| author | wenzelm | 
| Fri, 17 Apr 2015 19:01:42 +0200 | |
| changeset 60122 | eb08fefd5c05 | 
| parent 60060 | 3630ecde4e7c | 
| child 60172 | 423273355b55 | 
| permissions | -rw-r--r-- | 
| 43920 | 1 | (* Title: HOL/Library/Extended_Real.thy | 
| 41983 | 2 | Author: Johannes Hölzl, TU München | 
| 3 | Author: Robert Himmelmann, TU München | |
| 4 | Author: Armin Heller, TU München | |
| 5 | Author: Bogdan Grechuk, University of Edinburgh | |
| 6 | *) | |
| 41973 | 7 | |
| 58881 | 8 | section {* Extended real number line *}
 | 
| 41973 | 9 | |
| 43920 | 10 | theory Extended_Real | 
| 51340 
5e6296afe08d
move Liminf / Limsup lemmas on complete_lattices to its own file
 hoelzl parents: 
51329diff
changeset | 11 | imports Complex_Main Extended_Nat Liminf_Limsup | 
| 41973 | 12 | begin | 
| 13 | ||
| 51022 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 14 | text {*
 | 
| 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 15 | |
| 59115 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 16 | This should be part of @{theory Extended_Nat}, but then the AFP-entry @{text "Jinja_Thread"} fails, as it does
 | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 17 | overload certain named from @{theory Complex_Main}.
 | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 18 | |
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 19 | *} | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 20 | |
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 21 | instantiation enat :: linorder_topology | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 22 | begin | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 23 | |
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 24 | definition open_enat :: "enat set \<Rightarrow> bool" where | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 25 | "open_enat = generate_topology (range lessThan \<union> range greaterThan)" | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 26 | |
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 27 | instance | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 28 | proof qed (rule open_enat_def) | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 29 | |
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 30 | end | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 31 | |
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 32 | lemma open_enat: "open {enat n}"
 | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 33 | proof (cases n) | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 34 | case 0 | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 35 |   then have "{enat n} = {..< eSuc 0}"
 | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 36 | by (auto simp: enat_0) | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 37 | then show ?thesis | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 38 | by simp | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 39 | next | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 40 | case (Suc n') | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 41 |   then have "{enat n} = {enat n' <..< enat (Suc n)}"
 | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 42 | apply auto | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 43 | apply (case_tac x) | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 44 | apply auto | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 45 | done | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 46 | then show ?thesis | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 47 | by simp | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 48 | qed | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 49 | |
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 50 | lemma open_enat_iff: | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 51 | fixes A :: "enat set" | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 52 |   shows "open A \<longleftrightarrow> (\<infinity> \<in> A \<longrightarrow> (\<exists>n::nat. {n <..} \<subseteq> A))"
 | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 53 | proof safe | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 54 | assume "\<infinity> \<notin> A" | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 55 |   then have "A = (\<Union>n\<in>{n. enat n \<in> A}. {enat n})"
 | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 56 | apply auto | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 57 | apply (case_tac x) | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 58 | apply auto | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 59 | done | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 60 | moreover have "open \<dots>" | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 61 | by (auto intro: open_enat) | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 62 | ultimately show "open A" | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 63 | by simp | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 64 | next | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 65 |   fix n assume "{enat n <..} \<subseteq> A"
 | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 66 |   then have "A = (\<Union>n\<in>{n. enat n \<in> A}. {enat n}) \<union> {enat n <..}"
 | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 67 | apply auto | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 68 | apply (case_tac x) | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 69 | apply auto | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 70 | done | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 71 | moreover have "open \<dots>" | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 72 | by (intro open_Un open_UN ballI open_enat open_greaterThan) | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 73 | ultimately show "open A" | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 74 | by simp | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 75 | next | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 76 | assume "open A" "\<infinity> \<in> A" | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 77 | then have "generate_topology (range lessThan \<union> range greaterThan) A" "\<infinity> \<in> A" | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 78 | unfolding open_enat_def by auto | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 79 |   then show "\<exists>n::nat. {n <..} \<subseteq> A"
 | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 80 | proof induction | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 81 | case (Int A B) | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 82 |     then obtain n m where "{enat n<..} \<subseteq> A" "{enat m<..} \<subseteq> B"
 | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 83 | by auto | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 84 |     then have "{enat (max n m) <..} \<subseteq> A \<inter> B"
 | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 85 | by (auto simp add: subset_eq Ball_def max_def enat_ord_code(1)[symmetric] simp del: enat_ord_code(1)) | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 86 | then show ?case | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 87 | by auto | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 88 | next | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 89 | case (UN K) | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 90 | then obtain k where "k \<in> K" "\<infinity> \<in> k" | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 91 | by auto | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 92 | with UN.IH[OF this] show ?case | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 93 | by auto | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 94 | qed auto | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 95 | qed | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 96 | |
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 97 | |
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 98 | text {*
 | 
| 
f65ac77f7e07
move topology on enat to Extended_Real, otherwise Jinja_Threads fails
 hoelzl parents: 
59023diff
changeset | 99 | |
| 51022 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 100 | For more lemmas about the extended real numbers go to | 
| 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 101 |   @{file "~~/src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy"}
 | 
| 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 102 | |
| 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 103 | *} | 
| 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 104 | |
| 41973 | 105 | subsection {* Definition and basic properties *}
 | 
| 106 | ||
| 58310 | 107 | datatype ereal = ereal real | PInfty | MInfty | 
| 41973 | 108 | |
| 43920 | 109 | instantiation ereal :: uminus | 
| 41973 | 110 | begin | 
| 53873 | 111 | |
| 112 | fun uminus_ereal where | |
| 113 | "- (ereal r) = ereal (- r)" | |
| 114 | | "- PInfty = MInfty" | |
| 115 | | "- MInfty = PInfty" | |
| 116 | ||
| 117 | instance .. | |
| 118 | ||
| 41973 | 119 | end | 
| 120 | ||
| 43923 | 121 | instantiation ereal :: infinity | 
| 122 | begin | |
| 53873 | 123 | |
| 124 | definition "(\<infinity>::ereal) = PInfty" | |
| 125 | instance .. | |
| 126 | ||
| 43923 | 127 | end | 
| 41973 | 128 | |
| 43923 | 129 | declare [[coercion "ereal :: real \<Rightarrow> ereal"]] | 
| 41973 | 130 | |
| 43920 | 131 | lemma ereal_uminus_uminus[simp]: | 
| 53873 | 132 | fixes a :: ereal | 
| 133 | shows "- (- a) = a" | |
| 41973 | 134 | by (cases a) simp_all | 
| 135 | ||
| 43923 | 136 | lemma | 
| 137 | shows PInfty_eq_infinity[simp]: "PInfty = \<infinity>" | |
| 138 | and MInfty_eq_minfinity[simp]: "MInfty = - \<infinity>" | |
| 139 | and MInfty_neq_PInfty[simp]: "\<infinity> \<noteq> - (\<infinity>::ereal)" "- \<infinity> \<noteq> (\<infinity>::ereal)" | |
| 140 | and MInfty_neq_ereal[simp]: "ereal r \<noteq> - \<infinity>" "- \<infinity> \<noteq> ereal r" | |
| 141 | and PInfty_neq_ereal[simp]: "ereal r \<noteq> \<infinity>" "\<infinity> \<noteq> ereal r" | |
| 142 | and PInfty_cases[simp]: "(case \<infinity> of ereal r \<Rightarrow> f r | PInfty \<Rightarrow> y | MInfty \<Rightarrow> z) = y" | |
| 143 | and MInfty_cases[simp]: "(case - \<infinity> of ereal r \<Rightarrow> f r | PInfty \<Rightarrow> y | MInfty \<Rightarrow> z) = z" | |
| 144 | by (simp_all add: infinity_ereal_def) | |
| 41973 | 145 | |
| 43933 | 146 | declare | 
| 147 | PInfty_eq_infinity[code_post] | |
| 148 | MInfty_eq_minfinity[code_post] | |
| 149 | ||
| 150 | lemma [code_unfold]: | |
| 151 | "\<infinity> = PInfty" | |
| 53873 | 152 | "- PInfty = MInfty" | 
| 43933 | 153 | by simp_all | 
| 154 | ||
| 43923 | 155 | lemma inj_ereal[simp]: "inj_on ereal A" | 
| 156 | unfolding inj_on_def by auto | |
| 41973 | 157 | |
| 55913 | 158 | lemma ereal_cases[cases type: ereal]: | 
| 159 | obtains (real) r where "x = ereal r" | |
| 160 | | (PInf) "x = \<infinity>" | |
| 161 | | (MInf) "x = -\<infinity>" | |
| 41973 | 162 | using assms by (cases x) auto | 
| 163 | ||
| 43920 | 164 | lemmas ereal2_cases = ereal_cases[case_product ereal_cases] | 
| 165 | lemmas ereal3_cases = ereal2_cases[case_product ereal_cases] | |
| 41973 | 166 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57025diff
changeset | 167 | lemma ereal_all_split: "\<And>P. (\<forall>x::ereal. P x) \<longleftrightarrow> P \<infinity> \<and> (\<forall>x. P (ereal x)) \<and> P (-\<infinity>)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57025diff
changeset | 168 | by (metis ereal_cases) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57025diff
changeset | 169 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57025diff
changeset | 170 | lemma ereal_ex_split: "\<And>P. (\<exists>x::ereal. P x) \<longleftrightarrow> P \<infinity> \<or> (\<exists>x. P (ereal x)) \<or> P (-\<infinity>)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57025diff
changeset | 171 | by (metis ereal_cases) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57025diff
changeset | 172 | |
| 43920 | 173 | lemma ereal_uminus_eq_iff[simp]: | 
| 53873 | 174 | fixes a b :: ereal | 
| 175 | shows "-a = -b \<longleftrightarrow> a = b" | |
| 43920 | 176 | by (cases rule: ereal2_cases[of a b]) simp_all | 
| 41973 | 177 | |
| 58042 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 hoelzl parents: 
57512diff
changeset | 178 | instantiation ereal :: real_of | 
| 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 hoelzl parents: 
57512diff
changeset | 179 | begin | 
| 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 hoelzl parents: 
57512diff
changeset | 180 | |
| 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 hoelzl parents: 
57512diff
changeset | 181 | function real_ereal :: "ereal \<Rightarrow> real" where | 
| 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 hoelzl parents: 
57512diff
changeset | 182 | "real_ereal (ereal r) = r" | 
| 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 hoelzl parents: 
57512diff
changeset | 183 | | "real_ereal \<infinity> = 0" | 
| 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 hoelzl parents: 
57512diff
changeset | 184 | | "real_ereal (-\<infinity>) = 0" | 
| 43920 | 185 | by (auto intro: ereal_cases) | 
| 53873 | 186 | termination by default (rule wf_empty) | 
| 41973 | 187 | |
| 58042 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 hoelzl parents: 
57512diff
changeset | 188 | instance .. | 
| 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 hoelzl parents: 
57512diff
changeset | 189 | end | 
| 41973 | 190 | |
| 43920 | 191 | lemma real_of_ereal[simp]: | 
| 53873 | 192 | "real (- x :: ereal) = - (real x)" | 
| 58042 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 hoelzl parents: 
57512diff
changeset | 193 | by (cases x) simp_all | 
| 41973 | 194 | |
| 43920 | 195 | lemma range_ereal[simp]: "range ereal = UNIV - {\<infinity>, -\<infinity>}"
 | 
| 41973 | 196 | proof safe | 
| 53873 | 197 | fix x | 
| 198 | assume "x \<notin> range ereal" "x \<noteq> \<infinity>" | |
| 199 | then show "x = -\<infinity>" | |
| 200 | by (cases x) auto | |
| 41973 | 201 | qed auto | 
| 202 | ||
| 43920 | 203 | lemma ereal_range_uminus[simp]: "range uminus = (UNIV::ereal set)" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 204 | proof safe | 
| 53873 | 205 | fix x :: ereal | 
| 206 | show "x \<in> range uminus" | |
| 207 | by (intro image_eqI[of _ _ "-x"]) auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 208 | qed auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 209 | |
| 43920 | 210 | instantiation ereal :: abs | 
| 41976 | 211 | begin | 
| 53873 | 212 | |
| 213 | function abs_ereal where | |
| 214 | "\<bar>ereal r\<bar> = ereal \<bar>r\<bar>" | |
| 215 | | "\<bar>-\<infinity>\<bar> = (\<infinity>::ereal)" | |
| 216 | | "\<bar>\<infinity>\<bar> = (\<infinity>::ereal)" | |
| 217 | by (auto intro: ereal_cases) | |
| 218 | termination proof qed (rule wf_empty) | |
| 219 | ||
| 220 | instance .. | |
| 221 | ||
| 41976 | 222 | end | 
| 223 | ||
| 53873 | 224 | lemma abs_eq_infinity_cases[elim!]: | 
| 225 | fixes x :: ereal | |
| 226 | assumes "\<bar>x\<bar> = \<infinity>" | |
| 227 | obtains "x = \<infinity>" | "x = -\<infinity>" | |
| 228 | using assms by (cases x) auto | |
| 41976 | 229 | |
| 53873 | 230 | lemma abs_neq_infinity_cases[elim!]: | 
| 231 | fixes x :: ereal | |
| 232 | assumes "\<bar>x\<bar> \<noteq> \<infinity>" | |
| 233 | obtains r where "x = ereal r" | |
| 234 | using assms by (cases x) auto | |
| 235 | ||
| 236 | lemma abs_ereal_uminus[simp]: | |
| 237 | fixes x :: ereal | |
| 238 | shows "\<bar>- x\<bar> = \<bar>x\<bar>" | |
| 41976 | 239 | by (cases x) auto | 
| 240 | ||
| 53873 | 241 | lemma ereal_infinity_cases: | 
| 242 | fixes a :: ereal | |
| 243 | shows "a \<noteq> \<infinity> \<Longrightarrow> a \<noteq> -\<infinity> \<Longrightarrow> \<bar>a\<bar> \<noteq> \<infinity>" | |
| 244 | by auto | |
| 41976 | 245 | |
| 50104 | 246 | |
| 41973 | 247 | subsubsection "Addition" | 
| 248 | ||
| 54408 | 249 | instantiation ereal :: "{one,comm_monoid_add,zero_neq_one}"
 | 
| 41973 | 250 | begin | 
| 251 | ||
| 43920 | 252 | definition "0 = ereal 0" | 
| 51351 | 253 | definition "1 = ereal 1" | 
| 41973 | 254 | |
| 43920 | 255 | function plus_ereal where | 
| 53873 | 256 | "ereal r + ereal p = ereal (r + p)" | 
| 257 | | "\<infinity> + a = (\<infinity>::ereal)" | |
| 258 | | "a + \<infinity> = (\<infinity>::ereal)" | |
| 259 | | "ereal r + -\<infinity> = - \<infinity>" | |
| 260 | | "-\<infinity> + ereal p = -(\<infinity>::ereal)" | |
| 261 | | "-\<infinity> + -\<infinity> = -(\<infinity>::ereal)" | |
| 41973 | 262 | proof - | 
| 263 | case (goal1 P x) | |
| 53873 | 264 | then obtain a b where "x = (a, b)" | 
| 265 | by (cases x) auto | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 266 | with goal1 show P | 
| 43920 | 267 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 268 | qed auto | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 269 | termination by default (rule wf_empty) | 
| 41973 | 270 | |
| 271 | lemma Infty_neq_0[simp]: | |
| 43923 | 272 | "(\<infinity>::ereal) \<noteq> 0" "0 \<noteq> (\<infinity>::ereal)" | 
| 273 | "-(\<infinity>::ereal) \<noteq> 0" "0 \<noteq> -(\<infinity>::ereal)" | |
| 43920 | 274 | by (simp_all add: zero_ereal_def) | 
| 41973 | 275 | |
| 43920 | 276 | lemma ereal_eq_0[simp]: | 
| 277 | "ereal r = 0 \<longleftrightarrow> r = 0" | |
| 278 | "0 = ereal r \<longleftrightarrow> r = 0" | |
| 279 | unfolding zero_ereal_def by simp_all | |
| 41973 | 280 | |
| 54416 | 281 | lemma ereal_eq_1[simp]: | 
| 282 | "ereal r = 1 \<longleftrightarrow> r = 1" | |
| 283 | "1 = ereal r \<longleftrightarrow> r = 1" | |
| 284 | unfolding one_ereal_def by simp_all | |
| 285 | ||
| 41973 | 286 | instance | 
| 287 | proof | |
| 47082 | 288 | fix a b c :: ereal | 
| 289 | show "0 + a = a" | |
| 43920 | 290 | by (cases a) (simp_all add: zero_ereal_def) | 
| 47082 | 291 | show "a + b = b + a" | 
| 43920 | 292 | by (cases rule: ereal2_cases[of a b]) simp_all | 
| 47082 | 293 | show "a + b + c = a + (b + c)" | 
| 43920 | 294 | by (cases rule: ereal3_cases[of a b c]) simp_all | 
| 54408 | 295 | show "0 \<noteq> (1::ereal)" | 
| 296 | by (simp add: one_ereal_def zero_ereal_def) | |
| 41973 | 297 | qed | 
| 53873 | 298 | |
| 41973 | 299 | end | 
| 300 | ||
| 60060 | 301 | lemma ereal_0_plus [simp]: "ereal 0 + x = x" | 
| 302 | and plus_ereal_0 [simp]: "x + ereal 0 = x" | |
| 303 | by(simp_all add: zero_ereal_def[symmetric]) | |
| 304 | ||
| 51351 | 305 | instance ereal :: numeral .. | 
| 306 | ||
| 43920 | 307 | lemma real_of_ereal_0[simp]: "real (0::ereal) = 0" | 
| 58042 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 hoelzl parents: 
57512diff
changeset | 308 | unfolding zero_ereal_def by simp | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 309 | |
| 43920 | 310 | lemma abs_ereal_zero[simp]: "\<bar>0\<bar> = (0::ereal)" | 
| 311 | unfolding zero_ereal_def abs_ereal.simps by simp | |
| 41976 | 312 | |
| 53873 | 313 | lemma ereal_uminus_zero[simp]: "- 0 = (0::ereal)" | 
| 43920 | 314 | by (simp add: zero_ereal_def) | 
| 41973 | 315 | |
| 43920 | 316 | lemma ereal_uminus_zero_iff[simp]: | 
| 53873 | 317 | fixes a :: ereal | 
| 318 | shows "-a = 0 \<longleftrightarrow> a = 0" | |
| 41973 | 319 | by (cases a) simp_all | 
| 320 | ||
| 43920 | 321 | lemma ereal_plus_eq_PInfty[simp]: | 
| 53873 | 322 | fixes a b :: ereal | 
| 323 | shows "a + b = \<infinity> \<longleftrightarrow> a = \<infinity> \<or> b = \<infinity>" | |
| 43920 | 324 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 325 | |
| 43920 | 326 | lemma ereal_plus_eq_MInfty[simp]: | 
| 53873 | 327 | fixes a b :: ereal | 
| 328 | shows "a + b = -\<infinity> \<longleftrightarrow> (a = -\<infinity> \<or> b = -\<infinity>) \<and> a \<noteq> \<infinity> \<and> b \<noteq> \<infinity>" | |
| 43920 | 329 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 330 | |
| 43920 | 331 | lemma ereal_add_cancel_left: | 
| 53873 | 332 | fixes a b :: ereal | 
| 333 | assumes "a \<noteq> -\<infinity>" | |
| 334 | shows "a + b = a + c \<longleftrightarrow> a = \<infinity> \<or> b = c" | |
| 43920 | 335 | using assms by (cases rule: ereal3_cases[of a b c]) auto | 
| 41973 | 336 | |
| 43920 | 337 | lemma ereal_add_cancel_right: | 
| 53873 | 338 | fixes a b :: ereal | 
| 339 | assumes "a \<noteq> -\<infinity>" | |
| 340 | shows "b + a = c + a \<longleftrightarrow> a = \<infinity> \<or> b = c" | |
| 43920 | 341 | using assms by (cases rule: ereal3_cases[of a b c]) auto | 
| 41973 | 342 | |
| 53873 | 343 | lemma ereal_real: "ereal (real x) = (if \<bar>x\<bar> = \<infinity> then 0 else x)" | 
| 41973 | 344 | by (cases x) simp_all | 
| 345 | ||
| 43920 | 346 | lemma real_of_ereal_add: | 
| 347 | fixes a b :: ereal | |
| 47082 | 348 | shows "real (a + b) = | 
| 349 | (if (\<bar>a\<bar> = \<infinity>) \<and> (\<bar>b\<bar> = \<infinity>) \<or> (\<bar>a\<bar> \<noteq> \<infinity>) \<and> (\<bar>b\<bar> \<noteq> \<infinity>) then real a + real b else 0)" | |
| 43920 | 350 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 351 | |
| 53873 | 352 | |
| 43920 | 353 | subsubsection "Linear order on @{typ ereal}"
 | 
| 41973 | 354 | |
| 43920 | 355 | instantiation ereal :: linorder | 
| 41973 | 356 | begin | 
| 357 | ||
| 47082 | 358 | function less_ereal | 
| 359 | where | |
| 360 | " ereal x < ereal y \<longleftrightarrow> x < y" | |
| 361 | | "(\<infinity>::ereal) < a \<longleftrightarrow> False" | |
| 362 | | " a < -(\<infinity>::ereal) \<longleftrightarrow> False" | |
| 363 | | "ereal x < \<infinity> \<longleftrightarrow> True" | |
| 364 | | " -\<infinity> < ereal r \<longleftrightarrow> True" | |
| 365 | | " -\<infinity> < (\<infinity>::ereal) \<longleftrightarrow> True" | |
| 41973 | 366 | proof - | 
| 367 | case (goal1 P x) | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 368 | then obtain a b where "x = (a,b)" by (cases x) auto | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 369 | with goal1 show P by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 370 | qed simp_all | 
| 371 | termination by (relation "{}") simp
 | |
| 372 | ||
| 43920 | 373 | definition "x \<le> (y::ereal) \<longleftrightarrow> x < y \<or> x = y" | 
| 41973 | 374 | |
| 43920 | 375 | lemma ereal_infty_less[simp]: | 
| 43923 | 376 | fixes x :: ereal | 
| 377 | shows "x < \<infinity> \<longleftrightarrow> (x \<noteq> \<infinity>)" | |
| 378 | "-\<infinity> < x \<longleftrightarrow> (x \<noteq> -\<infinity>)" | |
| 41973 | 379 | by (cases x, simp_all) (cases x, simp_all) | 
| 380 | ||
| 43920 | 381 | lemma ereal_infty_less_eq[simp]: | 
| 43923 | 382 | fixes x :: ereal | 
| 383 | shows "\<infinity> \<le> x \<longleftrightarrow> x = \<infinity>" | |
| 53873 | 384 | and "x \<le> -\<infinity> \<longleftrightarrow> x = -\<infinity>" | 
| 43920 | 385 | by (auto simp add: less_eq_ereal_def) | 
| 41973 | 386 | |
| 43920 | 387 | lemma ereal_less[simp]: | 
| 388 | "ereal r < 0 \<longleftrightarrow> (r < 0)" | |
| 389 | "0 < ereal r \<longleftrightarrow> (0 < r)" | |
| 54416 | 390 | "ereal r < 1 \<longleftrightarrow> (r < 1)" | 
| 391 | "1 < ereal r \<longleftrightarrow> (1 < r)" | |
| 43923 | 392 | "0 < (\<infinity>::ereal)" | 
| 393 | "-(\<infinity>::ereal) < 0" | |
| 54416 | 394 | by (simp_all add: zero_ereal_def one_ereal_def) | 
| 41973 | 395 | |
| 43920 | 396 | lemma ereal_less_eq[simp]: | 
| 43923 | 397 | "x \<le> (\<infinity>::ereal)" | 
| 398 | "-(\<infinity>::ereal) \<le> x" | |
| 43920 | 399 | "ereal r \<le> ereal p \<longleftrightarrow> r \<le> p" | 
| 400 | "ereal r \<le> 0 \<longleftrightarrow> r \<le> 0" | |
| 401 | "0 \<le> ereal r \<longleftrightarrow> 0 \<le> r" | |
| 54416 | 402 | "ereal r \<le> 1 \<longleftrightarrow> r \<le> 1" | 
| 403 | "1 \<le> ereal r \<longleftrightarrow> 1 \<le> r" | |
| 404 | by (auto simp add: less_eq_ereal_def zero_ereal_def one_ereal_def) | |
| 41973 | 405 | |
| 43920 | 406 | lemma ereal_infty_less_eq2: | 
| 43923 | 407 | "a \<le> b \<Longrightarrow> a = \<infinity> \<Longrightarrow> b = (\<infinity>::ereal)" | 
| 408 | "a \<le> b \<Longrightarrow> b = -\<infinity> \<Longrightarrow> a = -(\<infinity>::ereal)" | |
| 41973 | 409 | by simp_all | 
| 410 | ||
| 411 | instance | |
| 412 | proof | |
| 47082 | 413 | fix x y z :: ereal | 
| 414 | show "x \<le> x" | |
| 41973 | 415 | by (cases x) simp_all | 
| 47082 | 416 | show "x < y \<longleftrightarrow> x \<le> y \<and> \<not> y \<le> x" | 
| 43920 | 417 | by (cases rule: ereal2_cases[of x y]) auto | 
| 41973 | 418 | show "x \<le> y \<or> y \<le> x " | 
| 43920 | 419 | by (cases rule: ereal2_cases[of x y]) auto | 
| 53873 | 420 |   {
 | 
| 421 | assume "x \<le> y" "y \<le> x" | |
| 422 | then show "x = y" | |
| 423 | by (cases rule: ereal2_cases[of x y]) auto | |
| 424 | } | |
| 425 |   {
 | |
| 426 | assume "x \<le> y" "y \<le> z" | |
| 427 | then show "x \<le> z" | |
| 428 | by (cases rule: ereal3_cases[of x y z]) auto | |
| 429 | } | |
| 41973 | 430 | qed | 
| 47082 | 431 | |
| 41973 | 432 | end | 
| 433 | ||
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 434 | lemma ereal_dense2: "x < y \<Longrightarrow> \<exists>z. x < ereal z \<and> ereal z < y" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 435 | using lt_ex gt_ex dense by (cases x y rule: ereal2_cases) auto | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 436 | |
| 53216 | 437 | instance ereal :: dense_linorder | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 438 | by default (blast dest: ereal_dense2) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 439 | |
| 43920 | 440 | instance ereal :: ordered_ab_semigroup_add | 
| 41978 | 441 | proof | 
| 53873 | 442 | fix a b c :: ereal | 
| 443 | assume "a \<le> b" | |
| 444 | then show "c + a \<le> c + b" | |
| 43920 | 445 | by (cases rule: ereal3_cases[of a b c]) auto | 
| 41978 | 446 | qed | 
| 447 | ||
| 43920 | 448 | lemma real_of_ereal_positive_mono: | 
| 53873 | 449 | fixes x y :: ereal | 
| 450 | shows "0 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> y \<noteq> \<infinity> \<Longrightarrow> real x \<le> real y" | |
| 43920 | 451 | by (cases rule: ereal2_cases[of x y]) auto | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 452 | |
| 43920 | 453 | lemma ereal_MInfty_lessI[intro, simp]: | 
| 53873 | 454 | fixes a :: ereal | 
| 455 | shows "a \<noteq> -\<infinity> \<Longrightarrow> -\<infinity> < a" | |
| 41973 | 456 | by (cases a) auto | 
| 457 | ||
| 43920 | 458 | lemma ereal_less_PInfty[intro, simp]: | 
| 53873 | 459 | fixes a :: ereal | 
| 460 | shows "a \<noteq> \<infinity> \<Longrightarrow> a < \<infinity>" | |
| 41973 | 461 | by (cases a) auto | 
| 462 | ||
| 43920 | 463 | lemma ereal_less_ereal_Ex: | 
| 464 | fixes a b :: ereal | |
| 465 | shows "x < ereal r \<longleftrightarrow> x = -\<infinity> \<or> (\<exists>p. p < r \<and> x = ereal p)" | |
| 41973 | 466 | by (cases x) auto | 
| 467 | ||
| 43920 | 468 | lemma less_PInf_Ex_of_nat: "x \<noteq> \<infinity> \<longleftrightarrow> (\<exists>n::nat. x < ereal (real n))" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 469 | proof (cases x) | 
| 53873 | 470 | case (real r) | 
| 471 | then show ?thesis | |
| 41980 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 472 | using reals_Archimedean2[of r] by simp | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 473 | qed simp_all | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 474 | |
| 43920 | 475 | lemma ereal_add_mono: | 
| 53873 | 476 | fixes a b c d :: ereal | 
| 477 | assumes "a \<le> b" | |
| 478 | and "c \<le> d" | |
| 479 | shows "a + c \<le> b + d" | |
| 41973 | 480 | using assms | 
| 481 | apply (cases a) | |
| 43920 | 482 | apply (cases rule: ereal3_cases[of b c d], auto) | 
| 483 | apply (cases rule: ereal3_cases[of b c d], auto) | |
| 41973 | 484 | done | 
| 485 | ||
| 43920 | 486 | lemma ereal_minus_le_minus[simp]: | 
| 53873 | 487 | fixes a b :: ereal | 
| 488 | shows "- a \<le> - b \<longleftrightarrow> b \<le> a" | |
| 43920 | 489 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 490 | |
| 43920 | 491 | lemma ereal_minus_less_minus[simp]: | 
| 53873 | 492 | fixes a b :: ereal | 
| 493 | shows "- a < - b \<longleftrightarrow> b < a" | |
| 43920 | 494 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 495 | |
| 43920 | 496 | lemma ereal_le_real_iff: | 
| 53873 | 497 | "x \<le> real y \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> ereal x \<le> y) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> x \<le> 0)" | 
| 41973 | 498 | by (cases y) auto | 
| 499 | ||
| 43920 | 500 | lemma real_le_ereal_iff: | 
| 53873 | 501 | "real y \<le> x \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> y \<le> ereal x) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> 0 \<le> x)" | 
| 41973 | 502 | by (cases y) auto | 
| 503 | ||
| 43920 | 504 | lemma ereal_less_real_iff: | 
| 53873 | 505 | "x < real y \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> ereal x < y) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> x < 0)" | 
| 41973 | 506 | by (cases y) auto | 
| 507 | ||
| 43920 | 508 | lemma real_less_ereal_iff: | 
| 53873 | 509 | "real y < x \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> y < ereal x) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> 0 < x)" | 
| 41973 | 510 | by (cases y) auto | 
| 511 | ||
| 43920 | 512 | lemma real_of_ereal_pos: | 
| 53873 | 513 | fixes x :: ereal | 
| 514 | shows "0 \<le> x \<Longrightarrow> 0 \<le> real x" by (cases x) auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 515 | |
| 43920 | 516 | lemmas real_of_ereal_ord_simps = | 
| 517 | ereal_le_real_iff real_le_ereal_iff ereal_less_real_iff real_less_ereal_iff | |
| 41973 | 518 | |
| 43920 | 519 | lemma abs_ereal_ge0[simp]: "0 \<le> x \<Longrightarrow> \<bar>x :: ereal\<bar> = x" | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 520 | by (cases x) auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 521 | |
| 43920 | 522 | lemma abs_ereal_less0[simp]: "x < 0 \<Longrightarrow> \<bar>x :: ereal\<bar> = -x" | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 523 | by (cases x) auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 524 | |
| 43920 | 525 | lemma abs_ereal_pos[simp]: "0 \<le> \<bar>x :: ereal\<bar>" | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 526 | by (cases x) auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 527 | |
| 53873 | 528 | lemma real_of_ereal_le_0[simp]: "real (x :: ereal) \<le> 0 \<longleftrightarrow> x \<le> 0 \<or> x = \<infinity>" | 
| 43923 | 529 | by (cases x) auto | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 530 | |
| 43923 | 531 | lemma abs_real_of_ereal[simp]: "\<bar>real (x :: ereal)\<bar> = real \<bar>x\<bar>" | 
| 532 | by (cases x) auto | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 533 | |
| 43923 | 534 | lemma zero_less_real_of_ereal: | 
| 53873 | 535 | fixes x :: ereal | 
| 536 | shows "0 < real x \<longleftrightarrow> 0 < x \<and> x \<noteq> \<infinity>" | |
| 43923 | 537 | by (cases x) auto | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 538 | |
| 43920 | 539 | lemma ereal_0_le_uminus_iff[simp]: | 
| 53873 | 540 | fixes a :: ereal | 
| 541 | shows "0 \<le> - a \<longleftrightarrow> a \<le> 0" | |
| 43920 | 542 | by (cases rule: ereal2_cases[of a]) auto | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 543 | |
| 43920 | 544 | lemma ereal_uminus_le_0_iff[simp]: | 
| 53873 | 545 | fixes a :: ereal | 
| 546 | shows "- a \<le> 0 \<longleftrightarrow> 0 \<le> a" | |
| 43920 | 547 | by (cases rule: ereal2_cases[of a]) auto | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 548 | |
| 43920 | 549 | lemma ereal_add_strict_mono: | 
| 550 | fixes a b c d :: ereal | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 551 | assumes "a \<le> b" | 
| 53873 | 552 | and "0 \<le> a" | 
| 553 | and "a \<noteq> \<infinity>" | |
| 554 | and "c < d" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 555 | shows "a + c < b + d" | 
| 53873 | 556 | using assms | 
| 557 | by (cases rule: ereal3_cases[case_product ereal_cases, of a b c d]) auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 558 | |
| 53873 | 559 | lemma ereal_less_add: | 
| 560 | fixes a b c :: ereal | |
| 561 | shows "\<bar>a\<bar> \<noteq> \<infinity> \<Longrightarrow> c < b \<Longrightarrow> a + c < a + b" | |
| 43920 | 562 | by (cases rule: ereal2_cases[of b c]) auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 563 | |
| 54416 | 564 | lemma ereal_add_nonneg_eq_0_iff: | 
| 565 | fixes a b :: ereal | |
| 566 | shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> a + b = 0 \<longleftrightarrow> a = 0 \<and> b = 0" | |
| 567 | by (cases a b rule: ereal2_cases) auto | |
| 568 | ||
| 53873 | 569 | lemma ereal_uminus_eq_reorder: "- a = b \<longleftrightarrow> a = (-b::ereal)" | 
| 570 | by auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 571 | |
| 43920 | 572 | lemma ereal_uminus_less_reorder: "- a < b \<longleftrightarrow> -b < (a::ereal)" | 
| 573 | by (subst (3) ereal_uminus_uminus[symmetric]) (simp only: ereal_minus_less_minus) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 574 | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 575 | lemma ereal_less_uminus_reorder: "a < - b \<longleftrightarrow> b < - (a::ereal)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 576 | by (subst (3) ereal_uminus_uminus[symmetric]) (simp only: ereal_minus_less_minus) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 577 | |
| 43920 | 578 | lemma ereal_uminus_le_reorder: "- a \<le> b \<longleftrightarrow> -b \<le> (a::ereal)" | 
| 579 | by (subst (3) ereal_uminus_uminus[symmetric]) (simp only: ereal_minus_le_minus) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 580 | |
| 43920 | 581 | lemmas ereal_uminus_reorder = | 
| 582 | ereal_uminus_eq_reorder ereal_uminus_less_reorder ereal_uminus_le_reorder | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 583 | |
| 43920 | 584 | lemma ereal_bot: | 
| 53873 | 585 | fixes x :: ereal | 
| 586 | assumes "\<And>B. x \<le> ereal B" | |
| 587 | shows "x = - \<infinity>" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 588 | proof (cases x) | 
| 53873 | 589 | case (real r) | 
| 590 | with assms[of "r - 1"] show ?thesis | |
| 591 | by auto | |
| 47082 | 592 | next | 
| 53873 | 593 | case PInf | 
| 594 | with assms[of 0] show ?thesis | |
| 595 | by auto | |
| 47082 | 596 | next | 
| 53873 | 597 | case MInf | 
| 598 | then show ?thesis | |
| 599 | by simp | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 600 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 601 | |
| 43920 | 602 | lemma ereal_top: | 
| 53873 | 603 | fixes x :: ereal | 
| 604 | assumes "\<And>B. x \<ge> ereal B" | |
| 605 | shows "x = \<infinity>" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 606 | proof (cases x) | 
| 53873 | 607 | case (real r) | 
| 608 | with assms[of "r + 1"] show ?thesis | |
| 609 | by auto | |
| 47082 | 610 | next | 
| 53873 | 611 | case MInf | 
| 612 | with assms[of 0] show ?thesis | |
| 613 | by auto | |
| 47082 | 614 | next | 
| 53873 | 615 | case PInf | 
| 616 | then show ?thesis | |
| 617 | by simp | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 618 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 619 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 620 | lemma | 
| 43920 | 621 | shows ereal_max[simp]: "ereal (max x y) = max (ereal x) (ereal y)" | 
| 622 | and ereal_min[simp]: "ereal (min x y) = min (ereal x) (ereal y)" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 623 | by (simp_all add: min_def max_def) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 624 | |
| 43920 | 625 | lemma ereal_max_0: "max 0 (ereal r) = ereal (max 0 r)" | 
| 626 | by (auto simp: zero_ereal_def) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 627 | |
| 41978 | 628 | lemma | 
| 43920 | 629 | fixes f :: "nat \<Rightarrow> ereal" | 
| 54416 | 630 | shows ereal_incseq_uminus[simp]: "incseq (\<lambda>x. - f x) \<longleftrightarrow> decseq f" | 
| 631 | and ereal_decseq_uminus[simp]: "decseq (\<lambda>x. - f x) \<longleftrightarrow> incseq f" | |
| 41978 | 632 | unfolding decseq_def incseq_def by auto | 
| 633 | ||
| 43920 | 634 | lemma incseq_ereal: "incseq f \<Longrightarrow> incseq (\<lambda>x. ereal (f x))" | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 635 | unfolding incseq_def by auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 636 | |
| 56537 | 637 | lemma ereal_add_nonneg_nonneg[simp]: | 
| 53873 | 638 | fixes a b :: ereal | 
| 639 | shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a + b" | |
| 41978 | 640 | using add_mono[of 0 a 0 b] by simp | 
| 641 | ||
| 53873 | 642 | lemma image_eqD: "f ` A = B \<Longrightarrow> \<forall>x\<in>A. f x \<in> B" | 
| 41978 | 643 | by auto | 
| 644 | ||
| 645 | lemma incseq_setsumI: | |
| 53873 | 646 |   fixes f :: "nat \<Rightarrow> 'a::{comm_monoid_add,ordered_ab_semigroup_add}"
 | 
| 41978 | 647 | assumes "\<And>i. 0 \<le> f i" | 
| 648 |   shows "incseq (\<lambda>i. setsum f {..< i})"
 | |
| 649 | proof (intro incseq_SucI) | |
| 53873 | 650 | fix n | 
| 651 |   have "setsum f {..< n} + 0 \<le> setsum f {..<n} + f n"
 | |
| 41978 | 652 | using assms by (rule add_left_mono) | 
| 653 |   then show "setsum f {..< n} \<le> setsum f {..< Suc n}"
 | |
| 654 | by auto | |
| 655 | qed | |
| 656 | ||
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 657 | lemma incseq_setsumI2: | 
| 53873 | 658 |   fixes f :: "'i \<Rightarrow> nat \<Rightarrow> 'a::{comm_monoid_add,ordered_ab_semigroup_add}"
 | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 659 | assumes "\<And>n. n \<in> A \<Longrightarrow> incseq (f n)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 660 | shows "incseq (\<lambda>i. \<Sum>n\<in>A. f n i)" | 
| 53873 | 661 | using assms | 
| 662 | unfolding incseq_def by (auto intro: setsum_mono) | |
| 663 | ||
| 59000 | 664 | lemma setsum_ereal[simp]: "(\<Sum>x\<in>A. ereal (f x)) = ereal (\<Sum>x\<in>A. f x)" | 
| 665 | proof (cases "finite A") | |
| 666 | case True | |
| 667 | then show ?thesis by induct auto | |
| 668 | next | |
| 669 | case False | |
| 670 | then show ?thesis by simp | |
| 671 | qed | |
| 672 | ||
| 673 | lemma setsum_Pinfty: | |
| 674 | fixes f :: "'a \<Rightarrow> ereal" | |
| 675 | shows "(\<Sum>x\<in>P. f x) = \<infinity> \<longleftrightarrow> finite P \<and> (\<exists>i\<in>P. f i = \<infinity>)" | |
| 676 | proof safe | |
| 677 | assume *: "setsum f P = \<infinity>" | |
| 678 | show "finite P" | |
| 679 | proof (rule ccontr) | |
| 680 | assume "\<not> finite P" | |
| 681 | with * show False | |
| 682 | by auto | |
| 683 | qed | |
| 684 | show "\<exists>i\<in>P. f i = \<infinity>" | |
| 685 | proof (rule ccontr) | |
| 686 | assume "\<not> ?thesis" | |
| 687 | then have "\<And>i. i \<in> P \<Longrightarrow> f i \<noteq> \<infinity>" | |
| 688 | by auto | |
| 689 | with `finite P` have "setsum f P \<noteq> \<infinity>" | |
| 690 | by induct auto | |
| 691 | with * show False | |
| 692 | by auto | |
| 693 | qed | |
| 694 | next | |
| 695 | fix i | |
| 696 | assume "finite P" and "i \<in> P" and "f i = \<infinity>" | |
| 697 | then show "setsum f P = \<infinity>" | |
| 698 | proof induct | |
| 699 | case (insert x A) | |
| 700 | show ?case using insert by (cases "x = i") auto | |
| 701 | qed simp | |
| 702 | qed | |
| 703 | ||
| 704 | lemma setsum_Inf: | |
| 705 | fixes f :: "'a \<Rightarrow> ereal" | |
| 706 | shows "\<bar>setsum f A\<bar> = \<infinity> \<longleftrightarrow> finite A \<and> (\<exists>i\<in>A. \<bar>f i\<bar> = \<infinity>)" | |
| 707 | proof | |
| 708 | assume *: "\<bar>setsum f A\<bar> = \<infinity>" | |
| 709 | have "finite A" | |
| 710 | by (rule ccontr) (insert *, auto) | |
| 711 | moreover have "\<exists>i\<in>A. \<bar>f i\<bar> = \<infinity>" | |
| 712 | proof (rule ccontr) | |
| 713 | assume "\<not> ?thesis" | |
| 714 | then have "\<forall>i\<in>A. \<exists>r. f i = ereal r" | |
| 715 | by auto | |
| 716 | from bchoice[OF this] obtain r where "\<forall>x\<in>A. f x = ereal (r x)" .. | |
| 717 | with * show False | |
| 718 | by auto | |
| 719 | qed | |
| 720 | ultimately show "finite A \<and> (\<exists>i\<in>A. \<bar>f i\<bar> = \<infinity>)" | |
| 721 | by auto | |
| 722 | next | |
| 723 | assume "finite A \<and> (\<exists>i\<in>A. \<bar>f i\<bar> = \<infinity>)" | |
| 724 | then obtain i where "finite A" "i \<in> A" and "\<bar>f i\<bar> = \<infinity>" | |
| 725 | by auto | |
| 726 | then show "\<bar>setsum f A\<bar> = \<infinity>" | |
| 727 | proof induct | |
| 728 | case (insert j A) | |
| 729 | then show ?case | |
| 730 | by (cases rule: ereal3_cases[of "f i" "f j" "setsum f A"]) auto | |
| 731 | qed simp | |
| 732 | qed | |
| 733 | ||
| 734 | lemma setsum_real_of_ereal: | |
| 735 | fixes f :: "'i \<Rightarrow> ereal" | |
| 736 | assumes "\<And>x. x \<in> S \<Longrightarrow> \<bar>f x\<bar> \<noteq> \<infinity>" | |
| 737 | shows "(\<Sum>x\<in>S. real (f x)) = real (setsum f S)" | |
| 738 | proof - | |
| 739 | have "\<forall>x\<in>S. \<exists>r. f x = ereal r" | |
| 740 | proof | |
| 741 | fix x | |
| 742 | assume "x \<in> S" | |
| 743 | from assms[OF this] show "\<exists>r. f x = ereal r" | |
| 744 | by (cases "f x") auto | |
| 745 | qed | |
| 746 | from bchoice[OF this] obtain r where "\<forall>x\<in>S. f x = ereal (r x)" .. | |
| 747 | then show ?thesis | |
| 748 | by simp | |
| 749 | qed | |
| 750 | ||
| 751 | lemma setsum_ereal_0: | |
| 752 | fixes f :: "'a \<Rightarrow> ereal" | |
| 753 | assumes "finite A" | |
| 754 | and "\<And>i. i \<in> A \<Longrightarrow> 0 \<le> f i" | |
| 755 | shows "(\<Sum>x\<in>A. f x) = 0 \<longleftrightarrow> (\<forall>i\<in>A. f i = 0)" | |
| 756 | proof | |
| 757 | assume "setsum f A = 0" with assms show "\<forall>i\<in>A. f i = 0" | |
| 758 | proof (induction A) | |
| 759 | case (insert a A) | |
| 760 | then have "f a = 0 \<and> (\<Sum>a\<in>A. f a) = 0" | |
| 761 | by (subst ereal_add_nonneg_eq_0_iff[symmetric]) (simp_all add: setsum_nonneg) | |
| 762 | with insert show ?case | |
| 763 | by simp | |
| 764 | qed simp | |
| 765 | qed auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 766 | |
| 41973 | 767 | subsubsection "Multiplication" | 
| 768 | ||
| 53873 | 769 | instantiation ereal :: "{comm_monoid_mult,sgn}"
 | 
| 41973 | 770 | begin | 
| 771 | ||
| 51351 | 772 | function sgn_ereal :: "ereal \<Rightarrow> ereal" where | 
| 43920 | 773 | "sgn (ereal r) = ereal (sgn r)" | 
| 43923 | 774 | | "sgn (\<infinity>::ereal) = 1" | 
| 775 | | "sgn (-\<infinity>::ereal) = -1" | |
| 43920 | 776 | by (auto intro: ereal_cases) | 
| 53873 | 777 | termination by default (rule wf_empty) | 
| 41976 | 778 | |
| 43920 | 779 | function times_ereal where | 
| 53873 | 780 | "ereal r * ereal p = ereal (r * p)" | 
| 781 | | "ereal r * \<infinity> = (if r = 0 then 0 else if r > 0 then \<infinity> else -\<infinity>)" | |
| 782 | | "\<infinity> * ereal r = (if r = 0 then 0 else if r > 0 then \<infinity> else -\<infinity>)" | |
| 783 | | "ereal r * -\<infinity> = (if r = 0 then 0 else if r > 0 then -\<infinity> else \<infinity>)" | |
| 784 | | "-\<infinity> * ereal r = (if r = 0 then 0 else if r > 0 then -\<infinity> else \<infinity>)" | |
| 785 | | "(\<infinity>::ereal) * \<infinity> = \<infinity>" | |
| 786 | | "-(\<infinity>::ereal) * \<infinity> = -\<infinity>" | |
| 787 | | "(\<infinity>::ereal) * -\<infinity> = -\<infinity>" | |
| 788 | | "-(\<infinity>::ereal) * -\<infinity> = \<infinity>" | |
| 41973 | 789 | proof - | 
| 790 | case (goal1 P x) | |
| 53873 | 791 | then obtain a b where "x = (a, b)" | 
| 792 | by (cases x) auto | |
| 793 | with goal1 show P | |
| 794 | by (cases rule: ereal2_cases[of a b]) auto | |
| 41973 | 795 | qed simp_all | 
| 796 | termination by (relation "{}") simp
 | |
| 797 | ||
| 798 | instance | |
| 799 | proof | |
| 53873 | 800 | fix a b c :: ereal | 
| 801 | show "1 * a = a" | |
| 43920 | 802 | by (cases a) (simp_all add: one_ereal_def) | 
| 47082 | 803 | show "a * b = b * a" | 
| 43920 | 804 | by (cases rule: ereal2_cases[of a b]) simp_all | 
| 47082 | 805 | show "a * b * c = a * (b * c)" | 
| 43920 | 806 | by (cases rule: ereal3_cases[of a b c]) | 
| 807 | (simp_all add: zero_ereal_def zero_less_mult_iff) | |
| 41973 | 808 | qed | 
| 53873 | 809 | |
| 41973 | 810 | end | 
| 811 | ||
| 59000 | 812 | lemma one_not_le_zero_ereal[simp]: "\<not> (1 \<le> (0::ereal))" | 
| 813 | by (simp add: one_ereal_def zero_ereal_def) | |
| 814 | ||
| 50104 | 815 | lemma real_ereal_1[simp]: "real (1::ereal) = 1" | 
| 816 | unfolding one_ereal_def by simp | |
| 817 | ||
| 43920 | 818 | lemma real_of_ereal_le_1: | 
| 53873 | 819 | fixes a :: ereal | 
| 820 | shows "a \<le> 1 \<Longrightarrow> real a \<le> 1" | |
| 43920 | 821 | by (cases a) (auto simp: one_ereal_def) | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 822 | |
| 43920 | 823 | lemma abs_ereal_one[simp]: "\<bar>1\<bar> = (1::ereal)" | 
| 824 | unfolding one_ereal_def by simp | |
| 41976 | 825 | |
| 43920 | 826 | lemma ereal_mult_zero[simp]: | 
| 53873 | 827 | fixes a :: ereal | 
| 828 | shows "a * 0 = 0" | |
| 43920 | 829 | by (cases a) (simp_all add: zero_ereal_def) | 
| 41973 | 830 | |
| 43920 | 831 | lemma ereal_zero_mult[simp]: | 
| 53873 | 832 | fixes a :: ereal | 
| 833 | shows "0 * a = 0" | |
| 43920 | 834 | by (cases a) (simp_all add: zero_ereal_def) | 
| 41973 | 835 | |
| 53873 | 836 | lemma ereal_m1_less_0[simp]: "-(1::ereal) < 0" | 
| 43920 | 837 | by (simp add: zero_ereal_def one_ereal_def) | 
| 41973 | 838 | |
| 43920 | 839 | lemma ereal_times[simp]: | 
| 43923 | 840 | "1 \<noteq> (\<infinity>::ereal)" "(\<infinity>::ereal) \<noteq> 1" | 
| 841 | "1 \<noteq> -(\<infinity>::ereal)" "-(\<infinity>::ereal) \<noteq> 1" | |
| 43920 | 842 | by (auto simp add: times_ereal_def one_ereal_def) | 
| 41973 | 843 | |
| 43920 | 844 | lemma ereal_plus_1[simp]: | 
| 53873 | 845 | "1 + ereal r = ereal (r + 1)" | 
| 846 | "ereal r + 1 = ereal (r + 1)" | |
| 847 | "1 + -(\<infinity>::ereal) = -\<infinity>" | |
| 848 | "-(\<infinity>::ereal) + 1 = -\<infinity>" | |
| 43920 | 849 | unfolding one_ereal_def by auto | 
| 41973 | 850 | |
| 43920 | 851 | lemma ereal_zero_times[simp]: | 
| 53873 | 852 | fixes a b :: ereal | 
| 853 | shows "a * b = 0 \<longleftrightarrow> a = 0 \<or> b = 0" | |
| 43920 | 854 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 855 | |
| 43920 | 856 | lemma ereal_mult_eq_PInfty[simp]: | 
| 53873 | 857 | "a * b = (\<infinity>::ereal) \<longleftrightarrow> | 
| 41973 | 858 | (a = \<infinity> \<and> b > 0) \<or> (a > 0 \<and> b = \<infinity>) \<or> (a = -\<infinity> \<and> b < 0) \<or> (a < 0 \<and> b = -\<infinity>)" | 
| 43920 | 859 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 860 | |
| 43920 | 861 | lemma ereal_mult_eq_MInfty[simp]: | 
| 53873 | 862 | "a * b = -(\<infinity>::ereal) \<longleftrightarrow> | 
| 41973 | 863 | (a = \<infinity> \<and> b < 0) \<or> (a < 0 \<and> b = \<infinity>) \<or> (a = -\<infinity> \<and> b > 0) \<or> (a > 0 \<and> b = -\<infinity>)" | 
| 43920 | 864 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 865 | |
| 54416 | 866 | lemma ereal_abs_mult: "\<bar>x * y :: ereal\<bar> = \<bar>x\<bar> * \<bar>y\<bar>" | 
| 867 | by (cases x y rule: ereal2_cases) (auto simp: abs_mult) | |
| 868 | ||
| 43920 | 869 | lemma ereal_0_less_1[simp]: "0 < (1::ereal)" | 
| 870 | by (simp_all add: zero_ereal_def one_ereal_def) | |
| 41973 | 871 | |
| 43920 | 872 | lemma ereal_mult_minus_left[simp]: | 
| 53873 | 873 | fixes a b :: ereal | 
| 874 | shows "-a * b = - (a * b)" | |
| 43920 | 875 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 876 | |
| 43920 | 877 | lemma ereal_mult_minus_right[simp]: | 
| 53873 | 878 | fixes a b :: ereal | 
| 879 | shows "a * -b = - (a * b)" | |
| 43920 | 880 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 881 | |
| 43920 | 882 | lemma ereal_mult_infty[simp]: | 
| 43923 | 883 | "a * (\<infinity>::ereal) = (if a = 0 then 0 else if 0 < a then \<infinity> else - \<infinity>)" | 
| 41973 | 884 | by (cases a) auto | 
| 885 | ||
| 43920 | 886 | lemma ereal_infty_mult[simp]: | 
| 43923 | 887 | "(\<infinity>::ereal) * a = (if a = 0 then 0 else if 0 < a then \<infinity> else - \<infinity>)" | 
| 41973 | 888 | by (cases a) auto | 
| 889 | ||
| 43920 | 890 | lemma ereal_mult_strict_right_mono: | 
| 53873 | 891 | assumes "a < b" | 
| 892 | and "0 < c" | |
| 893 | and "c < (\<infinity>::ereal)" | |
| 41973 | 894 | shows "a * c < b * c" | 
| 895 | using assms | |
| 53873 | 896 | by (cases rule: ereal3_cases[of a b c]) (auto simp: zero_le_mult_iff) | 
| 41973 | 897 | |
| 43920 | 898 | lemma ereal_mult_strict_left_mono: | 
| 53873 | 899 | "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c < (\<infinity>::ereal) \<Longrightarrow> c * a < c * b" | 
| 900 | using ereal_mult_strict_right_mono | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57447diff
changeset | 901 | by (simp add: mult.commute[of c]) | 
| 41973 | 902 | |
| 43920 | 903 | lemma ereal_mult_right_mono: | 
| 53873 | 904 | fixes a b c :: ereal | 
| 905 | shows "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * c" | |
| 41973 | 906 | using assms | 
| 53873 | 907 | apply (cases "c = 0") | 
| 908 | apply simp | |
| 909 | apply (cases rule: ereal3_cases[of a b c]) | |
| 910 | apply (auto simp: zero_le_mult_iff) | |
| 911 | done | |
| 41973 | 912 | |
| 43920 | 913 | lemma ereal_mult_left_mono: | 
| 53873 | 914 | fixes a b c :: ereal | 
| 915 | shows "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b" | |
| 916 | using ereal_mult_right_mono | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57447diff
changeset | 917 | by (simp add: mult.commute[of c]) | 
| 41973 | 918 | |
| 43920 | 919 | lemma zero_less_one_ereal[simp]: "0 \<le> (1::ereal)" | 
| 920 | by (simp add: one_ereal_def zero_ereal_def) | |
| 41978 | 921 | |
| 43920 | 922 | lemma ereal_0_le_mult[simp]: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a * (b :: ereal)" | 
| 56536 | 923 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 924 | |
| 43920 | 925 | lemma ereal_right_distrib: | 
| 53873 | 926 | fixes r a b :: ereal | 
| 927 | shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> r * (a + b) = r * a + r * b" | |
| 43920 | 928 | by (cases rule: ereal3_cases[of r a b]) (simp_all add: field_simps) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 929 | |
| 43920 | 930 | lemma ereal_left_distrib: | 
| 53873 | 931 | fixes r a b :: ereal | 
| 932 | shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> (a + b) * r = a * r + b * r" | |
| 43920 | 933 | by (cases rule: ereal3_cases[of r a b]) (simp_all add: field_simps) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 934 | |
| 43920 | 935 | lemma ereal_mult_le_0_iff: | 
| 936 | fixes a b :: ereal | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 937 | shows "a * b \<le> 0 \<longleftrightarrow> (0 \<le> a \<and> b \<le> 0) \<or> (a \<le> 0 \<and> 0 \<le> b)" | 
| 43920 | 938 | by (cases rule: ereal2_cases[of a b]) (simp_all add: mult_le_0_iff) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 939 | |
| 43920 | 940 | lemma ereal_zero_le_0_iff: | 
| 941 | fixes a b :: ereal | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 942 | shows "0 \<le> a * b \<longleftrightarrow> (0 \<le> a \<and> 0 \<le> b) \<or> (a \<le> 0 \<and> b \<le> 0)" | 
| 43920 | 943 | by (cases rule: ereal2_cases[of a b]) (simp_all add: zero_le_mult_iff) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 944 | |
| 43920 | 945 | lemma ereal_mult_less_0_iff: | 
| 946 | fixes a b :: ereal | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 947 | shows "a * b < 0 \<longleftrightarrow> (0 < a \<and> b < 0) \<or> (a < 0 \<and> 0 < b)" | 
| 43920 | 948 | by (cases rule: ereal2_cases[of a b]) (simp_all add: mult_less_0_iff) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 949 | |
| 43920 | 950 | lemma ereal_zero_less_0_iff: | 
| 951 | fixes a b :: ereal | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 952 | shows "0 < a * b \<longleftrightarrow> (0 < a \<and> 0 < b) \<or> (a < 0 \<and> b < 0)" | 
| 43920 | 953 | by (cases rule: ereal2_cases[of a b]) (simp_all add: zero_less_mult_iff) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 954 | |
| 50104 | 955 | lemma ereal_left_mult_cong: | 
| 956 | fixes a b c :: ereal | |
| 59002 
2c8b2fb54b88
cleaning up some theorem names; remove unnecessary assumptions; more complete pmf theory
 hoelzl parents: 
59000diff
changeset | 957 | shows "c = d \<Longrightarrow> (d \<noteq> 0 \<Longrightarrow> a = b) \<Longrightarrow> a * c = b * d" | 
| 50104 | 958 | by (cases "c = 0") simp_all | 
| 959 | ||
| 59000 | 960 | lemma ereal_right_mult_cong: | 
| 59002 
2c8b2fb54b88
cleaning up some theorem names; remove unnecessary assumptions; more complete pmf theory
 hoelzl parents: 
59000diff
changeset | 961 | fixes a b c :: ereal | 
| 59000 | 962 | shows "c = d \<Longrightarrow> (d \<noteq> 0 \<Longrightarrow> a = b) \<Longrightarrow> c * a = d * b" | 
| 59002 
2c8b2fb54b88
cleaning up some theorem names; remove unnecessary assumptions; more complete pmf theory
 hoelzl parents: 
59000diff
changeset | 963 | by (cases "c = 0") simp_all | 
| 50104 | 964 | |
| 43920 | 965 | lemma ereal_distrib: | 
| 966 | fixes a b c :: ereal | |
| 53873 | 967 | assumes "a \<noteq> \<infinity> \<or> b \<noteq> -\<infinity>" | 
| 968 | and "a \<noteq> -\<infinity> \<or> b \<noteq> \<infinity>" | |
| 969 | and "\<bar>c\<bar> \<noteq> \<infinity>" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 970 | shows "(a + b) * c = a * c + b * c" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 971 | using assms | 
| 43920 | 972 | by (cases rule: ereal3_cases[of a b c]) (simp_all add: field_simps) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 973 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 974 | lemma numeral_eq_ereal [simp]: "numeral w = ereal (numeral w)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 975 | apply (induct w rule: num_induct) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 976 | apply (simp only: numeral_One one_ereal_def) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 977 | apply (simp only: numeral_inc ereal_plus_1) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 978 | done | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 979 | |
| 59000 | 980 | lemma setsum_ereal_right_distrib: | 
| 981 | fixes f :: "'a \<Rightarrow> ereal" | |
| 982 | shows "(\<And>i. i \<in> A \<Longrightarrow> 0 \<le> f i) \<Longrightarrow> r * setsum f A = (\<Sum>n\<in>A. r * f n)" | |
| 983 | by (induct A rule: infinite_finite_induct) (auto simp: ereal_right_distrib setsum_nonneg) | |
| 984 | ||
| 59002 
2c8b2fb54b88
cleaning up some theorem names; remove unnecessary assumptions; more complete pmf theory
 hoelzl parents: 
59000diff
changeset | 985 | lemma setsum_ereal_left_distrib: | 
| 
2c8b2fb54b88
cleaning up some theorem names; remove unnecessary assumptions; more complete pmf theory
 hoelzl parents: 
59000diff
changeset | 986 | "(\<And>i. i \<in> A \<Longrightarrow> 0 \<le> f i) \<Longrightarrow> setsum f A * r = (\<Sum>n\<in>A. f n * r :: ereal)" | 
| 
2c8b2fb54b88
cleaning up some theorem names; remove unnecessary assumptions; more complete pmf theory
 hoelzl parents: 
59000diff
changeset | 987 | using setsum_ereal_right_distrib[of A f r] by (simp add: mult_ac) | 
| 
2c8b2fb54b88
cleaning up some theorem names; remove unnecessary assumptions; more complete pmf theory
 hoelzl parents: 
59000diff
changeset | 988 | |
| 43920 | 989 | lemma ereal_le_epsilon: | 
| 990 | fixes x y :: ereal | |
| 53873 | 991 | assumes "\<forall>e. 0 < e \<longrightarrow> x \<le> y + e" | 
| 992 | shows "x \<le> y" | |
| 993 | proof - | |
| 994 |   {
 | |
| 995 | assume a: "\<exists>r. y = ereal r" | |
| 996 | then obtain r where r_def: "y = ereal r" | |
| 997 | by auto | |
| 998 |     {
 | |
| 999 | assume "x = -\<infinity>" | |
| 1000 | then have ?thesis by auto | |
| 1001 | } | |
| 1002 | moreover | |
| 1003 |     {
 | |
| 1004 | assume "x \<noteq> -\<infinity>" | |
| 1005 | then obtain p where p_def: "x = ereal p" | |
| 1006 | using a assms[rule_format, of 1] | |
| 1007 | by (cases x) auto | |
| 1008 |       {
 | |
| 1009 | fix e | |
| 1010 | have "0 < e \<longrightarrow> p \<le> r + e" | |
| 1011 | using assms[rule_format, of "ereal e"] p_def r_def by auto | |
| 1012 | } | |
| 1013 | then have "p \<le> r" | |
| 1014 | apply (subst field_le_epsilon) | |
| 1015 | apply auto | |
| 1016 | done | |
| 1017 | then have ?thesis | |
| 1018 | using r_def p_def by auto | |
| 1019 | } | |
| 1020 | ultimately have ?thesis | |
| 1021 | by blast | |
| 1022 | } | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1023 | moreover | 
| 53873 | 1024 |   {
 | 
| 1025 | assume "y = -\<infinity> | y = \<infinity>" | |
| 1026 | then have ?thesis | |
| 1027 | using assms[rule_format, of 1] by (cases x) auto | |
| 1028 | } | |
| 1029 | ultimately show ?thesis | |
| 1030 | by (cases y) auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1031 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1032 | |
| 43920 | 1033 | lemma ereal_le_epsilon2: | 
| 1034 | fixes x y :: ereal | |
| 53873 | 1035 | assumes "\<forall>e. 0 < e \<longrightarrow> x \<le> y + ereal e" | 
| 1036 | shows "x \<le> y" | |
| 1037 | proof - | |
| 1038 |   {
 | |
| 1039 | fix e :: ereal | |
| 1040 | assume "e > 0" | |
| 1041 |     {
 | |
| 1042 | assume "e = \<infinity>" | |
| 1043 | then have "x \<le> y + e" | |
| 1044 | by auto | |
| 1045 | } | |
| 1046 | moreover | |
| 1047 |     {
 | |
| 1048 | assume "e \<noteq> \<infinity>" | |
| 1049 | then obtain r where "e = ereal r" | |
| 1050 | using `e > 0` by (cases e) auto | |
| 1051 | then have "x \<le> y + e" | |
| 1052 | using assms[rule_format, of r] `e>0` by auto | |
| 1053 | } | |
| 1054 | ultimately have "x \<le> y + e" | |
| 1055 | by blast | |
| 1056 | } | |
| 1057 | then show ?thesis | |
| 1058 | using ereal_le_epsilon by auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1059 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1060 | |
| 43920 | 1061 | lemma ereal_le_real: | 
| 1062 | fixes x y :: ereal | |
| 53873 | 1063 | assumes "\<forall>z. x \<le> ereal z \<longrightarrow> y \<le> ereal z" | 
| 1064 | shows "y \<le> x" | |
| 1065 | by (metis assms ereal_bot ereal_cases ereal_infty_less_eq(2) ereal_less_eq(1) linorder_le_cases) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1066 | |
| 43920 | 1067 | lemma setprod_ereal_0: | 
| 1068 | fixes f :: "'a \<Rightarrow> ereal" | |
| 53873 | 1069 | shows "(\<Prod>i\<in>A. f i) = 0 \<longleftrightarrow> finite A \<and> (\<exists>i\<in>A. f i = 0)" | 
| 1070 | proof (cases "finite A") | |
| 1071 | case True | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1072 | then show ?thesis by (induct A) auto | 
| 53873 | 1073 | next | 
| 1074 | case False | |
| 1075 | then show ?thesis by auto | |
| 1076 | qed | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1077 | |
| 43920 | 1078 | lemma setprod_ereal_pos: | 
| 53873 | 1079 | fixes f :: "'a \<Rightarrow> ereal" | 
| 1080 | assumes pos: "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i" | |
| 1081 | shows "0 \<le> (\<Prod>i\<in>I. f i)" | |
| 1082 | proof (cases "finite I") | |
| 1083 | case True | |
| 1084 | from this pos show ?thesis | |
| 1085 | by induct auto | |
| 1086 | next | |
| 1087 | case False | |
| 1088 | then show ?thesis by simp | |
| 1089 | qed | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1090 | |
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1091 | lemma setprod_PInf: | 
| 43923 | 1092 | fixes f :: "'a \<Rightarrow> ereal" | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1093 | assumes "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1094 | shows "(\<Prod>i\<in>I. f i) = \<infinity> \<longleftrightarrow> finite I \<and> (\<exists>i\<in>I. f i = \<infinity>) \<and> (\<forall>i\<in>I. f i \<noteq> 0)" | 
| 53873 | 1095 | proof (cases "finite I") | 
| 1096 | case True | |
| 1097 | from this assms show ?thesis | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1098 | proof (induct I) | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1099 | case (insert i I) | 
| 53873 | 1100 | then have pos: "0 \<le> f i" "0 \<le> setprod f I" | 
| 1101 | by (auto intro!: setprod_ereal_pos) | |
| 1102 | from insert have "(\<Prod>j\<in>insert i I. f j) = \<infinity> \<longleftrightarrow> setprod f I * f i = \<infinity>" | |
| 1103 | by auto | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1104 | also have "\<dots> \<longleftrightarrow> (setprod f I = \<infinity> \<or> f i = \<infinity>) \<and> f i \<noteq> 0 \<and> setprod f I \<noteq> 0" | 
| 43920 | 1105 | using setprod_ereal_pos[of I f] pos | 
| 1106 | by (cases rule: ereal2_cases[of "f i" "setprod f I"]) auto | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1107 | also have "\<dots> \<longleftrightarrow> finite (insert i I) \<and> (\<exists>j\<in>insert i I. f j = \<infinity>) \<and> (\<forall>j\<in>insert i I. f j \<noteq> 0)" | 
| 43920 | 1108 | using insert by (auto simp: setprod_ereal_0) | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1109 | finally show ?case . | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1110 | qed simp | 
| 53873 | 1111 | next | 
| 1112 | case False | |
| 1113 | then show ?thesis by simp | |
| 1114 | qed | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1115 | |
| 43920 | 1116 | lemma setprod_ereal: "(\<Prod>i\<in>A. ereal (f i)) = ereal (setprod f A)" | 
| 53873 | 1117 | proof (cases "finite A") | 
| 1118 | case True | |
| 1119 | then show ?thesis | |
| 43920 | 1120 | by induct (auto simp: one_ereal_def) | 
| 53873 | 1121 | next | 
| 1122 | case False | |
| 1123 | then show ?thesis | |
| 1124 | by (simp add: one_ereal_def) | |
| 1125 | qed | |
| 1126 | ||
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1127 | |
| 41978 | 1128 | subsubsection {* Power *}
 | 
| 1129 | ||
| 43920 | 1130 | lemma ereal_power[simp]: "(ereal x) ^ n = ereal (x^n)" | 
| 1131 | by (induct n) (auto simp: one_ereal_def) | |
| 41978 | 1132 | |
| 43923 | 1133 | lemma ereal_power_PInf[simp]: "(\<infinity>::ereal) ^ n = (if n = 0 then 1 else \<infinity>)" | 
| 43920 | 1134 | by (induct n) (auto simp: one_ereal_def) | 
| 41978 | 1135 | |
| 43920 | 1136 | lemma ereal_power_uminus[simp]: | 
| 1137 | fixes x :: ereal | |
| 41978 | 1138 | shows "(- x) ^ n = (if even n then x ^ n else - (x^n))" | 
| 43920 | 1139 | by (induct n) (auto simp: one_ereal_def) | 
| 41978 | 1140 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 1141 | lemma ereal_power_numeral[simp]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 1142 | "(numeral num :: ereal) ^ n = ereal (numeral num ^ n)" | 
| 43920 | 1143 | by (induct n) (auto simp: one_ereal_def) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1144 | |
| 43920 | 1145 | lemma zero_le_power_ereal[simp]: | 
| 53873 | 1146 | fixes a :: ereal | 
| 1147 | assumes "0 \<le> a" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1148 | shows "0 \<le> a ^ n" | 
| 43920 | 1149 | using assms by (induct n) (auto simp: ereal_zero_le_0_iff) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1150 | |
| 53873 | 1151 | |
| 41973 | 1152 | subsubsection {* Subtraction *}
 | 
| 1153 | ||
| 43920 | 1154 | lemma ereal_minus_minus_image[simp]: | 
| 1155 | fixes S :: "ereal set" | |
| 41973 | 1156 | shows "uminus ` uminus ` S = S" | 
| 1157 | by (auto simp: image_iff) | |
| 1158 | ||
| 43920 | 1159 | lemma ereal_uminus_lessThan[simp]: | 
| 53873 | 1160 | fixes a :: ereal | 
| 1161 |   shows "uminus ` {..<a} = {-a<..}"
 | |
| 47082 | 1162 | proof - | 
| 1163 |   {
 | |
| 53873 | 1164 | fix x | 
| 1165 | assume "-a < x" | |
| 1166 | then have "- x < - (- a)" | |
| 1167 | by (simp del: ereal_uminus_uminus) | |
| 1168 | then have "- x < a" | |
| 1169 | by simp | |
| 47082 | 1170 | } | 
| 53873 | 1171 | then show ?thesis | 
| 54416 | 1172 | by force | 
| 47082 | 1173 | qed | 
| 41973 | 1174 | |
| 53873 | 1175 | lemma ereal_uminus_greaterThan[simp]: "uminus ` {(a::ereal)<..} = {..<-a}"
 | 
| 1176 | by (metis ereal_uminus_lessThan ereal_uminus_uminus ereal_minus_minus_image) | |
| 41973 | 1177 | |
| 43920 | 1178 | instantiation ereal :: minus | 
| 41973 | 1179 | begin | 
| 53873 | 1180 | |
| 43920 | 1181 | definition "x - y = x + -(y::ereal)" | 
| 41973 | 1182 | instance .. | 
| 53873 | 1183 | |
| 41973 | 1184 | end | 
| 1185 | ||
| 43920 | 1186 | lemma ereal_minus[simp]: | 
| 1187 | "ereal r - ereal p = ereal (r - p)" | |
| 1188 | "-\<infinity> - ereal r = -\<infinity>" | |
| 1189 | "ereal r - \<infinity> = -\<infinity>" | |
| 43923 | 1190 | "(\<infinity>::ereal) - x = \<infinity>" | 
| 1191 | "-(\<infinity>::ereal) - \<infinity> = -\<infinity>" | |
| 41973 | 1192 | "x - -y = x + y" | 
| 1193 | "x - 0 = x" | |
| 1194 | "0 - x = -x" | |
| 43920 | 1195 | by (simp_all add: minus_ereal_def) | 
| 41973 | 1196 | |
| 53873 | 1197 | lemma ereal_x_minus_x[simp]: "x - x = (if \<bar>x\<bar> = \<infinity> then \<infinity> else 0::ereal)" | 
| 41973 | 1198 | by (cases x) simp_all | 
| 1199 | ||
| 43920 | 1200 | lemma ereal_eq_minus_iff: | 
| 1201 | fixes x y z :: ereal | |
| 41973 | 1202 | shows "x = z - y \<longleftrightarrow> | 
| 41976 | 1203 | (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x + y = z) \<and> | 
| 41973 | 1204 | (y = -\<infinity> \<longrightarrow> x = \<infinity>) \<and> | 
| 1205 | (y = \<infinity> \<longrightarrow> z = \<infinity> \<longrightarrow> x = \<infinity>) \<and> | |
| 1206 | (y = \<infinity> \<longrightarrow> z \<noteq> \<infinity> \<longrightarrow> x = -\<infinity>)" | |
| 43920 | 1207 | by (cases rule: ereal3_cases[of x y z]) auto | 
| 41973 | 1208 | |
| 43920 | 1209 | lemma ereal_eq_minus: | 
| 1210 | fixes x y z :: ereal | |
| 41976 | 1211 | shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x = z - y \<longleftrightarrow> x + y = z" | 
| 43920 | 1212 | by (auto simp: ereal_eq_minus_iff) | 
| 41973 | 1213 | |
| 43920 | 1214 | lemma ereal_less_minus_iff: | 
| 1215 | fixes x y z :: ereal | |
| 41973 | 1216 | shows "x < z - y \<longleftrightarrow> | 
| 1217 | (y = \<infinity> \<longrightarrow> z = \<infinity> \<and> x \<noteq> \<infinity>) \<and> | |
| 1218 | (y = -\<infinity> \<longrightarrow> x \<noteq> \<infinity>) \<and> | |
| 41976 | 1219 | (\<bar>y\<bar> \<noteq> \<infinity>\<longrightarrow> x + y < z)" | 
| 43920 | 1220 | by (cases rule: ereal3_cases[of x y z]) auto | 
| 41973 | 1221 | |
| 43920 | 1222 | lemma ereal_less_minus: | 
| 1223 | fixes x y z :: ereal | |
| 41976 | 1224 | shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x < z - y \<longleftrightarrow> x + y < z" | 
| 43920 | 1225 | by (auto simp: ereal_less_minus_iff) | 
| 41973 | 1226 | |
| 43920 | 1227 | lemma ereal_le_minus_iff: | 
| 1228 | fixes x y z :: ereal | |
| 53873 | 1229 | shows "x \<le> z - y \<longleftrightarrow> (y = \<infinity> \<longrightarrow> z \<noteq> \<infinity> \<longrightarrow> x = -\<infinity>) \<and> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x + y \<le> z)" | 
| 43920 | 1230 | by (cases rule: ereal3_cases[of x y z]) auto | 
| 41973 | 1231 | |
| 43920 | 1232 | lemma ereal_le_minus: | 
| 1233 | fixes x y z :: ereal | |
| 41976 | 1234 | shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x \<le> z - y \<longleftrightarrow> x + y \<le> z" | 
| 43920 | 1235 | by (auto simp: ereal_le_minus_iff) | 
| 41973 | 1236 | |
| 43920 | 1237 | lemma ereal_minus_less_iff: | 
| 1238 | fixes x y z :: ereal | |
| 53873 | 1239 | shows "x - y < z \<longleftrightarrow> y \<noteq> -\<infinity> \<and> (y = \<infinity> \<longrightarrow> x \<noteq> \<infinity> \<and> z \<noteq> -\<infinity>) \<and> (y \<noteq> \<infinity> \<longrightarrow> x < z + y)" | 
| 43920 | 1240 | by (cases rule: ereal3_cases[of x y z]) auto | 
| 41973 | 1241 | |
| 43920 | 1242 | lemma ereal_minus_less: | 
| 1243 | fixes x y z :: ereal | |
| 41976 | 1244 | shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x - y < z \<longleftrightarrow> x < z + y" | 
| 43920 | 1245 | by (auto simp: ereal_minus_less_iff) | 
| 41973 | 1246 | |
| 43920 | 1247 | lemma ereal_minus_le_iff: | 
| 1248 | fixes x y z :: ereal | |
| 41973 | 1249 | shows "x - y \<le> z \<longleftrightarrow> | 
| 1250 | (y = -\<infinity> \<longrightarrow> z = \<infinity>) \<and> | |
| 1251 | (y = \<infinity> \<longrightarrow> x = \<infinity> \<longrightarrow> z = \<infinity>) \<and> | |
| 41976 | 1252 | (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x \<le> z + y)" | 
| 43920 | 1253 | by (cases rule: ereal3_cases[of x y z]) auto | 
| 41973 | 1254 | |
| 43920 | 1255 | lemma ereal_minus_le: | 
| 1256 | fixes x y z :: ereal | |
| 41976 | 1257 | shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x - y \<le> z \<longleftrightarrow> x \<le> z + y" | 
| 43920 | 1258 | by (auto simp: ereal_minus_le_iff) | 
| 41973 | 1259 | |
| 43920 | 1260 | lemma ereal_minus_eq_minus_iff: | 
| 1261 | fixes a b c :: ereal | |
| 41973 | 1262 | shows "a - b = a - c \<longleftrightarrow> | 
| 1263 | b = c \<or> a = \<infinity> \<or> (a = -\<infinity> \<and> b \<noteq> -\<infinity> \<and> c \<noteq> -\<infinity>)" | |
| 43920 | 1264 | by (cases rule: ereal3_cases[of a b c]) auto | 
| 41973 | 1265 | |
| 43920 | 1266 | lemma ereal_add_le_add_iff: | 
| 43923 | 1267 | fixes a b c :: ereal | 
| 1268 | shows "c + a \<le> c + b \<longleftrightarrow> | |
| 41973 | 1269 | a \<le> b \<or> c = \<infinity> \<or> (c = -\<infinity> \<and> a \<noteq> \<infinity> \<and> b \<noteq> \<infinity>)" | 
| 43920 | 1270 | by (cases rule: ereal3_cases[of a b c]) (simp_all add: field_simps) | 
| 41973 | 1271 | |
| 59023 | 1272 | lemma ereal_add_le_add_iff2: | 
| 1273 | fixes a b c :: ereal | |
| 1274 | shows "a + c \<le> b + c \<longleftrightarrow> a \<le> b \<or> c = \<infinity> \<or> (c = -\<infinity> \<and> a \<noteq> \<infinity> \<and> b \<noteq> \<infinity>)" | |
| 1275 | by(cases rule: ereal3_cases[of a b c])(simp_all add: field_simps) | |
| 1276 | ||
| 43920 | 1277 | lemma ereal_mult_le_mult_iff: | 
| 43923 | 1278 | fixes a b c :: ereal | 
| 1279 | shows "\<bar>c\<bar> \<noteq> \<infinity> \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" | |
| 43920 | 1280 | by (cases rule: ereal3_cases[of a b c]) (simp_all add: mult_le_cancel_left) | 
| 41973 | 1281 | |
| 43920 | 1282 | lemma ereal_minus_mono: | 
| 1283 | fixes A B C D :: ereal assumes "A \<le> B" "D \<le> C" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1284 | shows "A - C \<le> B - D" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1285 | using assms | 
| 43920 | 1286 | by (cases rule: ereal3_cases[case_product ereal_cases, of A B C D]) simp_all | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1287 | |
| 43920 | 1288 | lemma real_of_ereal_minus: | 
| 43923 | 1289 | fixes a b :: ereal | 
| 1290 | shows "real (a - b) = (if \<bar>a\<bar> = \<infinity> \<or> \<bar>b\<bar> = \<infinity> then 0 else real a - real b)" | |
| 43920 | 1291 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1292 | |
| 60060 | 1293 | lemma real_of_ereal_minus': "\<bar>x\<bar> = \<infinity> \<longleftrightarrow> \<bar>y\<bar> = \<infinity> \<Longrightarrow> real x - real y = real (x - y :: ereal)" | 
| 1294 | by(subst real_of_ereal_minus) auto | |
| 1295 | ||
| 43920 | 1296 | lemma ereal_diff_positive: | 
| 1297 | fixes a b :: ereal shows "a \<le> b \<Longrightarrow> 0 \<le> b - a" | |
| 1298 | by (cases rule: ereal2_cases[of a b]) auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1299 | |
| 43920 | 1300 | lemma ereal_between: | 
| 1301 | fixes x e :: ereal | |
| 53873 | 1302 | assumes "\<bar>x\<bar> \<noteq> \<infinity>" | 
| 1303 | and "0 < e" | |
| 1304 | shows "x - e < x" | |
| 1305 | and "x < x + e" | |
| 1306 | using assms | |
| 1307 | apply (cases x, cases e) | |
| 1308 | apply auto | |
| 1309 | using assms | |
| 1310 | apply (cases x, cases e) | |
| 1311 | apply auto | |
| 1312 | done | |
| 41973 | 1313 | |
| 50104 | 1314 | lemma ereal_minus_eq_PInfty_iff: | 
| 53873 | 1315 | fixes x y :: ereal | 
| 1316 | shows "x - y = \<infinity> \<longleftrightarrow> y = -\<infinity> \<or> x = \<infinity>" | |
| 50104 | 1317 | by (cases x y rule: ereal2_cases) simp_all | 
| 1318 | ||
| 53873 | 1319 | |
| 41973 | 1320 | subsubsection {* Division *}
 | 
| 1321 | ||
| 43920 | 1322 | instantiation ereal :: inverse | 
| 41973 | 1323 | begin | 
| 1324 | ||
| 43920 | 1325 | function inverse_ereal where | 
| 53873 | 1326 | "inverse (ereal r) = (if r = 0 then \<infinity> else ereal (inverse r))" | 
| 1327 | | "inverse (\<infinity>::ereal) = 0" | |
| 1328 | | "inverse (-\<infinity>::ereal) = 0" | |
| 43920 | 1329 | by (auto intro: ereal_cases) | 
| 41973 | 1330 | termination by (relation "{}") simp
 | 
| 1331 | ||
| 43920 | 1332 | definition "x / y = x * inverse (y :: ereal)" | 
| 41973 | 1333 | |
| 47082 | 1334 | instance .. | 
| 53873 | 1335 | |
| 41973 | 1336 | end | 
| 1337 | ||
| 43920 | 1338 | lemma real_of_ereal_inverse[simp]: | 
| 1339 | fixes a :: ereal | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1340 | shows "real (inverse a) = 1 / real a" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1341 | by (cases a) (auto simp: inverse_eq_divide) | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1342 | |
| 43920 | 1343 | lemma ereal_inverse[simp]: | 
| 43923 | 1344 | "inverse (0::ereal) = \<infinity>" | 
| 43920 | 1345 | "inverse (1::ereal) = 1" | 
| 1346 | by (simp_all add: one_ereal_def zero_ereal_def) | |
| 41973 | 1347 | |
| 43920 | 1348 | lemma ereal_divide[simp]: | 
| 1349 | "ereal r / ereal p = (if p = 0 then ereal r * \<infinity> else ereal (r / p))" | |
| 1350 | unfolding divide_ereal_def by (auto simp: divide_real_def) | |
| 41973 | 1351 | |
| 43920 | 1352 | lemma ereal_divide_same[simp]: | 
| 53873 | 1353 | fixes x :: ereal | 
| 1354 | shows "x / x = (if \<bar>x\<bar> = \<infinity> \<or> x = 0 then 0 else 1)" | |
| 1355 | by (cases x) (simp_all add: divide_real_def divide_ereal_def one_ereal_def) | |
| 41973 | 1356 | |
| 43920 | 1357 | lemma ereal_inv_inv[simp]: | 
| 53873 | 1358 | fixes x :: ereal | 
| 1359 | shows "inverse (inverse x) = (if x \<noteq> -\<infinity> then x else \<infinity>)" | |
| 41973 | 1360 | by (cases x) auto | 
| 1361 | ||
| 43920 | 1362 | lemma ereal_inverse_minus[simp]: | 
| 53873 | 1363 | fixes x :: ereal | 
| 1364 | shows "inverse (- x) = (if x = 0 then \<infinity> else -inverse x)" | |
| 41973 | 1365 | by (cases x) simp_all | 
| 1366 | ||
| 43920 | 1367 | lemma ereal_uminus_divide[simp]: | 
| 53873 | 1368 | fixes x y :: ereal | 
| 1369 | shows "- x / y = - (x / y)" | |
| 43920 | 1370 | unfolding divide_ereal_def by simp | 
| 41973 | 1371 | |
| 43920 | 1372 | lemma ereal_divide_Infty[simp]: | 
| 53873 | 1373 | fixes x :: ereal | 
| 1374 | shows "x / \<infinity> = 0" "x / -\<infinity> = 0" | |
| 43920 | 1375 | unfolding divide_ereal_def by simp_all | 
| 41973 | 1376 | |
| 53873 | 1377 | lemma ereal_divide_one[simp]: "x / 1 = (x::ereal)" | 
| 43920 | 1378 | unfolding divide_ereal_def by simp | 
| 41973 | 1379 | |
| 53873 | 1380 | lemma ereal_divide_ereal[simp]: "\<infinity> / ereal r = (if 0 \<le> r then \<infinity> else -\<infinity>)" | 
| 43920 | 1381 | unfolding divide_ereal_def by simp | 
| 41973 | 1382 | |
| 59000 | 1383 | lemma ereal_inverse_nonneg_iff: "0 \<le> inverse (x :: ereal) \<longleftrightarrow> 0 \<le> x \<or> x = -\<infinity>" | 
| 1384 | by (cases x) auto | |
| 1385 | ||
| 43920 | 1386 | lemma zero_le_divide_ereal[simp]: | 
| 53873 | 1387 | fixes a :: ereal | 
| 1388 | assumes "0 \<le> a" | |
| 1389 | and "0 \<le> b" | |
| 41978 | 1390 | shows "0 \<le> a / b" | 
| 43920 | 1391 | using assms by (cases rule: ereal2_cases[of a b]) (auto simp: zero_le_divide_iff) | 
| 41978 | 1392 | |
| 43920 | 1393 | lemma ereal_le_divide_pos: | 
| 53873 | 1394 | fixes x y z :: ereal | 
| 1395 | shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y \<le> z / x \<longleftrightarrow> x * y \<le> z" | |
| 43920 | 1396 | by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps) | 
| 41973 | 1397 | |
| 43920 | 1398 | lemma ereal_divide_le_pos: | 
| 53873 | 1399 | fixes x y z :: ereal | 
| 1400 | shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> z / x \<le> y \<longleftrightarrow> z \<le> x * y" | |
| 43920 | 1401 | by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps) | 
| 41973 | 1402 | |
| 43920 | 1403 | lemma ereal_le_divide_neg: | 
| 53873 | 1404 | fixes x y z :: ereal | 
| 1405 | shows "x < 0 \<Longrightarrow> x \<noteq> -\<infinity> \<Longrightarrow> y \<le> z / x \<longleftrightarrow> z \<le> x * y" | |
| 43920 | 1406 | by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps) | 
| 41973 | 1407 | |
| 43920 | 1408 | lemma ereal_divide_le_neg: | 
| 53873 | 1409 | fixes x y z :: ereal | 
| 1410 | shows "x < 0 \<Longrightarrow> x \<noteq> -\<infinity> \<Longrightarrow> z / x \<le> y \<longleftrightarrow> x * y \<le> z" | |
| 43920 | 1411 | by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps) | 
| 41973 | 1412 | |
| 43920 | 1413 | lemma ereal_inverse_antimono_strict: | 
| 1414 | fixes x y :: ereal | |
| 41973 | 1415 | shows "0 \<le> x \<Longrightarrow> x < y \<Longrightarrow> inverse y < inverse x" | 
| 43920 | 1416 | by (cases rule: ereal2_cases[of x y]) auto | 
| 41973 | 1417 | |
| 43920 | 1418 | lemma ereal_inverse_antimono: | 
| 1419 | fixes x y :: ereal | |
| 53873 | 1420 | shows "0 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> inverse y \<le> inverse x" | 
| 43920 | 1421 | by (cases rule: ereal2_cases[of x y]) auto | 
| 41973 | 1422 | |
| 1423 | lemma inverse_inverse_Pinfty_iff[simp]: | |
| 53873 | 1424 | fixes x :: ereal | 
| 1425 | shows "inverse x = \<infinity> \<longleftrightarrow> x = 0" | |
| 41973 | 1426 | by (cases x) auto | 
| 1427 | ||
| 43920 | 1428 | lemma ereal_inverse_eq_0: | 
| 53873 | 1429 | fixes x :: ereal | 
| 1430 | shows "inverse x = 0 \<longleftrightarrow> x = \<infinity> \<or> x = -\<infinity>" | |
| 41973 | 1431 | by (cases x) auto | 
| 1432 | ||
| 43920 | 1433 | lemma ereal_0_gt_inverse: | 
| 53873 | 1434 | fixes x :: ereal | 
| 1435 | shows "0 < inverse x \<longleftrightarrow> x \<noteq> \<infinity> \<and> 0 \<le> x" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1436 | by (cases x) auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1437 | |
| 60060 | 1438 | lemma ereal_inverse_le_0_iff: | 
| 1439 | fixes x :: ereal | |
| 1440 | shows "inverse x \<le> 0 \<longleftrightarrow> x < 0 \<or> x = \<infinity>" | |
| 1441 | by(cases x) auto | |
| 1442 | ||
| 1443 | lemma ereal_divide_eq_0_iff: "x / y = 0 \<longleftrightarrow> x = 0 \<or> \<bar>y :: ereal\<bar> = \<infinity>" | |
| 1444 | by(cases x y rule: ereal2_cases) simp_all | |
| 1445 | ||
| 43920 | 1446 | lemma ereal_mult_less_right: | 
| 43923 | 1447 | fixes a b c :: ereal | 
| 53873 | 1448 | assumes "b * a < c * a" | 
| 1449 | and "0 < a" | |
| 1450 | and "a < \<infinity>" | |
| 41973 | 1451 | shows "b < c" | 
| 1452 | using assms | |
| 43920 | 1453 | by (cases rule: ereal3_cases[of a b c]) | 
| 41973 | 1454 | (auto split: split_if_asm simp: zero_less_mult_iff zero_le_mult_iff) | 
| 1455 | ||
| 59000 | 1456 | lemma ereal_mult_divide: fixes a b :: ereal shows "0 < b \<Longrightarrow> b < \<infinity> \<Longrightarrow> b * (a / b) = a" | 
| 1457 | by (cases a b rule: ereal2_cases) auto | |
| 1458 | ||
| 43920 | 1459 | lemma ereal_power_divide: | 
| 53873 | 1460 | fixes x y :: ereal | 
| 1461 | shows "y \<noteq> 0 \<Longrightarrow> (x / y) ^ n = x^n / y^n" | |
| 58787 | 1462 | by (cases rule: ereal2_cases [of x y]) | 
| 1463 | (auto simp: one_ereal_def zero_ereal_def power_divide zero_le_power_eq) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1464 | |
| 43920 | 1465 | lemma ereal_le_mult_one_interval: | 
| 1466 | fixes x y :: ereal | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1467 | assumes y: "y \<noteq> -\<infinity>" | 
| 53873 | 1468 | assumes z: "\<And>z. 0 < z \<Longrightarrow> z < 1 \<Longrightarrow> z * x \<le> y" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1469 | shows "x \<le> y" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1470 | proof (cases x) | 
| 53873 | 1471 | case PInf | 
| 1472 | with z[of "1 / 2"] show "x \<le> y" | |
| 1473 | by (simp add: one_ereal_def) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1474 | next | 
| 53873 | 1475 | case (real r) | 
| 1476 | note r = this | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1477 | show "x \<le> y" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1478 | proof (cases y) | 
| 53873 | 1479 | case (real p) | 
| 1480 | note p = this | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1481 | have "r \<le> p" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1482 | proof (rule field_le_mult_one_interval) | 
| 53873 | 1483 | fix z :: real | 
| 1484 | assume "0 < z" and "z < 1" | |
| 1485 | with z[of "ereal z"] show "z * r \<le> p" | |
| 1486 | using p r by (auto simp: zero_le_mult_iff one_ereal_def) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1487 | qed | 
| 53873 | 1488 | then show "x \<le> y" | 
| 1489 | using p r by simp | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1490 | qed (insert y, simp_all) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1491 | qed simp | 
| 41978 | 1492 | |
| 45934 | 1493 | lemma ereal_divide_right_mono[simp]: | 
| 1494 | fixes x y z :: ereal | |
| 53873 | 1495 | assumes "x \<le> y" | 
| 1496 | and "0 < z" | |
| 1497 | shows "x / z \<le> y / z" | |
| 1498 | using assms by (cases x y z rule: ereal3_cases) (auto intro: divide_right_mono) | |
| 45934 | 1499 | |
| 1500 | lemma ereal_divide_left_mono[simp]: | |
| 1501 | fixes x y z :: ereal | |
| 53873 | 1502 | assumes "y \<le> x" | 
| 1503 | and "0 < z" | |
| 1504 | and "0 < x * y" | |
| 45934 | 1505 | shows "z / x \<le> z / y" | 
| 53873 | 1506 | using assms | 
| 1507 | by (cases x y z rule: ereal3_cases) | |
| 54416 | 1508 | (auto intro: divide_left_mono simp: field_simps zero_less_mult_iff mult_less_0_iff split: split_if_asm) | 
| 45934 | 1509 | |
| 1510 | lemma ereal_divide_zero_left[simp]: | |
| 1511 | fixes a :: ereal | |
| 1512 | shows "0 / a = 0" | |
| 1513 | by (cases a) (auto simp: zero_ereal_def) | |
| 1514 | ||
| 1515 | lemma ereal_times_divide_eq_left[simp]: | |
| 1516 | fixes a b c :: ereal | |
| 1517 | shows "b / c * a = b * a / c" | |
| 54416 | 1518 | by (cases a b c rule: ereal3_cases) (auto simp: field_simps zero_less_mult_iff mult_less_0_iff) | 
| 45934 | 1519 | |
| 59000 | 1520 | lemma ereal_times_divide_eq: "a * (b / c :: ereal) = a * b / c" | 
| 1521 | by (cases a b c rule: ereal3_cases) | |
| 1522 | (auto simp: field_simps zero_less_mult_iff) | |
| 53873 | 1523 | |
| 41973 | 1524 | subsection "Complete lattice" | 
| 1525 | ||
| 43920 | 1526 | instantiation ereal :: lattice | 
| 41973 | 1527 | begin | 
| 53873 | 1528 | |
| 43920 | 1529 | definition [simp]: "sup x y = (max x y :: ereal)" | 
| 1530 | definition [simp]: "inf x y = (min x y :: ereal)" | |
| 47082 | 1531 | instance by default simp_all | 
| 53873 | 1532 | |
| 41973 | 1533 | end | 
| 1534 | ||
| 43920 | 1535 | instantiation ereal :: complete_lattice | 
| 41973 | 1536 | begin | 
| 1537 | ||
| 43923 | 1538 | definition "bot = (-\<infinity>::ereal)" | 
| 1539 | definition "top = (\<infinity>::ereal)" | |
| 41973 | 1540 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1541 | definition "Sup S = (SOME x :: ereal. (\<forall>y\<in>S. y \<le> x) \<and> (\<forall>z. (\<forall>y\<in>S. y \<le> z) \<longrightarrow> x \<le> z))" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1542 | definition "Inf S = (SOME x :: ereal. (\<forall>y\<in>S. x \<le> y) \<and> (\<forall>z. (\<forall>y\<in>S. z \<le> y) \<longrightarrow> z \<le> x))" | 
| 41973 | 1543 | |
| 43920 | 1544 | lemma ereal_complete_Sup: | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1545 | fixes S :: "ereal set" | 
| 41973 | 1546 | shows "\<exists>x. (\<forall>y\<in>S. y \<le> x) \<and> (\<forall>z. (\<forall>y\<in>S. y \<le> z) \<longrightarrow> x \<le> z)" | 
| 53873 | 1547 | proof (cases "\<exists>x. \<forall>a\<in>S. a \<le> ereal x") | 
| 1548 | case True | |
| 1549 | then obtain y where y: "\<And>a. a\<in>S \<Longrightarrow> a \<le> ereal y" | |
| 1550 | by auto | |
| 1551 | then have "\<infinity> \<notin> S" | |
| 1552 | by force | |
| 41973 | 1553 | show ?thesis | 
| 53873 | 1554 |   proof (cases "S \<noteq> {-\<infinity>} \<and> S \<noteq> {}")
 | 
| 1555 | case True | |
| 1556 | with `\<infinity> \<notin> S` obtain x where x: "x \<in> S" "\<bar>x\<bar> \<noteq> \<infinity>" | |
| 1557 | by auto | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1558 | obtain s where s: "\<forall>x\<in>ereal -` S. x \<le> s" "\<And>z. (\<forall>x\<in>ereal -` S. x \<le> z) \<Longrightarrow> s \<le> z" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1559 | proof (atomize_elim, rule complete_real) | 
| 53873 | 1560 | show "\<exists>x. x \<in> ereal -` S" | 
| 1561 | using x by auto | |
| 1562 | show "\<exists>z. \<forall>x\<in>ereal -` S. x \<le> z" | |
| 1563 | by (auto dest: y intro!: exI[of _ y]) | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1564 | qed | 
| 41973 | 1565 | show ?thesis | 
| 43920 | 1566 | proof (safe intro!: exI[of _ "ereal s"]) | 
| 53873 | 1567 | fix y | 
| 1568 | assume "y \<in> S" | |
| 1569 | with s `\<infinity> \<notin> S` show "y \<le> ereal s" | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1570 | by (cases y) auto | 
| 41973 | 1571 | next | 
| 53873 | 1572 | fix z | 
| 1573 | assume "\<forall>y\<in>S. y \<le> z" | |
| 1574 |       with `S \<noteq> {-\<infinity>} \<and> S \<noteq> {}` show "ereal s \<le> z"
 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1575 | by (cases z) (auto intro!: s) | 
| 41973 | 1576 | qed | 
| 53873 | 1577 | next | 
| 1578 | case False | |
| 1579 | then show ?thesis | |
| 1580 | by (auto intro!: exI[of _ "-\<infinity>"]) | |
| 1581 | qed | |
| 1582 | next | |
| 1583 | case False | |
| 1584 | then show ?thesis | |
| 1585 | by (fastforce intro!: exI[of _ \<infinity>] ereal_top intro: order_trans dest: less_imp_le simp: not_le) | |
| 1586 | qed | |
| 41973 | 1587 | |
| 43920 | 1588 | lemma ereal_complete_uminus_eq: | 
| 1589 | fixes S :: "ereal set" | |
| 41973 | 1590 | shows "(\<forall>y\<in>uminus`S. y \<le> x) \<and> (\<forall>z. (\<forall>y\<in>uminus`S. y \<le> z) \<longrightarrow> x \<le> z) | 
| 1591 | \<longleftrightarrow> (\<forall>y\<in>S. -x \<le> y) \<and> (\<forall>z. (\<forall>y\<in>S. z \<le> y) \<longrightarrow> z \<le> -x)" | |
| 43920 | 1592 | by simp (metis ereal_minus_le_minus ereal_uminus_uminus) | 
| 41973 | 1593 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1594 | lemma ereal_complete_Inf: | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1595 | "\<exists>x. (\<forall>y\<in>S::ereal set. x \<le> y) \<and> (\<forall>z. (\<forall>y\<in>S. z \<le> y) \<longrightarrow> z \<le> x)" | 
| 53873 | 1596 | using ereal_complete_Sup[of "uminus ` S"] | 
| 1597 | unfolding ereal_complete_uminus_eq | |
| 1598 | by auto | |
| 41973 | 1599 | |
| 1600 | instance | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51775diff
changeset | 1601 | proof | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51775diff
changeset | 1602 |   show "Sup {} = (bot::ereal)"
 | 
| 53873 | 1603 | apply (auto simp: bot_ereal_def Sup_ereal_def) | 
| 1604 | apply (rule some1_equality) | |
| 1605 | apply (metis ereal_bot ereal_less_eq(2)) | |
| 1606 | apply (metis ereal_less_eq(2)) | |
| 1607 | done | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51775diff
changeset | 1608 |   show "Inf {} = (top::ereal)"
 | 
| 53873 | 1609 | apply (auto simp: top_ereal_def Inf_ereal_def) | 
| 1610 | apply (rule some1_equality) | |
| 1611 | apply (metis ereal_top ereal_less_eq(1)) | |
| 1612 | apply (metis ereal_less_eq(1)) | |
| 1613 | done | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51775diff
changeset | 1614 | qed (auto intro: someI2_ex ereal_complete_Sup ereal_complete_Inf | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51775diff
changeset | 1615 | simp: Sup_ereal_def Inf_ereal_def bot_ereal_def top_ereal_def) | 
| 43941 | 1616 | |
| 41973 | 1617 | end | 
| 1618 | ||
| 43941 | 1619 | instance ereal :: complete_linorder .. | 
| 1620 | ||
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 1621 | instance ereal :: linear_continuum | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 1622 | proof | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 1623 | show "\<exists>a b::ereal. a \<noteq> b" | 
| 54416 | 1624 | using zero_neq_one by blast | 
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 1625 | qed | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1626 | subsubsection "Topological space" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1627 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1628 | instantiation ereal :: linear_continuum_topology | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1629 | begin | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1630 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1631 | definition "open_ereal" :: "ereal set \<Rightarrow> bool" where | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1632 | open_ereal_generated: "open_ereal = generate_topology (range lessThan \<union> range greaterThan)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1633 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1634 | instance | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1635 | by default (simp add: open_ereal_generated) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1636 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1637 | end | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1638 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1639 | lemma tendsto_ereal[tendsto_intros, simp, intro]: "(f ---> x) F \<Longrightarrow> ((\<lambda>x. ereal (f x)) ---> ereal x) F" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1640 | apply (rule tendsto_compose[where g=ereal]) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1641 | apply (auto intro!: order_tendstoI simp: eventually_at_topological) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1642 |   apply (rule_tac x="case a of MInfty \<Rightarrow> UNIV | ereal x \<Rightarrow> {x <..} | PInfty \<Rightarrow> {}" in exI)
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1643 | apply (auto split: ereal.split) [] | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1644 |   apply (rule_tac x="case a of MInfty \<Rightarrow> {} | ereal x \<Rightarrow> {..< x} | PInfty \<Rightarrow> UNIV" in exI)
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1645 | apply (auto split: ereal.split) [] | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1646 | done | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1647 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1648 | lemma tendsto_uminus_ereal[tendsto_intros, simp, intro]: "(f ---> x) F \<Longrightarrow> ((\<lambda>x. - f x::ereal) ---> - x) F" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1649 | apply (rule tendsto_compose[where g=uminus]) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1650 | apply (auto intro!: order_tendstoI simp: eventually_at_topological) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1651 |   apply (rule_tac x="{..< -a}" in exI)
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1652 | apply (auto split: ereal.split simp: ereal_less_uminus_reorder) [] | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1653 |   apply (rule_tac x="{- a <..}" in exI)
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1654 | apply (auto split: ereal.split simp: ereal_uminus_reorder) [] | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1655 | done | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1656 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1657 | lemma ereal_Lim_uminus: "(f ---> f0) net \<longleftrightarrow> ((\<lambda>x. - f x::ereal) ---> - f0) net" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1658 | using tendsto_uminus_ereal[of f f0 net] tendsto_uminus_ereal[of "\<lambda>x. - f x" "- f0" net] | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1659 | by auto | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1660 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1661 | lemma ereal_divide_less_iff: "0 < (c::ereal) \<Longrightarrow> c < \<infinity> \<Longrightarrow> a / c < b \<longleftrightarrow> a < b * c" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1662 | by (cases a b c rule: ereal3_cases) (auto simp: field_simps) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1663 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1664 | lemma ereal_less_divide_iff: "0 < (c::ereal) \<Longrightarrow> c < \<infinity> \<Longrightarrow> a < b / c \<longleftrightarrow> a * c < b" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1665 | by (cases a b c rule: ereal3_cases) (auto simp: field_simps) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1666 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1667 | lemma tendsto_cmult_ereal[tendsto_intros, simp, intro]: | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1668 | assumes c: "\<bar>c\<bar> \<noteq> \<infinity>" and f: "(f ---> x) F" shows "((\<lambda>x. c * f x::ereal) ---> c * x) F" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1669 | proof - | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1670 |   { fix c :: ereal assume "0 < c" "c < \<infinity>"
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1671 | then have "((\<lambda>x. c * f x::ereal) ---> c * x) F" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1672 | apply (intro tendsto_compose[OF _ f]) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1673 | apply (auto intro!: order_tendstoI simp: eventually_at_topological) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1674 |       apply (rule_tac x="{a/c <..}" in exI)
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1675 | apply (auto split: ereal.split simp: ereal_divide_less_iff mult.commute) [] | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1676 |       apply (rule_tac x="{..< a/c}" in exI)
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1677 | apply (auto split: ereal.split simp: ereal_less_divide_iff mult.commute) [] | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1678 | done } | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1679 | note * = this | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1680 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1681 | have "((0 < c \<and> c < \<infinity>) \<or> (-\<infinity> < c \<and> c < 0) \<or> c = 0)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1682 | using c by (cases c) auto | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1683 | then show ?thesis | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1684 | proof (elim disjE conjE) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1685 | assume "- \<infinity> < c" "c < 0" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1686 | then have "0 < - c" "- c < \<infinity>" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1687 | by (auto simp: ereal_uminus_reorder ereal_less_uminus_reorder[of 0]) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1688 | then have "((\<lambda>x. (- c) * f x) ---> (- c) * x) F" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1689 | by (rule *) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1690 | from tendsto_uminus_ereal[OF this] show ?thesis | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1691 | by simp | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1692 | qed (auto intro!: *) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1693 | qed | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1694 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1695 | lemma tendsto_cmult_ereal_not_0[tendsto_intros, simp, intro]: | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1696 | assumes "x \<noteq> 0" and f: "(f ---> x) F" shows "((\<lambda>x. c * f x::ereal) ---> c * x) F" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1697 | proof cases | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1698 | assume "\<bar>c\<bar> = \<infinity>" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1699 | show ?thesis | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1700 | proof (rule filterlim_cong[THEN iffD1, OF refl refl _ tendsto_const]) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1701 | have "0 < x \<or> x < 0" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1702 | using `x \<noteq> 0` by (auto simp add: neq_iff) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1703 | then show "eventually (\<lambda>x'. c * x = c * f x') F" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1704 | proof | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1705 | assume "0 < x" from order_tendstoD(1)[OF f this] show ?thesis | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1706 | by eventually_elim (insert `0<x` `\<bar>c\<bar> = \<infinity>`, auto) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1707 | next | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1708 | assume "x < 0" from order_tendstoD(2)[OF f this] show ?thesis | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1709 | by eventually_elim (insert `x<0` `\<bar>c\<bar> = \<infinity>`, auto) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1710 | qed | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1711 | qed | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1712 | qed (rule tendsto_cmult_ereal[OF _ f]) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1713 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1714 | lemma tendsto_cadd_ereal[tendsto_intros, simp, intro]: | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1715 | assumes c: "y \<noteq> - \<infinity>" "x \<noteq> - \<infinity>" and f: "(f ---> x) F" shows "((\<lambda>x. f x + y::ereal) ---> x + y) F" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1716 | apply (intro tendsto_compose[OF _ f]) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1717 | apply (auto intro!: order_tendstoI simp: eventually_at_topological) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1718 |   apply (rule_tac x="{a - y <..}" in exI)
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1719 | apply (auto split: ereal.split simp: ereal_minus_less_iff c) [] | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1720 |   apply (rule_tac x="{..< a - y}" in exI)
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1721 | apply (auto split: ereal.split simp: ereal_less_minus_iff c) [] | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1722 | done | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1723 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1724 | lemma tendsto_add_left_ereal[tendsto_intros, simp, intro]: | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1725 | assumes c: "\<bar>y\<bar> \<noteq> \<infinity>" and f: "(f ---> x) F" shows "((\<lambda>x. f x + y::ereal) ---> x + y) F" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1726 | apply (intro tendsto_compose[OF _ f]) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1727 | apply (auto intro!: order_tendstoI simp: eventually_at_topological) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1728 |   apply (rule_tac x="{a - y <..}" in exI)
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1729 | apply (insert c, auto split: ereal.split simp: ereal_minus_less_iff) [] | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1730 |   apply (rule_tac x="{..< a - y}" in exI)
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1731 | apply (auto split: ereal.split simp: ereal_less_minus_iff c) [] | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1732 | done | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1733 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1734 | lemma continuous_at_ereal[continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. ereal (f x))" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1735 | unfolding continuous_def by auto | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1736 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1737 | lemma continuous_on_ereal[continuous_intros]: "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. ereal (f x))" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1738 | unfolding continuous_on_def by auto | 
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 1739 | |
| 59425 | 1740 | lemma ereal_Sup: | 
| 1741 | assumes *: "\<bar>SUP a:A. ereal a\<bar> \<noteq> \<infinity>" | |
| 1742 | shows "ereal (Sup A) = (SUP a:A. ereal a)" | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1743 | proof (rule continuous_at_Sup_mono) | 
| 59425 | 1744 |   obtain r where r: "ereal r = (SUP a:A. ereal a)" "A \<noteq> {}"
 | 
| 1745 | using * by (force simp: bot_ereal_def) | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1746 |   then show "bdd_above A" "A \<noteq> {}"
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1747 | by (auto intro!: SUP_upper bdd_aboveI[of _ r] simp add: ereal_less_eq(3)[symmetric] simp del: ereal_less_eq) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1748 | qed (auto simp: mono_def continuous_at_within continuous_at_ereal) | 
| 59425 | 1749 | |
| 1750 | lemma ereal_SUP: "\<bar>SUP a:A. ereal (f a)\<bar> \<noteq> \<infinity> \<Longrightarrow> ereal (SUP a:A. f a) = (SUP a:A. ereal (f a))" | |
| 1751 | using ereal_Sup[of "f`A"] by auto | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1752 | |
| 59425 | 1753 | lemma ereal_Inf: | 
| 1754 | assumes *: "\<bar>INF a:A. ereal a\<bar> \<noteq> \<infinity>" | |
| 1755 | shows "ereal (Inf A) = (INF a:A. ereal a)" | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1756 | proof (rule continuous_at_Inf_mono) | 
| 59425 | 1757 |   obtain r where r: "ereal r = (INF a:A. ereal a)" "A \<noteq> {}"
 | 
| 1758 | using * by (force simp: top_ereal_def) | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1759 |   then show "bdd_below A" "A \<noteq> {}"
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1760 | by (auto intro!: INF_lower bdd_belowI[of _ r] simp add: ereal_less_eq(3)[symmetric] simp del: ereal_less_eq) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1761 | qed (auto simp: mono_def continuous_at_within continuous_at_ereal) | 
| 59425 | 1762 | |
| 1763 | lemma ereal_INF: "\<bar>INF a:A. ereal (f a)\<bar> \<noteq> \<infinity> \<Longrightarrow> ereal (INF a:A. f a) = (INF a:A. ereal (f a))" | |
| 1764 | using ereal_Inf[of "f`A"] by auto | |
| 1765 | ||
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1766 | lemma ereal_Sup_uminus_image_eq: "Sup (uminus ` S::ereal set) = - Inf S" | 
| 56166 | 1767 | by (auto intro!: SUP_eqI | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1768 | simp: Ball_def[symmetric] ereal_uminus_le_reorder le_Inf_iff | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1769 | intro!: complete_lattice_class.Inf_lower2) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1770 | |
| 56166 | 1771 | lemma ereal_SUP_uminus_eq: | 
| 1772 | fixes f :: "'a \<Rightarrow> ereal" | |
| 1773 | shows "(SUP x:S. uminus (f x)) = - (INF x:S. f x)" | |
| 1774 | using ereal_Sup_uminus_image_eq [of "f ` S"] by (simp add: comp_def) | |
| 1775 | ||
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1776 | lemma ereal_inj_on_uminus[intro, simp]: "inj_on uminus (A :: ereal set)" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1777 | by (auto intro!: inj_onI) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1778 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1779 | lemma ereal_Inf_uminus_image_eq: "Inf (uminus ` S::ereal set) = - Sup S" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1780 | using ereal_Sup_uminus_image_eq[of "uminus ` S"] by simp | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1781 | |
| 56166 | 1782 | lemma ereal_INF_uminus_eq: | 
| 1783 | fixes f :: "'a \<Rightarrow> ereal" | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1784 | shows "(INF x:S. - f x) = - (SUP x:S. f x)" | 
| 56166 | 1785 | using ereal_Inf_uminus_image_eq [of "f ` S"] by (simp add: comp_def) | 
| 1786 | ||
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1787 | lemma ereal_SUP_uminus: | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1788 | fixes f :: "'a \<Rightarrow> ereal" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1789 | shows "(SUP i : R. - f i) = - (INF i : R. f i)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1790 | using ereal_Sup_uminus_image_eq[of "f`R"] | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1791 | by (simp add: image_image) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1792 | |
| 54416 | 1793 | lemma ereal_SUP_not_infty: | 
| 1794 | fixes f :: "_ \<Rightarrow> ereal" | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1795 |   shows "A \<noteq> {} \<Longrightarrow> l \<noteq> -\<infinity> \<Longrightarrow> u \<noteq> \<infinity> \<Longrightarrow> \<forall>a\<in>A. l \<le> f a \<and> f a \<le> u \<Longrightarrow> \<bar>SUPREMUM A f\<bar> \<noteq> \<infinity>"
 | 
| 54416 | 1796 | using SUP_upper2[of _ A l f] SUP_least[of A f u] | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1797 | by (cases "SUPREMUM A f") auto | 
| 54416 | 1798 | |
| 1799 | lemma ereal_INF_not_infty: | |
| 1800 | fixes f :: "_ \<Rightarrow> ereal" | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1801 |   shows "A \<noteq> {} \<Longrightarrow> l \<noteq> -\<infinity> \<Longrightarrow> u \<noteq> \<infinity> \<Longrightarrow> \<forall>a\<in>A. l \<le> f a \<and> f a \<le> u \<Longrightarrow> \<bar>INFIMUM A f\<bar> \<noteq> \<infinity>"
 | 
| 54416 | 1802 | using INF_lower2[of _ A f u] INF_greatest[of A l f] | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1803 | by (cases "INFIMUM A f") auto | 
| 54416 | 1804 | |
| 43920 | 1805 | lemma ereal_image_uminus_shift: | 
| 53873 | 1806 | fixes X Y :: "ereal set" | 
| 1807 | shows "uminus ` X = Y \<longleftrightarrow> X = uminus ` Y" | |
| 41973 | 1808 | proof | 
| 1809 | assume "uminus ` X = Y" | |
| 1810 | then have "uminus ` uminus ` X = uminus ` Y" | |
| 1811 | by (simp add: inj_image_eq_iff) | |
| 53873 | 1812 | then show "X = uminus ` Y" | 
| 1813 | by (simp add: image_image) | |
| 41973 | 1814 | qed (simp add: image_image) | 
| 1815 | ||
| 1816 | lemma Sup_eq_MInfty: | |
| 53873 | 1817 | fixes S :: "ereal set" | 
| 1818 |   shows "Sup S = -\<infinity> \<longleftrightarrow> S = {} \<or> S = {-\<infinity>}"
 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1819 | unfolding bot_ereal_def[symmetric] by auto | 
| 41973 | 1820 | |
| 1821 | lemma Inf_eq_PInfty: | |
| 53873 | 1822 | fixes S :: "ereal set" | 
| 1823 |   shows "Inf S = \<infinity> \<longleftrightarrow> S = {} \<or> S = {\<infinity>}"
 | |
| 41973 | 1824 | using Sup_eq_MInfty[of "uminus`S"] | 
| 43920 | 1825 | unfolding ereal_Sup_uminus_image_eq ereal_image_uminus_shift by simp | 
| 41973 | 1826 | |
| 53873 | 1827 | lemma Inf_eq_MInfty: | 
| 1828 | fixes S :: "ereal set" | |
| 1829 | shows "-\<infinity> \<in> S \<Longrightarrow> Inf S = -\<infinity>" | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1830 | unfolding bot_ereal_def[symmetric] by auto | 
| 41973 | 1831 | |
| 43923 | 1832 | lemma Sup_eq_PInfty: | 
| 53873 | 1833 | fixes S :: "ereal set" | 
| 1834 | shows "\<infinity> \<in> S \<Longrightarrow> Sup S = \<infinity>" | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1835 | unfolding top_ereal_def[symmetric] by auto | 
| 41973 | 1836 | |
| 43920 | 1837 | lemma Sup_ereal_close: | 
| 1838 | fixes e :: ereal | |
| 53873 | 1839 | assumes "0 < e" | 
| 1840 |     and S: "\<bar>Sup S\<bar> \<noteq> \<infinity>" "S \<noteq> {}"
 | |
| 41973 | 1841 | shows "\<exists>x\<in>S. Sup S - e < x" | 
| 41976 | 1842 | using assms by (cases e) (auto intro!: less_Sup_iff[THEN iffD1]) | 
| 41973 | 1843 | |
| 43920 | 1844 | lemma Inf_ereal_close: | 
| 53873 | 1845 | fixes e :: ereal | 
| 1846 | assumes "\<bar>Inf X\<bar> \<noteq> \<infinity>" | |
| 1847 | and "0 < e" | |
| 41973 | 1848 | shows "\<exists>x\<in>X. x < Inf X + e" | 
| 1849 | proof (rule Inf_less_iff[THEN iffD1]) | |
| 53873 | 1850 | show "Inf X < Inf X + e" | 
| 1851 | using assms by (cases e) auto | |
| 41973 | 1852 | qed | 
| 1853 | ||
| 59425 | 1854 | lemma SUP_PInfty: | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1855 | "(\<And>n::nat. \<exists>i\<in>A. ereal (real n) \<le> f i) \<Longrightarrow> (SUP i:A. f i :: ereal) = \<infinity>" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1856 | unfolding top_ereal_def[symmetric] SUP_eq_top_iff | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1857 | by (metis MInfty_neq_PInfty(2) PInfty_neq_ereal(2) less_PInf_Ex_of_nat less_ereal.elims(2) less_le_trans) | 
| 59425 | 1858 | |
| 43920 | 1859 | lemma SUP_nat_Infty: "(SUP i::nat. ereal (real i)) = \<infinity>" | 
| 59425 | 1860 | by (rule SUP_PInfty) auto | 
| 41973 | 1861 | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1862 | lemma SUP_ereal_add_left: | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1863 |   assumes "I \<noteq> {}" "c \<noteq> -\<infinity>"
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1864 | shows "(SUP i:I. f i + c :: ereal) = (SUP i:I. f i) + c" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1865 | proof cases | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1866 | assume "(SUP i:I. f i) = - \<infinity>" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1867 | moreover then have "\<And>i. i \<in> I \<Longrightarrow> f i = -\<infinity>" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1868 | unfolding Sup_eq_MInfty Sup_image_eq[symmetric] by auto | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1869 | ultimately show ?thesis | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1870 |     by (cases c) (auto simp: `I \<noteq> {}`)
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1871 | next | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1872 | assume "(SUP i:I. f i) \<noteq> - \<infinity>" then show ?thesis | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1873 | unfolding Sup_image_eq[symmetric] | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1874 | by (subst continuous_at_Sup_mono[where f="\<lambda>x. x + c"]) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1875 |        (auto simp: continuous_at_within continuous_at mono_def ereal_add_mono `I \<noteq> {}` `c \<noteq> -\<infinity>`)
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1876 | qed | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1877 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1878 | lemma SUP_ereal_add_right: | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1879 | fixes c :: ereal | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1880 |   shows "I \<noteq> {} \<Longrightarrow> c \<noteq> -\<infinity> \<Longrightarrow> (SUP i:I. c + f i) = c + (SUP i:I. f i)"
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1881 | using SUP_ereal_add_left[of I c f] by (simp add: add.commute) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1882 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1883 | lemma SUP_ereal_minus_right: | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1884 |   assumes "I \<noteq> {}" "c \<noteq> -\<infinity>"
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1885 | shows "(SUP i:I. c - f i :: ereal) = c - (INF i:I. f i)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1886 | using SUP_ereal_add_right[OF assms, of "\<lambda>i. - f i"] | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1887 | by (simp add: ereal_SUP_uminus minus_ereal_def) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1888 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1889 | lemma SUP_ereal_minus_left: | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1890 |   assumes "I \<noteq> {}" "c \<noteq> \<infinity>"
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1891 | shows "(SUP i:I. f i - c:: ereal) = (SUP i:I. f i) - c" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1892 |   using SUP_ereal_add_left[OF `I \<noteq> {}`, of "-c" f] by (simp add: `c \<noteq> \<infinity>` minus_ereal_def)
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1893 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1894 | lemma INF_ereal_minus_right: | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1895 |   assumes "I \<noteq> {}" and "\<bar>c\<bar> \<noteq> \<infinity>"
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1896 | shows "(INF i:I. c - f i) = c - (SUP i:I. f i::ereal)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1897 | proof - | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1898 |   { fix b have "(-c) + b = - (c - b)"
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1899 | using `\<bar>c\<bar> \<noteq> \<infinity>` by (cases c b rule: ereal2_cases) auto } | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1900 | note * = this | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1901 | show ?thesis | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1902 |     using SUP_ereal_add_right[OF `I \<noteq> {}`, of "-c" f] `\<bar>c\<bar> \<noteq> \<infinity>`
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1903 | by (auto simp add: * ereal_SUP_uminus_eq) | 
| 41973 | 1904 | qed | 
| 1905 | ||
| 43920 | 1906 | lemma SUP_ereal_le_addI: | 
| 43923 | 1907 | fixes f :: "'i \<Rightarrow> ereal" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1908 | assumes "\<And>i. f i + y \<le> z" and "y \<noteq> -\<infinity>" | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1909 | shows "SUPREMUM UNIV f + y \<le> z" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1910 | unfolding SUP_ereal_add_left[OF UNIV_not_empty `y \<noteq> -\<infinity>`, symmetric] | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1911 | by (rule SUP_least assms)+ | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1912 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1913 | lemma SUP_combine: | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1914 | fixes f :: "'a::semilattice_sup \<Rightarrow> 'a::semilattice_sup \<Rightarrow> 'b::complete_lattice" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1915 | assumes mono: "\<And>a b c d. a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> f a c \<le> f b d" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1916 | shows "(SUP i:UNIV. SUP j:UNIV. f i j) = (SUP i. f i i)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1917 | proof (rule antisym) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1918 | show "(SUP i j. f i j) \<le> (SUP i. f i i)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1919 | by (rule SUP_least SUP_upper2[where i="sup i j" for i j] UNIV_I mono sup_ge1 sup_ge2)+ | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1920 | show "(SUP i. f i i) \<le> (SUP i j. f i j)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1921 | by (rule SUP_least SUP_upper2 UNIV_I mono order_refl)+ | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1922 | qed | 
| 41978 | 1923 | |
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 1924 | lemma SUP_ereal_add: | 
| 43920 | 1925 | fixes f g :: "nat \<Rightarrow> ereal" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1926 | assumes inc: "incseq f" "incseq g" | 
| 53873 | 1927 | and pos: "\<And>i. f i \<noteq> -\<infinity>" "\<And>i. g i \<noteq> -\<infinity>" | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1928 | shows "(SUP i. f i + g i) = SUPREMUM UNIV f + SUPREMUM UNIV g" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1929 | apply (subst SUP_ereal_add_left[symmetric, OF UNIV_not_empty]) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1930 | apply (metis SUP_upper UNIV_I assms(4) ereal_infty_less_eq(2)) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1931 | apply (subst (2) add.commute) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1932 | apply (subst SUP_ereal_add_left[symmetric, OF UNIV_not_empty assms(3)]) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1933 | apply (subst (2) add.commute) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1934 | apply (rule SUP_combine[symmetric] ereal_add_mono inc[THEN monoD] | assumption)+ | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1935 | done | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1936 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1937 | lemma INF_ereal_add: | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1938 | fixes f :: "nat \<Rightarrow> ereal" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1939 | assumes "decseq f" "decseq g" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1940 | and fin: "\<And>i. f i \<noteq> \<infinity>" "\<And>i. g i \<noteq> \<infinity>" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1941 | shows "(INF i. f i + g i) = INFIMUM UNIV f + INFIMUM UNIV g" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1942 | proof - | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1943 | have INF_less: "(INF i. f i) < \<infinity>" "(INF i. g i) < \<infinity>" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1944 | using assms unfolding INF_less_iff by auto | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1945 |   { fix a b :: ereal assume "a \<noteq> \<infinity>" "b \<noteq> \<infinity>"
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1946 | then have "- ((- a) + (- b)) = a + b" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1947 | by (cases a b rule: ereal2_cases) auto } | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1948 | note * = this | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1949 | have "(INF i. f i + g i) = (INF i. - ((- f i) + (- g i)))" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1950 | by (simp add: fin *) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1951 | also have "\<dots> = INFIMUM UNIV f + INFIMUM UNIV g" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1952 | unfolding ereal_INF_uminus_eq | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1953 | using assms INF_less | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1954 | by (subst SUP_ereal_add) (auto simp: ereal_SUP_uminus fin *) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1955 | finally show ?thesis . | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1956 | qed | 
| 41978 | 1957 | |
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 1958 | lemma SUP_ereal_add_pos: | 
| 43920 | 1959 | fixes f g :: "nat \<Rightarrow> ereal" | 
| 53873 | 1960 | assumes inc: "incseq f" "incseq g" | 
| 1961 | and pos: "\<And>i. 0 \<le> f i" "\<And>i. 0 \<le> g i" | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1962 | shows "(SUP i. f i + g i) = SUPREMUM UNIV f + SUPREMUM UNIV g" | 
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 1963 | proof (intro SUP_ereal_add inc) | 
| 53873 | 1964 | fix i | 
| 1965 | show "f i \<noteq> -\<infinity>" "g i \<noteq> -\<infinity>" | |
| 1966 | using pos[of i] by auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1967 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1968 | |
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 1969 | lemma SUP_ereal_setsum: | 
| 43920 | 1970 | fixes f g :: "'a \<Rightarrow> nat \<Rightarrow> ereal" | 
| 53873 | 1971 | assumes "\<And>n. n \<in> A \<Longrightarrow> incseq (f n)" | 
| 1972 | and pos: "\<And>n i. n \<in> A \<Longrightarrow> 0 \<le> f n i" | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1973 | shows "(SUP i. \<Sum>n\<in>A. f n i) = (\<Sum>n\<in>A. SUPREMUM UNIV (f n))" | 
| 53873 | 1974 | proof (cases "finite A") | 
| 1975 | case True | |
| 1976 | then show ?thesis using assms | |
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 1977 | by induct (auto simp: incseq_setsumI2 setsum_nonneg SUP_ereal_add_pos) | 
| 53873 | 1978 | next | 
| 1979 | case False | |
| 1980 | then show ?thesis by simp | |
| 1981 | qed | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1982 | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1983 | lemma SUP_ereal_mult_left: | 
| 59000 | 1984 | fixes f :: "'a \<Rightarrow> ereal" | 
| 1985 |   assumes "I \<noteq> {}"
 | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1986 | assumes f: "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i" and c: "0 \<le> c" | 
| 59000 | 1987 | shows "(SUP i:I. c * f i) = c * (SUP i:I. f i)" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1988 | proof cases | 
| 60060 | 1989 | assume "(SUP i: I. f i) = 0" | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1990 | moreover then have "\<And>i. i \<in> I \<Longrightarrow> f i = 0" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1991 | by (metis SUP_upper f antisym) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1992 | ultimately show ?thesis | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1993 | by simp | 
| 59000 | 1994 | next | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1995 | assume "(SUP i:I. f i) \<noteq> 0" then show ?thesis | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1996 | unfolding SUP_def | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1997 | by (subst continuous_at_Sup_mono[where f="\<lambda>x. c * x"]) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1998 |        (auto simp: mono_def continuous_at continuous_at_within `I \<noteq> {}`
 | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 1999 | intro!: ereal_mult_left_mono c) | 
| 59000 | 2000 | qed | 
| 2001 | ||
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2002 | lemma countable_approach: | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2003 | fixes x :: ereal | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2004 | assumes "x \<noteq> -\<infinity>" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2005 | shows "\<exists>f. incseq f \<and> (\<forall>i::nat. f i < x) \<and> (f ----> x)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2006 | proof (cases x) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2007 | case (real r) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2008 | moreover have "(\<lambda>n. r - inverse (real (Suc n))) ----> r - 0" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2009 | by (intro tendsto_intros LIMSEQ_inverse_real_of_nat) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2010 | ultimately show ?thesis | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2011 | by (intro exI[of _ "\<lambda>n. x - inverse (Suc n)"]) (auto simp: incseq_def) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2012 | next | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2013 | case PInf with LIMSEQ_SUP[of "\<lambda>n::nat. ereal (real n)"] show ?thesis | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2014 | by (intro exI[of _ "\<lambda>n. ereal (real n)"]) (auto simp: incseq_def SUP_nat_Infty) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2015 | qed (simp add: assms) | 
| 59000 | 2016 | |
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 2017 | lemma Sup_countable_SUP: | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 2018 |   assumes "A \<noteq> {}"
 | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2019 | shows "\<exists>f::nat \<Rightarrow> ereal. incseq f \<and> range f \<subseteq> A \<and> Sup A = (SUP i. f i)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2020 | proof cases | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2021 | assume "Sup A = -\<infinity>" | 
| 53873 | 2022 |   with `A \<noteq> {}` have "A = {-\<infinity>}"
 | 
| 2023 | by (auto simp: Sup_eq_MInfty) | |
| 2024 | then show ?thesis | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2025 | by (auto intro!: exI[of _ "\<lambda>_. -\<infinity>"] simp: bot_ereal_def) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2026 | next | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2027 | assume "Sup A \<noteq> -\<infinity>" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2028 | then obtain l where "incseq l" and l: "\<And>i::nat. l i < Sup A" and l_Sup: "l ----> Sup A" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2029 | by (auto dest: countable_approach) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2030 | |
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2031 | have "\<exists>f. \<forall>n. (f n \<in> A \<and> l n \<le> f n) \<and> (f n \<le> f (Suc n))" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2032 | proof (rule dependent_nat_choice) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2033 | show "\<exists>x. x \<in> A \<and> l 0 \<le> x" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2034 | using l[of 0] by (auto simp: less_Sup_iff) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2035 | next | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2036 | fix x n assume "x \<in> A \<and> l n \<le> x" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2037 | moreover from l[of "Suc n"] obtain y where "y \<in> A" "l (Suc n) < y" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2038 | by (auto simp: less_Sup_iff) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2039 | ultimately show "\<exists>y. (y \<in> A \<and> l (Suc n) \<le> y) \<and> x \<le> y" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2040 | by (auto intro!: exI[of _ "max x y"] split: split_max) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2041 | qed | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2042 | then guess f .. note f = this | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2043 | then have "range f \<subseteq> A" "incseq f" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2044 | by (auto simp: incseq_Suc_iff) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2045 | moreover | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2046 | have "(SUP i. f i) = Sup A" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2047 | proof (rule tendsto_unique) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2048 | show "f ----> (SUP i. f i)" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2049 | by (rule LIMSEQ_SUP `incseq f`)+ | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2050 | show "f ----> Sup A" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2051 | using l f | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2052 | by (intro tendsto_sandwich[OF _ _ l_Sup tendsto_const]) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2053 | (auto simp: Sup_upper) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2054 | qed simp | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2055 | ultimately show ?thesis | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2056 | by auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 2057 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 2058 | |
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 2059 | lemma SUP_countable_SUP: | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 2060 |   "A \<noteq> {} \<Longrightarrow> \<exists>f::nat \<Rightarrow> ereal. range f \<subseteq> g`A \<and> SUPREMUM A g = SUPREMUM UNIV f"
 | 
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2061 | using Sup_countable_SUP [of "g`A"] by auto | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 2062 | |
| 45934 | 2063 | subsection "Relation to @{typ enat}"
 | 
| 2064 | ||
| 2065 | definition "ereal_of_enat n = (case n of enat n \<Rightarrow> ereal (real n) | \<infinity> \<Rightarrow> \<infinity>)" | |
| 2066 | ||
| 2067 | declare [[coercion "ereal_of_enat :: enat \<Rightarrow> ereal"]] | |
| 2068 | declare [[coercion "(\<lambda>n. ereal (real n)) :: nat \<Rightarrow> ereal"]] | |
| 2069 | ||
| 2070 | lemma ereal_of_enat_simps[simp]: | |
| 2071 | "ereal_of_enat (enat n) = ereal n" | |
| 2072 | "ereal_of_enat \<infinity> = \<infinity>" | |
| 2073 | by (simp_all add: ereal_of_enat_def) | |
| 2074 | ||
| 53873 | 2075 | lemma ereal_of_enat_le_iff[simp]: "ereal_of_enat m \<le> ereal_of_enat n \<longleftrightarrow> m \<le> n" | 
| 2076 | by (cases m n rule: enat2_cases) auto | |
| 45934 | 2077 | |
| 53873 | 2078 | lemma ereal_of_enat_less_iff[simp]: "ereal_of_enat m < ereal_of_enat n \<longleftrightarrow> m < n" | 
| 2079 | by (cases m n rule: enat2_cases) auto | |
| 50819 
5601ae592679
added some ereal_of_enat_* lemmas (from $AFP/thys/Girth_Chromatic)
 noschinl parents: 
50104diff
changeset | 2080 | |
| 53873 | 2081 | lemma numeral_le_ereal_of_enat_iff[simp]: "numeral m \<le> ereal_of_enat n \<longleftrightarrow> numeral m \<le> n" | 
| 59587 
8ea7b22525cb
Removed the obsolete functions "natfloor" and "natceiling"
 nipkow parents: 
59452diff
changeset | 2082 | by (cases n) (auto) | 
| 45934 | 2083 | |
| 53873 | 2084 | lemma numeral_less_ereal_of_enat_iff[simp]: "numeral m < ereal_of_enat n \<longleftrightarrow> numeral m < n" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56537diff
changeset | 2085 | by (cases n) auto | 
| 50819 
5601ae592679
added some ereal_of_enat_* lemmas (from $AFP/thys/Girth_Chromatic)
 noschinl parents: 
50104diff
changeset | 2086 | |
| 53873 | 2087 | lemma ereal_of_enat_ge_zero_cancel_iff[simp]: "0 \<le> ereal_of_enat n \<longleftrightarrow> 0 \<le> n" | 
| 2088 | by (cases n) (auto simp: enat_0[symmetric]) | |
| 45934 | 2089 | |
| 53873 | 2090 | lemma ereal_of_enat_gt_zero_cancel_iff[simp]: "0 < ereal_of_enat n \<longleftrightarrow> 0 < n" | 
| 2091 | by (cases n) (auto simp: enat_0[symmetric]) | |
| 45934 | 2092 | |
| 53873 | 2093 | lemma ereal_of_enat_zero[simp]: "ereal_of_enat 0 = 0" | 
| 2094 | by (auto simp: enat_0[symmetric]) | |
| 45934 | 2095 | |
| 53873 | 2096 | lemma ereal_of_enat_inf[simp]: "ereal_of_enat n = \<infinity> \<longleftrightarrow> n = \<infinity>" | 
| 50819 
5601ae592679
added some ereal_of_enat_* lemmas (from $AFP/thys/Girth_Chromatic)
 noschinl parents: 
50104diff
changeset | 2097 | by (cases n) auto | 
| 
5601ae592679
added some ereal_of_enat_* lemmas (from $AFP/thys/Girth_Chromatic)
 noschinl parents: 
50104diff
changeset | 2098 | |
| 53873 | 2099 | lemma ereal_of_enat_add: "ereal_of_enat (m + n) = ereal_of_enat m + ereal_of_enat n" | 
| 2100 | by (cases m n rule: enat2_cases) auto | |
| 45934 | 2101 | |
| 2102 | lemma ereal_of_enat_sub: | |
| 53873 | 2103 | assumes "n \<le> m" | 
| 2104 | shows "ereal_of_enat (m - n) = ereal_of_enat m - ereal_of_enat n " | |
| 2105 | using assms by (cases m n rule: enat2_cases) auto | |
| 45934 | 2106 | |
| 2107 | lemma ereal_of_enat_mult: | |
| 2108 | "ereal_of_enat (m * n) = ereal_of_enat m * ereal_of_enat n" | |
| 53873 | 2109 | by (cases m n rule: enat2_cases) auto | 
| 45934 | 2110 | |
| 2111 | lemmas ereal_of_enat_pushin = ereal_of_enat_add ereal_of_enat_sub ereal_of_enat_mult | |
| 2112 | lemmas ereal_of_enat_pushout = ereal_of_enat_pushin[symmetric] | |
| 2113 | ||
| 2114 | ||
| 43920 | 2115 | subsection "Limits on @{typ ereal}"
 | 
| 41973 | 2116 | |
| 43920 | 2117 | lemma open_PInfty: "open A \<Longrightarrow> \<infinity> \<in> A \<Longrightarrow> (\<exists>x. {ereal x<..} \<subseteq> A)"
 | 
| 51000 | 2118 | unfolding open_ereal_generated | 
| 2119 | proof (induct rule: generate_topology.induct) | |
| 2120 | case (Int A B) | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 2121 |   then obtain x z where "\<infinity> \<in> A \<Longrightarrow> {ereal x <..} \<subseteq> A" "\<infinity> \<in> B \<Longrightarrow> {ereal z <..} \<subseteq> B"
 | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 2122 | by auto | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 2123 | with Int show ?case | 
| 51000 | 2124 | by (intro exI[of _ "max x z"]) fastforce | 
| 2125 | next | |
| 53873 | 2126 | case (Basis S) | 
| 2127 |   {
 | |
| 2128 | fix x | |
| 2129 | have "x \<noteq> \<infinity> \<Longrightarrow> \<exists>t. x \<le> ereal t" | |
| 2130 | by (cases x) auto | |
| 2131 | } | |
| 2132 | moreover note Basis | |
| 51000 | 2133 | ultimately show ?case | 
| 2134 | by (auto split: ereal.split) | |
| 2135 | qed (fastforce simp add: vimage_Union)+ | |
| 41973 | 2136 | |
| 43920 | 2137 | lemma open_MInfty: "open A \<Longrightarrow> -\<infinity> \<in> A \<Longrightarrow> (\<exists>x. {..<ereal x} \<subseteq> A)"
 | 
| 51000 | 2138 | unfolding open_ereal_generated | 
| 2139 | proof (induct rule: generate_topology.induct) | |
| 2140 | case (Int A B) | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 2141 |   then obtain x z where "-\<infinity> \<in> A \<Longrightarrow> {..< ereal x} \<subseteq> A" "-\<infinity> \<in> B \<Longrightarrow> {..< ereal z} \<subseteq> B"
 | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 2142 | by auto | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 2143 | with Int show ?case | 
| 51000 | 2144 | by (intro exI[of _ "min x z"]) fastforce | 
| 2145 | next | |
| 53873 | 2146 | case (Basis S) | 
| 2147 |   {
 | |
| 2148 | fix x | |
| 2149 | have "x \<noteq> - \<infinity> \<Longrightarrow> \<exists>t. ereal t \<le> x" | |
| 2150 | by (cases x) auto | |
| 2151 | } | |
| 2152 | moreover note Basis | |
| 51000 | 2153 | ultimately show ?case | 
| 2154 | by (auto split: ereal.split) | |
| 2155 | qed (fastforce simp add: vimage_Union)+ | |
| 2156 | ||
| 2157 | lemma open_ereal_vimage: "open S \<Longrightarrow> open (ereal -` S)" | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2158 | by (intro open_vimage continuous_intros) | 
| 51000 | 2159 | |
| 2160 | lemma open_ereal: "open S \<Longrightarrow> open (ereal ` S)" | |
| 2161 | unfolding open_generated_order[where 'a=real] | |
| 2162 | proof (induct rule: generate_topology.induct) | |
| 2163 | case (Basis S) | |
| 53873 | 2164 |   moreover {
 | 
| 2165 | fix x | |
| 2166 |     have "ereal ` {..< x} = { -\<infinity> <..< ereal x }"
 | |
| 2167 | apply auto | |
| 2168 | apply (case_tac xa) | |
| 2169 | apply auto | |
| 2170 | done | |
| 2171 | } | |
| 2172 |   moreover {
 | |
| 2173 | fix x | |
| 2174 |     have "ereal ` {x <..} = { ereal x <..< \<infinity> }"
 | |
| 2175 | apply auto | |
| 2176 | apply (case_tac xa) | |
| 2177 | apply auto | |
| 2178 | done | |
| 2179 | } | |
| 51000 | 2180 | ultimately show ?case | 
| 2181 | by auto | |
| 2182 | qed (auto simp add: image_Union image_Int) | |
| 2183 | ||
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2184 | |
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2185 | lemma eventually_finite: | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2186 | fixes x :: ereal | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2187 | assumes "\<bar>x\<bar> \<noteq> \<infinity>" "(f ---> x) F" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2188 | shows "eventually (\<lambda>x. \<bar>f x\<bar> \<noteq> \<infinity>) F" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2189 | proof - | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2190 | have "(f ---> ereal (real x)) F" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2191 | using assms by (cases x) auto | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2192 | then have "eventually (\<lambda>x. f x \<in> ereal ` UNIV) F" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2193 | by (rule topological_tendstoD) (auto intro: open_ereal) | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2194 | also have "(\<lambda>x. f x \<in> ereal ` UNIV) = (\<lambda>x. \<bar>f x\<bar> \<noteq> \<infinity>)" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2195 | by auto | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2196 | finally show ?thesis . | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2197 | qed | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2198 | |
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2199 | |
| 53873 | 2200 | lemma open_ereal_def: | 
| 2201 |   "open A \<longleftrightarrow> open (ereal -` A) \<and> (\<infinity> \<in> A \<longrightarrow> (\<exists>x. {ereal x <..} \<subseteq> A)) \<and> (-\<infinity> \<in> A \<longrightarrow> (\<exists>x. {..<ereal x} \<subseteq> A))"
 | |
| 51000 | 2202 | (is "open A \<longleftrightarrow> ?rhs") | 
| 2203 | proof | |
| 53873 | 2204 | assume "open A" | 
| 2205 | then show ?rhs | |
| 51000 | 2206 | using open_PInfty open_MInfty open_ereal_vimage by auto | 
| 2207 | next | |
| 2208 | assume "?rhs" | |
| 2209 |   then obtain x y where A: "open (ereal -` A)" "\<infinity> \<in> A \<Longrightarrow> {ereal x<..} \<subseteq> A" "-\<infinity> \<in> A \<Longrightarrow> {..< ereal y} \<subseteq> A"
 | |
| 2210 | by auto | |
| 2211 |   have *: "A = ereal ` (ereal -` A) \<union> (if \<infinity> \<in> A then {ereal x<..} else {}) \<union> (if -\<infinity> \<in> A then {..< ereal y} else {})"
 | |
| 2212 | using A(2,3) by auto | |
| 2213 | from open_ereal[OF A(1)] show "open A" | |
| 2214 | by (subst *) (auto simp: open_Un) | |
| 2215 | qed | |
| 41973 | 2216 | |
| 53873 | 2217 | lemma open_PInfty2: | 
| 2218 | assumes "open A" | |
| 2219 | and "\<infinity> \<in> A" | |
| 2220 |   obtains x where "{ereal x<..} \<subseteq> A"
 | |
| 41973 | 2221 | using open_PInfty[OF assms] by auto | 
| 2222 | ||
| 53873 | 2223 | lemma open_MInfty2: | 
| 2224 | assumes "open A" | |
| 2225 | and "-\<infinity> \<in> A" | |
| 2226 |   obtains x where "{..<ereal x} \<subseteq> A"
 | |
| 41973 | 2227 | using open_MInfty[OF assms] by auto | 
| 2228 | ||
| 53873 | 2229 | lemma ereal_openE: | 
| 2230 | assumes "open A" | |
| 2231 | obtains x y where "open (ereal -` A)" | |
| 2232 |     and "\<infinity> \<in> A \<Longrightarrow> {ereal x<..} \<subseteq> A"
 | |
| 2233 |     and "-\<infinity> \<in> A \<Longrightarrow> {..<ereal y} \<subseteq> A"
 | |
| 43920 | 2234 | using assms open_ereal_def by auto | 
| 41973 | 2235 | |
| 51000 | 2236 | lemmas open_ereal_lessThan = open_lessThan[where 'a=ereal] | 
| 2237 | lemmas open_ereal_greaterThan = open_greaterThan[where 'a=ereal] | |
| 2238 | lemmas ereal_open_greaterThanLessThan = open_greaterThanLessThan[where 'a=ereal] | |
| 2239 | lemmas closed_ereal_atLeast = closed_atLeast[where 'a=ereal] | |
| 2240 | lemmas closed_ereal_atMost = closed_atMost[where 'a=ereal] | |
| 2241 | lemmas closed_ereal_atLeastAtMost = closed_atLeastAtMost[where 'a=ereal] | |
| 2242 | lemmas closed_ereal_singleton = closed_singleton[where 'a=ereal] | |
| 53873 | 2243 | |
| 43920 | 2244 | lemma ereal_open_cont_interval: | 
| 43923 | 2245 | fixes S :: "ereal set" | 
| 53873 | 2246 | assumes "open S" | 
| 2247 | and "x \<in> S" | |
| 2248 | and "\<bar>x\<bar> \<noteq> \<infinity>" | |
| 2249 |   obtains e where "e > 0" and "{x-e <..< x+e} \<subseteq> S"
 | |
| 2250 | proof - | |
| 2251 | from `open S` | |
| 2252 | have "open (ereal -` S)" | |
| 2253 | by (rule ereal_openE) | |
| 2254 | then obtain e where "e > 0" and e: "\<And>y. dist y (real x) < e \<Longrightarrow> ereal y \<in> S" | |
| 41980 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 2255 | using assms unfolding open_dist by force | 
| 41975 | 2256 | show thesis | 
| 2257 | proof (intro that subsetI) | |
| 53873 | 2258 | show "0 < ereal e" | 
| 2259 | using `0 < e` by auto | |
| 2260 | fix y | |
| 2261 |     assume "y \<in> {x - ereal e<..<x + ereal e}"
 | |
| 43920 | 2262 | with assms obtain t where "y = ereal t" "dist t (real x) < e" | 
| 53873 | 2263 | by (cases y) (auto simp: dist_real_def) | 
| 2264 | then show "y \<in> S" | |
| 2265 | using e[of t] by auto | |
| 41975 | 2266 | qed | 
| 41973 | 2267 | qed | 
| 2268 | ||
| 43920 | 2269 | lemma ereal_open_cont_interval2: | 
| 43923 | 2270 | fixes S :: "ereal set" | 
| 53873 | 2271 | assumes "open S" | 
| 2272 | and "x \<in> S" | |
| 2273 | and x: "\<bar>x\<bar> \<noteq> \<infinity>" | |
| 2274 |   obtains a b where "a < x" and "x < b" and "{a <..< b} \<subseteq> S"
 | |
| 53381 | 2275 | proof - | 
| 2276 |   obtain e where "0 < e" "{x - e<..<x + e} \<subseteq> S"
 | |
| 2277 | using assms by (rule ereal_open_cont_interval) | |
| 53873 | 2278 | with that[of "x - e" "x + e"] ereal_between[OF x, of e] | 
| 2279 | show thesis | |
| 2280 | by auto | |
| 41973 | 2281 | qed | 
| 2282 | ||
| 2283 | subsubsection {* Convergent sequences *}
 | |
| 2284 | ||
| 43920 | 2285 | lemma lim_real_of_ereal[simp]: | 
| 2286 | assumes lim: "(f ---> ereal x) net" | |
| 41973 | 2287 | shows "((\<lambda>x. real (f x)) ---> x) net" | 
| 2288 | proof (intro topological_tendstoI) | |
| 53873 | 2289 | fix S | 
| 2290 | assume "open S" and "x \<in> S" | |
| 43920 | 2291 | then have S: "open S" "ereal x \<in> ereal ` S" | 
| 41973 | 2292 | by (simp_all add: inj_image_mem_iff) | 
| 53873 | 2293 | have "\<forall>x. f x \<in> ereal ` S \<longrightarrow> real (f x) \<in> S" | 
| 2294 | by auto | |
| 43920 | 2295 | from this lim[THEN topological_tendstoD, OF open_ereal, OF S] | 
| 41973 | 2296 | show "eventually (\<lambda>x. real (f x) \<in> S) net" | 
| 2297 | by (rule eventually_mono) | |
| 2298 | qed | |
| 2299 | ||
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2300 | lemma lim_ereal[simp]: "((\<lambda>n. ereal (f n)) ---> ereal x) net \<longleftrightarrow> (f ---> x) net" | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2301 | by (auto dest!: lim_real_of_ereal) | 
| 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2302 | |
| 51000 | 2303 | lemma tendsto_PInfty: "(f ---> \<infinity>) F \<longleftrightarrow> (\<forall>r. eventually (\<lambda>x. ereal r < f x) F)" | 
| 51022 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 2304 | proof - | 
| 53873 | 2305 |   {
 | 
| 2306 | fix l :: ereal | |
| 2307 | assume "\<forall>r. eventually (\<lambda>x. ereal r < f x) F" | |
| 2308 | from this[THEN spec, of "real l"] have "l \<noteq> \<infinity> \<Longrightarrow> eventually (\<lambda>x. l < f x) F" | |
| 2309 | by (cases l) (auto elim: eventually_elim1) | |
| 2310 | } | |
| 51022 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 2311 | then show ?thesis | 
| 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 2312 | by (auto simp: order_tendsto_iff) | 
| 41973 | 2313 | qed | 
| 2314 | ||
| 57025 | 2315 | lemma tendsto_PInfty_eq_at_top: | 
| 2316 | "((\<lambda>z. ereal (f z)) ---> \<infinity>) F \<longleftrightarrow> (LIM z F. f z :> at_top)" | |
| 2317 | unfolding tendsto_PInfty filterlim_at_top_dense by simp | |
| 2318 | ||
| 51000 | 2319 | lemma tendsto_MInfty: "(f ---> -\<infinity>) F \<longleftrightarrow> (\<forall>r. eventually (\<lambda>x. f x < ereal r) F)" | 
| 2320 | unfolding tendsto_def | |
| 2321 | proof safe | |
| 53381 | 2322 | fix S :: "ereal set" | 
| 2323 | assume "open S" "-\<infinity> \<in> S" | |
| 2324 |   from open_MInfty[OF this] obtain B where "{..<ereal B} \<subseteq> S" ..
 | |
| 51000 | 2325 | moreover | 
| 2326 | assume "\<forall>r::real. eventually (\<lambda>z. f z < r) F" | |
| 53873 | 2327 |   then have "eventually (\<lambda>z. f z \<in> {..< B}) F"
 | 
| 2328 | by auto | |
| 2329 | ultimately show "eventually (\<lambda>z. f z \<in> S) F" | |
| 2330 | by (auto elim!: eventually_elim1) | |
| 51000 | 2331 | next | 
| 53873 | 2332 | fix x | 
| 2333 | assume "\<forall>S. open S \<longrightarrow> -\<infinity> \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) F" | |
| 2334 |   from this[rule_format, of "{..< ereal x}"] show "eventually (\<lambda>y. f y < ereal x) F"
 | |
| 2335 | by auto | |
| 41973 | 2336 | qed | 
| 2337 | ||
| 51000 | 2338 | lemma Lim_PInfty: "f ----> \<infinity> \<longleftrightarrow> (\<forall>B. \<exists>N. \<forall>n\<ge>N. f n \<ge> ereal B)" | 
| 2339 | unfolding tendsto_PInfty eventually_sequentially | |
| 2340 | proof safe | |
| 53873 | 2341 | fix r | 
| 2342 | assume "\<forall>r. \<exists>N. \<forall>n\<ge>N. ereal r \<le> f n" | |
| 2343 | then obtain N where "\<forall>n\<ge>N. ereal (r + 1) \<le> f n" | |
| 2344 | by blast | |
| 2345 | moreover have "ereal r < ereal (r + 1)" | |
| 2346 | by auto | |
| 51000 | 2347 | ultimately show "\<exists>N. \<forall>n\<ge>N. ereal r < f n" | 
| 2348 | by (blast intro: less_le_trans) | |
| 2349 | qed (blast intro: less_imp_le) | |
| 41973 | 2350 | |
| 51000 | 2351 | lemma Lim_MInfty: "f ----> -\<infinity> \<longleftrightarrow> (\<forall>B. \<exists>N. \<forall>n\<ge>N. ereal B \<ge> f n)" | 
| 2352 | unfolding tendsto_MInfty eventually_sequentially | |
| 2353 | proof safe | |
| 53873 | 2354 | fix r | 
| 2355 | assume "\<forall>r. \<exists>N. \<forall>n\<ge>N. f n \<le> ereal r" | |
| 2356 | then obtain N where "\<forall>n\<ge>N. f n \<le> ereal (r - 1)" | |
| 2357 | by blast | |
| 2358 | moreover have "ereal (r - 1) < ereal r" | |
| 2359 | by auto | |
| 51000 | 2360 | ultimately show "\<exists>N. \<forall>n\<ge>N. f n < ereal r" | 
| 2361 | by (blast intro: le_less_trans) | |
| 2362 | qed (blast intro: less_imp_le) | |
| 41973 | 2363 | |
| 51000 | 2364 | lemma Lim_bounded_PInfty: "f ----> l \<Longrightarrow> (\<And>n. f n \<le> ereal B) \<Longrightarrow> l \<noteq> \<infinity>" | 
| 2365 | using LIMSEQ_le_const2[of f l "ereal B"] by auto | |
| 41973 | 2366 | |
| 51000 | 2367 | lemma Lim_bounded_MInfty: "f ----> l \<Longrightarrow> (\<And>n. ereal B \<le> f n) \<Longrightarrow> l \<noteq> -\<infinity>" | 
| 2368 | using LIMSEQ_le_const[of f l "ereal B"] by auto | |
| 41973 | 2369 | |
| 2370 | lemma tendsto_explicit: | |
| 53873 | 2371 | "f ----> f0 \<longleftrightarrow> (\<forall>S. open S \<longrightarrow> f0 \<in> S \<longrightarrow> (\<exists>N. \<forall>n\<ge>N. f n \<in> S))" | 
| 41973 | 2372 | unfolding tendsto_def eventually_sequentially by auto | 
| 2373 | ||
| 53873 | 2374 | lemma Lim_bounded_PInfty2: "f ----> l \<Longrightarrow> \<forall>n\<ge>N. f n \<le> ereal B \<Longrightarrow> l \<noteq> \<infinity>" | 
| 51000 | 2375 | using LIMSEQ_le_const2[of f l "ereal B"] by fastforce | 
| 41973 | 2376 | |
| 53873 | 2377 | lemma Lim_bounded_ereal: "f ----> (l :: 'a::linorder_topology) \<Longrightarrow> \<forall>n\<ge>M. f n \<le> C \<Longrightarrow> l \<le> C" | 
| 51000 | 2378 | by (intro LIMSEQ_le_const2) auto | 
| 41973 | 2379 | |
| 51351 | 2380 | lemma Lim_bounded2_ereal: | 
| 53873 | 2381 | assumes lim:"f ----> (l :: 'a::linorder_topology)" | 
| 2382 | and ge: "\<forall>n\<ge>N. f n \<ge> C" | |
| 2383 | shows "l \<ge> C" | |
| 51351 | 2384 | using ge | 
| 2385 | by (intro tendsto_le[OF trivial_limit_sequentially lim tendsto_const]) | |
| 2386 | (auto simp: eventually_sequentially) | |
| 2387 | ||
| 43920 | 2388 | lemma real_of_ereal_mult[simp]: | 
| 53873 | 2389 | fixes a b :: ereal | 
| 2390 | shows "real (a * b) = real a * real b" | |
| 43920 | 2391 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 2392 | |
| 43920 | 2393 | lemma real_of_ereal_eq_0: | 
| 53873 | 2394 | fixes x :: ereal | 
| 2395 | shows "real x = 0 \<longleftrightarrow> x = \<infinity> \<or> x = -\<infinity> \<or> x = 0" | |
| 41973 | 2396 | by (cases x) auto | 
| 2397 | ||
| 43920 | 2398 | lemma tendsto_ereal_realD: | 
| 2399 | fixes f :: "'a \<Rightarrow> ereal" | |
| 53873 | 2400 | assumes "x \<noteq> 0" | 
| 2401 | and tendsto: "((\<lambda>x. ereal (real (f x))) ---> x) net" | |
| 41973 | 2402 | shows "(f ---> x) net" | 
| 2403 | proof (intro topological_tendstoI) | |
| 53873 | 2404 | fix S | 
| 2405 | assume S: "open S" "x \<in> S" | |
| 2406 |   with `x \<noteq> 0` have "open (S - {0})" "x \<in> S - {0}"
 | |
| 2407 | by auto | |
| 41973 | 2408 | from tendsto[THEN topological_tendstoD, OF this] | 
| 2409 | show "eventually (\<lambda>x. f x \<in> S) net" | |
| 44142 | 2410 | by (rule eventually_rev_mp) (auto simp: ereal_real) | 
| 41973 | 2411 | qed | 
| 2412 | ||
| 43920 | 2413 | lemma tendsto_ereal_realI: | 
| 2414 | fixes f :: "'a \<Rightarrow> ereal" | |
| 41976 | 2415 | assumes x: "\<bar>x\<bar> \<noteq> \<infinity>" and tendsto: "(f ---> x) net" | 
| 43920 | 2416 | shows "((\<lambda>x. ereal (real (f x))) ---> x) net" | 
| 41973 | 2417 | proof (intro topological_tendstoI) | 
| 53873 | 2418 | fix S | 
| 2419 | assume "open S" and "x \<in> S" | |
| 2420 |   with x have "open (S - {\<infinity>, -\<infinity>})" "x \<in> S - {\<infinity>, -\<infinity>}"
 | |
| 2421 | by auto | |
| 41973 | 2422 | from tendsto[THEN topological_tendstoD, OF this] | 
| 43920 | 2423 | show "eventually (\<lambda>x. ereal (real (f x)) \<in> S) net" | 
| 2424 | by (elim eventually_elim1) (auto simp: ereal_real) | |
| 41973 | 2425 | qed | 
| 2426 | ||
| 43920 | 2427 | lemma ereal_mult_cancel_left: | 
| 53873 | 2428 | fixes a b c :: ereal | 
| 2429 | shows "a * b = a * c \<longleftrightarrow> (\<bar>a\<bar> = \<infinity> \<and> 0 < b * c) \<or> a = 0 \<or> b = c" | |
| 2430 | by (cases rule: ereal3_cases[of a b c]) (simp_all add: zero_less_mult_iff) | |
| 41973 | 2431 | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2432 | lemma tendsto_add_ereal: | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2433 | fixes x y :: ereal | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2434 | assumes x: "\<bar>x\<bar> \<noteq> \<infinity>" and y: "\<bar>y\<bar> \<noteq> \<infinity>" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2435 | assumes f: "(f ---> x) F" and g: "(g ---> y) F" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2436 | shows "((\<lambda>x. f x + g x) ---> x + y) F" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2437 | proof - | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2438 | from x obtain r where x': "x = ereal r" by (cases x) auto | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2439 | with f have "((\<lambda>i. real (f i)) ---> r) F" by simp | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2440 | moreover | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2441 | from y obtain p where y': "y = ereal p" by (cases y) auto | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2442 | with g have "((\<lambda>i. real (g i)) ---> p) F" by simp | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2443 | ultimately have "((\<lambda>i. real (f i) + real (g i)) ---> r + p) F" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2444 | by (rule tendsto_add) | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2445 | moreover | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2446 | from eventually_finite[OF x f] eventually_finite[OF y g] | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2447 | have "eventually (\<lambda>x. f x + g x = ereal (real (f x) + real (g x))) F" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2448 | by eventually_elim auto | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2449 | ultimately show ?thesis | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2450 | by (simp add: x' y' cong: filterlim_cong) | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2451 | qed | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2452 | |
| 43920 | 2453 | lemma ereal_inj_affinity: | 
| 43923 | 2454 | fixes m t :: ereal | 
| 53873 | 2455 | assumes "\<bar>m\<bar> \<noteq> \<infinity>" | 
| 2456 | and "m \<noteq> 0" | |
| 2457 | and "\<bar>t\<bar> \<noteq> \<infinity>" | |
| 41973 | 2458 | shows "inj_on (\<lambda>x. m * x + t) A" | 
| 2459 | using assms | |
| 43920 | 2460 | by (cases rule: ereal2_cases[of m t]) | 
| 2461 | (auto intro!: inj_onI simp: ereal_add_cancel_right ereal_mult_cancel_left) | |
| 41973 | 2462 | |
| 43920 | 2463 | lemma ereal_PInfty_eq_plus[simp]: | 
| 43923 | 2464 | fixes a b :: ereal | 
| 41973 | 2465 | shows "\<infinity> = a + b \<longleftrightarrow> a = \<infinity> \<or> b = \<infinity>" | 
| 43920 | 2466 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 2467 | |
| 43920 | 2468 | lemma ereal_MInfty_eq_plus[simp]: | 
| 43923 | 2469 | fixes a b :: ereal | 
| 41973 | 2470 | shows "-\<infinity> = a + b \<longleftrightarrow> (a = -\<infinity> \<and> b \<noteq> \<infinity>) \<or> (b = -\<infinity> \<and> a \<noteq> \<infinity>)" | 
| 43920 | 2471 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 2472 | |
| 43920 | 2473 | lemma ereal_less_divide_pos: | 
| 43923 | 2474 | fixes x y :: ereal | 
| 2475 | shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y < z / x \<longleftrightarrow> x * y < z" | |
| 43920 | 2476 | by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps) | 
| 41973 | 2477 | |
| 43920 | 2478 | lemma ereal_divide_less_pos: | 
| 43923 | 2479 | fixes x y z :: ereal | 
| 2480 | shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y / x < z \<longleftrightarrow> y < x * z" | |
| 43920 | 2481 | by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps) | 
| 41973 | 2482 | |
| 43920 | 2483 | lemma ereal_divide_eq: | 
| 43923 | 2484 | fixes a b c :: ereal | 
| 2485 | shows "b \<noteq> 0 \<Longrightarrow> \<bar>b\<bar> \<noteq> \<infinity> \<Longrightarrow> a / b = c \<longleftrightarrow> a = b * c" | |
| 43920 | 2486 | by (cases rule: ereal3_cases[of a b c]) | 
| 41973 | 2487 | (simp_all add: field_simps) | 
| 2488 | ||
| 43923 | 2489 | lemma ereal_inverse_not_MInfty[simp]: "inverse (a::ereal) \<noteq> -\<infinity>" | 
| 41973 | 2490 | by (cases a) auto | 
| 2491 | ||
| 43920 | 2492 | lemma ereal_mult_m1[simp]: "x * ereal (-1) = -x" | 
| 41973 | 2493 | by (cases x) auto | 
| 2494 | ||
| 53873 | 2495 | lemma ereal_real': | 
| 2496 | assumes "\<bar>x\<bar> \<noteq> \<infinity>" | |
| 2497 | shows "ereal (real x) = x" | |
| 41976 | 2498 | using assms by auto | 
| 41973 | 2499 | |
| 53873 | 2500 | lemma real_ereal_id: "real \<circ> ereal = id" | 
| 2501 | proof - | |
| 2502 |   {
 | |
| 2503 | fix x | |
| 2504 | have "(real o ereal) x = id x" | |
| 2505 | by auto | |
| 2506 | } | |
| 2507 | then show ?thesis | |
| 2508 | using ext by blast | |
| 41973 | 2509 | qed | 
| 2510 | ||
| 43923 | 2511 | lemma open_image_ereal: "open(UNIV-{ \<infinity> , (-\<infinity> :: ereal)})"
 | 
| 53873 | 2512 | by (metis range_ereal open_ereal open_UNIV) | 
| 41973 | 2513 | |
| 43920 | 2514 | lemma ereal_le_distrib: | 
| 53873 | 2515 | fixes a b c :: ereal | 
| 2516 | shows "c * (a + b) \<le> c * a + c * b" | |
| 43920 | 2517 | by (cases rule: ereal3_cases[of a b c]) | 
| 41973 | 2518 | (auto simp add: field_simps not_le mult_le_0_iff mult_less_0_iff) | 
| 2519 | ||
| 43920 | 2520 | lemma ereal_pos_distrib: | 
| 53873 | 2521 | fixes a b c :: ereal | 
| 2522 | assumes "0 \<le> c" | |
| 2523 | and "c \<noteq> \<infinity>" | |
| 2524 | shows "c * (a + b) = c * a + c * b" | |
| 2525 | using assms | |
| 2526 | by (cases rule: ereal3_cases[of a b c]) | |
| 2527 | (auto simp add: field_simps not_le mult_le_0_iff mult_less_0_iff) | |
| 41973 | 2528 | |
| 53873 | 2529 | lemma ereal_max_mono: "(a::ereal) \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> max a c \<le> max b d" | 
| 43920 | 2530 | by (metis sup_ereal_def sup_mono) | 
| 41973 | 2531 | |
| 53873 | 2532 | lemma ereal_max_least: "(a::ereal) \<le> x \<Longrightarrow> c \<le> x \<Longrightarrow> max a c \<le> x" | 
| 43920 | 2533 | by (metis sup_ereal_def sup_least) | 
| 41973 | 2534 | |
| 51000 | 2535 | lemma ereal_LimI_finite: | 
| 2536 | fixes x :: ereal | |
| 2537 | assumes "\<bar>x\<bar> \<noteq> \<infinity>" | |
| 53873 | 2538 | and "\<And>r. 0 < r \<Longrightarrow> \<exists>N. \<forall>n\<ge>N. u n < x + r \<and> x < u n + r" | 
| 51000 | 2539 | shows "u ----> x" | 
| 2540 | proof (rule topological_tendstoI, unfold eventually_sequentially) | |
| 53873 | 2541 | obtain rx where rx: "x = ereal rx" | 
| 2542 | using assms by (cases x) auto | |
| 2543 | fix S | |
| 2544 | assume "open S" and "x \<in> S" | |
| 2545 | then have "open (ereal -` S)" | |
| 2546 | unfolding open_ereal_def by auto | |
| 2547 | with `x \<in> S` obtain r where "0 < r" and dist: "\<And>y. dist y rx < r \<Longrightarrow> ereal y \<in> S" | |
| 2548 | unfolding open_real_def rx by auto | |
| 51000 | 2549 | then obtain n where | 
| 53873 | 2550 | upper: "\<And>N. n \<le> N \<Longrightarrow> u N < x + ereal r" and | 
| 2551 | lower: "\<And>N. n \<le> N \<Longrightarrow> x < u N + ereal r" | |
| 2552 | using assms(2)[of "ereal r"] by auto | |
| 2553 | show "\<exists>N. \<forall>n\<ge>N. u n \<in> S" | |
| 51000 | 2554 | proof (safe intro!: exI[of _ n]) | 
| 53873 | 2555 | fix N | 
| 2556 | assume "n \<le> N" | |
| 51000 | 2557 | from upper[OF this] lower[OF this] assms `0 < r` | 
| 53873 | 2558 |     have "u N \<notin> {\<infinity>,(-\<infinity>)}"
 | 
| 2559 | by auto | |
| 2560 | then obtain ra where ra_def: "(u N) = ereal ra" | |
| 2561 | by (cases "u N") auto | |
| 2562 | then have "rx < ra + r" and "ra < rx + r" | |
| 2563 | using rx assms `0 < r` lower[OF `n \<le> N`] upper[OF `n \<le> N`] | |
| 2564 | by auto | |
| 2565 | then have "dist (real (u N)) rx < r" | |
| 2566 | using rx ra_def | |
| 51000 | 2567 | by (auto simp: dist_real_def abs_diff_less_iff field_simps) | 
| 53873 | 2568 | from dist[OF this] show "u N \<in> S" | 
| 2569 |       using `u N  \<notin> {\<infinity>, -\<infinity>}`
 | |
| 51000 | 2570 | by (auto simp: ereal_real split: split_if_asm) | 
| 2571 | qed | |
| 2572 | qed | |
| 2573 | ||
| 2574 | lemma tendsto_obtains_N: | |
| 2575 | assumes "f ----> f0" | |
| 53873 | 2576 | assumes "open S" | 
| 2577 | and "f0 \<in> S" | |
| 2578 | obtains N where "\<forall>n\<ge>N. f n \<in> S" | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 2579 | using assms using tendsto_def | 
| 51000 | 2580 | using tendsto_explicit[of f f0] assms by auto | 
| 2581 | ||
| 2582 | lemma ereal_LimI_finite_iff: | |
| 2583 | fixes x :: ereal | |
| 2584 | assumes "\<bar>x\<bar> \<noteq> \<infinity>" | |
| 53873 | 2585 | shows "u ----> x \<longleftrightarrow> (\<forall>r. 0 < r \<longrightarrow> (\<exists>N. \<forall>n\<ge>N. u n < x + r \<and> x < u n + r))" | 
| 2586 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 51000 | 2587 | proof | 
| 2588 | assume lim: "u ----> x" | |
| 53873 | 2589 |   {
 | 
| 2590 | fix r :: ereal | |
| 2591 | assume "r > 0" | |
| 2592 |     then obtain N where "\<forall>n\<ge>N. u n \<in> {x - r <..< x + r}"
 | |
| 51000 | 2593 |        apply (subst tendsto_obtains_N[of u x "{x - r <..< x + r}"])
 | 
| 53873 | 2594 | using lim ereal_between[of x r] assms `r > 0` | 
| 2595 | apply auto | |
| 2596 | done | |
| 2597 | then have "\<exists>N. \<forall>n\<ge>N. u n < x + r \<and> x < u n + r" | |
| 2598 | using ereal_minus_less[of r x] | |
| 2599 | by (cases r) auto | |
| 2600 | } | |
| 2601 | then show ?rhs | |
| 2602 | by auto | |
| 51000 | 2603 | next | 
| 53873 | 2604 | assume ?rhs | 
| 2605 | then show "u ----> x" | |
| 51000 | 2606 | using ereal_LimI_finite[of x] assms by auto | 
| 2607 | qed | |
| 2608 | ||
| 51340 
5e6296afe08d
move Liminf / Limsup lemmas on complete_lattices to its own file
 hoelzl parents: 
51329diff
changeset | 2609 | lemma ereal_Limsup_uminus: | 
| 53873 | 2610 | fixes f :: "'a \<Rightarrow> ereal" | 
| 2611 | shows "Limsup net (\<lambda>x. - (f x)) = - Liminf net f" | |
| 59452 
2538b2c51769
ereal: tuned proofs concerning continuity and suprema
 hoelzl parents: 
59425diff
changeset | 2612 | unfolding Limsup_def Liminf_def ereal_SUP_uminus ereal_INF_uminus_eq .. | 
| 51000 | 2613 | |
| 51340 
5e6296afe08d
move Liminf / Limsup lemmas on complete_lattices to its own file
 hoelzl parents: 
51329diff
changeset | 2614 | lemma liminf_bounded_iff: | 
| 
5e6296afe08d
move Liminf / Limsup lemmas on complete_lattices to its own file
 hoelzl parents: 
51329diff
changeset | 2615 | fixes x :: "nat \<Rightarrow> ereal" | 
| 53873 | 2616 | shows "C \<le> liminf x \<longleftrightarrow> (\<forall>B<C. \<exists>N. \<forall>n\<ge>N. B < x n)" | 
| 2617 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 51340 
5e6296afe08d
move Liminf / Limsup lemmas on complete_lattices to its own file
 hoelzl parents: 
51329diff
changeset | 2618 | unfolding le_Liminf_iff eventually_sequentially .. | 
| 51000 | 2619 | |
| 59679 | 2620 | lemma Liminf_add_le: | 
| 2621 | fixes f g :: "_ \<Rightarrow> ereal" | |
| 2622 | assumes F: "F \<noteq> bot" | |
| 2623 | assumes ev: "eventually (\<lambda>x. 0 \<le> f x) F" "eventually (\<lambda>x. 0 \<le> g x) F" | |
| 2624 | shows "Liminf F f + Liminf F g \<le> Liminf F (\<lambda>x. f x + g x)" | |
| 2625 | unfolding Liminf_def | |
| 2626 | proof (subst SUP_ereal_add_left[symmetric]) | |
| 2627 |   let ?F = "{P. eventually P F}"
 | |
| 2628 | let ?INF = "\<lambda>P g. INFIMUM (Collect P) g" | |
| 2629 |   show "?F \<noteq> {}"
 | |
| 2630 | by (auto intro: eventually_True) | |
| 2631 | show "(SUP P:?F. ?INF P g) \<noteq> - \<infinity>" | |
| 2632 | unfolding bot_ereal_def[symmetric] SUP_bot_conv INF_eq_bot_iff | |
| 2633 | by (auto intro!: exI[of _ 0] ev simp: bot_ereal_def) | |
| 2634 | have "(SUP P:?F. ?INF P f + (SUP P:?F. ?INF P g)) \<le> (SUP P:?F. (SUP P':?F. ?INF P f + ?INF P' g))" | |
| 2635 | proof (safe intro!: SUP_mono bexI[of _ "\<lambda>x. P x \<and> 0 \<le> f x" for P]) | |
| 2636 | fix P let ?P' = "\<lambda>x. P x \<and> 0 \<le> f x" | |
| 2637 | assume "eventually P F" | |
| 2638 | with ev show "eventually ?P' F" | |
| 2639 | by eventually_elim auto | |
| 2640 | have "?INF P f + (SUP P:?F. ?INF P g) \<le> ?INF ?P' f + (SUP P:?F. ?INF P g)" | |
| 2641 | by (intro ereal_add_mono INF_mono) auto | |
| 2642 | also have "\<dots> = (SUP P':?F. ?INF ?P' f + ?INF P' g)" | |
| 2643 | proof (rule SUP_ereal_add_right[symmetric]) | |
| 2644 |       show "INFIMUM {x. P x \<and> 0 \<le> f x} f \<noteq> - \<infinity>"
 | |
| 2645 | unfolding bot_ereal_def[symmetric] INF_eq_bot_iff | |
| 2646 | by (auto intro!: exI[of _ 0] ev simp: bot_ereal_def) | |
| 2647 | qed fact | |
| 2648 | finally show "?INF P f + (SUP P:?F. ?INF P g) \<le> (SUP P':?F. ?INF ?P' f + ?INF P' g)" . | |
| 2649 | qed | |
| 2650 | also have "\<dots> \<le> (SUP P:?F. INF x:Collect P. f x + g x)" | |
| 2651 | proof (safe intro!: SUP_least) | |
| 2652 | fix P Q assume *: "eventually P F" "eventually Q F" | |
| 2653 | show "?INF P f + ?INF Q g \<le> (SUP P:?F. INF x:Collect P. f x + g x)" | |
| 2654 | proof (rule SUP_upper2) | |
| 2655 | show "(\<lambda>x. P x \<and> Q x) \<in> ?F" | |
| 2656 | using * by (auto simp: eventually_conj) | |
| 2657 |       show "?INF P f + ?INF Q g \<le> (INF x:{x. P x \<and> Q x}. f x + g x)"
 | |
| 2658 | by (intro INF_greatest ereal_add_mono) (auto intro: INF_lower) | |
| 2659 | qed | |
| 2660 | qed | |
| 2661 | finally show "(SUP P:?F. ?INF P f + (SUP P:?F. ?INF P g)) \<le> (SUP P:?F. INF x:Collect P. f x + g x)" . | |
| 2662 | qed | |
| 2663 | ||
| 60060 | 2664 | lemma Sup_ereal_mult_right': | 
| 2665 |   assumes nonempty: "Y \<noteq> {}"
 | |
| 2666 | and x: "x \<ge> 0" | |
| 2667 | shows "(SUP i:Y. f i) * ereal x = (SUP i:Y. f i * ereal x)" (is "?lhs = ?rhs") | |
| 2668 | proof(cases "x = 0") | |
| 2669 | case True thus ?thesis by(auto simp add: nonempty zero_ereal_def[symmetric]) | |
| 2670 | next | |
| 2671 | case False | |
| 2672 | show ?thesis | |
| 2673 | proof(rule antisym) | |
| 2674 | show "?rhs \<le> ?lhs" | |
| 2675 | by(rule SUP_least)(simp add: ereal_mult_right_mono SUP_upper x) | |
| 2676 | next | |
| 2677 | have "?lhs / ereal x = (SUP i:Y. f i) * (ereal x / ereal x)" by(simp only: ereal_times_divide_eq) | |
| 2678 | also have "\<dots> = (SUP i:Y. f i)" using False by simp | |
| 2679 | also have "\<dots> \<le> ?rhs / x" | |
| 2680 | proof(rule SUP_least) | |
| 2681 | fix i | |
| 2682 | assume "i \<in> Y" | |
| 2683 | have "f i = f i * (ereal x / ereal x)" using False by simp | |
| 2684 | also have "\<dots> = f i * x / x" by(simp only: ereal_times_divide_eq) | |
| 2685 | also from \<open>i \<in> Y\<close> have "f i * x \<le> ?rhs" by(rule SUP_upper) | |
| 2686 | hence "f i * x / x \<le> ?rhs / x" using x False by simp | |
| 2687 | finally show "f i \<le> ?rhs / x" . | |
| 2688 | qed | |
| 2689 | finally have "(?lhs / x) * x \<le> (?rhs / x) * x" | |
| 2690 | by(rule ereal_mult_right_mono)(simp add: x) | |
| 2691 | also have "\<dots> = ?rhs" using False ereal_divide_eq mult.commute by force | |
| 2692 | also have "(?lhs / x) * x = ?lhs" using False ereal_divide_eq mult.commute by force | |
| 2693 | finally show "?lhs \<le> ?rhs" . | |
| 2694 | qed | |
| 2695 | qed | |
| 53873 | 2696 | |
| 43933 | 2697 | subsubsection {* Tests for code generator *}
 | 
| 2698 | ||
| 2699 | (* A small list of simple arithmetic expressions *) | |
| 2700 | ||
| 56927 | 2701 | value "- \<infinity> :: ereal" | 
| 2702 | value "\<bar>-\<infinity>\<bar> :: ereal" | |
| 2703 | value "4 + 5 / 4 - ereal 2 :: ereal" | |
| 2704 | value "ereal 3 < \<infinity>" | |
| 2705 | value "real (\<infinity>::ereal) = 0" | |
| 43933 | 2706 | |
| 41973 | 2707 | end |