(* Title: HOL/ex/LexOrds.thy
ID:
Author: Lukas Bulwahn, TU Muenchen
Examples for functions whose termination is proven by lexicographic order.
*)
theory LexOrds
imports Main
begin
subsection {* Trivial examples *}
fun f :: "nat \<Rightarrow> nat"
where
"f n = n"
termination by lexicographic_order
fun g :: "nat \<Rightarrow> nat"
where
"g 0 = 0"
"g (Suc n) = Suc (g n)"
termination by lexicographic_order
subsection {* Examples on natural numbers *}
fun bin :: "(nat * nat) \<Rightarrow> nat"
where
"bin (0, 0) = 1"
"bin (Suc n, 0) = 0"
"bin (0, Suc m) = 0"
"bin (Suc n, Suc m) = bin (n, m) + bin (Suc n, m)"
termination by lexicographic_order
fun t :: "(nat * nat) \<Rightarrow> nat"
where
"t (0,n) = 0"
"t (n,0) = 0"
"t (Suc n, Suc m) = (if (n mod 2 = 0) then (t (Suc n, m)) else (t (n, Suc m)))"
termination by lexicographic_order
function h :: "(nat * nat) * (nat * nat) \<Rightarrow> nat"
where
"h ((0,0),(0,0)) = 0"
"h ((Suc z, y), (u,v)) = h((z, y), (u, v))" (* z is descending *)
"h ((0, Suc y), (u,v)) = h((1, y), (u, v))" (* y is descending *)
"h ((0,0), (Suc u, v)) = h((1, 1), (u, v))" (* u is descending *)
"h ((0,0), (0, Suc v)) = h ((1,1), (1,v))" (* v is descending *)
by (pat_completeness, auto)
termination by lexicographic_order
fun gcd2 :: "nat \<Rightarrow> nat \<Rightarrow> nat"
where
"gcd2 x 0 = x"
| "gcd2 0 y = y"
| "gcd2 (Suc x) (Suc y) = (if x < y then gcd2 (Suc x) (y - x)
else gcd2 (x - y) (Suc y))"
termination by lexicographic_order
function ack :: "(nat * nat) \<Rightarrow> nat"
where
"ack (0, m) = Suc m"
"ack (Suc n, 0) = ack(n, 1)"
"ack (Suc n, Suc m) = ack (n, ack (Suc n, m))"
by pat_completeness auto
termination by lexicographic_order
subsection {* Simple examples with other datatypes than nat, e.g. trees and lists *}
datatype tree = Node | Branch tree tree
fun g_tree :: "tree * tree \<Rightarrow> tree"
where
"g_tree (Node, Node) = Node"
"g_tree (Node, Branch a b) = Branch Node (g_tree (a,b))"
"g_tree (Branch a b, Node) = Branch (g_tree (a,Node)) b"
"g_tree (Branch a b, Branch c d) = Branch (g_tree (a,c)) (g_tree (b,d))"
termination by lexicographic_order
fun acklist :: "'a list * 'a list \<Rightarrow> 'a list"
where
"acklist ([], m) = ((hd m)#m)"
| "acklist (n#ns, []) = acklist (ns, [n])"
| "acklist ((n#ns), (m#ms)) = acklist (ns, acklist ((n#ns), ms))"
termination by lexicographic_order
subsection {* Examples with mutual recursion *}
fun evn od :: "nat \<Rightarrow> bool"
where
"evn 0 = True"
| "od 0 = False"
| "evn (Suc n) = od n"
| "od (Suc n) = evn n"
termination by lexicographic_order
fun
evn2 od2 :: "(nat * nat) \<Rightarrow> bool"
where
"evn2 (0, n) = True"
"evn2 (n, 0) = True"
"od2 (0, n) = False"
"od2 (n, 0) = False"
"evn2 (Suc n, Suc m) = od2 (Suc n, m)"
"od2 (Suc n, Suc m) = evn2 (n, Suc m)"
termination by lexicographic_order
fun evn3 od3 :: "(nat * nat) \<Rightarrow> nat"
where
"evn3 (0,n) = n"
"od3 (0,n) = n"
"evn3 (n,0) = n"
"od3 (n,0) = n"
"evn3 (Suc n, Suc m) = od3 (Suc m, n)"
"od3 (Suc n, Suc m) = evn3 (Suc m, n) + od3(n, m)"
termination by lexicographic_order
fun div3r0 div3r1 div3r2 :: "(nat * nat) \<Rightarrow> bool"
where
"div3r0 (0, 0) = True"
"div3r1 (0, 0) = False"
"div3r2 (0, 0) = False"
"div3r0 (0, Suc m) = div3r2 (0, m)"
"div3r1 (0, Suc m) = div3r0 (0, m)"
"div3r2 (0, Suc m) = div3r1 (0, m)"
"div3r0 (Suc n, 0) = div3r2 (n, 0)"
"div3r1 (Suc n, 0) = div3r0 (n, 0)"
"div3r2 (Suc n, 0) = div3r1 (n, 0)"
"div3r1 (Suc n, Suc m) = div3r2 (n, m)"
"div3r2 (Suc n, Suc m) = div3r0 (n, m)"
"div3r0 (Suc n, Suc m) = div3r1 (n, m)"
termination by lexicographic_order
subsection {*Examples for an unprovable termination *}
text {* If termination cannot be proven, the tactic gives further information about unprovable subgoals on the arguments *}
fun noterm :: "(nat * nat) \<Rightarrow> nat"
where
"noterm (a,b) = noterm(b,a)"
(* termination by apply lexicographic_order*)
fun term_but_no_prove :: "nat * nat \<Rightarrow> nat"
where
"term_but_no_prove (0,0) = 1"
"term_but_no_prove (0, Suc b) = 0"
"term_but_no_prove (Suc a, 0) = 0"
"term_but_no_prove (Suc a, Suc b) = term_but_no_prove (b, a)"
(* termination by lexicographic_order *)
text{* The tactic distinguishes between N = not provable AND F = False *}
fun no_proof :: "nat \<Rightarrow> nat"
where
"no_proof m = no_proof (Suc m)"
(* termination by lexicographic_order *)
end