doc-src/TutorialI/Overview/Sets.thy
author nipkow
Wed, 26 Jun 2002 12:17:21 +0200
changeset 13250 efd5db7dc7cc
parent 13249 4b3de6370184
permissions -rw-r--r--
*** empty log message ***
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
13250
efd5db7dc7cc *** empty log message ***
nipkow
parents: 13249
diff changeset
     1
(*<*)theory Sets = Main:(*>*)
efd5db7dc7cc *** empty log message ***
nipkow
parents: 13249
diff changeset
     2
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     3
section{*Sets, Functions and Relations*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     4
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     5
subsection{*Set Notation*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
     6
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12815
diff changeset
     7
text{*
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12815
diff changeset
     8
\begin{center}
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12815
diff changeset
     9
\begin{tabular}{ccc}
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12815
diff changeset
    10
@{term "A \<union> B"} & @{term "A \<inter> B"} & @{term "A - B"} \\
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12815
diff changeset
    11
@{term "a \<in> A"} & @{term "b \<notin> A"} \\
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12815
diff changeset
    12
@{term "{a,b}"} & @{text "{x. P x}"} \\
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12815
diff changeset
    13
@{term "\<Union> M"} & @{text "\<Union>a \<in> A. F a"}
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12815
diff changeset
    14
\end{tabular}
13250
efd5db7dc7cc *** empty log message ***
nipkow
parents: 13249
diff changeset
    15
\end{center}*}
13249
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
    16
(*<*)term "A \<union> B" term "A \<inter> B" term "A - B"
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
    17
term "a \<in> A" term "b \<notin> A"
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
    18
term "{a,b}" term "{x. P x}"
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
    19
term "\<Union> M"  term "\<Union>a \<in> A. F a"(*>*)
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12815
diff changeset
    20
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12815
diff changeset
    21
subsection{*Some Functions*}
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    22
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12815
diff changeset
    23
text{*
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12815
diff changeset
    24
\begin{tabular}{l}
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12815
diff changeset
    25
@{thm id_def}\\
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12815
diff changeset
    26
@{thm o_def[no_vars]}\\
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12815
diff changeset
    27
@{thm image_def[no_vars]}\\
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12815
diff changeset
    28
@{thm vimage_def[no_vars]}
13250
efd5db7dc7cc *** empty log message ***
nipkow
parents: 13249
diff changeset
    29
\end{tabular}*}
13249
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
    30
(*<*)thm id_def o_def[no_vars] image_def[no_vars] vimage_def[no_vars](*>*)
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    31
13238
a6cb18a25cbb *** empty log message ***
nipkow
parents: 12815
diff changeset
    32
subsection{*Some Relations*}
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    33
13249
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
    34
text{*
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
    35
\begin{tabular}{l}
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
    36
@{thm Id_def}\\
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
    37
@{thm converse_def[no_vars]}\\
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
    38
@{thm Image_def[no_vars]}\\
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
    39
@{thm rtrancl_refl[no_vars]}\\
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
    40
@{thm rtrancl_into_rtrancl[no_vars]}\\
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
    41
@{thm trancl_def[no_vars]}
13250
efd5db7dc7cc *** empty log message ***
nipkow
parents: 13249
diff changeset
    42
\end{tabular}*}
efd5db7dc7cc *** empty log message ***
nipkow
parents: 13249
diff changeset
    43
(*<*)thm Id_def
13249
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
    44
thm converse_def[no_vars]
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
    45
thm Image_def[no_vars]
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
    46
thm relpow.simps[no_vars]
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
    47
thm rtrancl.intros[no_vars]
13250
efd5db7dc7cc *** empty log message ***
nipkow
parents: 13249
diff changeset
    48
thm trancl_def[no_vars](*>*)
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    49
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    50
subsection{*Wellfoundedness*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    51
13249
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
    52
text{*
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
    53
\begin{tabular}{l}
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
    54
@{thm wf_def[no_vars]}\\
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
    55
@{thm wf_iff_no_infinite_down_chain[no_vars]}
13250
efd5db7dc7cc *** empty log message ***
nipkow
parents: 13249
diff changeset
    56
\end{tabular}*}
efd5db7dc7cc *** empty log message ***
nipkow
parents: 13249
diff changeset
    57
(*<*)thm wf_def[no_vars]
efd5db7dc7cc *** empty log message ***
nipkow
parents: 13249
diff changeset
    58
thm wf_iff_no_infinite_down_chain[no_vars](*>*)
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    59
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    60
subsection{*Fixed Point Operators*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    61
13249
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
    62
text{*
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
    63
\begin{tabular}{l}
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
    64
@{thm lfp_def[no_vars]}\\
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
    65
@{thm lfp_unfold[no_vars]}\\
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
    66
@{thm lfp_induct[no_vars]}
13250
efd5db7dc7cc *** empty log message ***
nipkow
parents: 13249
diff changeset
    67
\end{tabular}*}
efd5db7dc7cc *** empty log message ***
nipkow
parents: 13249
diff changeset
    68
(*<*)thm lfp_def gfp_def
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    69
thm lfp_unfold
13250
efd5db7dc7cc *** empty log message ***
nipkow
parents: 13249
diff changeset
    70
thm lfp_induct(*>*)
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    71
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    72
subsection{*Case Study: Verified Model Checking*}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    73
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    74
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    75
typedecl state
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    76
13249
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
    77
consts M :: "(state \<times> state)set"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    78
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    79
typedecl atom
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    80
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    81
consts L :: "state \<Rightarrow> atom set"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    82
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    83
datatype formula = Atom atom
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    84
                  | Neg formula
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    85
                  | And formula formula
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    86
                  | AX formula
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    87
                  | EF formula
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    88
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    89
consts valid :: "state \<Rightarrow> formula \<Rightarrow> bool"   ("(_ \<Turnstile> _)" [80,80] 80)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    90
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    91
primrec
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    92
"s \<Turnstile> Atom a  = (a \<in> L s)"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    93
"s \<Turnstile> Neg f   = (\<not>(s \<Turnstile> f))"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    94
"s \<Turnstile> And f g = (s \<Turnstile> f \<and> s \<Turnstile> g)"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    95
"s \<Turnstile> AX f    = (\<forall>t. (s,t) \<in> M \<longrightarrow> t \<Turnstile> f)"
13249
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
    96
"s \<Turnstile> EF f    = (\<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<Turnstile> f)"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    97
13249
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
    98
consts mc :: "formula \<Rightarrow> state set"
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
    99
primrec
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   100
"mc(Atom a)  = {s. a \<in> L s}"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   101
"mc(Neg f)   = -mc f"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   102
"mc(And f g) = mc f \<inter> mc g"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   103
"mc(AX f)    = {s. \<forall>t. (s,t) \<in> M  \<longrightarrow> t \<in> mc f}"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   104
"mc(EF f)    = lfp(\<lambda>T. mc f \<union> (M\<inverse> `` T))"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   105
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   106
lemma mono_ef: "mono(\<lambda>T. A \<union> (M\<inverse> `` T))"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   107
apply(rule monoI)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   108
apply blast
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   109
done
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   110
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   111
lemma EF_lemma:
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   112
  "lfp(\<lambda>T. A \<union> (M\<inverse> `` T)) = {s. \<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<in> A}"
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   113
apply(rule equalityI)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   114
 thm lfp_lowerbound
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   115
 apply(rule lfp_lowerbound)
13249
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
   116
 apply(blast intro: rtrancl_trans)
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   117
apply(rule subsetI)
13249
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
   118
apply clarsimp
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   119
apply(erule converse_rtrancl_induct)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   120
thm lfp_unfold[OF mono_ef]
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   121
 apply(subst lfp_unfold[OF mono_ef])
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   122
 apply(blast)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   123
apply(subst lfp_unfold[OF mono_ef])
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   124
apply(blast)
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   125
done
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   126
13249
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
   127
theorem "mc f = {s. s \<Turnstile> f}"
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
   128
apply(induct_tac f)
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
   129
apply(auto simp add: EF_lemma)
4b3de6370184 *** empty log message ***
nipkow
parents: 13238
diff changeset
   130
done
11235
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   131
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   132
text{*
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   133
\begin{exercise}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   134
@{term AX} has a dual operator @{term EN}\footnote{We cannot use the customary @{text EX}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   135
as that is the \textsc{ascii}-equivalent of @{text"\<exists>"}}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   136
(``there exists a next state such that'') with the intended semantics
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   137
@{prop[display]"(s \<Turnstile> EN f) = (EX t. (s,t) : M & t \<Turnstile> f)"}
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   138
Fortunately, @{term"EN f"} can already be expressed as a PDL formula. How?
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   139
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   140
Show that the semantics for @{term EF} satisfies the following recursion equation:
860c65c7388a *** empty log message ***
nipkow
parents:
diff changeset
   141
@{prop[display]"(s \<Turnstile> EF f) = (s \<Turnstile> f | s \<Turnstile> EN(EF f))"}
13250
efd5db7dc7cc *** empty log message ***
nipkow
parents: 13249
diff changeset
   142
\end{exercise}*}
efd5db7dc7cc *** empty log message ***
nipkow
parents: 13249
diff changeset
   143
(*<*)end(*>*)