| author | wenzelm | 
| Mon, 11 Jul 2022 13:40:10 +0200 | |
| changeset 75673 | eb7480f29adc | 
| parent 73932 | fd21b4a93043 | 
| child 78248 | 740b23f1138a | 
| permissions | -rw-r--r-- | 
| 53572 | 1 | (* Author: John Harrison | 
| 2 | Author: Robert Himmelmann, TU Muenchen (translation from HOL light) | |
| 3 | *) | |
| 36432 | 4 | |
| 69722 
b5163b2132c5
minor tagging updates in 13 theories
 Angeliki KoutsoukouArgyraki <ak2110@cam.ac.uk> parents: 
69683diff
changeset | 5 | section \<open>Fashoda Meet Theorem\<close> | 
| 36432 | 6 | |
| 63594 
bd218a9320b5
HOL-Multivariate_Analysis: rename theories for more descriptive names
 hoelzl parents: 
63040diff
changeset | 7 | theory Fashoda_Theorem | 
| 37674 
f86de9c00c47
convert theorem path_connected_sphere to euclidean_space class
 huffman parents: 
37489diff
changeset | 8 | imports Brouwer_Fixpoint Path_Connected Cartesian_Euclidean_Space | 
| 36432 | 9 | begin | 
| 10 | ||
| 69683 | 11 | subsection \<open>Bijections between intervals\<close> | 
| 56273 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 12 | |
| 70136 | 13 | definition\<^marker>\<open>tag important\<close> interval_bij :: "'a \<times> 'a \<Rightarrow> 'a \<times> 'a \<Rightarrow> 'a \<Rightarrow> 'a::euclidean_space" | 
| 56273 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 14 | where "interval_bij = | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 15 | (\<lambda>(a, b) (u, v) x. (\<Sum>i\<in>Basis. (u\<bullet>i + (x\<bullet>i - a\<bullet>i) / (b\<bullet>i - a\<bullet>i) * (v\<bullet>i - u\<bullet>i)) *\<^sub>R i))" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 16 | |
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 17 | lemma interval_bij_affine: | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 18 | "interval_bij (a,b) (u,v) = (\<lambda>x. (\<Sum>i\<in>Basis. ((v\<bullet>i - u\<bullet>i) / (b\<bullet>i - a\<bullet>i) * (x\<bullet>i)) *\<^sub>R i) + | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 19 | (\<Sum>i\<in>Basis. (u\<bullet>i - (v\<bullet>i - u\<bullet>i) / (b\<bullet>i - a\<bullet>i) * (a\<bullet>i)) *\<^sub>R i))" | 
| 70802 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70136diff
changeset | 20 | by (auto simp add: interval_bij_def sum.distrib [symmetric] scaleR_add_left [symmetric] | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70136diff
changeset | 21 | fun_eq_iff intro!: sum.cong) | 
| 
160eaf566bcb
formally augmented corresponding rules for field_simps
 haftmann parents: 
70136diff
changeset | 22 | (simp add: algebra_simps diff_divide_distrib [symmetric]) | 
| 56273 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 23 | |
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 24 | lemma continuous_interval_bij: | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 25 | fixes a b :: "'a::euclidean_space" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 26 | shows "continuous (at x) (interval_bij (a, b) (u, v))" | 
| 64267 | 27 | by (auto simp add: divide_inverse interval_bij_def intro!: continuous_sum continuous_intros) | 
| 56273 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 28 | |
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 29 | lemma continuous_on_interval_bij: "continuous_on s (interval_bij (a, b) (u, v))" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 30 | apply(rule continuous_at_imp_continuous_on) | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 31 | apply (rule, rule continuous_interval_bij) | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 32 | done | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 33 | |
| 69681 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 immler parents: 
69680diff
changeset | 34 | lemma in_interval_interval_bij: | 
| 56273 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 35 | fixes a b u v x :: "'a::euclidean_space" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 36 | assumes "x \<in> cbox a b" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 37 |     and "cbox u v \<noteq> {}"
 | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 38 | shows "interval_bij (a, b) (u, v) x \<in> cbox u v" | 
| 64267 | 39 | apply (simp only: interval_bij_def split_conv mem_box inner_sum_left_Basis cong: ball_cong) | 
| 56273 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 40 | apply safe | 
| 69681 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 immler parents: 
69680diff
changeset | 41 | proof - | 
| 56273 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 42 | fix i :: 'a | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 43 | assume i: "i \<in> Basis" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 44 |   have "cbox a b \<noteq> {}"
 | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 45 | using assms by auto | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 46 | with i have *: "a\<bullet>i \<le> b\<bullet>i" "u\<bullet>i \<le> v\<bullet>i" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 47 | using assms(2) by (auto simp add: box_eq_empty) | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 48 | have x: "a\<bullet>i\<le>x\<bullet>i" "x\<bullet>i\<le>b\<bullet>i" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 49 | using assms(1)[unfolded mem_box] using i by auto | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 50 | have "0 \<le> (x \<bullet> i - a \<bullet> i) / (b \<bullet> i - a \<bullet> i) * (v \<bullet> i - u \<bullet> i)" | 
| 56571 
f4635657d66f
added divide_nonneg_nonneg and co; made it a simp rule
 hoelzl parents: 
56371diff
changeset | 51 | using * x by auto | 
| 56273 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 52 | then show "u \<bullet> i \<le> u \<bullet> i + (x \<bullet> i - a \<bullet> i) / (b \<bullet> i - a \<bullet> i) * (v \<bullet> i - u \<bullet> i)" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 53 | using * by auto | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 54 | have "((x \<bullet> i - a \<bullet> i) / (b \<bullet> i - a \<bullet> i)) * (v \<bullet> i - u \<bullet> i) \<le> 1 * (v \<bullet> i - u \<bullet> i)" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 55 | apply (rule mult_right_mono) | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 56 | unfolding divide_le_eq_1 | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 57 | using * x | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 58 | apply auto | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 59 | done | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 60 | then show "u \<bullet> i + (x \<bullet> i - a \<bullet> i) / (b \<bullet> i - a \<bullet> i) * (v \<bullet> i - u \<bullet> i) \<le> v \<bullet> i" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 61 | using * by auto | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 62 | qed | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 63 | |
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 64 | lemma interval_bij_bij: | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 65 | "\<forall>(i::'a::euclidean_space)\<in>Basis. a\<bullet>i < b\<bullet>i \<and> u\<bullet>i < v\<bullet>i \<Longrightarrow> | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 66 | interval_bij (a, b) (u, v) (interval_bij (u, v) (a, b) x) = x" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 67 | by (auto simp: interval_bij_def euclidean_eq_iff[where 'a='a]) | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 68 | |
| 63594 
bd218a9320b5
HOL-Multivariate_Analysis: rename theories for more descriptive names
 hoelzl parents: 
63040diff
changeset | 69 | lemma interval_bij_bij_cart: fixes x::"real^'n" assumes "\<forall>i. a$i < b$i \<and> u$i < v$i" | 
| 56273 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 70 | shows "interval_bij (a,b) (u,v) (interval_bij (u,v) (a,b) x) = x" | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 71 | using assms by (intro interval_bij_bij) (auto simp: Basis_vec_def inner_axis) | 
| 
def3bbe6f2a5
cleanup auxiliary proofs for Brouwer fixpoint theorem (removes ~2400 lines)
 hoelzl parents: 
56189diff
changeset | 72 | |
| 53572 | 73 | |
| 69683 | 74 | subsection \<open>Fashoda meet theorem\<close> | 
| 36432 | 75 | |
| 53572 | 76 | lemma infnorm_2: | 
| 77 | fixes x :: "real^2" | |
| 61945 | 78 | shows "infnorm x = max \<bar>x$1\<bar> \<bar>x$2\<bar>" | 
| 53572 | 79 | unfolding infnorm_cart UNIV_2 by (rule cSup_eq) auto | 
| 36432 | 80 | |
| 53572 | 81 | lemma infnorm_eq_1_2: | 
| 82 | fixes x :: "real^2" | |
| 83 | shows "infnorm x = 1 \<longleftrightarrow> | |
| 61945 | 84 | \<bar>x$1\<bar> \<le> 1 \<and> \<bar>x$2\<bar> \<le> 1 \<and> (x$1 = -1 \<or> x$1 = 1 \<or> x$2 = -1 \<or> x$2 = 1)" | 
| 36432 | 85 | unfolding infnorm_2 by auto | 
| 86 | ||
| 53572 | 87 | lemma infnorm_eq_1_imp: | 
| 88 | fixes x :: "real^2" | |
| 89 | assumes "infnorm x = 1" | |
| 61945 | 90 | shows "\<bar>x$1\<bar> \<le> 1" and "\<bar>x$2\<bar> \<le> 1" | 
| 36432 | 91 | using assms unfolding infnorm_eq_1_2 by auto | 
| 92 | ||
| 69681 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 immler parents: 
69680diff
changeset | 93 | proposition fashoda_unit: | 
| 53572 | 94 | fixes f g :: "real \<Rightarrow> real^2" | 
| 56188 | 95 |   assumes "f ` {-1 .. 1} \<subseteq> cbox (-1) 1"
 | 
| 96 |     and "g ` {-1 .. 1} \<subseteq> cbox (-1) 1"
 | |
| 97 |     and "continuous_on {-1 .. 1} f"
 | |
| 98 |     and "continuous_on {-1 .. 1} g"
 | |
| 53572 | 99 | and "f (- 1)$1 = - 1" | 
| 100 | and "f 1$1 = 1" "g (- 1) $2 = -1" | |
| 101 | and "g 1 $2 = 1" | |
| 56188 | 102 |   shows "\<exists>s\<in>{-1 .. 1}. \<exists>t\<in>{-1 .. 1}. f s = g t"
 | 
| 69681 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 immler parents: 
69680diff
changeset | 103 | proof (rule ccontr) | 
| 53572 | 104 | assume "\<not> ?thesis" | 
| 105 | note as = this[unfolded bex_simps,rule_format] | |
| 63040 | 106 | define sqprojection | 
| 107 | where [abs_def]: "sqprojection z = (inverse (infnorm z)) *\<^sub>R z" for z :: "real^2" | |
| 108 | define negatex :: "real^2 \<Rightarrow> real^2" | |
| 109 | where "negatex x = (vector [-(x$1), x$2])" for x | |
| 53572 | 110 | have lem1: "\<forall>z::real^2. infnorm (negatex z) = infnorm z" | 
| 36432 | 111 | unfolding negatex_def infnorm_2 vector_2 by auto | 
| 53572 | 112 | have lem2: "\<forall>z. z \<noteq> 0 \<longrightarrow> infnorm (sqprojection z) = 1" | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 113 | unfolding sqprojection_def infnorm_mul[unfolded scalar_mult_eq_scaleR] | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 114 | by (simp add: real_abs_infnorm infnorm_eq_0) | 
| 53572 | 115 | let ?F = "\<lambda>w::real^2. (f \<circ> (\<lambda>x. x$1)) w - (g \<circ> (\<lambda>x. x$2)) w" | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 116 |   have *: "\<And>i. (\<lambda>x::real^2. x $ i) ` cbox (- 1) 1 = {-1..1}"
 | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 117 | proof | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 118 |     show "(\<lambda>x::real^2. x $ i) ` cbox (- 1) 1 \<subseteq> {-1..1}" for i
 | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 119 | by (auto simp: mem_box_cart) | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 120 |     show "{-1..1} \<subseteq> (\<lambda>x::real^2. x $ i) ` cbox (- 1) 1" for i
 | 
| 73932 
fd21b4a93043
added opaque_combs and renamed hide_lams to opaque_lifting
 desharna parents: 
71633diff
changeset | 121 | by (clarsimp simp: image_iff mem_box_cart Bex_def) (metis (no_types, opaque_lifting) vec_component) | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 122 | qed | 
| 53572 | 123 |   {
 | 
| 124 | fix x | |
| 56188 | 125 | assume "x \<in> (\<lambda>w. (f \<circ> (\<lambda>x. x $ 1)) w - (g \<circ> (\<lambda>x. x $ 2)) w) ` (cbox (- 1) (1::real^2))" | 
| 55675 | 126 | then obtain w :: "real^2" where w: | 
| 56188 | 127 | "w \<in> cbox (- 1) 1" | 
| 55675 | 128 | "x = (f \<circ> (\<lambda>x. x $ 1)) w - (g \<circ> (\<lambda>x. x $ 2)) w" | 
| 129 | unfolding image_iff .. | |
| 53572 | 130 | then have "x \<noteq> 0" | 
| 131 | using as[of "w$1" "w$2"] | |
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 132 | unfolding mem_box_cart atLeastAtMost_iff | 
| 53572 | 133 | by auto | 
| 134 | } note x0 = this | |
| 54775 
2d3df8633dad
prefer box over greaterThanLessThan on euclidean_space
 immler parents: 
53628diff
changeset | 135 |   have 1: "box (- 1) (1::real^2) \<noteq> {}"
 | 
| 53572 | 136 | unfolding interval_eq_empty_cart by auto | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 137 | have "negatex (x + y) $ i = (negatex x + negatex y) $ i \<and> negatex (c *\<^sub>R x) $ i = (c *\<^sub>R negatex x) $ i" | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 138 | for i x y c | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 139 | using exhaust_2 [of i] by (auto simp: negatex_def) | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 140 | then have "bounded_linear negatex" | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 141 | by (simp add: bounded_linearI' vec_eq_iff) | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 142 | then have 2: "continuous_on (cbox (- 1) 1) (negatex \<circ> sqprojection \<circ> ?F)" | 
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56273diff
changeset | 143 | apply (intro continuous_intros continuous_on_component) | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 144 | unfolding * sqprojection_def | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 145 | apply (intro assms continuous_intros)+ | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 146 | apply (simp_all add: infnorm_eq_0 x0 linear_continuous_on) | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 147 | done | 
| 56188 | 148 | have 3: "(negatex \<circ> sqprojection \<circ> ?F) ` cbox (-1) 1 \<subseteq> cbox (-1) 1" | 
| 53572 | 149 | unfolding subset_eq | 
| 61166 
5976fe402824
renamed method "goals" to "goal_cases" to emphasize its meaning;
 wenzelm parents: 
61165diff
changeset | 150 | proof (rule, goal_cases) | 
| 61165 | 151 | case (1 x) | 
| 55675 | 152 | then obtain y :: "real^2" where y: | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
57418diff
changeset | 153 | "y \<in> cbox (- 1) 1" | 
| 55675 | 154 | "x = (negatex \<circ> sqprojection \<circ> (\<lambda>w. (f \<circ> (\<lambda>x. x $ 1)) w - (g \<circ> (\<lambda>x. x $ 2)) w)) y" | 
| 155 | unfolding image_iff .. | |
| 53572 | 156 | have "?F y \<noteq> 0" | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 157 | by (rule x0) (use y in auto) | 
| 53572 | 158 | then have *: "infnorm (sqprojection (?F y)) = 1" | 
| 53628 | 159 | unfolding y o_def | 
| 160 | by - (rule lem2[rule_format]) | |
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 161 | have inf1: "infnorm x = 1" | 
| 53628 | 162 | unfolding *[symmetric] y o_def | 
| 163 | by (rule lem1[rule_format]) | |
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 164 | show "x \<in> cbox (-1) 1" | 
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 165 | unfolding mem_box_cart interval_cbox_cart infnorm_2 | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 166 | proof | 
| 61165 | 167 | fix i | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 168 | show "(- 1) $ i \<le> x $ i \<and> x $ i \<le> 1 $ i" | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 169 | using exhaust_2 [of i] inf1 by (auto simp: infnorm_2) | 
| 53572 | 170 | qed | 
| 171 | qed | |
| 55675 | 172 | obtain x :: "real^2" where x: | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
57418diff
changeset | 173 | "x \<in> cbox (- 1) 1" | 
| 55675 | 174 | "(negatex \<circ> sqprojection \<circ> (\<lambda>w. (f \<circ> (\<lambda>x. x $ 1)) w - (g \<circ> (\<lambda>x. x $ 2)) w)) x = x" | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
57418diff
changeset | 175 | apply (rule brouwer_weak[of "cbox (- 1) (1::real^2)" "negatex \<circ> sqprojection \<circ> ?F"]) | 
| 56188 | 176 | apply (rule compact_cbox convex_box)+ | 
| 177 | unfolding interior_cbox | |
| 53572 | 178 | apply (rule 1 2 3)+ | 
| 55675 | 179 | apply blast | 
| 53572 | 180 | done | 
| 181 | have "?F x \<noteq> 0" | |
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 182 | by (rule x0) (use x in auto) | 
| 53572 | 183 | then have *: "infnorm (sqprojection (?F x)) = 1" | 
| 53628 | 184 | unfolding o_def | 
| 185 | by (rule lem2[rule_format]) | |
| 53572 | 186 | have nx: "infnorm x = 1" | 
| 53628 | 187 | apply (subst x(2)[symmetric]) | 
| 188 | unfolding *[symmetric] o_def | |
| 53572 | 189 | apply (rule lem1[rule_format]) | 
| 190 | done | |
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 191 | have iff: "0 < sqprojection x$i \<longleftrightarrow> 0 < x$i" "sqprojection x$i < 0 \<longleftrightarrow> x$i < 0" if "x \<noteq> 0" for x i | 
| 53572 | 192 | proof - | 
| 193 | have "inverse (infnorm x) > 0" | |
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 194 | by (simp add: infnorm_pos_lt that) | 
| 53572 | 195 | then show "(0 < sqprojection x $ i) = (0 < x $ i)" | 
| 196 | and "(sqprojection x $ i < 0) = (x $ i < 0)" | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44136diff
changeset | 197 | unfolding sqprojection_def vector_component_simps vector_scaleR_component real_scaleR_def | 
| 53572 | 198 | unfolding zero_less_mult_iff mult_less_0_iff | 
| 199 | by (auto simp add: field_simps) | |
| 200 | qed | |
| 201 |   have x1: "x $ 1 \<in> {- 1..1::real}" "x $ 2 \<in> {- 1..1::real}"
 | |
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 202 | using x(1) unfolding mem_box_cart by auto | 
| 53572 | 203 | then have nz: "f (x $ 1) - g (x $ 2) \<noteq> 0" | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 204 | using as by auto | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 205 | consider "x $ 1 = -1" | "x $ 1 = 1" | "x $ 2 = -1" | "x $ 2 = 1" | 
| 63594 
bd218a9320b5
HOL-Multivariate_Analysis: rename theories for more descriptive names
 hoelzl parents: 
63040diff
changeset | 206 | using nx unfolding infnorm_eq_1_2 by auto | 
| 53572 | 207 | then show False | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 208 | proof cases | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 209 | case 1 | 
| 53572 | 210 | then have *: "f (x $ 1) $ 1 = - 1" | 
| 211 | using assms(5) by auto | |
| 36432 | 212 | have "sqprojection (f (x$1) - g (x$2)) $ 1 > 0" | 
| 44136 
e63ad7d5158d
more uniform naming scheme for finite cartesian product type and related theorems
 huffman parents: 
41958diff
changeset | 213 | using x(2)[unfolded o_def vec_eq_iff,THEN spec[where x=1]] | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 214 | by (auto simp: negatex_def 1) | 
| 53572 | 215 | moreover | 
| 56188 | 216 | from x1 have "g (x $ 2) \<in> cbox (-1) 1" | 
| 67982 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 217 | using assms(2) by blast | 
| 53572 | 218 | ultimately show False | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 219 | unfolding iff[OF nz] vector_component_simps * mem_box_cart | 
| 67982 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 220 | using not_le by auto | 
| 53572 | 221 | next | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 222 | case 2 | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 223 | then have *: "f (x $ 1) $ 1 = 1" | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 224 | using assms(6) by auto | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 225 | have "sqprojection (f (x$1) - g (x$2)) $ 1 < 0" | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 226 | using x(2)[unfolded o_def vec_eq_iff,THEN spec[where x=1]] 2 | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 227 | by (auto simp: negatex_def) | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 228 | moreover have "g (x $ 2) \<in> cbox (-1) 1" | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 229 | using assms(2) x1 by blast | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 230 | ultimately show False | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 231 | unfolding iff[OF nz] vector_component_simps * mem_box_cart | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 232 | using not_le by auto | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 233 | next | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 234 | case 3 | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 235 | then have *: "g (x $ 2) $ 2 = - 1" | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 236 | using assms(7) by auto | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 237 | have "sqprojection (f (x$1) - g (x$2)) $ 2 < 0" | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 238 | using x(2)[unfolded o_def vec_eq_iff,THEN spec[where x=2]] 3 by (auto simp: negatex_def) | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 239 | moreover | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 240 | from x1 have "f (x $ 1) \<in> cbox (-1) 1" | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 241 | using assms(1) by blast | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 242 | ultimately show False | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 243 | unfolding iff[OF nz] vector_component_simps * mem_box_cart | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 244 | by (erule_tac x=2 in allE) auto | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 245 | next | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 246 | case 4 | 
| 53572 | 247 | then have *: "g (x $ 2) $ 2 = 1" | 
| 248 | using assms(8) by auto | |
| 36432 | 249 | have "sqprojection (f (x$1) - g (x$2)) $ 2 > 0" | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 250 | using x(2)[unfolded o_def vec_eq_iff,THEN spec[where x=2]] 4 by (auto simp: negatex_def) | 
| 53572 | 251 | moreover | 
| 56188 | 252 | from x1 have "f (x $ 1) \<in> cbox (-1) 1" | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 253 | using assms(1) by blast | 
| 53572 | 254 | ultimately show False | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 255 | unfolding iff[OF nz] vector_component_simps * mem_box_cart | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 256 | by (erule_tac x=2 in allE) auto | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 257 | qed | 
| 53572 | 258 | qed | 
| 36432 | 259 | |
| 69681 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 immler parents: 
69680diff
changeset | 260 | proposition fashoda_unit_path: | 
| 53572 | 261 | fixes f g :: "real \<Rightarrow> real^2" | 
| 262 | assumes "path f" | |
| 263 | and "path g" | |
| 56188 | 264 | and "path_image f \<subseteq> cbox (-1) 1" | 
| 265 | and "path_image g \<subseteq> cbox (-1) 1" | |
| 53572 | 266 | and "(pathstart f)$1 = -1" | 
| 267 | and "(pathfinish f)$1 = 1" | |
| 268 | and "(pathstart g)$2 = -1" | |
| 269 | and "(pathfinish g)$2 = 1" | |
| 270 | obtains z where "z \<in> path_image f" and "z \<in> path_image g" | |
| 69681 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 immler parents: 
69680diff
changeset | 271 | proof - | 
| 36432 | 272 | note assms=assms[unfolded path_def pathstart_def pathfinish_def path_image_def] | 
| 63040 | 273 | define iscale where [abs_def]: "iscale z = inverse 2 *\<^sub>R (z + 1)" for z :: real | 
| 53572 | 274 |   have isc: "iscale ` {- 1..1} \<subseteq> {0..1}"
 | 
| 275 | unfolding iscale_def by auto | |
| 276 |   have "\<exists>s\<in>{- 1..1}. \<exists>t\<in>{- 1..1}. (f \<circ> iscale) s = (g \<circ> iscale) t"
 | |
| 277 | proof (rule fashoda_unit) | |
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
57418diff
changeset | 278 |     show "(f \<circ> iscale) ` {- 1..1} \<subseteq> cbox (- 1) 1" "(g \<circ> iscale) ` {- 1..1} \<subseteq> cbox (- 1) 1"
 | 
| 56154 
f0a927235162
more complete set of lemmas wrt. image and composition
 haftmann parents: 
55675diff
changeset | 279 | using isc and assms(3-4) by (auto simp add: image_comp [symmetric]) | 
| 53572 | 280 |     have *: "continuous_on {- 1..1} iscale"
 | 
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56273diff
changeset | 281 | unfolding iscale_def by (rule continuous_intros)+ | 
| 36432 | 282 |     show "continuous_on {- 1..1} (f \<circ> iscale)" "continuous_on {- 1..1} (g \<circ> iscale)"
 | 
| 53572 | 283 | apply - | 
| 284 | apply (rule_tac[!] continuous_on_compose[OF *]) | |
| 285 | apply (rule_tac[!] continuous_on_subset[OF _ isc]) | |
| 286 | apply (rule assms)+ | |
| 287 | done | |
| 288 | have *: "(1 / 2) *\<^sub>R (1 + (1::real^1)) = 1" | |
| 289 | unfolding vec_eq_iff by auto | |
| 290 | show "(f \<circ> iscale) (- 1) $ 1 = - 1" | |
| 291 | and "(f \<circ> iscale) 1 $ 1 = 1" | |
| 292 | and "(g \<circ> iscale) (- 1) $ 2 = -1" | |
| 293 | and "(g \<circ> iscale) 1 $ 2 = 1" | |
| 294 | unfolding o_def iscale_def | |
| 295 | using assms | |
| 296 | by (auto simp add: *) | |
| 297 | qed | |
| 55675 | 298 | then obtain s t where st: | 
| 299 |       "s \<in> {- 1..1}"
 | |
| 300 |       "t \<in> {- 1..1}"
 | |
| 301 | "(f \<circ> iscale) s = (g \<circ> iscale) t" | |
| 56188 | 302 | by auto | 
| 53572 | 303 | show thesis | 
| 53628 | 304 | apply (rule_tac z = "f (iscale s)" in that) | 
| 55675 | 305 | using st | 
| 53572 | 306 | unfolding o_def path_image_def image_iff | 
| 307 | apply - | |
| 308 | apply (rule_tac x="iscale s" in bexI) | |
| 309 | prefer 3 | |
| 310 | apply (rule_tac x="iscale t" in bexI) | |
| 311 | using isc[unfolded subset_eq, rule_format] | |
| 312 | apply auto | |
| 313 | done | |
| 314 | qed | |
| 36432 | 315 | |
| 69681 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 immler parents: 
69680diff
changeset | 316 | theorem fashoda: | 
| 53627 | 317 | fixes b :: "real^2" | 
| 318 | assumes "path f" | |
| 319 | and "path g" | |
| 56188 | 320 | and "path_image f \<subseteq> cbox a b" | 
| 321 | and "path_image g \<subseteq> cbox a b" | |
| 53627 | 322 | and "(pathstart f)$1 = a$1" | 
| 323 | and "(pathfinish f)$1 = b$1" | |
| 324 | and "(pathstart g)$2 = a$2" | |
| 325 | and "(pathfinish g)$2 = b$2" | |
| 326 | obtains z where "z \<in> path_image f" and "z \<in> path_image g" | |
| 69681 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 immler parents: 
69680diff
changeset | 327 | proof - | 
| 53627 | 328 | fix P Q S | 
| 329 | presume "P \<or> Q \<or> S" "P \<Longrightarrow> thesis" and "Q \<Longrightarrow> thesis" and "S \<Longrightarrow> thesis" | |
| 330 | then show thesis | |
| 331 | by auto | |
| 332 | next | |
| 56188 | 333 |   have "cbox a b \<noteq> {}"
 | 
| 54775 
2d3df8633dad
prefer box over greaterThanLessThan on euclidean_space
 immler parents: 
53628diff
changeset | 334 | using assms(3) using path_image_nonempty[of f] by auto | 
| 53627 | 335 | then have "a \<le> b" | 
| 336 | unfolding interval_eq_empty_cart less_eq_vec_def by (auto simp add: not_less) | |
| 337 | then show "a$1 = b$1 \<or> a$2 = b$2 \<or> (a$1 < b$1 \<and> a$2 < b$2)" | |
| 338 | unfolding less_eq_vec_def forall_2 by auto | |
| 339 | next | |
| 340 | assume as: "a$1 = b$1" | |
| 341 | have "\<exists>z\<in>path_image g. z$2 = (pathstart f)$2" | |
| 342 | apply (rule connected_ivt_component_cart) | |
| 343 | apply (rule connected_path_image assms)+ | |
| 344 | apply (rule pathstart_in_path_image) | |
| 345 | apply (rule pathfinish_in_path_image) | |
| 36432 | 346 | unfolding assms using assms(3)[unfolded path_image_def subset_eq,rule_format,of "f 0"] | 
| 53627 | 347 | unfolding pathstart_def | 
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 348 | apply (auto simp add: less_eq_vec_def mem_box_cart) | 
| 53627 | 349 | done | 
| 55675 | 350 | then obtain z :: "real^2" where z: "z \<in> path_image g" "z $ 2 = pathstart f $ 2" .. | 
| 56188 | 351 | have "z \<in> cbox a b" | 
| 53627 | 352 | using z(1) assms(4) | 
| 353 | unfolding path_image_def | |
| 56188 | 354 | by blast | 
| 53627 | 355 | then have "z = f 0" | 
| 356 | unfolding vec_eq_iff forall_2 | |
| 357 | unfolding z(2) pathstart_def | |
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 358 | using assms(3)[unfolded path_image_def subset_eq mem_box_cart,rule_format,of "f 0" 1] | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 359 | unfolding mem_box_cart | 
| 53627 | 360 | apply (erule_tac x=1 in allE) | 
| 361 | using as | |
| 362 | apply auto | |
| 363 | done | |
| 364 | then show thesis | |
| 365 | apply - | |
| 366 | apply (rule that[OF _ z(1)]) | |
| 367 | unfolding path_image_def | |
| 368 | apply auto | |
| 369 | done | |
| 370 | next | |
| 371 | assume as: "a$2 = b$2" | |
| 372 | have "\<exists>z\<in>path_image f. z$1 = (pathstart g)$1" | |
| 373 | apply (rule connected_ivt_component_cart) | |
| 374 | apply (rule connected_path_image assms)+ | |
| 375 | apply (rule pathstart_in_path_image) | |
| 376 | apply (rule pathfinish_in_path_image) | |
| 377 | unfolding assms | |
| 378 | using assms(4)[unfolded path_image_def subset_eq,rule_format,of "g 0"] | |
| 379 | unfolding pathstart_def | |
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 380 | apply (auto simp add: less_eq_vec_def mem_box_cart) | 
| 53627 | 381 | done | 
| 55675 | 382 | then obtain z where z: "z \<in> path_image f" "z $ 1 = pathstart g $ 1" .. | 
| 56188 | 383 | have "z \<in> cbox a b" | 
| 53627 | 384 | using z(1) assms(3) | 
| 385 | unfolding path_image_def | |
| 56188 | 386 | by blast | 
| 53627 | 387 | then have "z = g 0" | 
| 388 | unfolding vec_eq_iff forall_2 | |
| 389 | unfolding z(2) pathstart_def | |
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 390 | using assms(4)[unfolded path_image_def subset_eq mem_box_cart,rule_format,of "g 0" 2] | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 391 | unfolding mem_box_cart | 
| 53627 | 392 | apply (erule_tac x=2 in allE) | 
| 393 | using as | |
| 394 | apply auto | |
| 395 | done | |
| 396 | then show thesis | |
| 397 | apply - | |
| 398 | apply (rule that[OF z(1)]) | |
| 399 | unfolding path_image_def | |
| 400 | apply auto | |
| 401 | done | |
| 402 | next | |
| 403 | assume as: "a $ 1 < b $ 1 \<and> a $ 2 < b $ 2" | |
| 56188 | 404 |   have int_nem: "cbox (-1) (1::real^2) \<noteq> {}"
 | 
| 53627 | 405 | unfolding interval_eq_empty_cart by auto | 
| 55675 | 406 | obtain z :: "real^2" where z: | 
| 407 |       "z \<in> (interval_bij (a, b) (- 1, 1) \<circ> f) ` {0..1}"
 | |
| 408 |       "z \<in> (interval_bij (a, b) (- 1, 1) \<circ> g) ` {0..1}"
 | |
| 63594 
bd218a9320b5
HOL-Multivariate_Analysis: rename theories for more descriptive names
 hoelzl parents: 
63040diff
changeset | 409 | apply (rule fashoda_unit_path[of "interval_bij (a,b) (- 1,1) \<circ> f" "interval_bij (a,b) (- 1,1) \<circ> g"]) | 
| 36432 | 410 | unfolding path_def path_image_def pathstart_def pathfinish_def | 
| 53627 | 411 | apply (rule_tac[1-2] continuous_on_compose) | 
| 412 | apply (rule assms[unfolded path_def] continuous_on_interval_bij)+ | |
| 413 | unfolding subset_eq | |
| 414 | apply(rule_tac[1-2] ballI) | |
| 415 | proof - | |
| 416 | fix x | |
| 417 |     assume "x \<in> (interval_bij (a, b) (- 1, 1) \<circ> f) ` {0..1}"
 | |
| 55675 | 418 | then obtain y where y: | 
| 419 |         "y \<in> {0..1}"
 | |
| 420 | "x = (interval_bij (a, b) (- 1, 1) \<circ> f) y" | |
| 421 | unfolding image_iff .. | |
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
57418diff
changeset | 422 | show "x \<in> cbox (- 1) 1" | 
| 53627 | 423 | unfolding y o_def | 
| 424 | apply (rule in_interval_interval_bij) | |
| 425 | using y(1) | |
| 426 | using assms(3)[unfolded path_image_def subset_eq] int_nem | |
| 427 | apply auto | |
| 428 | done | |
| 429 | next | |
| 430 | fix x | |
| 431 |     assume "x \<in> (interval_bij (a, b) (- 1, 1) \<circ> g) ` {0..1}"
 | |
| 55675 | 432 | then obtain y where y: | 
| 433 |         "y \<in> {0..1}"
 | |
| 434 | "x = (interval_bij (a, b) (- 1, 1) \<circ> g) y" | |
| 435 | unfolding image_iff .. | |
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
57418diff
changeset | 436 | show "x \<in> cbox (- 1) 1" | 
| 53627 | 437 | unfolding y o_def | 
| 438 | apply (rule in_interval_interval_bij) | |
| 439 | using y(1) | |
| 440 | using assms(4)[unfolded path_image_def subset_eq] int_nem | |
| 441 | apply auto | |
| 442 | done | |
| 443 | next | |
| 444 | show "(interval_bij (a, b) (- 1, 1) \<circ> f) 0 $ 1 = -1" | |
| 445 | and "(interval_bij (a, b) (- 1, 1) \<circ> f) 1 $ 1 = 1" | |
| 446 | and "(interval_bij (a, b) (- 1, 1) \<circ> g) 0 $ 2 = -1" | |
| 447 | and "(interval_bij (a, b) (- 1, 1) \<circ> g) 1 $ 2 = 1" | |
| 56188 | 448 | using assms as | 
| 67982 
7643b005b29a
various new results on measures, integrals, etc., and some simplified proofs
 paulson <lp15@cam.ac.uk> parents: 
67968diff
changeset | 449 | by (simp_all add: cart_eq_inner_axis pathstart_def pathfinish_def interval_bij_def) | 
| 50526 
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
 hoelzl parents: 
44647diff
changeset | 450 | (simp_all add: inner_axis) | 
| 53627 | 451 | qed | 
| 55675 | 452 | from z(1) obtain zf where zf: | 
| 453 |       "zf \<in> {0..1}"
 | |
| 454 | "z = (interval_bij (a, b) (- 1, 1) \<circ> f) zf" | |
| 455 | unfolding image_iff .. | |
| 456 | from z(2) obtain zg where zg: | |
| 457 |       "zg \<in> {0..1}"
 | |
| 458 | "z = (interval_bij (a, b) (- 1, 1) \<circ> g) zg" | |
| 459 | unfolding image_iff .. | |
| 53627 | 460 | have *: "\<forall>i. (- 1) $ i < (1::real^2) $ i \<and> a $ i < b $ i" | 
| 461 | unfolding forall_2 | |
| 462 | using as | |
| 463 | by auto | |
| 464 | show thesis | |
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 465 | proof (rule_tac z="interval_bij (- 1,1) (a,b) z" in that) | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 466 | show "interval_bij (- 1, 1) (a, b) z \<in> path_image f" | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 467 | using zf by (simp add: interval_bij_bij_cart[OF *] path_image_def) | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 468 | show "interval_bij (- 1, 1) (a, b) z \<in> path_image g" | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 469 | using zg by (simp add: interval_bij_bij_cart[OF *] path_image_def) | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 470 | qed | 
| 53627 | 471 | qed | 
| 36432 | 472 | |
| 53627 | 473 | |
| 70136 | 474 | subsection\<^marker>\<open>tag unimportant\<close> \<open>Some slightly ad hoc lemmas I use below\<close> | 
| 36432 | 475 | |
| 53627 | 476 | lemma segment_vertical: | 
| 477 | fixes a :: "real^2" | |
| 478 | assumes "a$1 = b$1" | |
| 479 | shows "x \<in> closed_segment a b \<longleftrightarrow> | |
| 480 | x$1 = a$1 \<and> x$1 = b$1 \<and> (a$2 \<le> x$2 \<and> x$2 \<le> b$2 \<or> b$2 \<le> x$2 \<and> x$2 \<le> a$2)" | |
| 481 | (is "_ = ?R") | |
| 482 | proof - | |
| 36432 | 483 | let ?L = "\<exists>u. (x $ 1 = (1 - u) * a $ 1 + u * b $ 1 \<and> x $ 2 = (1 - u) * a $ 2 + u * b $ 2) \<and> 0 \<le> u \<and> u \<le> 1" | 
| 53627 | 484 |   {
 | 
| 485 | presume "?L \<Longrightarrow> ?R" and "?R \<Longrightarrow> ?L" | |
| 486 | then show ?thesis | |
| 487 | unfolding closed_segment_def mem_Collect_eq | |
| 53628 | 488 | unfolding vec_eq_iff forall_2 scalar_mult_eq_scaleR[symmetric] vector_component_simps | 
| 53627 | 489 | by blast | 
| 490 | } | |
| 491 |   {
 | |
| 492 | assume ?L | |
| 55675 | 493 | then obtain u where u: | 
| 494 | "x $ 1 = (1 - u) * a $ 1 + u * b $ 1" | |
| 495 | "x $ 2 = (1 - u) * a $ 2 + u * b $ 2" | |
| 496 | "0 \<le> u" | |
| 497 | "u \<le> 1" | |
| 498 | by blast | |
| 53627 | 499 |     { fix b a
 | 
| 500 | assume "b + u * a > a + u * b" | |
| 501 | then have "(1 - u) * b > (1 - u) * a" | |
| 502 | by (auto simp add:field_simps) | |
| 503 | then have "b \<ge> a" | |
| 59555 | 504 | apply (drule_tac mult_left_less_imp_less) | 
| 53627 | 505 | using u | 
| 506 | apply auto | |
| 507 | done | |
| 508 | then have "u * a \<le> u * b" | |
| 509 | apply - | |
| 63594 
bd218a9320b5
HOL-Multivariate_Analysis: rename theories for more descriptive names
 hoelzl parents: 
63040diff
changeset | 510 | apply (rule mult_left_mono[OF _ u(3)]) | 
| 53627 | 511 | using u(3-4) | 
| 512 | apply (auto simp add: field_simps) | |
| 513 | done | |
| 514 | } note * = this | |
| 515 |     {
 | |
| 516 | fix a b | |
| 517 | assume "u * b > u * a" | |
| 518 | then have "(1 - u) * a \<le> (1 - u) * b" | |
| 519 | apply - | |
| 520 | apply (rule mult_left_mono) | |
| 59555 | 521 | apply (drule mult_left_less_imp_less) | 
| 53627 | 522 | using u | 
| 523 | apply auto | |
| 524 | done | |
| 525 | then have "a + u * b \<le> b + u * a" | |
| 526 | by (auto simp add: field_simps) | |
| 527 | } note ** = this | |
| 528 | then show ?R | |
| 529 | unfolding u assms | |
| 530 | using u | |
| 531 | by (auto simp add:field_simps not_le intro: * **) | |
| 532 | } | |
| 533 |   {
 | |
| 534 | assume ?R | |
| 535 | then show ?L | |
| 536 | proof (cases "x$2 = b$2") | |
| 537 | case True | |
| 538 | then show ?L | |
| 539 | apply (rule_tac x="(x$2 - a$2) / (b$2 - a$2)" in exI) | |
| 68310 | 540 | unfolding assms True using \<open>?R\<close> apply (auto simp add: field_simps) | 
| 53627 | 541 | done | 
| 542 | next | |
| 543 | case False | |
| 544 | then show ?L | |
| 545 | apply (rule_tac x="1 - (x$2 - b$2) / (a$2 - b$2)" in exI) | |
| 68310 | 546 | unfolding assms using \<open>?R\<close> apply (auto simp add: field_simps) | 
| 53627 | 547 | done | 
| 548 | qed | |
| 549 | } | |
| 550 | qed | |
| 36432 | 551 | |
| 53627 | 552 | lemma segment_horizontal: | 
| 553 | fixes a :: "real^2" | |
| 554 | assumes "a$2 = b$2" | |
| 555 | shows "x \<in> closed_segment a b \<longleftrightarrow> | |
| 556 | x$2 = a$2 \<and> x$2 = b$2 \<and> (a$1 \<le> x$1 \<and> x$1 \<le> b$1 \<or> b$1 \<le> x$1 \<and> x$1 \<le> a$1)" | |
| 557 | (is "_ = ?R") | |
| 558 | proof - | |
| 36432 | 559 | let ?L = "\<exists>u. (x $ 1 = (1 - u) * a $ 1 + u * b $ 1 \<and> x $ 2 = (1 - u) * a $ 2 + u * b $ 2) \<and> 0 \<le> u \<and> u \<le> 1" | 
| 53627 | 560 |   {
 | 
| 561 | presume "?L \<Longrightarrow> ?R" and "?R \<Longrightarrow> ?L" | |
| 562 | then show ?thesis | |
| 563 | unfolding closed_segment_def mem_Collect_eq | |
| 53628 | 564 | unfolding vec_eq_iff forall_2 scalar_mult_eq_scaleR[symmetric] vector_component_simps | 
| 53627 | 565 | by blast | 
| 566 | } | |
| 567 |   {
 | |
| 568 | assume ?L | |
| 55675 | 569 | then obtain u where u: | 
| 570 | "x $ 1 = (1 - u) * a $ 1 + u * b $ 1" | |
| 571 | "x $ 2 = (1 - u) * a $ 2 + u * b $ 2" | |
| 572 | "0 \<le> u" | |
| 573 | "u \<le> 1" | |
| 574 | by blast | |
| 53627 | 575 |     {
 | 
| 576 | fix b a | |
| 577 | assume "b + u * a > a + u * b" | |
| 578 | then have "(1 - u) * b > (1 - u) * a" | |
| 53628 | 579 | by (auto simp add: field_simps) | 
| 53627 | 580 | then have "b \<ge> a" | 
| 59555 | 581 | apply (drule_tac mult_left_less_imp_less) | 
| 53627 | 582 | using u | 
| 583 | apply auto | |
| 584 | done | |
| 585 | then have "u * a \<le> u * b" | |
| 586 | apply - | |
| 587 | apply (rule mult_left_mono[OF _ u(3)]) | |
| 588 | using u(3-4) | |
| 589 | apply (auto simp add: field_simps) | |
| 590 | done | |
| 591 | } note * = this | |
| 592 |     {
 | |
| 593 | fix a b | |
| 594 | assume "u * b > u * a" | |
| 595 | then have "(1 - u) * a \<le> (1 - u) * b" | |
| 596 | apply - | |
| 597 | apply (rule mult_left_mono) | |
| 59555 | 598 | apply (drule mult_left_less_imp_less) | 
| 53627 | 599 | using u | 
| 600 | apply auto | |
| 601 | done | |
| 602 | then have "a + u * b \<le> b + u * a" | |
| 603 | by (auto simp add: field_simps) | |
| 604 | } note ** = this | |
| 605 | then show ?R | |
| 606 | unfolding u assms | |
| 607 | using u | |
| 608 | by (auto simp add: field_simps not_le intro: * **) | |
| 609 | } | |
| 610 |   {
 | |
| 611 | assume ?R | |
| 612 | then show ?L | |
| 613 | proof (cases "x$1 = b$1") | |
| 614 | case True | |
| 615 | then show ?L | |
| 616 | apply (rule_tac x="(x$1 - a$1) / (b$1 - a$1)" in exI) | |
| 617 | unfolding assms True | |
| 60420 | 618 | using \<open>?R\<close> | 
| 53627 | 619 | apply (auto simp add: field_simps) | 
| 620 | done | |
| 621 | next | |
| 622 | case False | |
| 623 | then show ?L | |
| 624 | apply (rule_tac x="1 - (x$1 - b$1) / (a$1 - b$1)" in exI) | |
| 625 | unfolding assms | |
| 60420 | 626 | using \<open>?R\<close> | 
| 53627 | 627 | apply (auto simp add: field_simps) | 
| 628 | done | |
| 629 | qed | |
| 630 | } | |
| 631 | qed | |
| 36432 | 632 | |
| 53627 | 633 | |
| 69683 | 634 | subsection \<open>Useful Fashoda corollary pointed out to me by Tom Hales\<close>(*FIXME change title? *) | 
| 36432 | 635 | |
| 69681 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 immler parents: 
69680diff
changeset | 636 | corollary fashoda_interlace: | 
| 53627 | 637 | fixes a :: "real^2" | 
| 638 | assumes "path f" | |
| 639 | and "path g" | |
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 640 | and paf: "path_image f \<subseteq> cbox a b" | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 641 | and pag: "path_image g \<subseteq> cbox a b" | 
| 53627 | 642 | and "(pathstart f)$2 = a$2" | 
| 643 | and "(pathfinish f)$2 = a$2" | |
| 644 | and "(pathstart g)$2 = a$2" | |
| 645 | and "(pathfinish g)$2 = a$2" | |
| 646 | and "(pathstart f)$1 < (pathstart g)$1" | |
| 647 | and "(pathstart g)$1 < (pathfinish f)$1" | |
| 648 | and "(pathfinish f)$1 < (pathfinish g)$1" | |
| 649 | obtains z where "z \<in> path_image f" and "z \<in> path_image g" | |
| 69681 
689997a8a582
redo tagging-related changes from a06b204527e6, 0f4d4a13dc16, and a8faf6f15da7
 immler parents: 
69680diff
changeset | 650 | proof - | 
| 56188 | 651 |   have "cbox a b \<noteq> {}"
 | 
| 54775 
2d3df8633dad
prefer box over greaterThanLessThan on euclidean_space
 immler parents: 
53628diff
changeset | 652 | using path_image_nonempty[of f] using assms(3) by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36593diff
changeset | 653 | note ab=this[unfolded interval_eq_empty_cart not_ex forall_2 not_less] | 
| 56188 | 654 | have "pathstart f \<in> cbox a b" | 
| 655 | and "pathfinish f \<in> cbox a b" | |
| 656 | and "pathstart g \<in> cbox a b" | |
| 657 | and "pathfinish g \<in> cbox a b" | |
| 53628 | 658 | using pathstart_in_path_image pathfinish_in_path_image | 
| 659 | using assms(3-4) | |
| 660 | by auto | |
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 661 | note startfin = this[unfolded mem_box_cart forall_2] | 
| 36432 | 662 | let ?P1 = "linepath (vector[a$1 - 2, a$2 - 2]) (vector[(pathstart f)$1,a$2 - 2]) +++ | 
| 663 | linepath(vector[(pathstart f)$1,a$2 - 2])(pathstart f) +++ f +++ | |
| 664 | linepath(pathfinish f)(vector[(pathfinish f)$1,a$2 - 2]) +++ | |
| 63594 
bd218a9320b5
HOL-Multivariate_Analysis: rename theories for more descriptive names
 hoelzl parents: 
63040diff
changeset | 665 | linepath(vector[(pathfinish f)$1,a$2 - 2])(vector[b$1 + 2,a$2 - 2])" | 
| 36432 | 666 | let ?P2 = "linepath(vector[(pathstart g)$1, (pathstart g)$2 - 3])(pathstart g) +++ g +++ | 
| 667 | linepath(pathfinish g)(vector[(pathfinish g)$1,a$2 - 1]) +++ | |
| 668 | linepath(vector[(pathfinish g)$1,a$2 - 1])(vector[b$1 + 1,a$2 - 1]) +++ | |
| 669 | linepath(vector[b$1 + 1,a$2 - 1])(vector[b$1 + 1,b$2 + 3])" | |
| 670 | let ?a = "vector[a$1 - 2, a$2 - 3]" | |
| 671 | let ?b = "vector[b$1 + 2, b$2 + 3]" | |
| 53627 | 672 | have P1P2: "path_image ?P1 = path_image (linepath (vector[a$1 - 2, a$2 - 2]) (vector[(pathstart f)$1,a$2 - 2])) \<union> | 
| 36432 | 673 | path_image (linepath(vector[(pathstart f)$1,a$2 - 2])(pathstart f)) \<union> path_image f \<union> | 
| 674 | path_image (linepath(pathfinish f)(vector[(pathfinish f)$1,a$2 - 2])) \<union> | |
| 675 | path_image (linepath(vector[(pathfinish f)$1,a$2 - 2])(vector[b$1 + 2,a$2 - 2]))" | |
| 676 | "path_image ?P2 = path_image(linepath(vector[(pathstart g)$1, (pathstart g)$2 - 3])(pathstart g)) \<union> path_image g \<union> | |
| 677 | path_image(linepath(pathfinish g)(vector[(pathfinish g)$1,a$2 - 1])) \<union> | |
| 678 | path_image(linepath(vector[(pathfinish g)$1,a$2 - 1])(vector[b$1 + 1,a$2 - 1])) \<union> | |
| 679 | path_image(linepath(vector[b$1 + 1,a$2 - 1])(vector[b$1 + 1,b$2 + 3]))" using assms(1-2) | |
| 71633 | 680 | by(auto simp add: path_image_join) | 
| 56188 | 681 | have abab: "cbox a b \<subseteq> cbox ?a ?b" | 
| 682 | unfolding interval_cbox_cart[symmetric] | |
| 71633 | 683 | by (auto simp add:less_eq_vec_def forall_2) | 
| 55675 | 684 | obtain z where | 
| 685 | "z \<in> path_image | |
| 686 | (linepath (vector [a $ 1 - 2, a $ 2 - 2]) (vector [pathstart f $ 1, a $ 2 - 2]) +++ | |
| 687 | linepath (vector [pathstart f $ 1, a $ 2 - 2]) (pathstart f) +++ | |
| 688 | f +++ | |
| 689 | linepath (pathfinish f) (vector [pathfinish f $ 1, a $ 2 - 2]) +++ | |
| 690 | linepath (vector [pathfinish f $ 1, a $ 2 - 2]) (vector [b $ 1 + 2, a $ 2 - 2]))" | |
| 691 | "z \<in> path_image | |
| 692 | (linepath (vector [pathstart g $ 1, pathstart g $ 2 - 3]) (pathstart g) +++ | |
| 693 | g +++ | |
| 694 | linepath (pathfinish g) (vector [pathfinish g $ 1, a $ 2 - 1]) +++ | |
| 695 | linepath (vector [pathfinish g $ 1, a $ 2 - 1]) (vector [b $ 1 + 1, a $ 2 - 1]) +++ | |
| 696 | linepath (vector [b $ 1 + 1, a $ 2 - 1]) (vector [b $ 1 + 1, b $ 2 + 3]))" | |
| 53627 | 697 | apply (rule fashoda[of ?P1 ?P2 ?a ?b]) | 
| 698 | unfolding pathstart_join pathfinish_join pathstart_linepath pathfinish_linepath vector_2 | |
| 699 | proof - | |
| 53628 | 700 | show "path ?P1" and "path ?P2" | 
| 53627 | 701 | using assms by auto | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 702 | show "path_image ?P1 \<subseteq> cbox ?a ?b" "path_image ?P2 \<subseteq> cbox ?a ?b" | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 703 | unfolding P1P2 path_image_linepath using startfin paf pag | 
| 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 704 | by (auto simp: mem_box_cart segment_horizontal segment_vertical forall_2) | 
| 53627 | 705 | show "a $ 1 - 2 = a $ 1 - 2" | 
| 706 | and "b $ 1 + 2 = b $ 1 + 2" | |
| 707 | and "pathstart g $ 2 - 3 = a $ 2 - 3" | |
| 708 | and "b $ 2 + 3 = b $ 2 + 3" | |
| 709 | by (auto simp add: assms) | |
| 53628 | 710 | qed | 
| 711 | note z=this[unfolded P1P2 path_image_linepath] | |
| 53627 | 712 | show thesis | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 713 | proof (rule that[of z]) | 
| 36432 | 714 | have "(z \<in> closed_segment (vector [a $ 1 - 2, a $ 2 - 2]) (vector [pathstart f $ 1, a $ 2 - 2]) \<or> | 
| 53627 | 715 | z \<in> closed_segment (vector [pathstart f $ 1, a $ 2 - 2]) (pathstart f)) \<or> | 
| 716 | z \<in> closed_segment (pathfinish f) (vector [pathfinish f $ 1, a $ 2 - 2]) \<or> | |
| 717 | z \<in> closed_segment (vector [pathfinish f $ 1, a $ 2 - 2]) (vector [b $ 1 + 2, a $ 2 - 2]) \<Longrightarrow> | |
| 718 | (((z \<in> closed_segment (vector [pathstart g $ 1, pathstart g $ 2 - 3]) (pathstart g)) \<or> | |
| 719 | z \<in> closed_segment (pathfinish g) (vector [pathfinish g $ 1, a $ 2 - 1])) \<or> | |
| 720 | z \<in> closed_segment (vector [pathfinish g $ 1, a $ 2 - 1]) (vector [b $ 1 + 1, a $ 2 - 1])) \<or> | |
| 721 | z \<in> closed_segment (vector [b $ 1 + 1, a $ 2 - 1]) (vector [b $ 1 + 1, b $ 2 + 3]) \<Longrightarrow> False" | |
| 61166 
5976fe402824
renamed method "goals" to "goal_cases" to emphasize its meaning;
 wenzelm parents: 
61165diff
changeset | 722 | proof (simp only: segment_vertical segment_horizontal vector_2, goal_cases) | 
| 61167 | 723 | case prems: 1 | 
| 56188 | 724 | have "pathfinish f \<in> cbox a b" | 
| 63594 
bd218a9320b5
HOL-Multivariate_Analysis: rename theories for more descriptive names
 hoelzl parents: 
63040diff
changeset | 725 | using assms(3) pathfinish_in_path_image[of f] by auto | 
| 53628 | 726 | then have "1 + b $ 1 \<le> pathfinish f $ 1 \<Longrightarrow> False" | 
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 727 | unfolding mem_box_cart forall_2 by auto | 
| 53627 | 728 | then have "z$1 \<noteq> pathfinish f$1" | 
| 61167 | 729 | using prems(2) | 
| 53628 | 730 | using assms ab | 
| 731 | by (auto simp add: field_simps) | |
| 56188 | 732 | moreover have "pathstart f \<in> cbox a b" | 
| 53628 | 733 | using assms(3) pathstart_in_path_image[of f] | 
| 734 | by auto | |
| 53627 | 735 | then have "1 + b $ 1 \<le> pathstart f $ 1 \<Longrightarrow> False" | 
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 736 | unfolding mem_box_cart forall_2 | 
| 53628 | 737 | by auto | 
| 53627 | 738 | then have "z$1 \<noteq> pathstart f$1" | 
| 61167 | 739 | using prems(2) using assms ab | 
| 53628 | 740 | by (auto simp add: field_simps) | 
| 53627 | 741 | ultimately have *: "z$2 = a$2 - 2" | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 742 | using prems(1) by auto | 
| 53627 | 743 | have "z$1 \<noteq> pathfinish g$1" | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 744 | using prems(2) assms ab | 
| 53628 | 745 | by (auto simp add: field_simps *) | 
| 56188 | 746 | moreover have "pathstart g \<in> cbox a b" | 
| 53628 | 747 | using assms(4) pathstart_in_path_image[of g] | 
| 63594 
bd218a9320b5
HOL-Multivariate_Analysis: rename theories for more descriptive names
 hoelzl parents: 
63040diff
changeset | 748 | by auto | 
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 749 | note this[unfolded mem_box_cart forall_2] | 
| 53627 | 750 | then have "z$1 \<noteq> pathstart g$1" | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 751 | using prems(1) assms ab | 
| 53628 | 752 | by (auto simp add: field_simps *) | 
| 36432 | 753 | ultimately have "a $ 2 - 1 \<le> z $ 2 \<and> z $ 2 \<le> b $ 2 + 3 \<or> b $ 2 + 3 \<le> z $ 2 \<and> z $ 2 \<le> a $ 2 - 1" | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 754 | using prems(2) unfolding * assms by (auto simp add: field_simps) | 
| 53627 | 755 | then show False | 
| 756 | unfolding * using ab by auto | |
| 757 | qed | |
| 758 | then have "z \<in> path_image f \<or> z \<in> path_image g" | |
| 759 | using z unfolding Un_iff by blast | |
| 56188 | 760 | then have z': "z \<in> cbox a b" | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 761 | using assms(3-4) by auto | 
| 53627 | 762 | have "a $ 2 = z $ 2 \<Longrightarrow> (z $ 1 = pathstart f $ 1 \<or> z $ 1 = pathfinish f $ 1) \<Longrightarrow> | 
| 763 | z = pathstart f \<or> z = pathfinish f" | |
| 53628 | 764 | unfolding vec_eq_iff forall_2 assms | 
| 765 | by auto | |
| 53627 | 766 | with z' show "z \<in> path_image f" | 
| 767 | using z(1) | |
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 768 | unfolding Un_iff mem_box_cart forall_2 | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 769 | by (simp only: segment_vertical segment_horizontal vector_2) (auto simp: assms) | 
| 53627 | 770 | have "a $ 2 = z $ 2 \<Longrightarrow> (z $ 1 = pathstart g $ 1 \<or> z $ 1 = pathfinish g $ 1) \<Longrightarrow> | 
| 771 | z = pathstart g \<or> z = pathfinish g" | |
| 53628 | 772 | unfolding vec_eq_iff forall_2 assms | 
| 773 | by auto | |
| 53627 | 774 | with z' show "z \<in> path_image g" | 
| 775 | using z(2) | |
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
64267diff
changeset | 776 | unfolding Un_iff mem_box_cart forall_2 | 
| 68054 
ebd179b82e20
getting rid of more "defer", etc.
 paulson <lp15@cam.ac.uk> parents: 
68004diff
changeset | 777 | by (simp only: segment_vertical segment_horizontal vector_2) (auto simp: assms) | 
| 53627 | 778 | qed | 
| 779 | qed | |
| 36432 | 780 | |
| 781 | end |