21131
|
1 |
(* Title: HOL/ex/LexOrds.thy
|
|
2 |
ID:
|
|
3 |
Author: Lukas Bulwahn, TU Muenchen
|
|
4 |
|
|
5 |
Examples for functions whose termination is proven by lexicographic order.
|
|
6 |
*)
|
|
7 |
|
|
8 |
theory LexOrds
|
|
9 |
imports Main
|
|
10 |
begin
|
|
11 |
|
|
12 |
subsection {* Trivial examples *}
|
|
13 |
|
|
14 |
fun f :: "nat \<Rightarrow> nat"
|
|
15 |
where
|
|
16 |
"f n = n"
|
|
17 |
|
|
18 |
termination by lexicographic_order
|
|
19 |
|
|
20 |
|
|
21 |
fun g :: "nat \<Rightarrow> nat"
|
|
22 |
where
|
|
23 |
"g 0 = 0"
|
|
24 |
"g (Suc n) = Suc (g n)"
|
|
25 |
|
|
26 |
termination by lexicographic_order
|
|
27 |
|
|
28 |
|
|
29 |
subsection {* Examples on natural numbers *}
|
|
30 |
|
|
31 |
fun bin :: "(nat * nat) \<Rightarrow> nat"
|
|
32 |
where
|
|
33 |
"bin (0, 0) = 1"
|
|
34 |
"bin (Suc n, 0) = 0"
|
|
35 |
"bin (0, Suc m) = 0"
|
|
36 |
"bin (Suc n, Suc m) = bin (n, m) + bin (Suc n, m)"
|
|
37 |
|
|
38 |
termination by lexicographic_order
|
|
39 |
|
|
40 |
|
|
41 |
fun t :: "(nat * nat) \<Rightarrow> nat"
|
|
42 |
where
|
|
43 |
"t (0,n) = 0"
|
|
44 |
"t (n,0) = 0"
|
|
45 |
"t (Suc n, Suc m) = (if (n mod 2 = 0) then (t (Suc n, m)) else (t (n, Suc m)))"
|
|
46 |
|
|
47 |
termination by lexicographic_order
|
|
48 |
|
|
49 |
function h :: "(nat * nat) * (nat * nat) \<Rightarrow> nat"
|
|
50 |
where
|
|
51 |
"h ((0,0),(0,0)) = 0"
|
|
52 |
"h ((Suc z, y), (u,v)) = h((z, y), (u, v))" (* z is descending *)
|
|
53 |
"h ((0, Suc y), (u,v)) = h((1, y), (u, v))" (* y is descending *)
|
|
54 |
"h ((0,0), (Suc u, v)) = h((1, 1), (u, v))" (* u is descending *)
|
|
55 |
"h ((0,0), (0, Suc v)) = h ((1,1), (1,v))" (* v is descending *)
|
|
56 |
by (pat_completeness, auto)
|
|
57 |
|
|
58 |
termination by lexicographic_order
|
|
59 |
|
|
60 |
|
|
61 |
fun gcd2 :: "nat \<Rightarrow> nat \<Rightarrow> nat"
|
|
62 |
where
|
|
63 |
"gcd2 x 0 = x"
|
|
64 |
| "gcd2 0 y = y"
|
|
65 |
| "gcd2 (Suc x) (Suc y) = (if x < y then gcd2 (Suc x) (y - x)
|
|
66 |
else gcd2 (x - y) (Suc y))"
|
|
67 |
|
|
68 |
termination by lexicographic_order
|
|
69 |
|
|
70 |
|
|
71 |
function ack :: "(nat * nat) \<Rightarrow> nat"
|
|
72 |
where
|
|
73 |
"ack (0, m) = Suc m"
|
|
74 |
"ack (Suc n, 0) = ack(n, 1)"
|
|
75 |
"ack (Suc n, Suc m) = ack (n, ack (Suc n, m))"
|
|
76 |
by pat_completeness auto
|
|
77 |
|
|
78 |
termination by lexicographic_order
|
|
79 |
|
|
80 |
subsection {* Simple examples with other datatypes than nat, e.g. trees and lists *}
|
|
81 |
|
|
82 |
datatype tree = Node | Branch tree tree
|
|
83 |
|
|
84 |
fun g_tree :: "tree * tree \<Rightarrow> tree"
|
|
85 |
where
|
|
86 |
"g_tree (Node, Node) = Node"
|
|
87 |
"g_tree (Node, Branch a b) = Branch Node (g_tree (a,b))"
|
|
88 |
"g_tree (Branch a b, Node) = Branch (g_tree (a,Node)) b"
|
|
89 |
"g_tree (Branch a b, Branch c d) = Branch (g_tree (a,c)) (g_tree (b,d))"
|
|
90 |
|
|
91 |
|
|
92 |
termination by lexicographic_order
|
|
93 |
|
|
94 |
|
|
95 |
fun acklist :: "'a list * 'a list \<Rightarrow> 'a list"
|
|
96 |
where
|
|
97 |
"acklist ([], m) = ((hd m)#m)"
|
|
98 |
| "acklist (n#ns, []) = acklist (ns, [n])"
|
|
99 |
| "acklist ((n#ns), (m#ms)) = acklist (ns, acklist ((n#ns), ms))"
|
|
100 |
|
|
101 |
termination by lexicographic_order
|
|
102 |
|
|
103 |
|
|
104 |
subsection {* Examples with mutual recursion *}
|
|
105 |
|
|
106 |
fun evn od :: "nat \<Rightarrow> bool"
|
|
107 |
where
|
|
108 |
"evn 0 = True"
|
|
109 |
| "od 0 = False"
|
|
110 |
| "evn (Suc n) = od n"
|
|
111 |
| "od (Suc n) = evn n"
|
|
112 |
|
|
113 |
termination by lexicographic_order
|
|
114 |
|
|
115 |
|
|
116 |
fun
|
|
117 |
evn2 od2 :: "(nat * nat) \<Rightarrow> bool"
|
|
118 |
where
|
|
119 |
"evn2 (0, n) = True"
|
|
120 |
"evn2 (n, 0) = True"
|
|
121 |
"od2 (0, n) = False"
|
|
122 |
"od2 (n, 0) = False"
|
|
123 |
"evn2 (Suc n, Suc m) = od2 (Suc n, m)"
|
|
124 |
"od2 (Suc n, Suc m) = evn2 (n, Suc m)"
|
|
125 |
|
|
126 |
termination by lexicographic_order
|
|
127 |
|
|
128 |
|
|
129 |
fun evn3 od3 :: "(nat * nat) \<Rightarrow> nat"
|
|
130 |
where
|
|
131 |
"evn3 (0,n) = n"
|
|
132 |
"od3 (0,n) = n"
|
|
133 |
"evn3 (n,0) = n"
|
|
134 |
"od3 (n,0) = n"
|
|
135 |
"evn3 (Suc n, Suc m) = od3 (Suc m, n)"
|
|
136 |
"od3 (Suc n, Suc m) = evn3 (Suc m, n) + od3(n, m)"
|
|
137 |
|
|
138 |
termination by lexicographic_order
|
|
139 |
|
|
140 |
|
|
141 |
fun div3r0 div3r1 div3r2 :: "(nat * nat) \<Rightarrow> bool"
|
|
142 |
where
|
|
143 |
"div3r0 (0, 0) = True"
|
|
144 |
"div3r1 (0, 0) = False"
|
|
145 |
"div3r2 (0, 0) = False"
|
|
146 |
"div3r0 (0, Suc m) = div3r2 (0, m)"
|
|
147 |
"div3r1 (0, Suc m) = div3r0 (0, m)"
|
|
148 |
"div3r2 (0, Suc m) = div3r1 (0, m)"
|
|
149 |
"div3r0 (Suc n, 0) = div3r2 (n, 0)"
|
|
150 |
"div3r1 (Suc n, 0) = div3r0 (n, 0)"
|
|
151 |
"div3r2 (Suc n, 0) = div3r1 (n, 0)"
|
|
152 |
"div3r1 (Suc n, Suc m) = div3r2 (n, m)"
|
|
153 |
"div3r2 (Suc n, Suc m) = div3r0 (n, m)"
|
|
154 |
"div3r0 (Suc n, Suc m) = div3r1 (n, m)"
|
|
155 |
|
|
156 |
termination by lexicographic_order
|
|
157 |
|
|
158 |
|
|
159 |
subsection {*Examples for an unprovable termination *}
|
|
160 |
|
|
161 |
text {* If termination cannot be proven, the tactic gives further information about unprovable subgoals on the arguments *}
|
|
162 |
|
|
163 |
fun noterm :: "(nat * nat) \<Rightarrow> nat"
|
|
164 |
where
|
|
165 |
"noterm (a,b) = noterm(b,a)"
|
|
166 |
|
|
167 |
(* termination by apply lexicographic_order*)
|
|
168 |
|
|
169 |
fun term_but_no_prove :: "nat * nat \<Rightarrow> nat"
|
|
170 |
where
|
|
171 |
"term_but_no_prove (0,0) = 1"
|
|
172 |
"term_but_no_prove (0, Suc b) = 0"
|
|
173 |
"term_but_no_prove (Suc a, 0) = 0"
|
|
174 |
"term_but_no_prove (Suc a, Suc b) = term_but_no_prove (b, a)"
|
|
175 |
|
|
176 |
(* termination by lexicographic_order *)
|
|
177 |
|
|
178 |
text{* The tactic distinguishes between N = not provable AND F = False *}
|
|
179 |
fun no_proof :: "nat \<Rightarrow> nat"
|
|
180 |
where
|
|
181 |
"no_proof m = no_proof (Suc m)"
|
|
182 |
|
|
183 |
(* termination by lexicographic_order *)
|
|
184 |
|
|
185 |
end |