
apply (induct N) |
327 |
using assms |
|
328 |
apply (drule_tac x = 0 in spec, simp) |
|
329 |
using assms |
|
330 |
apply (drule_tac x = "Suc N" in spec) |
|
60041 | 331 |
apply (auto elim: eventually_elim2) |
27468 | 332 |
done |
333 |
||
334 |
lemma HNatInfinite_iff: "HNatInfinite = {N. \<forall>n \<in> Nats. n < N}" |
|
335 |
apply (safe intro!: Nats_less_HNatInfinite) |
|
336 |
apply (auto simp add: HNatInfinite_def) |
|
337 |
done |
|
338 |
||
339 |
||
340 |
subsubsection{*Alternative Characterization of @{term HNatInfinite} using |
|
341 |
Free Ultrafilter*} |
|
342 |
||
343 |
lemma HNatInfinite_FreeUltrafilterNat: |
|
60041 | 344 |
"star_n X \<in> HNatInfinite ==> \<forall>u. eventually (\<lambda>n. u < X n) FreeUltrafilterNat" |
27468 | 345 |
apply (auto simp add: HNatInfinite_iff SHNat_eq) |
346 |
apply (drule_tac x="star_of u" in spec, simp) |
|
347 |
apply (simp add: star_of_def star_less_def starP2_star_n) |
|
348 |
done |
|
349 |
||
350 |
lemma FreeUltrafilterNat_HNatInfinite: |
|
60041 | 351 |
"\<forall>u. eventually (\<lambda>n. u < X n) FreeUltrafilterNat ==> star_n X \<in> HNatInfinite" |
27468 | 352 |
by (auto simp add: star_less_def starP2_star_n HNatInfinite_iff SHNat_eq hypnat_of_nat_eq) |
353 |
||
354 |
lemma HNatInfinite_FreeUltrafilterNat_iff: |
|
60041 | 355 |
"(star_n X \<in> HNatInfinite) = (\<forall>u. eventually (\<lambda>n. u < X n) FreeUltrafilterNat)" |
27468 | 356 |
by (rule iffI [OF HNatInfinite_FreeUltrafilterNat |
357 |
FreeUltrafilterNat_HNatInfinite]) |
|
358 |
||
359 |
subsection {* Embedding of the Hypernaturals into other types *} |
|
360 |
||
361 |
definition |
|
362 |
of_hypnat :: "hypnat \<Rightarrow> 'a::semiring_1_cancel star" where |
|
37765 | 363 |
of_hypnat_def [transfer_unfold]: "of_hypnat = *f* of_nat" |
27468 | 364 |
|
365 |
lemma of_hypnat_0 [simp]: "of_hypnat 0 = 0" |
|
366 |
by transfer (rule of_nat_0) |
|
367 |
||
368 |
lemma of_hypnat_1 [simp]: "of_hypnat 1 = 1" |
|
369 |
by transfer (rule of_nat_1) |
|
370 |
||
371 |
lemma of_hypnat_hSuc: "\<And>m. of_hypnat (hSuc m) = 1 + of_hypnat m" |
|
372 |
by transfer (rule of_nat_Suc) |
|
373 |
||
374 |
lemma of_hypnat_add [simp]: |
|
375 |
"\<And>m n. of_hypnat (m + n) = of_hypnat m + of_hypnat n" |
|
376 |
by transfer (rule of_nat_add) |
|
377 |
||
378 |
lemma of_hypnat_mult [simp]: |
|
379 |
"\<And>m n. of_hypnat (m * n) = of_hypnat m * of_hypnat n" |
|
380 |
by transfer (rule of_nat_mult) |
|
381 |
||
382 |
lemma of_hypnat_less_iff [simp]: |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
29920
diff
changeset
|
383 |
"\<And>m n. (of_hypnat m < (of_hypnat n::'a::linordered_semidom star)) = (m < n)" |
27468 | 384 |
by transfer (rule of_nat_less_iff) |
385 |
||
386 |
lemma of_hypnat_0_less_iff [simp]: |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
29920
diff
changeset
|
387 |
"\<And>n. (0 < (of_hypnat n::'a::linordered_semidom star)) = (0 < n)" |
27468 | 388 |
by transfer (rule of_nat_0_less_iff) |
389 |
||
390 |
lemma of_hypnat_less_0_iff [simp]: |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
29920
diff
changeset
|
391 |
"\<And>m. \<not> (of_hypnat m::'a::linordered_semidom star) < 0" |
27468 | 392 |
by transfer (rule of_nat_less_0_iff) |
393 |
||
394 |
lemma of_hypnat_le_iff [simp]: |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
29920
diff
changeset
|
395 |
"\<And>m n. (of_hypnat m \<le> (of_hypnat n::'a::linordered_semidom star)) = (m \<le> n)" |
27468 | 396 |
by transfer (rule of_nat_le_iff) |
397 |
||
398 |
lemma of_hypnat_0_le_iff [simp]: |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
29920
diff
changeset
|
399 |
"\<And>n. 0 \<le> (of_hypnat n::'a::linordered_semidom star)" |
27468 | 400 |
by transfer (rule of_nat_0_le_iff) |
401 |
||
402 |
lemma of_hypnat_le_0_iff [simp]: |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
29920
diff
changeset
|
403 |
"\<And>m. ((of_hypnat m::'a::linordered_semidom star) \<le> 0) = (m = 0)" |
27468 | 404 |
by transfer (rule of_nat_le_0_iff) |
405 |
||
406 |
lemma of_hypnat_eq_iff [simp]: |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
29920
diff
changeset
|
407 |
"\<And>m n. (of_hypnat m = (of_hypnat n::'a::linordered_semidom star)) = (m = n)" |
27468 | 408 |
by transfer (rule of_nat_eq_iff) |
409 |
||
410 |
lemma of_hypnat_eq_0_iff [simp]: |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
29920
diff
changeset
|
411 |
"\<And>m. ((of_hypnat m::'a::linordered_semidom star) = 0) = (m = 0)" |
27468 | 412 |
by transfer (rule of_nat_eq_0_iff) |
413 |
||
414 |
lemma HNatInfinite_of_hypnat_gt_zero: |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
29920
diff
changeset
|
415 |
"N \<in> HNatInfinite \<Longrightarrow> (0::'a::linordered_semidom star) < of_hypnat N" |
27468 | 416 |
by (rule ccontr, simp add: linorder_not_less) |
417 |
||
418 |
end |