author | wenzelm |
Thu, 29 Sep 2005 15:50:46 +0200 | |
changeset 17723 | ee5b42e3cbb4 |
parent 17496 | 26535df536ae |
child 24584 | 01e83ffa6c54 |
permissions | -rw-r--r-- |
1463 | 1 |
(* Title: FOLP/int-prover.ML |
0 | 2 |
ID: $Id$ |
1459 | 3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
0 | 4 |
Copyright 1992 University of Cambridge |
5 |
||
6 |
A naive prover for intuitionistic logic |
|
7 |
||
2603
4988dda71c0b
Renamed structure Int (intuitionistic prover) to IntPr to prevent clash
paulson
parents:
2572
diff
changeset
|
8 |
BEWARE OF NAME CLASHES WITH CLASSICAL TACTICS -- use IntPr.fast_tac ... |
0 | 9 |
|
10 |
Completeness (for propositional logic) is proved in |
|
11 |
||
12 |
Roy Dyckhoff. |
|
2603
4988dda71c0b
Renamed structure Int (intuitionistic prover) to IntPr to prevent clash
paulson
parents:
2572
diff
changeset
|
13 |
Contraction-Free Sequent Calculi for IntPruitionistic Logic. |
0 | 14 |
J. Symbolic Logic (in press) |
15 |
*) |
|
16 |
||
17 |
signature INT_PROVER = |
|
18 |
sig |
|
19 |
val best_tac: int -> tactic |
|
20 |
val fast_tac: int -> tactic |
|
21 |
val inst_step_tac: int -> tactic |
|
22 |
val safe_step_tac: int -> tactic |
|
23 |
val safe_brls: (bool * thm) list |
|
24 |
val safe_tac: tactic |
|
25 |
val step_tac: int -> tactic |
|
26 |
val haz_brls: (bool * thm) list |
|
27 |
end; |
|
28 |
||
29 |
||
2603
4988dda71c0b
Renamed structure Int (intuitionistic prover) to IntPr to prevent clash
paulson
parents:
2572
diff
changeset
|
30 |
structure IntPr : INT_PROVER = |
0 | 31 |
struct |
32 |
||
33 |
(*Negation is treated as a primitive symbol, with rules notI (introduction), |
|
34 |
not_to_imp (converts the assumption ~P to P-->False), and not_impE |
|
35 |
(handles double negations). Could instead rewrite by not_def as the first |
|
36 |
step of an intuitionistic proof. |
|
37 |
*) |
|
4440 | 38 |
val safe_brls = sort (make_ord lessb) |
0 | 39 |
[ (true,FalseE), (false,TrueI), (false,refl), |
40 |
(false,impI), (false,notI), (false,allI), |
|
41 |
(true,conjE), (true,exE), |
|
42 |
(false,conjI), (true,conj_impE), |
|
2572 | 43 |
(true,disj_impE), (true,disjE), |
44 |
(false,iffI), (true,iffE), (true,not_to_imp) ]; |
|
0 | 45 |
|
46 |
val haz_brls = |
|
47 |
[ (false,disjI1), (false,disjI2), (false,exI), |
|
48 |
(true,allE), (true,not_impE), (true,imp_impE), (true,iff_impE), |
|
2572 | 49 |
(true,all_impE), (true,ex_impE), (true,impE) ]; |
0 | 50 |
|
51 |
(*0 subgoals vs 1 or more: the p in safep is for positive*) |
|
52 |
val (safe0_brls, safep_brls) = |
|
17496 | 53 |
List.partition (curry (op =) 0 o subgoals_of_brl) safe_brls; |
0 | 54 |
|
55 |
(*Attack subgoals using safe inferences*) |
|
56 |
val safe_step_tac = FIRST' [uniq_assume_tac, |
|
9263 | 57 |
int_uniq_mp_tac, |
1459 | 58 |
biresolve_tac safe0_brls, |
59 |
hyp_subst_tac, |
|
60 |
biresolve_tac safep_brls] ; |
|
0 | 61 |
|
62 |
(*Repeatedly attack subgoals using safe inferences*) |
|
63 |
val safe_tac = DETERM (REPEAT_FIRST safe_step_tac); |
|
64 |
||
65 |
(*These steps could instantiate variables and are therefore unsafe.*) |
|
66 |
val inst_step_tac = assume_tac APPEND' mp_tac; |
|
67 |
||
68 |
(*One safe or unsafe step. *) |
|
69 |
fun step_tac i = FIRST [safe_tac, inst_step_tac i, biresolve_tac haz_brls i]; |
|
70 |
||
71 |
(*Dumb but fast*) |
|
72 |
val fast_tac = SELECT_GOAL (DEPTH_SOLVE (step_tac 1)); |
|
73 |
||
74 |
(*Slower but smarter than fast_tac*) |
|
75 |
val best_tac = |
|
76 |
SELECT_GOAL (BEST_FIRST (has_fewer_prems 1, size_of_thm) (step_tac 1)); |
|
77 |
||
78 |
end; |
|
79 |