src/HOLCF/Lift.thy
author haftmann
Thu, 16 Sep 2010 17:52:00 +0200
changeset 39481 f15514acc942
parent 37099 3636b08cbf51
child 39974 b525988432e9
permissions -rw-r--r--
merged
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents:
diff changeset
     1
(*  Title:      HOLCF/Lift.thy
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
     2
    Author:     Olaf Mueller
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents:
diff changeset
     3
*)
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents:
diff changeset
     4
12338
de0f4a63baa5 renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents: 12026
diff changeset
     5
header {* Lifting types of class type to flat pcpo's *}
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
     6
15577
e16da3068ad6 fix headers
huffman
parents: 15576
diff changeset
     7
theory Lift
27311
aa28b1d33866 remove unused constant liftpair
huffman
parents: 27310
diff changeset
     8
imports Discrete Up Countable
15577
e16da3068ad6 fix headers
huffman
parents: 15576
diff changeset
     9
begin
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    10
36452
d37c6eed8117 renamed command 'defaultsort' to 'default_sort';
wenzelm
parents: 35948
diff changeset
    11
default_sort type
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    12
16748
58b9ce4fac54 define lift type using pcpodef; cleaned up
huffman
parents: 16695
diff changeset
    13
pcpodef 'a lift = "UNIV :: 'a discr u set"
29063
7619f0561cd7 pcpodef package: state two goals, instead of encoded conjunction;
wenzelm
parents: 27311
diff changeset
    14
by simp_all
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    15
25827
c2adeb1bae5c new instance proofs for classes finite_po, chfin, flat
huffman
parents: 25723
diff changeset
    16
instance lift :: (finite) finite_po
c2adeb1bae5c new instance proofs for classes finite_po, chfin, flat
huffman
parents: 25723
diff changeset
    17
by (rule typedef_finite_po [OF type_definition_lift])
c2adeb1bae5c new instance proofs for classes finite_po, chfin, flat
huffman
parents: 25723
diff changeset
    18
16748
58b9ce4fac54 define lift type using pcpodef; cleaned up
huffman
parents: 16695
diff changeset
    19
lemmas inst_lift_pcpo = Abs_lift_strict [symmetric]
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    20
25131
2c8caac48ade modernized specifications ('definition', 'abbreviation', 'notation');
wenzelm
parents: 19764
diff changeset
    21
definition
2c8caac48ade modernized specifications ('definition', 'abbreviation', 'notation');
wenzelm
parents: 19764
diff changeset
    22
  Def :: "'a \<Rightarrow> 'a lift" where
2c8caac48ade modernized specifications ('definition', 'abbreviation', 'notation');
wenzelm
parents: 19764
diff changeset
    23
  "Def x = Abs_lift (up\<cdot>(Discr x))"
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    24
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    25
subsection {* Lift as a datatype *}
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    26
16748
58b9ce4fac54 define lift type using pcpodef; cleaned up
huffman
parents: 16695
diff changeset
    27
lemma lift_induct: "\<lbrakk>P \<bottom>; \<And>x. P (Def x)\<rbrakk> \<Longrightarrow> P y"
58b9ce4fac54 define lift type using pcpodef; cleaned up
huffman
parents: 16695
diff changeset
    28
apply (induct y)
16755
fd02f9d06e43 renamed upE1 to upE; added simp rule cont2cont_flift1
huffman
parents: 16749
diff changeset
    29
apply (rule_tac p=y in upE)
16748
58b9ce4fac54 define lift type using pcpodef; cleaned up
huffman
parents: 16695
diff changeset
    30
apply (simp add: Abs_lift_strict)
58b9ce4fac54 define lift type using pcpodef; cleaned up
huffman
parents: 16695
diff changeset
    31
apply (case_tac x)
58b9ce4fac54 define lift type using pcpodef; cleaned up
huffman
parents: 16695
diff changeset
    32
apply (simp add: Def_def)
58b9ce4fac54 define lift type using pcpodef; cleaned up
huffman
parents: 16695
diff changeset
    33
done
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    34
27104
791607529f6d rep_datatype command now takes list of constructors as input arguments
haftmann
parents: 26963
diff changeset
    35
rep_datatype "\<bottom>\<Colon>'a lift" Def
791607529f6d rep_datatype command now takes list of constructors as input arguments
haftmann
parents: 26963
diff changeset
    36
  by (erule lift_induct) (simp_all add: Def_def Abs_lift_inject lift_def inst_lift_pcpo)
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    37
27104
791607529f6d rep_datatype command now takes list of constructors as input arguments
haftmann
parents: 26963
diff changeset
    38
lemmas lift_distinct1 = lift.distinct(1)
791607529f6d rep_datatype command now takes list of constructors as input arguments
haftmann
parents: 26963
diff changeset
    39
lemmas lift_distinct2 = lift.distinct(2)
791607529f6d rep_datatype command now takes list of constructors as input arguments
haftmann
parents: 26963
diff changeset
    40
lemmas Def_not_UU = lift.distinct(2)
791607529f6d rep_datatype command now takes list of constructors as input arguments
haftmann
parents: 26963
diff changeset
    41
lemmas Def_inject = lift.inject
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    42
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    43
16748
58b9ce4fac54 define lift type using pcpodef; cleaned up
huffman
parents: 16695
diff changeset
    44
text {* @{term UU} and @{term Def} *}
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    45
16748
58b9ce4fac54 define lift type using pcpodef; cleaned up
huffman
parents: 16695
diff changeset
    46
lemma Lift_exhaust: "x = \<bottom> \<or> (\<exists>y. x = Def y)"
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    47
  by (induct x) simp_all
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    48
16748
58b9ce4fac54 define lift type using pcpodef; cleaned up
huffman
parents: 16695
diff changeset
    49
lemma Lift_cases: "\<lbrakk>x = \<bottom> \<Longrightarrow> P; \<exists>a. x = Def a \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    50
  by (insert Lift_exhaust) blast
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    51
16748
58b9ce4fac54 define lift type using pcpodef; cleaned up
huffman
parents: 16695
diff changeset
    52
lemma not_Undef_is_Def: "(x \<noteq> \<bottom>) = (\<exists>y. x = Def y)"
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    53
  by (cases x) simp_all
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    54
16630
83bf468b1dc7 added theorem lift_definedE; moved cont_if to Cont.thy
huffman
parents: 16555
diff changeset
    55
lemma lift_definedE: "\<lbrakk>x \<noteq> \<bottom>; \<And>a. x = Def a \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R"
83bf468b1dc7 added theorem lift_definedE; moved cont_if to Cont.thy
huffman
parents: 16555
diff changeset
    56
  by (cases x) simp_all
83bf468b1dc7 added theorem lift_definedE; moved cont_if to Cont.thy
huffman
parents: 16555
diff changeset
    57
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    58
text {*
30607
c3d1590debd8 eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents: 29138
diff changeset
    59
  For @{term "x ~= UU"} in assumptions @{text defined} replaces @{text
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    60
  x} by @{text "Def a"} in conclusion. *}
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    61
30607
c3d1590debd8 eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents: 29138
diff changeset
    62
method_setup defined = {*
c3d1590debd8 eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents: 29138
diff changeset
    63
  Scan.succeed (fn ctxt => SIMPLE_METHOD'
32149
ef59550a55d3 renamed simpset_of to global_simpset_of, and local_simpset_of to simpset_of -- same for claset and clasimpset;
wenzelm
parents: 31076
diff changeset
    64
    (etac @{thm lift_definedE} THEN' asm_simp_tac (simpset_of ctxt)))
30607
c3d1590debd8 eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
wenzelm
parents: 29138
diff changeset
    65
*} ""
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    66
16748
58b9ce4fac54 define lift type using pcpodef; cleaned up
huffman
parents: 16695
diff changeset
    67
lemma DefE: "Def x = \<bottom> \<Longrightarrow> R"
58b9ce4fac54 define lift type using pcpodef; cleaned up
huffman
parents: 16695
diff changeset
    68
  by simp
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    69
16748
58b9ce4fac54 define lift type using pcpodef; cleaned up
huffman
parents: 16695
diff changeset
    70
lemma DefE2: "\<lbrakk>x = Def s; x = \<bottom>\<rbrakk> \<Longrightarrow> R"
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    71
  by simp
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    72
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30607
diff changeset
    73
lemma Def_below_Def: "Def x \<sqsubseteq> Def y \<longleftrightarrow> x = y"
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30607
diff changeset
    74
by (simp add: below_lift_def Def_def Abs_lift_inverse lift_def)
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    75
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30607
diff changeset
    76
lemma Def_below_iff [simp]: "Def x \<sqsubseteq> y \<longleftrightarrow> Def x = y"
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30607
diff changeset
    77
by (induct y, simp, simp add: Def_below_Def)
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    78
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    79
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    80
subsection {* Lift is flat *}
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    81
12338
de0f4a63baa5 renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents: 12026
diff changeset
    82
instance lift :: (type) flat
27292
huffman
parents: 27104
diff changeset
    83
proof
huffman
parents: 27104
diff changeset
    84
  fix x y :: "'a lift"
huffman
parents: 27104
diff changeset
    85
  assume "x \<sqsubseteq> y" thus "x = \<bottom> \<or> x = y"
huffman
parents: 27104
diff changeset
    86
    by (induct x) auto
huffman
parents: 27104
diff changeset
    87
qed
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    88
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    89
text {*
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    90
  \medskip Two specific lemmas for the combination of LCF and HOL
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    91
  terms.
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    92
*}
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    93
26452
ed657432b8b9 declare cont_lemmas_ext as simp rules individually
huffman
parents: 25920
diff changeset
    94
lemma cont_Rep_CFun_app [simp]: "\<lbrakk>cont g; cont f\<rbrakk> \<Longrightarrow> cont(\<lambda>x. ((f x)\<cdot>(g x)) s)"
18092
2c5d5da79a1e renamed and added ch2ch, cont2cont, mono2mono theorems ending in _fun, _lambda, _LAM
huffman
parents: 17612
diff changeset
    95
by (rule cont2cont_Rep_CFun [THEN cont2cont_fun])
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
    96
26452
ed657432b8b9 declare cont_lemmas_ext as simp rules individually
huffman
parents: 25920
diff changeset
    97
lemma cont_Rep_CFun_app_app [simp]: "\<lbrakk>cont g; cont f\<rbrakk> \<Longrightarrow> cont(\<lambda>x. ((f x)\<cdot>(g x)) s t)"
18092
2c5d5da79a1e renamed and added ch2ch, cont2cont, mono2mono theorems ending in _fun, _lambda, _LAM
huffman
parents: 17612
diff changeset
    98
by (rule cont_Rep_CFun_app [THEN cont2cont_fun])
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents:
diff changeset
    99
16695
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   100
subsection {* Further operations *}
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   101
25131
2c8caac48ade modernized specifications ('definition', 'abbreviation', 'notation');
wenzelm
parents: 19764
diff changeset
   102
definition
2c8caac48ade modernized specifications ('definition', 'abbreviation', 'notation');
wenzelm
parents: 19764
diff changeset
   103
  flift1 :: "('a \<Rightarrow> 'b::pcpo) \<Rightarrow> ('a lift \<rightarrow> 'b)"  (binder "FLIFT " 10)  where
2c8caac48ade modernized specifications ('definition', 'abbreviation', 'notation');
wenzelm
parents: 19764
diff changeset
   104
  "flift1 = (\<lambda>f. (\<Lambda> x. lift_case \<bottom> f x))"
16695
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   105
25131
2c8caac48ade modernized specifications ('definition', 'abbreviation', 'notation');
wenzelm
parents: 19764
diff changeset
   106
definition
2c8caac48ade modernized specifications ('definition', 'abbreviation', 'notation');
wenzelm
parents: 19764
diff changeset
   107
  flift2 :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a lift \<rightarrow> 'b lift)" where
2c8caac48ade modernized specifications ('definition', 'abbreviation', 'notation');
wenzelm
parents: 19764
diff changeset
   108
  "flift2 f = (FLIFT x. Def (f x))"
16695
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   109
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   110
subsection {* Continuity Proofs for flift1, flift2 *}
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   111
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   112
text {* Need the instance of @{text flat}. *}
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   113
16695
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   114
lemma cont_lift_case1: "cont (\<lambda>f. lift_case a f x)"
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   115
apply (induct x)
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   116
apply simp
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   117
apply simp
18092
2c5d5da79a1e renamed and added ch2ch, cont2cont, mono2mono theorems ending in _fun, _lambda, _LAM
huffman
parents: 17612
diff changeset
   118
apply (rule cont_id [THEN cont2cont_fun])
16695
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   119
done
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   120
25723
80c06e4d4db6 move bottom-related stuff back into Pcpo.thy
huffman
parents: 25701
diff changeset
   121
lemma cont_lift_case2: "cont (\<lambda>x. lift_case \<bottom> f x)"
16695
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   122
apply (rule flatdom_strict2cont)
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   123
apply simp
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   124
done
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   125
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   126
lemma cont_flift1: "cont flift1"
27292
huffman
parents: 27104
diff changeset
   127
unfolding flift1_def
16695
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   128
apply (rule cont2cont_LAM)
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   129
apply (rule cont_lift_case2)
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   130
apply (rule cont_lift_case1)
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   131
done
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   132
27310
d0229bc6c461 simplify profinite class axioms
huffman
parents: 27292
diff changeset
   133
lemma FLIFT_mono:
d0229bc6c461 simplify profinite class axioms
huffman
parents: 27292
diff changeset
   134
  "(\<And>x. f x \<sqsubseteq> g x) \<Longrightarrow> (FLIFT x. f x) \<sqsubseteq> (FLIFT x. g x)"
d0229bc6c461 simplify profinite class axioms
huffman
parents: 27292
diff changeset
   135
apply (rule monofunE [where f=flift1])
d0229bc6c461 simplify profinite class axioms
huffman
parents: 27292
diff changeset
   136
apply (rule cont2mono [OF cont_flift1])
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30607
diff changeset
   137
apply (simp add: below_fun_ext)
27310
d0229bc6c461 simplify profinite class axioms
huffman
parents: 27292
diff changeset
   138
done
d0229bc6c461 simplify profinite class axioms
huffman
parents: 27292
diff changeset
   139
37099
3636b08cbf51 declare a few more cont2cont rules
huffman
parents: 36452
diff changeset
   140
lemma cont2cont_flift1 [simp, cont2cont]:
16695
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   141
  "\<lbrakk>\<And>y. cont (\<lambda>x. f x y)\<rbrakk> \<Longrightarrow> cont (\<lambda>x. FLIFT y. f x y)"
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   142
apply (rule cont_flift1 [THEN cont2cont_app3])
26452
ed657432b8b9 declare cont_lemmas_ext as simp rules individually
huffman
parents: 25920
diff changeset
   143
apply simp
16695
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   144
done
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   145
26452
ed657432b8b9 declare cont_lemmas_ext as simp rules individually
huffman
parents: 25920
diff changeset
   146
lemma cont2cont_lift_case [simp]:
25723
80c06e4d4db6 move bottom-related stuff back into Pcpo.thy
huffman
parents: 25701
diff changeset
   147
  "\<lbrakk>\<And>y. cont (\<lambda>x. f x y); cont g\<rbrakk> \<Longrightarrow> cont (\<lambda>x. lift_case UU (f x) (g x))"
16757
b8bfd086f7d4 replaced old continuity rules with new lemma cont2cont_lift_case
huffman
parents: 16755
diff changeset
   148
apply (subgoal_tac "cont (\<lambda>x. (FLIFT y. f x y)\<cdot>(g x))")
b8bfd086f7d4 replaced old continuity rules with new lemma cont2cont_lift_case
huffman
parents: 16755
diff changeset
   149
apply (simp add: flift1_def cont_lift_case2)
26452
ed657432b8b9 declare cont_lemmas_ext as simp rules individually
huffman
parents: 25920
diff changeset
   150
apply simp
16757
b8bfd086f7d4 replaced old continuity rules with new lemma cont2cont_lift_case
huffman
parents: 16755
diff changeset
   151
done
b8bfd086f7d4 replaced old continuity rules with new lemma cont2cont_lift_case
huffman
parents: 16755
diff changeset
   152
b8bfd086f7d4 replaced old continuity rules with new lemma cont2cont_lift_case
huffman
parents: 16755
diff changeset
   153
text {* rewrites for @{term flift1}, @{term flift2} *}
b8bfd086f7d4 replaced old continuity rules with new lemma cont2cont_lift_case
huffman
parents: 16755
diff changeset
   154
16695
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   155
lemma flift1_Def [simp]: "flift1 f\<cdot>(Def x) = (f x)"
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   156
by (simp add: flift1_def cont_lift_case2)
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   157
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   158
lemma flift2_Def [simp]: "flift2 f\<cdot>(Def x) = Def (f x)"
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   159
by (simp add: flift2_def)
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   160
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   161
lemma flift1_strict [simp]: "flift1 f\<cdot>\<bottom> = \<bottom>"
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   162
by (simp add: flift1_def cont_lift_case2)
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   163
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   164
lemma flift2_strict [simp]: "flift2 f\<cdot>\<bottom> = \<bottom>"
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   165
by (simp add: flift2_def)
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   166
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   167
lemma flift2_defined [simp]: "x \<noteq> \<bottom> \<Longrightarrow> (flift2 f)\<cdot>x \<noteq> \<bottom>"
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   168
by (erule lift_definedE, simp)
dc8c868e910b simplified definitions of flift1, flift2, liftpair;
huffman
parents: 16630
diff changeset
   169
19520
873dad2d8a6d add theorem flift2_defined_iff
huffman
parents: 19440
diff changeset
   170
lemma flift2_defined_iff [simp]: "(flift2 f\<cdot>x = \<bottom>) = (x = \<bottom>)"
873dad2d8a6d add theorem flift2_defined_iff
huffman
parents: 19440
diff changeset
   171
by (cases x, simp_all)
873dad2d8a6d add theorem flift2_defined_iff
huffman
parents: 19440
diff changeset
   172
12026
0b1d80ada4ab rep_datatype lift;
wenzelm
parents: 2640
diff changeset
   173
26963
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   174
subsection {* Lifted countable types are bifinite *}
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   175
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   176
instantiation lift :: (countable) bifinite
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   177
begin
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   178
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   179
definition
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   180
  approx_lift_def:
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   181
    "approx = (\<lambda>n. FLIFT x. if to_nat x < n then Def x else \<bottom>)"
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   182
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   183
instance proof
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   184
  fix x :: "'a lift"
27310
d0229bc6c461 simplify profinite class axioms
huffman
parents: 27292
diff changeset
   185
  show "chain (approx :: nat \<Rightarrow> 'a lift \<rightarrow> 'a lift)"
26963
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   186
    unfolding approx_lift_def
27310
d0229bc6c461 simplify profinite class axioms
huffman
parents: 27292
diff changeset
   187
    by (rule chainI, simp add: FLIFT_mono)
26963
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   188
next
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   189
  fix x :: "'a lift"
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   190
  show "(\<Squnion>i. approx i\<cdot>x) = x"
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   191
    unfolding approx_lift_def
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   192
    apply (cases x, simp)
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   193
    apply (rule thelubI)
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   194
    apply (rule is_lubI)
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   195
     apply (rule ub_rangeI, simp)
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   196
    apply (drule ub_rangeD)
31076
99fe356cbbc2 rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents: 30607
diff changeset
   197
    apply (erule rev_below_trans)
26963
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   198
    apply simp
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   199
    apply (rule lessI)
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   200
    done
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   201
next
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   202
  fix i :: nat and x :: "'a lift"
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   203
  show "approx i\<cdot>(approx i\<cdot>x) = approx i\<cdot>x"
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   204
    unfolding approx_lift_def
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   205
    by (cases x, simp, simp)
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   206
next
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   207
  fix i :: nat
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   208
  show "finite {x::'a lift. approx i\<cdot>x = x}"
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   209
  proof (rule finite_subset)
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   210
    let ?S = "insert (\<bottom>::'a lift) (Def ` to_nat -` {..<i})"
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   211
    show "{x::'a lift. approx i\<cdot>x = x} \<subseteq> ?S"
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   212
      unfolding approx_lift_def
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   213
      by (rule subsetI, case_tac x, simp, simp split: split_if_asm)
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   214
    show "finite ?S"
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   215
      by (simp add: finite_vimageI)
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   216
  qed
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   217
qed
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   218
2640
ee4dfce170a0 Changes of HOLCF from Oscar Slotosch:
slotosch
parents:
diff changeset
   219
end
26963
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   220
290d23780204 instantiation lift :: (countable) bifinite
huffman
parents: 26452
diff changeset
   221
end