| author | haftmann |
| Fri, 19 Jun 2015 07:53:35 +0200 | |
| changeset 60517 | f16e4fb20652 |
| parent 60516 | 0826b7025d07 |
| child 60526 | fad653acf58f |
| permissions | -rw-r--r-- |
| 58023 | 1 |
(* Author: Manuel Eberl *) |
2 |
||
| 58889 | 3 |
section {* Abstract euclidean algorithm *}
|
| 58023 | 4 |
|
5 |
theory Euclidean_Algorithm |
|
6 |
imports Complex_Main |
|
7 |
begin |
|
| 60433 | 8 |
|
| 58023 | 9 |
text {*
|
10 |
A Euclidean semiring is a semiring upon which the Euclidean algorithm can be |
|
11 |
implemented. It must provide: |
|
12 |
\begin{itemize}
|
|
13 |
\item division with remainder |
|
14 |
\item a size function such that @{term "size (a mod b) < size b"}
|
|
15 |
for any @{term "b \<noteq> 0"}
|
|
| 60438 | 16 |
\item a normalization factor such that two associated numbers are equal iff |
17 |
they are the same when divd by their normalization factors. |
|
| 58023 | 18 |
\end{itemize}
|
19 |
The existence of these functions makes it possible to derive gcd and lcm functions |
|
20 |
for any Euclidean semiring. |
|
21 |
*} |
|
22 |
class euclidean_semiring = semiring_div + |
|
23 |
fixes euclidean_size :: "'a \<Rightarrow> nat" |
|
| 60438 | 24 |
fixes normalization_factor :: "'a \<Rightarrow> 'a" |
| 58023 | 25 |
assumes mod_size_less [simp]: |
26 |
"b \<noteq> 0 \<Longrightarrow> euclidean_size (a mod b) < euclidean_size b" |
|
27 |
assumes size_mult_mono: |
|
28 |
"b \<noteq> 0 \<Longrightarrow> euclidean_size (a * b) \<ge> euclidean_size a" |
|
| 60438 | 29 |
assumes normalization_factor_is_unit [intro,simp]: |
30 |
"a \<noteq> 0 \<Longrightarrow> is_unit (normalization_factor a)" |
|
31 |
assumes normalization_factor_mult: "normalization_factor (a * b) = |
|
32 |
normalization_factor a * normalization_factor b" |
|
33 |
assumes normalization_factor_unit: "is_unit a \<Longrightarrow> normalization_factor a = a" |
|
34 |
assumes normalization_factor_0 [simp]: "normalization_factor 0 = 0" |
|
| 58023 | 35 |
begin |
36 |
||
| 60438 | 37 |
lemma normalization_factor_dvd [simp]: |
38 |
"a \<noteq> 0 \<Longrightarrow> normalization_factor a dvd b" |
|
| 58023 | 39 |
by (rule unit_imp_dvd, simp) |
40 |
||
| 60438 | 41 |
lemma normalization_factor_1 [simp]: |
42 |
"normalization_factor 1 = 1" |
|
43 |
by (simp add: normalization_factor_unit) |
|
| 58023 | 44 |
|
| 60438 | 45 |
lemma normalization_factor_0_iff [simp]: |
46 |
"normalization_factor a = 0 \<longleftrightarrow> a = 0" |
|
| 58023 | 47 |
proof |
| 60438 | 48 |
assume "normalization_factor a = 0" |
49 |
hence "\<not> is_unit (normalization_factor a)" |
|
| 60433 | 50 |
by simp |
51 |
then show "a = 0" by auto |
|
52 |
qed simp |
|
| 58023 | 53 |
|
| 60438 | 54 |
lemma normalization_factor_pow: |
55 |
"normalization_factor (a ^ n) = normalization_factor a ^ n" |
|
56 |
by (induct n) (simp_all add: normalization_factor_mult power_Suc2) |
|
| 58023 | 57 |
|
| 60438 | 58 |
lemma normalization_correct [simp]: |
59 |
"normalization_factor (a div normalization_factor a) = (if a = 0 then 0 else 1)" |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
60 |
proof (cases "a = 0", simp) |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
61 |
assume "a \<noteq> 0" |
| 60438 | 62 |
let ?nf = "normalization_factor" |
63 |
from normalization_factor_is_unit[OF `a \<noteq> 0`] have "?nf a \<noteq> 0" |
|
| 60433 | 64 |
by auto |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
65 |
have "?nf (a div ?nf a) * ?nf (?nf a) = ?nf (a div ?nf a * ?nf a)" |
| 60438 | 66 |
by (simp add: normalization_factor_mult) |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
67 |
also have "a div ?nf a * ?nf a = a" using `a \<noteq> 0` |
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
68 |
by simp |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
69 |
also have "?nf (?nf a) = ?nf a" using `a \<noteq> 0` |
| 60438 | 70 |
normalization_factor_is_unit normalization_factor_unit by simp |
71 |
finally have "normalization_factor (a div normalization_factor a) = 1" |
|
| 60433 | 72 |
using `?nf a \<noteq> 0` by (metis div_mult_self2_is_id div_self) |
73 |
with `a \<noteq> 0` show ?thesis by simp |
|
| 58023 | 74 |
qed |
75 |
||
| 60438 | 76 |
lemma normalization_0_iff [simp]: |
77 |
"a div normalization_factor a = 0 \<longleftrightarrow> a = 0" |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
78 |
by (cases "a = 0", simp, subst unit_eq_div1, blast, simp) |
| 58023 | 79 |
|
| 60438 | 80 |
lemma mult_div_normalization [simp]: |
81 |
"b * (1 div normalization_factor a) = b div normalization_factor a" |
|
| 60433 | 82 |
by (cases "a = 0") simp_all |
83 |
||
| 58023 | 84 |
lemma associated_iff_normed_eq: |
| 60438 | 85 |
"associated a b \<longleftrightarrow> a div normalization_factor a = b div normalization_factor b" |
86 |
proof (cases "b = 0", simp, cases "a = 0", metis associated_0(1) normalization_0_iff, rule iffI) |
|
87 |
let ?nf = normalization_factor |
|
| 58023 | 88 |
assume "a \<noteq> 0" "b \<noteq> 0" "a div ?nf a = b div ?nf b" |
89 |
hence "a = b * (?nf a div ?nf b)" |
|
90 |
apply (subst (asm) unit_eq_div1, blast, subst (asm) unit_div_commute, blast) |
|
91 |
apply (subst div_mult_swap, simp, simp) |
|
92 |
done |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
93 |
with `a \<noteq> 0` `b \<noteq> 0` have "\<exists>c. is_unit c \<and> a = c * b" |
| 58023 | 94 |
by (intro exI[of _ "?nf a div ?nf b"], force simp: mult_ac) |
|
60436
77e694c0c919
simplified relationship between associated and is_unit
haftmann
parents:
60433
diff
changeset
|
95 |
then obtain c where "is_unit c" and "a = c * b" by blast |
|
77e694c0c919
simplified relationship between associated and is_unit
haftmann
parents:
60433
diff
changeset
|
96 |
then show "associated a b" by (rule is_unit_associatedI) |
| 58023 | 97 |
next |
| 60438 | 98 |
let ?nf = normalization_factor |
| 58023 | 99 |
assume "a \<noteq> 0" "b \<noteq> 0" "associated a b" |
|
60436
77e694c0c919
simplified relationship between associated and is_unit
haftmann
parents:
60433
diff
changeset
|
100 |
then obtain c where "is_unit c" and "a = c * b" by (blast elim: associated_is_unitE) |
| 58023 | 101 |
then show "a div ?nf a = b div ?nf b" |
| 60438 | 102 |
apply (simp only: `a = c * b` normalization_factor_mult normalization_factor_unit) |
| 58023 | 103 |
apply (rule div_mult_mult1, force) |
104 |
done |
|
105 |
qed |
|
106 |
||
107 |
lemma normed_associated_imp_eq: |
|
| 60438 | 108 |
"associated a b \<Longrightarrow> normalization_factor a \<in> {0, 1} \<Longrightarrow> normalization_factor b \<in> {0, 1} \<Longrightarrow> a = b"
|
| 58023 | 109 |
by (simp add: associated_iff_normed_eq, elim disjE, simp_all) |
110 |
||
| 60438 | 111 |
lemmas normalization_factor_dvd_iff [simp] = |
112 |
unit_dvd_iff [OF normalization_factor_is_unit] |
|
| 58023 | 113 |
|
114 |
lemma euclidean_division: |
|
115 |
fixes a :: 'a and b :: 'a |
|
116 |
assumes "b \<noteq> 0" |
|
117 |
obtains s and t where "a = s * b + t" |
|
118 |
and "euclidean_size t < euclidean_size b" |
|
119 |
proof - |
|
120 |
from div_mod_equality[of a b 0] |
|
121 |
have "a = a div b * b + a mod b" by simp |
|
122 |
with that and assms show ?thesis by force |
|
123 |
qed |
|
124 |
||
125 |
lemma dvd_euclidean_size_eq_imp_dvd: |
|
126 |
assumes "a \<noteq> 0" and b_dvd_a: "b dvd a" and size_eq: "euclidean_size a = euclidean_size b" |
|
127 |
shows "a dvd b" |
|
128 |
proof (subst dvd_eq_mod_eq_0, rule ccontr) |
|
129 |
assume "b mod a \<noteq> 0" |
|
130 |
from b_dvd_a have b_dvd_mod: "b dvd b mod a" by (simp add: dvd_mod_iff) |
|
131 |
from b_dvd_mod obtain c where "b mod a = b * c" unfolding dvd_def by blast |
|
132 |
with `b mod a \<noteq> 0` have "c \<noteq> 0" by auto |
|
133 |
with `b mod a = b * c` have "euclidean_size (b mod a) \<ge> euclidean_size b" |
|
134 |
using size_mult_mono by force |
|
135 |
moreover from `a \<noteq> 0` have "euclidean_size (b mod a) < euclidean_size a" |
|
136 |
using mod_size_less by blast |
|
137 |
ultimately show False using size_eq by simp |
|
138 |
qed |
|
139 |
||
140 |
function gcd_eucl :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" |
|
141 |
where |
|
| 60438 | 142 |
"gcd_eucl a b = (if b = 0 then a div normalization_factor a else gcd_eucl b (a mod b))" |
| 58023 | 143 |
by (pat_completeness, simp) |
144 |
termination by (relation "measure (euclidean_size \<circ> snd)", simp_all) |
|
145 |
||
146 |
declare gcd_eucl.simps [simp del] |
|
147 |
||
148 |
lemma gcd_induct: "\<lbrakk>\<And>b. P b 0; \<And>a b. 0 \<noteq> b \<Longrightarrow> P b (a mod b) \<Longrightarrow> P a b\<rbrakk> \<Longrightarrow> P a b" |
|
149 |
proof (induct a b rule: gcd_eucl.induct) |
|
150 |
case ("1" m n)
|
|
151 |
then show ?case by (cases "n = 0") auto |
|
152 |
qed |
|
153 |
||
154 |
definition lcm_eucl :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" |
|
155 |
where |
|
| 60438 | 156 |
"lcm_eucl a b = a * b div (gcd_eucl a b * normalization_factor (a * b))" |
| 58023 | 157 |
|
158 |
(* Somewhat complicated definition of Lcm that has the advantage of working |
|
159 |
for infinite sets as well *) |
|
160 |
||
161 |
definition Lcm_eucl :: "'a set \<Rightarrow> 'a" |
|
162 |
where |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
163 |
"Lcm_eucl A = (if \<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) then |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
164 |
let l = SOME l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) \<and> euclidean_size l = |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
165 |
(LEAST n. \<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) \<and> euclidean_size l = n) |
| 60438 | 166 |
in l div normalization_factor l |
| 58023 | 167 |
else 0)" |
168 |
||
169 |
definition Gcd_eucl :: "'a set \<Rightarrow> 'a" |
|
170 |
where |
|
171 |
"Gcd_eucl A = Lcm_eucl {d. \<forall>a\<in>A. d dvd a}"
|
|
172 |
||
173 |
end |
|
174 |
||
175 |
class euclidean_semiring_gcd = euclidean_semiring + gcd + Gcd + |
|
176 |
assumes gcd_gcd_eucl: "gcd = gcd_eucl" and lcm_lcm_eucl: "lcm = lcm_eucl" |
|
177 |
assumes Gcd_Gcd_eucl: "Gcd = Gcd_eucl" and Lcm_Lcm_eucl: "Lcm = Lcm_eucl" |
|
178 |
begin |
|
179 |
||
180 |
lemma gcd_red: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
181 |
"gcd a b = gcd b (a mod b)" |
| 58023 | 182 |
by (metis gcd_eucl.simps mod_0 mod_by_0 gcd_gcd_eucl) |
183 |
||
184 |
lemma gcd_non_0: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
185 |
"b \<noteq> 0 \<Longrightarrow> gcd a b = gcd b (a mod b)" |
| 58023 | 186 |
by (rule gcd_red) |
187 |
||
188 |
lemma gcd_0_left: |
|
| 60438 | 189 |
"gcd 0 a = a div normalization_factor a" |
| 58023 | 190 |
by (simp only: gcd_gcd_eucl, subst gcd_eucl.simps, subst gcd_eucl.simps, simp add: Let_def) |
191 |
||
192 |
lemma gcd_0: |
|
| 60438 | 193 |
"gcd a 0 = a div normalization_factor a" |
| 58023 | 194 |
by (simp only: gcd_gcd_eucl, subst gcd_eucl.simps, simp add: Let_def) |
195 |
||
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
196 |
lemma gcd_dvd1 [iff]: "gcd a b dvd a" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
197 |
and gcd_dvd2 [iff]: "gcd a b dvd b" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
198 |
proof (induct a b rule: gcd_eucl.induct) |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
199 |
fix a b :: 'a |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
200 |
assume IH1: "b \<noteq> 0 \<Longrightarrow> gcd b (a mod b) dvd b" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
201 |
assume IH2: "b \<noteq> 0 \<Longrightarrow> gcd b (a mod b) dvd (a mod b)" |
| 58023 | 202 |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
203 |
have "gcd a b dvd a \<and> gcd a b dvd b" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
204 |
proof (cases "b = 0") |
| 58023 | 205 |
case True |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
206 |
then show ?thesis by (cases "a = 0", simp_all add: gcd_0) |
| 58023 | 207 |
next |
208 |
case False |
|
209 |
with IH1 and IH2 show ?thesis by (simp add: gcd_non_0 dvd_mod_iff) |
|
210 |
qed |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
211 |
then show "gcd a b dvd a" "gcd a b dvd b" by simp_all |
| 58023 | 212 |
qed |
213 |
||
214 |
lemma dvd_gcd_D1: "k dvd gcd m n \<Longrightarrow> k dvd m" |
|
215 |
by (rule dvd_trans, assumption, rule gcd_dvd1) |
|
216 |
||
217 |
lemma dvd_gcd_D2: "k dvd gcd m n \<Longrightarrow> k dvd n" |
|
218 |
by (rule dvd_trans, assumption, rule gcd_dvd2) |
|
219 |
||
220 |
lemma gcd_greatest: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
221 |
fixes k a b :: 'a |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
222 |
shows "k dvd a \<Longrightarrow> k dvd b \<Longrightarrow> k dvd gcd a b" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
223 |
proof (induct a b rule: gcd_eucl.induct) |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
224 |
case (1 a b) |
| 58023 | 225 |
show ?case |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
226 |
proof (cases "b = 0") |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
227 |
assume "b = 0" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
228 |
with 1 show ?thesis by (cases "a = 0", simp_all add: gcd_0) |
| 58023 | 229 |
next |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
230 |
assume "b \<noteq> 0" |
| 58023 | 231 |
with 1 show ?thesis by (simp add: gcd_non_0 dvd_mod_iff) |
232 |
qed |
|
233 |
qed |
|
234 |
||
235 |
lemma dvd_gcd_iff: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
236 |
"k dvd gcd a b \<longleftrightarrow> k dvd a \<and> k dvd b" |
| 58023 | 237 |
by (blast intro!: gcd_greatest intro: dvd_trans) |
238 |
||
239 |
lemmas gcd_greatest_iff = dvd_gcd_iff |
|
240 |
||
241 |
lemma gcd_zero [simp]: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
242 |
"gcd a b = 0 \<longleftrightarrow> a = 0 \<and> b = 0" |
| 58023 | 243 |
by (metis dvd_0_left dvd_refl gcd_dvd1 gcd_dvd2 gcd_greatest)+ |
244 |
||
| 60438 | 245 |
lemma normalization_factor_gcd [simp]: |
246 |
"normalization_factor (gcd a b) = (if a = 0 \<and> b = 0 then 0 else 1)" (is "?f a b = ?g a b") |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
247 |
proof (induct a b rule: gcd_eucl.induct) |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
248 |
fix a b :: 'a |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
249 |
assume IH: "b \<noteq> 0 \<Longrightarrow> ?f b (a mod b) = ?g b (a mod b)" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
250 |
then show "?f a b = ?g a b" by (cases "b = 0", auto simp: gcd_non_0 gcd_0) |
| 58023 | 251 |
qed |
252 |
||
253 |
lemma gcdI: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
254 |
"k dvd a \<Longrightarrow> k dvd b \<Longrightarrow> (\<And>l. l dvd a \<Longrightarrow> l dvd b \<Longrightarrow> l dvd k) |
| 60438 | 255 |
\<Longrightarrow> normalization_factor k = (if k = 0 then 0 else 1) \<Longrightarrow> k = gcd a b" |
| 58023 | 256 |
by (intro normed_associated_imp_eq) (auto simp: associated_def intro: gcd_greatest) |
257 |
||
258 |
sublocale gcd!: abel_semigroup gcd |
|
259 |
proof |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
260 |
fix a b c |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
261 |
show "gcd (gcd a b) c = gcd a (gcd b c)" |
| 58023 | 262 |
proof (rule gcdI) |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
263 |
have "gcd (gcd a b) c dvd gcd a b" "gcd a b dvd a" by simp_all |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
264 |
then show "gcd (gcd a b) c dvd a" by (rule dvd_trans) |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
265 |
have "gcd (gcd a b) c dvd gcd a b" "gcd a b dvd b" by simp_all |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
266 |
hence "gcd (gcd a b) c dvd b" by (rule dvd_trans) |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
267 |
moreover have "gcd (gcd a b) c dvd c" by simp |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
268 |
ultimately show "gcd (gcd a b) c dvd gcd b c" |
| 58023 | 269 |
by (rule gcd_greatest) |
| 60438 | 270 |
show "normalization_factor (gcd (gcd a b) c) = (if gcd (gcd a b) c = 0 then 0 else 1)" |
| 58023 | 271 |
by auto |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
272 |
fix l assume "l dvd a" and "l dvd gcd b c" |
| 58023 | 273 |
with dvd_trans[OF _ gcd_dvd1] and dvd_trans[OF _ gcd_dvd2] |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
274 |
have "l dvd b" and "l dvd c" by blast+ |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
275 |
with `l dvd a` show "l dvd gcd (gcd a b) c" |
| 58023 | 276 |
by (intro gcd_greatest) |
277 |
qed |
|
278 |
next |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
279 |
fix a b |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
280 |
show "gcd a b = gcd b a" |
| 58023 | 281 |
by (rule gcdI) (simp_all add: gcd_greatest) |
282 |
qed |
|
283 |
||
284 |
lemma gcd_unique: "d dvd a \<and> d dvd b \<and> |
|
| 60438 | 285 |
normalization_factor d = (if d = 0 then 0 else 1) \<and> |
| 58023 | 286 |
(\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b" |
287 |
by (rule, auto intro: gcdI simp: gcd_greatest) |
|
288 |
||
289 |
lemma gcd_dvd_prod: "gcd a b dvd k * b" |
|
290 |
using mult_dvd_mono [of 1] by auto |
|
291 |
||
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
292 |
lemma gcd_1_left [simp]: "gcd 1 a = 1" |
| 58023 | 293 |
by (rule sym, rule gcdI, simp_all) |
294 |
||
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
295 |
lemma gcd_1 [simp]: "gcd a 1 = 1" |
| 58023 | 296 |
by (rule sym, rule gcdI, simp_all) |
297 |
||
298 |
lemma gcd_proj2_if_dvd: |
|
| 60438 | 299 |
"b dvd a \<Longrightarrow> gcd a b = b div normalization_factor b" |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
300 |
by (cases "b = 0", simp_all add: dvd_eq_mod_eq_0 gcd_non_0 gcd_0) |
| 58023 | 301 |
|
302 |
lemma gcd_proj1_if_dvd: |
|
| 60438 | 303 |
"a dvd b \<Longrightarrow> gcd a b = a div normalization_factor a" |
| 58023 | 304 |
by (subst gcd.commute, simp add: gcd_proj2_if_dvd) |
305 |
||
| 60438 | 306 |
lemma gcd_proj1_iff: "gcd m n = m div normalization_factor m \<longleftrightarrow> m dvd n" |
| 58023 | 307 |
proof |
| 60438 | 308 |
assume A: "gcd m n = m div normalization_factor m" |
| 58023 | 309 |
show "m dvd n" |
310 |
proof (cases "m = 0") |
|
311 |
assume [simp]: "m \<noteq> 0" |
|
| 60438 | 312 |
from A have B: "m = gcd m n * normalization_factor m" |
| 58023 | 313 |
by (simp add: unit_eq_div2) |
314 |
show ?thesis by (subst B, simp add: mult_unit_dvd_iff) |
|
315 |
qed (insert A, simp) |
|
316 |
next |
|
317 |
assume "m dvd n" |
|
| 60438 | 318 |
then show "gcd m n = m div normalization_factor m" by (rule gcd_proj1_if_dvd) |
| 58023 | 319 |
qed |
320 |
||
| 60438 | 321 |
lemma gcd_proj2_iff: "gcd m n = n div normalization_factor n \<longleftrightarrow> n dvd m" |
| 58023 | 322 |
by (subst gcd.commute, simp add: gcd_proj1_iff) |
323 |
||
324 |
lemma gcd_mod1 [simp]: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
325 |
"gcd (a mod b) b = gcd a b" |
| 58023 | 326 |
by (rule gcdI, metis dvd_mod_iff gcd_dvd1 gcd_dvd2, simp_all add: gcd_greatest dvd_mod_iff) |
327 |
||
328 |
lemma gcd_mod2 [simp]: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
329 |
"gcd a (b mod a) = gcd a b" |
| 58023 | 330 |
by (rule gcdI, simp, metis dvd_mod_iff gcd_dvd1 gcd_dvd2, simp_all add: gcd_greatest dvd_mod_iff) |
331 |
||
| 60438 | 332 |
lemma normalization_factor_dvd' [simp]: |
333 |
"normalization_factor a dvd a" |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
334 |
by (cases "a = 0", simp_all) |
| 58023 | 335 |
|
336 |
lemma gcd_mult_distrib': |
|
| 60438 | 337 |
"k div normalization_factor k * gcd a b = gcd (k*a) (k*b)" |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
338 |
proof (induct a b rule: gcd_eucl.induct) |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
339 |
case (1 a b) |
| 58023 | 340 |
show ?case |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
341 |
proof (cases "b = 0") |
| 58023 | 342 |
case True |
| 60438 | 343 |
then show ?thesis by (simp add: normalization_factor_mult gcd_0 algebra_simps div_mult_div_if_dvd) |
| 58023 | 344 |
next |
345 |
case False |
|
| 60438 | 346 |
hence "k div normalization_factor k * gcd a b = gcd (k * b) (k * (a mod b))" |
| 58023 | 347 |
using 1 by (subst gcd_red, simp) |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
348 |
also have "... = gcd (k * a) (k * b)" |
| 58023 | 349 |
by (simp add: mult_mod_right gcd.commute) |
350 |
finally show ?thesis . |
|
351 |
qed |
|
352 |
qed |
|
353 |
||
354 |
lemma gcd_mult_distrib: |
|
| 60438 | 355 |
"k * gcd a b = gcd (k*a) (k*b) * normalization_factor k" |
| 58023 | 356 |
proof- |
| 60438 | 357 |
let ?nf = "normalization_factor" |
| 58023 | 358 |
from gcd_mult_distrib' |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
359 |
have "gcd (k*a) (k*b) = k div ?nf k * gcd a b" .. |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
360 |
also have "... = k * gcd a b div ?nf k" |
| 60438 | 361 |
by (metis dvd_div_mult dvd_eq_mod_eq_0 mod_0 normalization_factor_dvd) |
| 58023 | 362 |
finally show ?thesis |
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
363 |
by simp |
| 58023 | 364 |
qed |
365 |
||
366 |
lemma euclidean_size_gcd_le1 [simp]: |
|
367 |
assumes "a \<noteq> 0" |
|
368 |
shows "euclidean_size (gcd a b) \<le> euclidean_size a" |
|
369 |
proof - |
|
370 |
have "gcd a b dvd a" by (rule gcd_dvd1) |
|
371 |
then obtain c where A: "a = gcd a b * c" unfolding dvd_def by blast |
|
372 |
with `a \<noteq> 0` show ?thesis by (subst (2) A, intro size_mult_mono) auto |
|
373 |
qed |
|
374 |
||
375 |
lemma euclidean_size_gcd_le2 [simp]: |
|
376 |
"b \<noteq> 0 \<Longrightarrow> euclidean_size (gcd a b) \<le> euclidean_size b" |
|
377 |
by (subst gcd.commute, rule euclidean_size_gcd_le1) |
|
378 |
||
379 |
lemma euclidean_size_gcd_less1: |
|
380 |
assumes "a \<noteq> 0" and "\<not>a dvd b" |
|
381 |
shows "euclidean_size (gcd a b) < euclidean_size a" |
|
382 |
proof (rule ccontr) |
|
383 |
assume "\<not>euclidean_size (gcd a b) < euclidean_size a" |
|
384 |
with `a \<noteq> 0` have "euclidean_size (gcd a b) = euclidean_size a" |
|
385 |
by (intro le_antisym, simp_all) |
|
386 |
with assms have "a dvd gcd a b" by (auto intro: dvd_euclidean_size_eq_imp_dvd) |
|
387 |
hence "a dvd b" using dvd_gcd_D2 by blast |
|
388 |
with `\<not>a dvd b` show False by contradiction |
|
389 |
qed |
|
390 |
||
391 |
lemma euclidean_size_gcd_less2: |
|
392 |
assumes "b \<noteq> 0" and "\<not>b dvd a" |
|
393 |
shows "euclidean_size (gcd a b) < euclidean_size b" |
|
394 |
using assms by (subst gcd.commute, rule euclidean_size_gcd_less1) |
|
395 |
||
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
396 |
lemma gcd_mult_unit1: "is_unit a \<Longrightarrow> gcd (b * a) c = gcd b c" |
| 58023 | 397 |
apply (rule gcdI) |
398 |
apply (rule dvd_trans, rule gcd_dvd1, simp add: unit_simps) |
|
399 |
apply (rule gcd_dvd2) |
|
400 |
apply (rule gcd_greatest, simp add: unit_simps, assumption) |
|
| 60438 | 401 |
apply (subst normalization_factor_gcd, simp add: gcd_0) |
| 58023 | 402 |
done |
403 |
||
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
404 |
lemma gcd_mult_unit2: "is_unit a \<Longrightarrow> gcd b (c * a) = gcd b c" |
| 58023 | 405 |
by (subst gcd.commute, subst gcd_mult_unit1, assumption, rule gcd.commute) |
406 |
||
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
407 |
lemma gcd_div_unit1: "is_unit a \<Longrightarrow> gcd (b div a) c = gcd b c" |
| 60433 | 408 |
by (erule is_unitE [of _ b]) (simp add: gcd_mult_unit1) |
| 58023 | 409 |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
410 |
lemma gcd_div_unit2: "is_unit a \<Longrightarrow> gcd b (c div a) = gcd b c" |
| 60433 | 411 |
by (erule is_unitE [of _ c]) (simp add: gcd_mult_unit2) |
| 58023 | 412 |
|
| 60438 | 413 |
lemma gcd_idem: "gcd a a = a div normalization_factor a" |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
414 |
by (cases "a = 0") (simp add: gcd_0_left, rule sym, rule gcdI, simp_all) |
| 58023 | 415 |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
416 |
lemma gcd_right_idem: "gcd (gcd a b) b = gcd a b" |
| 58023 | 417 |
apply (rule gcdI) |
418 |
apply (simp add: ac_simps) |
|
419 |
apply (rule gcd_dvd2) |
|
420 |
apply (rule gcd_greatest, erule (1) gcd_greatest, assumption) |
|
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
421 |
apply simp |
| 58023 | 422 |
done |
423 |
||
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
424 |
lemma gcd_left_idem: "gcd a (gcd a b) = gcd a b" |
| 58023 | 425 |
apply (rule gcdI) |
426 |
apply simp |
|
427 |
apply (rule dvd_trans, rule gcd_dvd2, rule gcd_dvd2) |
|
428 |
apply (rule gcd_greatest, assumption, erule gcd_greatest, assumption) |
|
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
429 |
apply simp |
| 58023 | 430 |
done |
431 |
||
432 |
lemma comp_fun_idem_gcd: "comp_fun_idem gcd" |
|
433 |
proof |
|
434 |
fix a b show "gcd a \<circ> gcd b = gcd b \<circ> gcd a" |
|
435 |
by (simp add: fun_eq_iff ac_simps) |
|
436 |
next |
|
437 |
fix a show "gcd a \<circ> gcd a = gcd a" |
|
438 |
by (simp add: fun_eq_iff gcd_left_idem) |
|
439 |
qed |
|
440 |
||
441 |
lemma coprime_dvd_mult: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
442 |
assumes "gcd c b = 1" and "c dvd a * b" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
443 |
shows "c dvd a" |
| 58023 | 444 |
proof - |
| 60438 | 445 |
let ?nf = "normalization_factor" |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
446 |
from assms gcd_mult_distrib [of a c b] |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
447 |
have A: "a = gcd (a * c) (a * b) * ?nf a" by simp |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
448 |
from `c dvd a * b` show ?thesis by (subst A, simp_all add: gcd_greatest) |
| 58023 | 449 |
qed |
450 |
||
451 |
lemma coprime_dvd_mult_iff: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
452 |
"gcd c b = 1 \<Longrightarrow> (c dvd a * b) = (c dvd a)" |
| 58023 | 453 |
by (rule, rule coprime_dvd_mult, simp_all) |
454 |
||
455 |
lemma gcd_dvd_antisym: |
|
456 |
"gcd a b dvd gcd c d \<Longrightarrow> gcd c d dvd gcd a b \<Longrightarrow> gcd a b = gcd c d" |
|
457 |
proof (rule gcdI) |
|
458 |
assume A: "gcd a b dvd gcd c d" and B: "gcd c d dvd gcd a b" |
|
459 |
have "gcd c d dvd c" by simp |
|
460 |
with A show "gcd a b dvd c" by (rule dvd_trans) |
|
461 |
have "gcd c d dvd d" by simp |
|
462 |
with A show "gcd a b dvd d" by (rule dvd_trans) |
|
| 60438 | 463 |
show "normalization_factor (gcd a b) = (if gcd a b = 0 then 0 else 1)" |
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
464 |
by simp |
| 58023 | 465 |
fix l assume "l dvd c" and "l dvd d" |
466 |
hence "l dvd gcd c d" by (rule gcd_greatest) |
|
467 |
from this and B show "l dvd gcd a b" by (rule dvd_trans) |
|
468 |
qed |
|
469 |
||
470 |
lemma gcd_mult_cancel: |
|
471 |
assumes "gcd k n = 1" |
|
472 |
shows "gcd (k * m) n = gcd m n" |
|
473 |
proof (rule gcd_dvd_antisym) |
|
474 |
have "gcd (gcd (k * m) n) k = gcd (gcd k n) (k * m)" by (simp add: ac_simps) |
|
475 |
also note `gcd k n = 1` |
|
476 |
finally have "gcd (gcd (k * m) n) k = 1" by simp |
|
477 |
hence "gcd (k * m) n dvd m" by (rule coprime_dvd_mult, simp add: ac_simps) |
|
478 |
moreover have "gcd (k * m) n dvd n" by simp |
|
479 |
ultimately show "gcd (k * m) n dvd gcd m n" by (rule gcd_greatest) |
|
480 |
have "gcd m n dvd (k * m)" and "gcd m n dvd n" by simp_all |
|
481 |
then show "gcd m n dvd gcd (k * m) n" by (rule gcd_greatest) |
|
482 |
qed |
|
483 |
||
484 |
lemma coprime_crossproduct: |
|
485 |
assumes [simp]: "gcd a d = 1" "gcd b c = 1" |
|
486 |
shows "associated (a * c) (b * d) \<longleftrightarrow> associated a b \<and> associated c d" (is "?lhs \<longleftrightarrow> ?rhs") |
|
487 |
proof |
|
488 |
assume ?rhs then show ?lhs unfolding associated_def by (fast intro: mult_dvd_mono) |
|
489 |
next |
|
490 |
assume ?lhs |
|
491 |
from `?lhs` have "a dvd b * d" unfolding associated_def by (metis dvd_mult_left) |
|
492 |
hence "a dvd b" by (simp add: coprime_dvd_mult_iff) |
|
493 |
moreover from `?lhs` have "b dvd a * c" unfolding associated_def by (metis dvd_mult_left) |
|
494 |
hence "b dvd a" by (simp add: coprime_dvd_mult_iff) |
|
495 |
moreover from `?lhs` have "c dvd d * b" |
|
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
496 |
unfolding associated_def by (auto dest: dvd_mult_right simp add: ac_simps) |
| 58023 | 497 |
hence "c dvd d" by (simp add: coprime_dvd_mult_iff gcd.commute) |
498 |
moreover from `?lhs` have "d dvd c * a" |
|
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
499 |
unfolding associated_def by (auto dest: dvd_mult_right simp add: ac_simps) |
| 58023 | 500 |
hence "d dvd c" by (simp add: coprime_dvd_mult_iff gcd.commute) |
501 |
ultimately show ?rhs unfolding associated_def by simp |
|
502 |
qed |
|
503 |
||
504 |
lemma gcd_add1 [simp]: |
|
505 |
"gcd (m + n) n = gcd m n" |
|
506 |
by (cases "n = 0", simp_all add: gcd_non_0) |
|
507 |
||
508 |
lemma gcd_add2 [simp]: |
|
509 |
"gcd m (m + n) = gcd m n" |
|
510 |
using gcd_add1 [of n m] by (simp add: ac_simps) |
|
511 |
||
512 |
lemma gcd_add_mult: "gcd m (k * m + n) = gcd m n" |
|
513 |
by (subst gcd.commute, subst gcd_red, simp) |
|
514 |
||
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
515 |
lemma coprimeI: "(\<And>l. \<lbrakk>l dvd a; l dvd b\<rbrakk> \<Longrightarrow> l dvd 1) \<Longrightarrow> gcd a b = 1" |
| 58023 | 516 |
by (rule sym, rule gcdI, simp_all) |
517 |
||
518 |
lemma coprime: "gcd a b = 1 \<longleftrightarrow> (\<forall>d. d dvd a \<and> d dvd b \<longleftrightarrow> is_unit d)" |
|
| 59061 | 519 |
by (auto intro: coprimeI gcd_greatest dvd_gcd_D1 dvd_gcd_D2) |
| 58023 | 520 |
|
521 |
lemma div_gcd_coprime: |
|
522 |
assumes nz: "a \<noteq> 0 \<or> b \<noteq> 0" |
|
523 |
defines [simp]: "d \<equiv> gcd a b" |
|
524 |
defines [simp]: "a' \<equiv> a div d" and [simp]: "b' \<equiv> b div d" |
|
525 |
shows "gcd a' b' = 1" |
|
526 |
proof (rule coprimeI) |
|
527 |
fix l assume "l dvd a'" "l dvd b'" |
|
528 |
then obtain s t where "a' = l * s" "b' = l * t" unfolding dvd_def by blast |
|
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
529 |
moreover have "a = a' * d" "b = b' * d" by simp_all |
| 58023 | 530 |
ultimately have "a = (l * d) * s" "b = (l * d) * t" |
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
531 |
by (simp_all only: ac_simps) |
| 58023 | 532 |
hence "l*d dvd a" and "l*d dvd b" by (simp_all only: dvd_triv_left) |
533 |
hence "l*d dvd d" by (simp add: gcd_greatest) |
|
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
534 |
then obtain u where "d = l * d * u" .. |
|
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
535 |
then have "d * (l * u) = d" by (simp add: ac_simps) |
|
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
536 |
moreover from nz have "d \<noteq> 0" by simp |
|
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
537 |
with div_mult_self1_is_id have "d * (l * u) div d = l * u" . |
|
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
538 |
ultimately have "1 = l * u" |
|
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
539 |
using `d \<noteq> 0` by simp |
|
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
540 |
then show "l dvd 1" .. |
| 58023 | 541 |
qed |
542 |
||
543 |
lemma coprime_mult: |
|
544 |
assumes da: "gcd d a = 1" and db: "gcd d b = 1" |
|
545 |
shows "gcd d (a * b) = 1" |
|
546 |
apply (subst gcd.commute) |
|
547 |
using da apply (subst gcd_mult_cancel) |
|
548 |
apply (subst gcd.commute, assumption) |
|
549 |
apply (subst gcd.commute, rule db) |
|
550 |
done |
|
551 |
||
552 |
lemma coprime_lmult: |
|
553 |
assumes dab: "gcd d (a * b) = 1" |
|
554 |
shows "gcd d a = 1" |
|
555 |
proof (rule coprimeI) |
|
556 |
fix l assume "l dvd d" and "l dvd a" |
|
557 |
hence "l dvd a * b" by simp |
|
558 |
with `l dvd d` and dab show "l dvd 1" by (auto intro: gcd_greatest) |
|
559 |
qed |
|
560 |
||
561 |
lemma coprime_rmult: |
|
562 |
assumes dab: "gcd d (a * b) = 1" |
|
563 |
shows "gcd d b = 1" |
|
564 |
proof (rule coprimeI) |
|
565 |
fix l assume "l dvd d" and "l dvd b" |
|
566 |
hence "l dvd a * b" by simp |
|
567 |
with `l dvd d` and dab show "l dvd 1" by (auto intro: gcd_greatest) |
|
568 |
qed |
|
569 |
||
570 |
lemma coprime_mul_eq: "gcd d (a * b) = 1 \<longleftrightarrow> gcd d a = 1 \<and> gcd d b = 1" |
|
571 |
using coprime_rmult[of d a b] coprime_lmult[of d a b] coprime_mult[of d a b] by blast |
|
572 |
||
573 |
lemma gcd_coprime: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
574 |
assumes c: "gcd a b \<noteq> 0" and a: "a = a' * gcd a b" and b: "b = b' * gcd a b" |
| 58023 | 575 |
shows "gcd a' b' = 1" |
576 |
proof - |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
577 |
from c have "a \<noteq> 0 \<or> b \<noteq> 0" by simp |
| 58023 | 578 |
with div_gcd_coprime have "gcd (a div gcd a b) (b div gcd a b) = 1" . |
579 |
also from assms have "a div gcd a b = a'" by (metis div_mult_self2_is_id)+ |
|
580 |
also from assms have "b div gcd a b = b'" by (metis div_mult_self2_is_id)+ |
|
581 |
finally show ?thesis . |
|
582 |
qed |
|
583 |
||
584 |
lemma coprime_power: |
|
585 |
assumes "0 < n" |
|
586 |
shows "gcd a (b ^ n) = 1 \<longleftrightarrow> gcd a b = 1" |
|
587 |
using assms proof (induct n) |
|
588 |
case (Suc n) then show ?case |
|
589 |
by (cases n) (simp_all add: coprime_mul_eq) |
|
590 |
qed simp |
|
591 |
||
592 |
lemma gcd_coprime_exists: |
|
593 |
assumes nz: "gcd a b \<noteq> 0" |
|
594 |
shows "\<exists>a' b'. a = a' * gcd a b \<and> b = b' * gcd a b \<and> gcd a' b' = 1" |
|
595 |
apply (rule_tac x = "a div gcd a b" in exI) |
|
596 |
apply (rule_tac x = "b div gcd a b" in exI) |
|
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
597 |
apply (insert nz, auto intro: div_gcd_coprime) |
| 58023 | 598 |
done |
599 |
||
600 |
lemma coprime_exp: |
|
601 |
"gcd d a = 1 \<Longrightarrow> gcd d (a^n) = 1" |
|
602 |
by (induct n, simp_all add: coprime_mult) |
|
603 |
||
604 |
lemma coprime_exp2 [intro]: |
|
605 |
"gcd a b = 1 \<Longrightarrow> gcd (a^n) (b^m) = 1" |
|
606 |
apply (rule coprime_exp) |
|
607 |
apply (subst gcd.commute) |
|
608 |
apply (rule coprime_exp) |
|
609 |
apply (subst gcd.commute) |
|
610 |
apply assumption |
|
611 |
done |
|
612 |
||
613 |
lemma gcd_exp: |
|
614 |
"gcd (a^n) (b^n) = (gcd a b) ^ n" |
|
615 |
proof (cases "a = 0 \<and> b = 0") |
|
616 |
assume "a = 0 \<and> b = 0" |
|
617 |
then show ?thesis by (cases n, simp_all add: gcd_0_left) |
|
618 |
next |
|
619 |
assume A: "\<not>(a = 0 \<and> b = 0)" |
|
620 |
hence "1 = gcd ((a div gcd a b)^n) ((b div gcd a b)^n)" |
|
621 |
using div_gcd_coprime by (subst sym, auto simp: div_gcd_coprime) |
|
622 |
hence "(gcd a b) ^ n = (gcd a b) ^ n * ..." by simp |
|
623 |
also note gcd_mult_distrib |
|
| 60438 | 624 |
also have "normalization_factor ((gcd a b)^n) = 1" |
625 |
by (simp add: normalization_factor_pow A) |
|
| 58023 | 626 |
also have "(gcd a b)^n * (a div gcd a b)^n = a^n" |
627 |
by (subst ac_simps, subst div_power, simp, rule dvd_div_mult_self, rule dvd_power_same, simp) |
|
628 |
also have "(gcd a b)^n * (b div gcd a b)^n = b^n" |
|
629 |
by (subst ac_simps, subst div_power, simp, rule dvd_div_mult_self, rule dvd_power_same, simp) |
|
630 |
finally show ?thesis by simp |
|
631 |
qed |
|
632 |
||
633 |
lemma coprime_common_divisor: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
634 |
"gcd a b = 1 \<Longrightarrow> a dvd a \<Longrightarrow> a dvd b \<Longrightarrow> is_unit a" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
635 |
apply (subgoal_tac "a dvd gcd a b") |
| 59061 | 636 |
apply simp |
| 58023 | 637 |
apply (erule (1) gcd_greatest) |
638 |
done |
|
639 |
||
640 |
lemma division_decomp: |
|
641 |
assumes dc: "a dvd b * c" |
|
642 |
shows "\<exists>b' c'. a = b' * c' \<and> b' dvd b \<and> c' dvd c" |
|
643 |
proof (cases "gcd a b = 0") |
|
644 |
assume "gcd a b = 0" |
|
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
645 |
hence "a = 0 \<and> b = 0" by simp |
| 58023 | 646 |
hence "a = 0 * c \<and> 0 dvd b \<and> c dvd c" by simp |
647 |
then show ?thesis by blast |
|
648 |
next |
|
649 |
let ?d = "gcd a b" |
|
650 |
assume "?d \<noteq> 0" |
|
651 |
from gcd_coprime_exists[OF this] |
|
652 |
obtain a' b' where ab': "a = a' * ?d" "b = b' * ?d" "gcd a' b' = 1" |
|
653 |
by blast |
|
654 |
from ab'(1) have "a' dvd a" unfolding dvd_def by blast |
|
655 |
with dc have "a' dvd b*c" using dvd_trans[of a' a "b*c"] by simp |
|
656 |
from dc ab'(1,2) have "a'*?d dvd (b'*?d) * c" by simp |
|
657 |
hence "?d * a' dvd ?d * (b' * c)" by (simp add: mult_ac) |
|
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
658 |
with `?d \<noteq> 0` have "a' dvd b' * c" by simp |
| 58023 | 659 |
with coprime_dvd_mult[OF ab'(3)] |
660 |
have "a' dvd c" by (subst (asm) ac_simps, blast) |
|
661 |
with ab'(1) have "a = ?d * a' \<and> ?d dvd b \<and> a' dvd c" by (simp add: mult_ac) |
|
662 |
then show ?thesis by blast |
|
663 |
qed |
|
664 |
||
| 60433 | 665 |
lemma pow_divs_pow: |
| 58023 | 666 |
assumes ab: "a ^ n dvd b ^ n" and n: "n \<noteq> 0" |
667 |
shows "a dvd b" |
|
668 |
proof (cases "gcd a b = 0") |
|
669 |
assume "gcd a b = 0" |
|
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
670 |
then show ?thesis by simp |
| 58023 | 671 |
next |
672 |
let ?d = "gcd a b" |
|
673 |
assume "?d \<noteq> 0" |
|
674 |
from n obtain m where m: "n = Suc m" by (cases n, simp_all) |
|
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
675 |
from `?d \<noteq> 0` have zn: "?d ^ n \<noteq> 0" by (rule power_not_zero) |
| 58023 | 676 |
from gcd_coprime_exists[OF `?d \<noteq> 0`] |
677 |
obtain a' b' where ab': "a = a' * ?d" "b = b' * ?d" "gcd a' b' = 1" |
|
678 |
by blast |
|
679 |
from ab have "(a' * ?d) ^ n dvd (b' * ?d) ^ n" |
|
680 |
by (simp add: ab'(1,2)[symmetric]) |
|
681 |
hence "?d^n * a'^n dvd ?d^n * b'^n" |
|
682 |
by (simp only: power_mult_distrib ac_simps) |
|
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
683 |
with zn have "a'^n dvd b'^n" by simp |
| 58023 | 684 |
hence "a' dvd b'^n" using dvd_trans[of a' "a'^n" "b'^n"] by (simp add: m) |
685 |
hence "a' dvd b'^m * b'" by (simp add: m ac_simps) |
|
686 |
with coprime_dvd_mult[OF coprime_exp[OF ab'(3), of m]] |
|
687 |
have "a' dvd b'" by (subst (asm) ac_simps, blast) |
|
688 |
hence "a'*?d dvd b'*?d" by (rule mult_dvd_mono, simp) |
|
689 |
with ab'(1,2) show ?thesis by simp |
|
690 |
qed |
|
691 |
||
| 60433 | 692 |
lemma pow_divs_eq [simp]: |
| 58023 | 693 |
"n \<noteq> 0 \<Longrightarrow> a ^ n dvd b ^ n \<longleftrightarrow> a dvd b" |
| 60433 | 694 |
by (auto intro: pow_divs_pow dvd_power_same) |
| 58023 | 695 |
|
| 60433 | 696 |
lemma divs_mult: |
| 58023 | 697 |
assumes mr: "m dvd r" and nr: "n dvd r" and mn: "gcd m n = 1" |
698 |
shows "m * n dvd r" |
|
699 |
proof - |
|
700 |
from mr nr obtain m' n' where m': "r = m*m'" and n': "r = n*n'" |
|
701 |
unfolding dvd_def by blast |
|
702 |
from mr n' have "m dvd n'*n" by (simp add: ac_simps) |
|
703 |
hence "m dvd n'" using coprime_dvd_mult_iff[OF mn] by simp |
|
704 |
then obtain k where k: "n' = m*k" unfolding dvd_def by blast |
|
705 |
with n' have "r = m * n * k" by (simp add: mult_ac) |
|
706 |
then show ?thesis unfolding dvd_def by blast |
|
707 |
qed |
|
708 |
||
709 |
lemma coprime_plus_one [simp]: "gcd (n + 1) n = 1" |
|
710 |
by (subst add_commute, simp) |
|
711 |
||
712 |
lemma setprod_coprime [rule_format]: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
713 |
"(\<forall>i\<in>A. gcd (f i) a = 1) \<longrightarrow> gcd (\<Prod>i\<in>A. f i) a = 1" |
| 58023 | 714 |
apply (cases "finite A") |
715 |
apply (induct set: finite) |
|
716 |
apply (auto simp add: gcd_mult_cancel) |
|
717 |
done |
|
718 |
||
719 |
lemma coprime_divisors: |
|
720 |
assumes "d dvd a" "e dvd b" "gcd a b = 1" |
|
721 |
shows "gcd d e = 1" |
|
722 |
proof - |
|
723 |
from assms obtain k l where "a = d * k" "b = e * l" |
|
724 |
unfolding dvd_def by blast |
|
725 |
with assms have "gcd (d * k) (e * l) = 1" by simp |
|
726 |
hence "gcd (d * k) e = 1" by (rule coprime_lmult) |
|
727 |
also have "gcd (d * k) e = gcd e (d * k)" by (simp add: ac_simps) |
|
728 |
finally have "gcd e d = 1" by (rule coprime_lmult) |
|
729 |
then show ?thesis by (simp add: ac_simps) |
|
730 |
qed |
|
731 |
||
732 |
lemma invertible_coprime: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
733 |
assumes "a * b mod m = 1" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
734 |
shows "coprime a m" |
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
735 |
proof - |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
736 |
from assms have "coprime m (a * b mod m)" |
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
737 |
by simp |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
738 |
then have "coprime m (a * b)" |
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
739 |
by simp |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
740 |
then have "coprime m a" |
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
741 |
by (rule coprime_lmult) |
|
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
742 |
then show ?thesis |
|
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
743 |
by (simp add: ac_simps) |
|
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
744 |
qed |
| 58023 | 745 |
|
746 |
lemma lcm_gcd: |
|
| 60438 | 747 |
"lcm a b = a * b div (gcd a b * normalization_factor (a*b))" |
| 58023 | 748 |
by (simp only: lcm_lcm_eucl gcd_gcd_eucl lcm_eucl_def) |
749 |
||
750 |
lemma lcm_gcd_prod: |
|
| 60438 | 751 |
"lcm a b * gcd a b = a * b div normalization_factor (a*b)" |
| 58023 | 752 |
proof (cases "a * b = 0") |
| 60438 | 753 |
let ?nf = normalization_factor |
| 58023 | 754 |
assume "a * b \<noteq> 0" |
| 58953 | 755 |
hence "gcd a b \<noteq> 0" by simp |
| 58023 | 756 |
from lcm_gcd have "lcm a b * gcd a b = gcd a b * (a * b div (?nf (a*b) * gcd a b))" |
757 |
by (simp add: mult_ac) |
|
| 60432 | 758 |
also from `a * b \<noteq> 0` have "... = a * b div ?nf (a*b)" |
759 |
by (simp add: div_mult_swap mult.commute) |
|
| 58023 | 760 |
finally show ?thesis . |
| 58953 | 761 |
qed (auto simp add: lcm_gcd) |
| 58023 | 762 |
|
763 |
lemma lcm_dvd1 [iff]: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
764 |
"a dvd lcm a b" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
765 |
proof (cases "a*b = 0") |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
766 |
assume "a * b \<noteq> 0" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
767 |
hence "gcd a b \<noteq> 0" by simp |
| 60438 | 768 |
let ?c = "1 div normalization_factor (a * b)" |
769 |
from `a * b \<noteq> 0` have [simp]: "is_unit (normalization_factor (a * b))" by simp |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
770 |
from lcm_gcd_prod[of a b] have "lcm a b * gcd a b = a * ?c * b" |
| 60432 | 771 |
by (simp add: div_mult_swap unit_div_commute) |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
772 |
hence "lcm a b * gcd a b div gcd a b = a * ?c * b div gcd a b" by simp |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
773 |
with `gcd a b \<noteq> 0` have "lcm a b = a * ?c * b div gcd a b" |
| 58023 | 774 |
by (subst (asm) div_mult_self2_is_id, simp_all) |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
775 |
also have "... = a * (?c * b div gcd a b)" |
| 58023 | 776 |
by (metis div_mult_swap gcd_dvd2 mult_assoc) |
777 |
finally show ?thesis by (rule dvdI) |
|
| 58953 | 778 |
qed (auto simp add: lcm_gcd) |
| 58023 | 779 |
|
780 |
lemma lcm_least: |
|
781 |
"\<lbrakk>a dvd k; b dvd k\<rbrakk> \<Longrightarrow> lcm a b dvd k" |
|
782 |
proof (cases "k = 0") |
|
| 60438 | 783 |
let ?nf = normalization_factor |
| 58023 | 784 |
assume "k \<noteq> 0" |
785 |
hence "is_unit (?nf k)" by simp |
|
786 |
hence "?nf k \<noteq> 0" by (metis not_is_unit_0) |
|
787 |
assume A: "a dvd k" "b dvd k" |
|
| 58953 | 788 |
hence "gcd a b \<noteq> 0" using `k \<noteq> 0` by auto |
| 58023 | 789 |
from A obtain r s where ar: "k = a * r" and bs: "k = b * s" |
790 |
unfolding dvd_def by blast |
|
| 58953 | 791 |
with `k \<noteq> 0` have "r * s \<noteq> 0" |
792 |
by auto (drule sym [of 0], simp) |
|
| 58023 | 793 |
hence "is_unit (?nf (r * s))" by simp |
794 |
let ?c = "?nf k div ?nf (r*s)" |
|
795 |
from `is_unit (?nf k)` and `is_unit (?nf (r * s))` have "is_unit ?c" by (rule unit_div) |
|
796 |
hence "?c \<noteq> 0" using not_is_unit_0 by fast |
|
797 |
from ar bs have "k * k * gcd s r = ?nf k * k * gcd (k * s) (k * r)" |
|
| 58953 | 798 |
by (subst mult_assoc, subst gcd_mult_distrib[of k s r], simp only: ac_simps) |
| 58023 | 799 |
also have "... = ?nf k * k * gcd ((r*s) * a) ((r*s) * b)" |
800 |
by (subst (3) `k = a * r`, subst (3) `k = b * s`, simp add: algebra_simps) |
|
801 |
also have "... = ?c * r*s * k * gcd a b" using `r * s \<noteq> 0` |
|
802 |
by (subst gcd_mult_distrib'[symmetric], simp add: algebra_simps unit_simps) |
|
803 |
finally have "(a*r) * (b*s) * gcd s r = ?c * k * r * s * gcd a b" |
|
804 |
by (subst ar[symmetric], subst bs[symmetric], simp add: mult_ac) |
|
805 |
hence "a * b * gcd s r * (r * s) = ?c * k * gcd a b * (r * s)" |
|
806 |
by (simp add: algebra_simps) |
|
807 |
hence "?c * k * gcd a b = a * b * gcd s r" using `r * s \<noteq> 0` |
|
808 |
by (metis div_mult_self2_is_id) |
|
809 |
also have "... = lcm a b * gcd a b * gcd s r * ?nf (a*b)" |
|
810 |
by (subst lcm_gcd_prod[of a b], metis gcd_mult_distrib gcd_mult_distrib') |
|
811 |
also have "... = lcm a b * gcd s r * ?nf (a*b) * gcd a b" |
|
812 |
by (simp add: algebra_simps) |
|
813 |
finally have "k * ?c = lcm a b * gcd s r * ?nf (a*b)" using `gcd a b \<noteq> 0` |
|
814 |
by (metis mult.commute div_mult_self2_is_id) |
|
815 |
hence "k = lcm a b * (gcd s r * ?nf (a*b)) div ?c" using `?c \<noteq> 0` |
|
816 |
by (metis div_mult_self2_is_id mult_assoc) |
|
817 |
also have "... = lcm a b * (gcd s r * ?nf (a*b) div ?c)" using `is_unit ?c` |
|
818 |
by (simp add: unit_simps) |
|
819 |
finally show ?thesis by (rule dvdI) |
|
820 |
qed simp |
|
821 |
||
822 |
lemma lcm_zero: |
|
823 |
"lcm a b = 0 \<longleftrightarrow> a = 0 \<or> b = 0" |
|
824 |
proof - |
|
| 60438 | 825 |
let ?nf = normalization_factor |
| 58023 | 826 |
{
|
827 |
assume "a \<noteq> 0" "b \<noteq> 0" |
|
828 |
hence "a * b div ?nf (a * b) \<noteq> 0" by (simp add: no_zero_divisors) |
|
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
829 |
moreover from `a \<noteq> 0` and `b \<noteq> 0` have "gcd a b \<noteq> 0" by simp |
| 58023 | 830 |
ultimately have "lcm a b \<noteq> 0" using lcm_gcd_prod[of a b] by (intro notI, simp) |
831 |
} moreover {
|
|
832 |
assume "a = 0 \<or> b = 0" |
|
833 |
hence "lcm a b = 0" by (elim disjE, simp_all add: lcm_gcd) |
|
834 |
} |
|
835 |
ultimately show ?thesis by blast |
|
836 |
qed |
|
837 |
||
838 |
lemmas lcm_0_iff = lcm_zero |
|
839 |
||
840 |
lemma gcd_lcm: |
|
841 |
assumes "lcm a b \<noteq> 0" |
|
| 60438 | 842 |
shows "gcd a b = a * b div (lcm a b * normalization_factor (a * b))" |
| 58023 | 843 |
proof- |
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
844 |
from assms have "gcd a b \<noteq> 0" by (simp add: lcm_zero) |
| 60438 | 845 |
let ?c = "normalization_factor (a * b)" |
| 58023 | 846 |
from `lcm a b \<noteq> 0` have "?c \<noteq> 0" by (intro notI, simp add: lcm_zero no_zero_divisors) |
847 |
hence "is_unit ?c" by simp |
|
848 |
from lcm_gcd_prod [of a b] have "gcd a b = a * b div ?c div lcm a b" |
|
849 |
by (subst (2) div_mult_self2_is_id[OF `lcm a b \<noteq> 0`, symmetric], simp add: mult_ac) |
|
| 60433 | 850 |
also from `is_unit ?c` have "... = a * b div (lcm a b * ?c)" |
| 60438 | 851 |
by (metis `?c \<noteq> 0` div_mult_mult1 dvd_mult_div_cancel mult_commute normalization_factor_dvd') |
| 60433 | 852 |
finally show ?thesis . |
| 58023 | 853 |
qed |
854 |
||
| 60438 | 855 |
lemma normalization_factor_lcm [simp]: |
856 |
"normalization_factor (lcm a b) = (if a = 0 \<or> b = 0 then 0 else 1)" |
|
| 58023 | 857 |
proof (cases "a = 0 \<or> b = 0") |
858 |
case True then show ?thesis |
|
| 58953 | 859 |
by (auto simp add: lcm_gcd) |
| 58023 | 860 |
next |
861 |
case False |
|
| 60438 | 862 |
let ?nf = normalization_factor |
| 58023 | 863 |
from lcm_gcd_prod[of a b] |
864 |
have "?nf (lcm a b) * ?nf (gcd a b) = ?nf (a*b) div ?nf (a*b)" |
|
| 60438 | 865 |
by (metis div_by_0 div_self normalization_correct normalization_factor_0 normalization_factor_mult) |
| 58023 | 866 |
also have "... = (if a*b = 0 then 0 else 1)" |
| 58953 | 867 |
by simp |
868 |
finally show ?thesis using False by simp |
|
| 58023 | 869 |
qed |
870 |
||
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
871 |
lemma lcm_dvd2 [iff]: "b dvd lcm a b" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
872 |
using lcm_dvd1 [of b a] by (simp add: lcm_gcd ac_simps) |
| 58023 | 873 |
|
874 |
lemma lcmI: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
875 |
"\<lbrakk>a dvd k; b dvd k; \<And>l. a dvd l \<Longrightarrow> b dvd l \<Longrightarrow> k dvd l; |
| 60438 | 876 |
normalization_factor k = (if k = 0 then 0 else 1)\<rbrakk> \<Longrightarrow> k = lcm a b" |
| 58023 | 877 |
by (intro normed_associated_imp_eq) (auto simp: associated_def intro: lcm_least) |
878 |
||
879 |
sublocale lcm!: abel_semigroup lcm |
|
880 |
proof |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
881 |
fix a b c |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
882 |
show "lcm (lcm a b) c = lcm a (lcm b c)" |
| 58023 | 883 |
proof (rule lcmI) |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
884 |
have "a dvd lcm a b" and "lcm a b dvd lcm (lcm a b) c" by simp_all |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
885 |
then show "a dvd lcm (lcm a b) c" by (rule dvd_trans) |
| 58023 | 886 |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
887 |
have "b dvd lcm a b" and "lcm a b dvd lcm (lcm a b) c" by simp_all |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
888 |
hence "b dvd lcm (lcm a b) c" by (rule dvd_trans) |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
889 |
moreover have "c dvd lcm (lcm a b) c" by simp |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
890 |
ultimately show "lcm b c dvd lcm (lcm a b) c" by (rule lcm_least) |
| 58023 | 891 |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
892 |
fix l assume "a dvd l" and "lcm b c dvd l" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
893 |
have "b dvd lcm b c" by simp |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
894 |
from this and `lcm b c dvd l` have "b dvd l" by (rule dvd_trans) |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
895 |
have "c dvd lcm b c" by simp |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
896 |
from this and `lcm b c dvd l` have "c dvd l" by (rule dvd_trans) |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
897 |
from `a dvd l` and `b dvd l` have "lcm a b dvd l" by (rule lcm_least) |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
898 |
from this and `c dvd l` show "lcm (lcm a b) c dvd l" by (rule lcm_least) |
| 58023 | 899 |
qed (simp add: lcm_zero) |
900 |
next |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
901 |
fix a b |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
902 |
show "lcm a b = lcm b a" |
| 58023 | 903 |
by (simp add: lcm_gcd ac_simps) |
904 |
qed |
|
905 |
||
906 |
lemma dvd_lcm_D1: |
|
907 |
"lcm m n dvd k \<Longrightarrow> m dvd k" |
|
908 |
by (rule dvd_trans, rule lcm_dvd1, assumption) |
|
909 |
||
910 |
lemma dvd_lcm_D2: |
|
911 |
"lcm m n dvd k \<Longrightarrow> n dvd k" |
|
912 |
by (rule dvd_trans, rule lcm_dvd2, assumption) |
|
913 |
||
914 |
lemma gcd_dvd_lcm [simp]: |
|
915 |
"gcd a b dvd lcm a b" |
|
916 |
by (metis dvd_trans gcd_dvd2 lcm_dvd2) |
|
917 |
||
918 |
lemma lcm_1_iff: |
|
919 |
"lcm a b = 1 \<longleftrightarrow> is_unit a \<and> is_unit b" |
|
920 |
proof |
|
921 |
assume "lcm a b = 1" |
|
| 59061 | 922 |
then show "is_unit a \<and> is_unit b" by auto |
| 58023 | 923 |
next |
924 |
assume "is_unit a \<and> is_unit b" |
|
| 59061 | 925 |
hence "a dvd 1" and "b dvd 1" by simp_all |
926 |
hence "is_unit (lcm a b)" by (rule lcm_least) |
|
| 60438 | 927 |
hence "lcm a b = normalization_factor (lcm a b)" |
928 |
by (subst normalization_factor_unit, simp_all) |
|
| 59061 | 929 |
also have "\<dots> = 1" using `is_unit a \<and> is_unit b` |
930 |
by auto |
|
| 58023 | 931 |
finally show "lcm a b = 1" . |
932 |
qed |
|
933 |
||
934 |
lemma lcm_0_left [simp]: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
935 |
"lcm 0 a = 0" |
| 58023 | 936 |
by (rule sym, rule lcmI, simp_all) |
937 |
||
938 |
lemma lcm_0 [simp]: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
939 |
"lcm a 0 = 0" |
| 58023 | 940 |
by (rule sym, rule lcmI, simp_all) |
941 |
||
942 |
lemma lcm_unique: |
|
943 |
"a dvd d \<and> b dvd d \<and> |
|
| 60438 | 944 |
normalization_factor d = (if d = 0 then 0 else 1) \<and> |
| 58023 | 945 |
(\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b" |
946 |
by (rule, auto intro: lcmI simp: lcm_least lcm_zero) |
|
947 |
||
948 |
lemma dvd_lcm_I1 [simp]: |
|
949 |
"k dvd m \<Longrightarrow> k dvd lcm m n" |
|
950 |
by (metis lcm_dvd1 dvd_trans) |
|
951 |
||
952 |
lemma dvd_lcm_I2 [simp]: |
|
953 |
"k dvd n \<Longrightarrow> k dvd lcm m n" |
|
954 |
by (metis lcm_dvd2 dvd_trans) |
|
955 |
||
956 |
lemma lcm_1_left [simp]: |
|
| 60438 | 957 |
"lcm 1 a = a div normalization_factor a" |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
958 |
by (cases "a = 0") (simp, rule sym, rule lcmI, simp_all) |
| 58023 | 959 |
|
960 |
lemma lcm_1_right [simp]: |
|
| 60438 | 961 |
"lcm a 1 = a div normalization_factor a" |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
962 |
using lcm_1_left [of a] by (simp add: ac_simps) |
| 58023 | 963 |
|
964 |
lemma lcm_coprime: |
|
| 60438 | 965 |
"gcd a b = 1 \<Longrightarrow> lcm a b = a * b div normalization_factor (a*b)" |
| 58023 | 966 |
by (subst lcm_gcd) simp |
967 |
||
968 |
lemma lcm_proj1_if_dvd: |
|
| 60438 | 969 |
"b dvd a \<Longrightarrow> lcm a b = a div normalization_factor a" |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
970 |
by (cases "a = 0") (simp, rule sym, rule lcmI, simp_all) |
| 58023 | 971 |
|
972 |
lemma lcm_proj2_if_dvd: |
|
| 60438 | 973 |
"a dvd b \<Longrightarrow> lcm a b = b div normalization_factor b" |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
974 |
using lcm_proj1_if_dvd [of a b] by (simp add: ac_simps) |
| 58023 | 975 |
|
976 |
lemma lcm_proj1_iff: |
|
| 60438 | 977 |
"lcm m n = m div normalization_factor m \<longleftrightarrow> n dvd m" |
| 58023 | 978 |
proof |
| 60438 | 979 |
assume A: "lcm m n = m div normalization_factor m" |
| 58023 | 980 |
show "n dvd m" |
981 |
proof (cases "m = 0") |
|
982 |
assume [simp]: "m \<noteq> 0" |
|
| 60438 | 983 |
from A have B: "m = lcm m n * normalization_factor m" |
| 58023 | 984 |
by (simp add: unit_eq_div2) |
985 |
show ?thesis by (subst B, simp) |
|
986 |
qed simp |
|
987 |
next |
|
988 |
assume "n dvd m" |
|
| 60438 | 989 |
then show "lcm m n = m div normalization_factor m" by (rule lcm_proj1_if_dvd) |
| 58023 | 990 |
qed |
991 |
||
992 |
lemma lcm_proj2_iff: |
|
| 60438 | 993 |
"lcm m n = n div normalization_factor n \<longleftrightarrow> m dvd n" |
| 58023 | 994 |
using lcm_proj1_iff [of n m] by (simp add: ac_simps) |
995 |
||
996 |
lemma euclidean_size_lcm_le1: |
|
997 |
assumes "a \<noteq> 0" and "b \<noteq> 0" |
|
998 |
shows "euclidean_size a \<le> euclidean_size (lcm a b)" |
|
999 |
proof - |
|
1000 |
have "a dvd lcm a b" by (rule lcm_dvd1) |
|
1001 |
then obtain c where A: "lcm a b = a * c" unfolding dvd_def by blast |
|
1002 |
with `a \<noteq> 0` and `b \<noteq> 0` have "c \<noteq> 0" by (auto simp: lcm_zero) |
|
1003 |
then show ?thesis by (subst A, intro size_mult_mono) |
|
1004 |
qed |
|
1005 |
||
1006 |
lemma euclidean_size_lcm_le2: |
|
1007 |
"a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> euclidean_size b \<le> euclidean_size (lcm a b)" |
|
1008 |
using euclidean_size_lcm_le1 [of b a] by (simp add: ac_simps) |
|
1009 |
||
1010 |
lemma euclidean_size_lcm_less1: |
|
1011 |
assumes "b \<noteq> 0" and "\<not>b dvd a" |
|
1012 |
shows "euclidean_size a < euclidean_size (lcm a b)" |
|
1013 |
proof (rule ccontr) |
|
1014 |
from assms have "a \<noteq> 0" by auto |
|
1015 |
assume "\<not>euclidean_size a < euclidean_size (lcm a b)" |
|
1016 |
with `a \<noteq> 0` and `b \<noteq> 0` have "euclidean_size (lcm a b) = euclidean_size a" |
|
1017 |
by (intro le_antisym, simp, intro euclidean_size_lcm_le1) |
|
1018 |
with assms have "lcm a b dvd a" |
|
1019 |
by (rule_tac dvd_euclidean_size_eq_imp_dvd) (auto simp: lcm_zero) |
|
1020 |
hence "b dvd a" by (rule dvd_lcm_D2) |
|
1021 |
with `\<not>b dvd a` show False by contradiction |
|
1022 |
qed |
|
1023 |
||
1024 |
lemma euclidean_size_lcm_less2: |
|
1025 |
assumes "a \<noteq> 0" and "\<not>a dvd b" |
|
1026 |
shows "euclidean_size b < euclidean_size (lcm a b)" |
|
1027 |
using assms euclidean_size_lcm_less1 [of a b] by (simp add: ac_simps) |
|
1028 |
||
1029 |
lemma lcm_mult_unit1: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1030 |
"is_unit a \<Longrightarrow> lcm (b * a) c = lcm b c" |
| 58023 | 1031 |
apply (rule lcmI) |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1032 |
apply (rule dvd_trans[of _ "b * a"], simp, rule lcm_dvd1) |
| 58023 | 1033 |
apply (rule lcm_dvd2) |
1034 |
apply (rule lcm_least, simp add: unit_simps, assumption) |
|
| 60438 | 1035 |
apply (subst normalization_factor_lcm, simp add: lcm_zero) |
| 58023 | 1036 |
done |
1037 |
||
1038 |
lemma lcm_mult_unit2: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1039 |
"is_unit a \<Longrightarrow> lcm b (c * a) = lcm b c" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1040 |
using lcm_mult_unit1 [of a c b] by (simp add: ac_simps) |
| 58023 | 1041 |
|
1042 |
lemma lcm_div_unit1: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1043 |
"is_unit a \<Longrightarrow> lcm (b div a) c = lcm b c" |
| 60433 | 1044 |
by (erule is_unitE [of _ b]) (simp add: lcm_mult_unit1) |
| 58023 | 1045 |
|
1046 |
lemma lcm_div_unit2: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1047 |
"is_unit a \<Longrightarrow> lcm b (c div a) = lcm b c" |
| 60433 | 1048 |
by (erule is_unitE [of _ c]) (simp add: lcm_mult_unit2) |
| 58023 | 1049 |
|
1050 |
lemma lcm_left_idem: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1051 |
"lcm a (lcm a b) = lcm a b" |
| 58023 | 1052 |
apply (rule lcmI) |
1053 |
apply simp |
|
1054 |
apply (subst lcm.assoc [symmetric], rule lcm_dvd2) |
|
1055 |
apply (rule lcm_least, assumption) |
|
1056 |
apply (erule (1) lcm_least) |
|
1057 |
apply (auto simp: lcm_zero) |
|
1058 |
done |
|
1059 |
||
1060 |
lemma lcm_right_idem: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1061 |
"lcm (lcm a b) b = lcm a b" |
| 58023 | 1062 |
apply (rule lcmI) |
1063 |
apply (subst lcm.assoc, rule lcm_dvd1) |
|
1064 |
apply (rule lcm_dvd2) |
|
1065 |
apply (rule lcm_least, erule (1) lcm_least, assumption) |
|
1066 |
apply (auto simp: lcm_zero) |
|
1067 |
done |
|
1068 |
||
1069 |
lemma comp_fun_idem_lcm: "comp_fun_idem lcm" |
|
1070 |
proof |
|
1071 |
fix a b show "lcm a \<circ> lcm b = lcm b \<circ> lcm a" |
|
1072 |
by (simp add: fun_eq_iff ac_simps) |
|
1073 |
next |
|
1074 |
fix a show "lcm a \<circ> lcm a = lcm a" unfolding o_def |
|
1075 |
by (intro ext, simp add: lcm_left_idem) |
|
1076 |
qed |
|
1077 |
||
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1078 |
lemma dvd_Lcm [simp]: "a \<in> A \<Longrightarrow> a dvd Lcm A" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1079 |
and Lcm_dvd [simp]: "(\<forall>a\<in>A. a dvd l') \<Longrightarrow> Lcm A dvd l'" |
| 60438 | 1080 |
and normalization_factor_Lcm [simp]: |
1081 |
"normalization_factor (Lcm A) = (if Lcm A = 0 then 0 else 1)" |
|
| 58023 | 1082 |
proof - |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1083 |
have "(\<forall>a\<in>A. a dvd Lcm A) \<and> (\<forall>l'. (\<forall>a\<in>A. a dvd l') \<longrightarrow> Lcm A dvd l') \<and> |
| 60438 | 1084 |
normalization_factor (Lcm A) = (if Lcm A = 0 then 0 else 1)" (is ?thesis) |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1085 |
proof (cases "\<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l)") |
| 58023 | 1086 |
case False |
1087 |
hence "Lcm A = 0" by (auto simp: Lcm_Lcm_eucl Lcm_eucl_def) |
|
1088 |
with False show ?thesis by auto |
|
1089 |
next |
|
1090 |
case True |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1091 |
then obtain l\<^sub>0 where l\<^sub>0_props: "l\<^sub>0 \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l\<^sub>0)" by blast |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1092 |
def n \<equiv> "LEAST n. \<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) \<and> euclidean_size l = n" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1093 |
def l \<equiv> "SOME l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) \<and> euclidean_size l = n" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1094 |
have "\<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) \<and> euclidean_size l = n" |
| 58023 | 1095 |
apply (subst n_def) |
1096 |
apply (rule LeastI[of _ "euclidean_size l\<^sub>0"]) |
|
1097 |
apply (rule exI[of _ l\<^sub>0]) |
|
1098 |
apply (simp add: l\<^sub>0_props) |
|
1099 |
done |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1100 |
from someI_ex[OF this] have "l \<noteq> 0" and "\<forall>a\<in>A. a dvd l" and "euclidean_size l = n" |
| 58023 | 1101 |
unfolding l_def by simp_all |
1102 |
{
|
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1103 |
fix l' assume "\<forall>a\<in>A. a dvd l'" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1104 |
with `\<forall>a\<in>A. a dvd l` have "\<forall>a\<in>A. a dvd gcd l l'" by (auto intro: gcd_greatest) |
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
1105 |
moreover from `l \<noteq> 0` have "gcd l l' \<noteq> 0" by simp |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1106 |
ultimately have "\<exists>b. b \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd b) \<and> euclidean_size b = euclidean_size (gcd l l')" |
| 58023 | 1107 |
by (intro exI[of _ "gcd l l'"], auto) |
1108 |
hence "euclidean_size (gcd l l') \<ge> n" by (subst n_def) (rule Least_le) |
|
1109 |
moreover have "euclidean_size (gcd l l') \<le> n" |
|
1110 |
proof - |
|
1111 |
have "gcd l l' dvd l" by simp |
|
1112 |
then obtain a where "l = gcd l l' * a" unfolding dvd_def by blast |
|
1113 |
with `l \<noteq> 0` have "a \<noteq> 0" by auto |
|
1114 |
hence "euclidean_size (gcd l l') \<le> euclidean_size (gcd l l' * a)" |
|
1115 |
by (rule size_mult_mono) |
|
1116 |
also have "gcd l l' * a = l" using `l = gcd l l' * a` .. |
|
1117 |
also note `euclidean_size l = n` |
|
1118 |
finally show "euclidean_size (gcd l l') \<le> n" . |
|
1119 |
qed |
|
1120 |
ultimately have "euclidean_size l = euclidean_size (gcd l l')" |
|
1121 |
by (intro le_antisym, simp_all add: `euclidean_size l = n`) |
|
1122 |
with `l \<noteq> 0` have "l dvd gcd l l'" by (blast intro: dvd_euclidean_size_eq_imp_dvd) |
|
1123 |
hence "l dvd l'" by (blast dest: dvd_gcd_D2) |
|
1124 |
} |
|
1125 |
||
| 60438 | 1126 |
with `(\<forall>a\<in>A. a dvd l)` and normalization_factor_is_unit[OF `l \<noteq> 0`] and `l \<noteq> 0` |
1127 |
have "(\<forall>a\<in>A. a dvd l div normalization_factor l) \<and> |
|
1128 |
(\<forall>l'. (\<forall>a\<in>A. a dvd l') \<longrightarrow> l div normalization_factor l dvd l') \<and> |
|
1129 |
normalization_factor (l div normalization_factor l) = |
|
1130 |
(if l div normalization_factor l = 0 then 0 else 1)" |
|
| 58023 | 1131 |
by (auto simp: unit_simps) |
| 60438 | 1132 |
also from True have "l div normalization_factor l = Lcm A" |
| 58023 | 1133 |
by (simp add: Lcm_Lcm_eucl Lcm_eucl_def Let_def n_def l_def) |
1134 |
finally show ?thesis . |
|
1135 |
qed |
|
1136 |
note A = this |
|
1137 |
||
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1138 |
{fix a assume "a \<in> A" then show "a dvd Lcm A" using A by blast}
|
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1139 |
{fix l' assume "\<forall>a\<in>A. a dvd l'" then show "Lcm A dvd l'" using A by blast}
|
| 60438 | 1140 |
from A show "normalization_factor (Lcm A) = (if Lcm A = 0 then 0 else 1)" by blast |
| 58023 | 1141 |
qed |
1142 |
||
1143 |
lemma LcmI: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1144 |
"(\<And>a. a\<in>A \<Longrightarrow> a dvd l) \<Longrightarrow> (\<And>l'. (\<forall>a\<in>A. a dvd l') \<Longrightarrow> l dvd l') \<Longrightarrow> |
| 60438 | 1145 |
normalization_factor l = (if l = 0 then 0 else 1) \<Longrightarrow> l = Lcm A" |
| 58023 | 1146 |
by (intro normed_associated_imp_eq) |
1147 |
(auto intro: Lcm_dvd dvd_Lcm simp: associated_def) |
|
1148 |
||
1149 |
lemma Lcm_subset: |
|
1150 |
"A \<subseteq> B \<Longrightarrow> Lcm A dvd Lcm B" |
|
1151 |
by (blast intro: Lcm_dvd dvd_Lcm) |
|
1152 |
||
1153 |
lemma Lcm_Un: |
|
1154 |
"Lcm (A \<union> B) = lcm (Lcm A) (Lcm B)" |
|
1155 |
apply (rule lcmI) |
|
1156 |
apply (blast intro: Lcm_subset) |
|
1157 |
apply (blast intro: Lcm_subset) |
|
1158 |
apply (intro Lcm_dvd ballI, elim UnE) |
|
1159 |
apply (rule dvd_trans, erule dvd_Lcm, assumption) |
|
1160 |
apply (rule dvd_trans, erule dvd_Lcm, assumption) |
|
1161 |
apply simp |
|
1162 |
done |
|
1163 |
||
1164 |
lemma Lcm_1_iff: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1165 |
"Lcm A = 1 \<longleftrightarrow> (\<forall>a\<in>A. is_unit a)" |
| 58023 | 1166 |
proof |
1167 |
assume "Lcm A = 1" |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1168 |
then show "\<forall>a\<in>A. is_unit a" by auto |
| 58023 | 1169 |
qed (rule LcmI [symmetric], auto) |
1170 |
||
1171 |
lemma Lcm_no_units: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1172 |
"Lcm A = Lcm (A - {a. is_unit a})"
|
| 58023 | 1173 |
proof - |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1174 |
have "(A - {a. is_unit a}) \<union> {a\<in>A. is_unit a} = A" by blast
|
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1175 |
hence "Lcm A = lcm (Lcm (A - {a. is_unit a})) (Lcm {a\<in>A. is_unit a})"
|
| 58023 | 1176 |
by (simp add: Lcm_Un[symmetric]) |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1177 |
also have "Lcm {a\<in>A. is_unit a} = 1" by (simp add: Lcm_1_iff)
|
| 58023 | 1178 |
finally show ?thesis by simp |
1179 |
qed |
|
1180 |
||
1181 |
lemma Lcm_empty [simp]: |
|
1182 |
"Lcm {} = 1"
|
|
1183 |
by (simp add: Lcm_1_iff) |
|
1184 |
||
1185 |
lemma Lcm_eq_0 [simp]: |
|
1186 |
"0 \<in> A \<Longrightarrow> Lcm A = 0" |
|
1187 |
by (drule dvd_Lcm) simp |
|
1188 |
||
1189 |
lemma Lcm0_iff': |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1190 |
"Lcm A = 0 \<longleftrightarrow> \<not>(\<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l))" |
| 58023 | 1191 |
proof |
1192 |
assume "Lcm A = 0" |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1193 |
show "\<not>(\<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l))" |
| 58023 | 1194 |
proof |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1195 |
assume ex: "\<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l)" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1196 |
then obtain l\<^sub>0 where l\<^sub>0_props: "l\<^sub>0 \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l\<^sub>0)" by blast |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1197 |
def n \<equiv> "LEAST n. \<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) \<and> euclidean_size l = n" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1198 |
def l \<equiv> "SOME l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) \<and> euclidean_size l = n" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1199 |
have "\<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) \<and> euclidean_size l = n" |
| 58023 | 1200 |
apply (subst n_def) |
1201 |
apply (rule LeastI[of _ "euclidean_size l\<^sub>0"]) |
|
1202 |
apply (rule exI[of _ l\<^sub>0]) |
|
1203 |
apply (simp add: l\<^sub>0_props) |
|
1204 |
done |
|
1205 |
from someI_ex[OF this] have "l \<noteq> 0" unfolding l_def by simp_all |
|
| 60438 | 1206 |
hence "l div normalization_factor l \<noteq> 0" by simp |
1207 |
also from ex have "l div normalization_factor l = Lcm A" |
|
| 58023 | 1208 |
by (simp only: Lcm_Lcm_eucl Lcm_eucl_def n_def l_def if_True Let_def) |
1209 |
finally show False using `Lcm A = 0` by contradiction |
|
1210 |
qed |
|
1211 |
qed (simp only: Lcm_Lcm_eucl Lcm_eucl_def if_False) |
|
1212 |
||
1213 |
lemma Lcm0_iff [simp]: |
|
1214 |
"finite A \<Longrightarrow> Lcm A = 0 \<longleftrightarrow> 0 \<in> A" |
|
1215 |
proof - |
|
1216 |
assume "finite A" |
|
1217 |
have "0 \<in> A \<Longrightarrow> Lcm A = 0" by (intro dvd_0_left dvd_Lcm) |
|
1218 |
moreover {
|
|
1219 |
assume "0 \<notin> A" |
|
1220 |
hence "\<Prod>A \<noteq> 0" |
|
1221 |
apply (induct rule: finite_induct[OF `finite A`]) |
|
1222 |
apply simp |
|
1223 |
apply (subst setprod.insert, assumption, assumption) |
|
1224 |
apply (rule no_zero_divisors) |
|
1225 |
apply blast+ |
|
1226 |
done |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1227 |
moreover from `finite A` have "\<forall>a\<in>A. a dvd \<Prod>A" by blast |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1228 |
ultimately have "\<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l)" by blast |
| 58023 | 1229 |
with Lcm0_iff' have "Lcm A \<noteq> 0" by simp |
1230 |
} |
|
1231 |
ultimately show "Lcm A = 0 \<longleftrightarrow> 0 \<in> A" by blast |
|
1232 |
qed |
|
1233 |
||
1234 |
lemma Lcm_no_multiple: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1235 |
"(\<forall>m. m \<noteq> 0 \<longrightarrow> (\<exists>a\<in>A. \<not>a dvd m)) \<Longrightarrow> Lcm A = 0" |
| 58023 | 1236 |
proof - |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1237 |
assume "\<forall>m. m \<noteq> 0 \<longrightarrow> (\<exists>a\<in>A. \<not>a dvd m)" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1238 |
hence "\<not>(\<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l))" by blast |
| 58023 | 1239 |
then show "Lcm A = 0" by (simp only: Lcm_Lcm_eucl Lcm_eucl_def if_False) |
1240 |
qed |
|
1241 |
||
1242 |
lemma Lcm_insert [simp]: |
|
1243 |
"Lcm (insert a A) = lcm a (Lcm A)" |
|
1244 |
proof (rule lcmI) |
|
1245 |
fix l assume "a dvd l" and "Lcm A dvd l" |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1246 |
hence "\<forall>a\<in>A. a dvd l" by (blast intro: dvd_trans dvd_Lcm) |
| 58023 | 1247 |
with `a dvd l` show "Lcm (insert a A) dvd l" by (force intro: Lcm_dvd) |
1248 |
qed (auto intro: Lcm_dvd dvd_Lcm) |
|
1249 |
||
1250 |
lemma Lcm_finite: |
|
1251 |
assumes "finite A" |
|
1252 |
shows "Lcm A = Finite_Set.fold lcm 1 A" |
|
1253 |
by (induct rule: finite.induct[OF `finite A`]) |
|
1254 |
(simp_all add: comp_fun_idem.fold_insert_idem[OF comp_fun_idem_lcm]) |
|
1255 |
||
|
60431
db9c67b760f1
dropped warnings by dropping ineffective code declarations
haftmann
parents:
60430
diff
changeset
|
1256 |
lemma Lcm_set [code_unfold]: |
| 58023 | 1257 |
"Lcm (set xs) = fold lcm xs 1" |
1258 |
using comp_fun_idem.fold_set_fold[OF comp_fun_idem_lcm] Lcm_finite by (simp add: ac_simps) |
|
1259 |
||
1260 |
lemma Lcm_singleton [simp]: |
|
| 60438 | 1261 |
"Lcm {a} = a div normalization_factor a"
|
| 58023 | 1262 |
by simp |
1263 |
||
1264 |
lemma Lcm_2 [simp]: |
|
1265 |
"Lcm {a,b} = lcm a b"
|
|
1266 |
by (simp only: Lcm_insert Lcm_empty lcm_1_right) |
|
1267 |
(cases "b = 0", simp, rule lcm_div_unit2, simp) |
|
1268 |
||
1269 |
lemma Lcm_coprime: |
|
1270 |
assumes "finite A" and "A \<noteq> {}"
|
|
1271 |
assumes "\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<noteq> b \<Longrightarrow> gcd a b = 1" |
|
| 60438 | 1272 |
shows "Lcm A = \<Prod>A div normalization_factor (\<Prod>A)" |
| 58023 | 1273 |
using assms proof (induct rule: finite_ne_induct) |
1274 |
case (insert a A) |
|
1275 |
have "Lcm (insert a A) = lcm a (Lcm A)" by simp |
|
| 60438 | 1276 |
also from insert have "Lcm A = \<Prod>A div normalization_factor (\<Prod>A)" by blast |
| 58023 | 1277 |
also have "lcm a \<dots> = lcm a (\<Prod>A)" by (cases "\<Prod>A = 0") (simp_all add: lcm_div_unit2) |
1278 |
also from insert have "gcd a (\<Prod>A) = 1" by (subst gcd.commute, intro setprod_coprime) auto |
|
| 60438 | 1279 |
with insert have "lcm a (\<Prod>A) = \<Prod>(insert a A) div normalization_factor (\<Prod>(insert a A))" |
| 58023 | 1280 |
by (simp add: lcm_coprime) |
1281 |
finally show ?case . |
|
1282 |
qed simp |
|
1283 |
||
1284 |
lemma Lcm_coprime': |
|
1285 |
"card A \<noteq> 0 \<Longrightarrow> (\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<noteq> b \<Longrightarrow> gcd a b = 1) |
|
| 60438 | 1286 |
\<Longrightarrow> Lcm A = \<Prod>A div normalization_factor (\<Prod>A)" |
| 58023 | 1287 |
by (rule Lcm_coprime) (simp_all add: card_eq_0_iff) |
1288 |
||
1289 |
lemma Gcd_Lcm: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1290 |
"Gcd A = Lcm {d. \<forall>a\<in>A. d dvd a}"
|
| 58023 | 1291 |
by (simp add: Gcd_Gcd_eucl Lcm_Lcm_eucl Gcd_eucl_def) |
1292 |
||
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1293 |
lemma Gcd_dvd [simp]: "a \<in> A \<Longrightarrow> Gcd A dvd a" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1294 |
and dvd_Gcd [simp]: "(\<forall>a\<in>A. g' dvd a) \<Longrightarrow> g' dvd Gcd A" |
| 60438 | 1295 |
and normalization_factor_Gcd [simp]: |
1296 |
"normalization_factor (Gcd A) = (if Gcd A = 0 then 0 else 1)" |
|
| 58023 | 1297 |
proof - |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1298 |
fix a assume "a \<in> A" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1299 |
hence "Lcm {d. \<forall>a\<in>A. d dvd a} dvd a" by (intro Lcm_dvd) blast
|
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1300 |
then show "Gcd A dvd a" by (simp add: Gcd_Lcm) |
| 58023 | 1301 |
next |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1302 |
fix g' assume "\<forall>a\<in>A. g' dvd a" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1303 |
hence "g' dvd Lcm {d. \<forall>a\<in>A. d dvd a}" by (intro dvd_Lcm) blast
|
| 58023 | 1304 |
then show "g' dvd Gcd A" by (simp add: Gcd_Lcm) |
1305 |
next |
|
| 60438 | 1306 |
show "normalization_factor (Gcd A) = (if Gcd A = 0 then 0 else 1)" |
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
1307 |
by (simp add: Gcd_Lcm) |
| 58023 | 1308 |
qed |
1309 |
||
1310 |
lemma GcdI: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1311 |
"(\<And>a. a\<in>A \<Longrightarrow> l dvd a) \<Longrightarrow> (\<And>l'. (\<forall>a\<in>A. l' dvd a) \<Longrightarrow> l' dvd l) \<Longrightarrow> |
| 60438 | 1312 |
normalization_factor l = (if l = 0 then 0 else 1) \<Longrightarrow> l = Gcd A" |
| 58023 | 1313 |
by (intro normed_associated_imp_eq) |
1314 |
(auto intro: Gcd_dvd dvd_Gcd simp: associated_def) |
|
1315 |
||
1316 |
lemma Lcm_Gcd: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1317 |
"Lcm A = Gcd {m. \<forall>a\<in>A. a dvd m}"
|
| 58023 | 1318 |
by (rule LcmI[symmetric]) (auto intro: dvd_Gcd Gcd_dvd) |
1319 |
||
1320 |
lemma Gcd_0_iff: |
|
1321 |
"Gcd A = 0 \<longleftrightarrow> A \<subseteq> {0}"
|
|
1322 |
apply (rule iffI) |
|
1323 |
apply (rule subsetI, drule Gcd_dvd, simp) |
|
1324 |
apply (auto intro: GcdI[symmetric]) |
|
1325 |
done |
|
1326 |
||
1327 |
lemma Gcd_empty [simp]: |
|
1328 |
"Gcd {} = 0"
|
|
1329 |
by (simp add: Gcd_0_iff) |
|
1330 |
||
1331 |
lemma Gcd_1: |
|
1332 |
"1 \<in> A \<Longrightarrow> Gcd A = 1" |
|
1333 |
by (intro GcdI[symmetric]) (auto intro: Gcd_dvd dvd_Gcd) |
|
1334 |
||
1335 |
lemma Gcd_insert [simp]: |
|
1336 |
"Gcd (insert a A) = gcd a (Gcd A)" |
|
1337 |
proof (rule gcdI) |
|
1338 |
fix l assume "l dvd a" and "l dvd Gcd A" |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1339 |
hence "\<forall>a\<in>A. l dvd a" by (blast intro: dvd_trans Gcd_dvd) |
| 58023 | 1340 |
with `l dvd a` show "l dvd Gcd (insert a A)" by (force intro: Gcd_dvd) |
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
1341 |
qed auto |
| 58023 | 1342 |
|
1343 |
lemma Gcd_finite: |
|
1344 |
assumes "finite A" |
|
1345 |
shows "Gcd A = Finite_Set.fold gcd 0 A" |
|
1346 |
by (induct rule: finite.induct[OF `finite A`]) |
|
1347 |
(simp_all add: comp_fun_idem.fold_insert_idem[OF comp_fun_idem_gcd]) |
|
1348 |
||
|
60431
db9c67b760f1
dropped warnings by dropping ineffective code declarations
haftmann
parents:
60430
diff
changeset
|
1349 |
lemma Gcd_set [code_unfold]: |
| 58023 | 1350 |
"Gcd (set xs) = fold gcd xs 0" |
1351 |
using comp_fun_idem.fold_set_fold[OF comp_fun_idem_gcd] Gcd_finite by (simp add: ac_simps) |
|
1352 |
||
| 60438 | 1353 |
lemma Gcd_singleton [simp]: "Gcd {a} = a div normalization_factor a"
|
| 58023 | 1354 |
by (simp add: gcd_0) |
1355 |
||
1356 |
lemma Gcd_2 [simp]: "Gcd {a,b} = gcd a b"
|
|
1357 |
by (simp only: Gcd_insert Gcd_empty gcd_0) (cases "b = 0", simp, rule gcd_div_unit2, simp) |
|
1358 |
||
|
60439
b765e08f8bc0
proper subclass instances for existing gcd (semi)rings
haftmann
parents:
60438
diff
changeset
|
1359 |
subclass semiring_gcd |
|
b765e08f8bc0
proper subclass instances for existing gcd (semi)rings
haftmann
parents:
60438
diff
changeset
|
1360 |
by unfold_locales (simp_all add: gcd_greatest_iff) |
|
b765e08f8bc0
proper subclass instances for existing gcd (semi)rings
haftmann
parents:
60438
diff
changeset
|
1361 |
|
| 58023 | 1362 |
end |
1363 |
||
1364 |
text {*
|
|
1365 |
A Euclidean ring is a Euclidean semiring with additive inverses. It provides a |
|
1366 |
few more lemmas; in particular, Bezout's lemma holds for any Euclidean ring. |
|
1367 |
*} |
|
1368 |
||
1369 |
class euclidean_ring = euclidean_semiring + idom |
|
1370 |
||
1371 |
class euclidean_ring_gcd = euclidean_semiring_gcd + idom |
|
1372 |
begin |
|
1373 |
||
1374 |
subclass euclidean_ring .. |
|
1375 |
||
|
60439
b765e08f8bc0
proper subclass instances for existing gcd (semi)rings
haftmann
parents:
60438
diff
changeset
|
1376 |
subclass ring_gcd .. |
|
b765e08f8bc0
proper subclass instances for existing gcd (semi)rings
haftmann
parents:
60438
diff
changeset
|
1377 |
|
| 58023 | 1378 |
lemma gcd_neg1 [simp]: |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1379 |
"gcd (-a) b = gcd a b" |
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
1380 |
by (rule sym, rule gcdI, simp_all add: gcd_greatest) |
| 58023 | 1381 |
|
1382 |
lemma gcd_neg2 [simp]: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1383 |
"gcd a (-b) = gcd a b" |
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
1384 |
by (rule sym, rule gcdI, simp_all add: gcd_greatest) |
| 58023 | 1385 |
|
1386 |
lemma gcd_neg_numeral_1 [simp]: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1387 |
"gcd (- numeral n) a = gcd (numeral n) a" |
| 58023 | 1388 |
by (fact gcd_neg1) |
1389 |
||
1390 |
lemma gcd_neg_numeral_2 [simp]: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1391 |
"gcd a (- numeral n) = gcd a (numeral n)" |
| 58023 | 1392 |
by (fact gcd_neg2) |
1393 |
||
1394 |
lemma gcd_diff1: "gcd (m - n) n = gcd m n" |
|
1395 |
by (subst diff_conv_add_uminus, subst gcd_neg2[symmetric], subst gcd_add1, simp) |
|
1396 |
||
1397 |
lemma gcd_diff2: "gcd (n - m) n = gcd m n" |
|
1398 |
by (subst gcd_neg1[symmetric], simp only: minus_diff_eq gcd_diff1) |
|
1399 |
||
1400 |
lemma coprime_minus_one [simp]: "gcd (n - 1) n = 1" |
|
1401 |
proof - |
|
1402 |
have "gcd (n - 1) n = gcd n (n - 1)" by (fact gcd.commute) |
|
1403 |
also have "\<dots> = gcd ((n - 1) + 1) (n - 1)" by simp |
|
1404 |
also have "\<dots> = 1" by (rule coprime_plus_one) |
|
1405 |
finally show ?thesis . |
|
1406 |
qed |
|
1407 |
||
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1408 |
lemma lcm_neg1 [simp]: "lcm (-a) b = lcm a b" |
| 58023 | 1409 |
by (rule sym, rule lcmI, simp_all add: lcm_least lcm_zero) |
1410 |
||
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1411 |
lemma lcm_neg2 [simp]: "lcm a (-b) = lcm a b" |
| 58023 | 1412 |
by (rule sym, rule lcmI, simp_all add: lcm_least lcm_zero) |
1413 |
||
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1414 |
lemma lcm_neg_numeral_1 [simp]: "lcm (- numeral n) a = lcm (numeral n) a" |
| 58023 | 1415 |
by (fact lcm_neg1) |
1416 |
||
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1417 |
lemma lcm_neg_numeral_2 [simp]: "lcm a (- numeral n) = lcm a (numeral n)" |
| 58023 | 1418 |
by (fact lcm_neg2) |
1419 |
||
1420 |
function euclid_ext :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<times> 'a \<times> 'a" where |
|
1421 |
"euclid_ext a b = |
|
1422 |
(if b = 0 then |
|
| 60438 | 1423 |
let c = 1 div normalization_factor a in (c, 0, a * c) |
| 58023 | 1424 |
else |
1425 |
case euclid_ext b (a mod b) of |
|
1426 |
(s,t,c) \<Rightarrow> (t, s - t * (a div b), c))" |
|
1427 |
by (pat_completeness, simp) |
|
1428 |
termination by (relation "measure (euclidean_size \<circ> snd)", simp_all) |
|
1429 |
||
1430 |
declare euclid_ext.simps [simp del] |
|
1431 |
||
1432 |
lemma euclid_ext_0: |
|
| 60438 | 1433 |
"euclid_ext a 0 = (1 div normalization_factor a, 0, a div normalization_factor a)" |
| 60433 | 1434 |
by (subst euclid_ext.simps) (simp add: Let_def) |
| 58023 | 1435 |
|
1436 |
lemma euclid_ext_non_0: |
|
1437 |
"b \<noteq> 0 \<Longrightarrow> euclid_ext a b = (case euclid_ext b (a mod b) of |
|
1438 |
(s,t,c) \<Rightarrow> (t, s - t * (a div b), c))" |
|
| 60433 | 1439 |
by (subst euclid_ext.simps) simp |
| 58023 | 1440 |
|
1441 |
definition euclid_ext' :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<times> 'a" |
|
1442 |
where |
|
1443 |
"euclid_ext' a b = (case euclid_ext a b of (s, t, _) \<Rightarrow> (s, t))" |
|
1444 |
||
1445 |
lemma euclid_ext_gcd [simp]: |
|
1446 |
"(case euclid_ext a b of (_,_,t) \<Rightarrow> t) = gcd a b" |
|
1447 |
proof (induct a b rule: euclid_ext.induct) |
|
1448 |
case (1 a b) |
|
1449 |
then show ?case |
|
1450 |
proof (cases "b = 0") |
|
1451 |
case True |
|
| 60433 | 1452 |
then show ?thesis by |
1453 |
(simp add: euclid_ext_0 unit_div mult_ac unit_simps gcd_0) |
|
| 58023 | 1454 |
next |
1455 |
case False with 1 show ?thesis |
|
1456 |
by (simp add: euclid_ext_non_0 ac_simps split: prod.split prod.split_asm) |
|
1457 |
qed |
|
1458 |
qed |
|
1459 |
||
1460 |
lemma euclid_ext_gcd' [simp]: |
|
1461 |
"euclid_ext a b = (r, s, t) \<Longrightarrow> t = gcd a b" |
|
1462 |
by (insert euclid_ext_gcd[of a b], drule (1) subst, simp) |
|
1463 |
||
1464 |
lemma euclid_ext_correct: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1465 |
"case euclid_ext a b of (s,t,c) \<Rightarrow> s*a + t*b = c" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1466 |
proof (induct a b rule: euclid_ext.induct) |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1467 |
case (1 a b) |
| 58023 | 1468 |
show ?case |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1469 |
proof (cases "b = 0") |
| 58023 | 1470 |
case True |
1471 |
then show ?thesis by (simp add: euclid_ext_0 mult_ac) |
|
1472 |
next |
|
1473 |
case False |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1474 |
obtain s t c where stc: "euclid_ext b (a mod b) = (s,t,c)" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1475 |
by (cases "euclid_ext b (a mod b)", blast) |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1476 |
from 1 have "c = s * b + t * (a mod b)" by (simp add: stc False) |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1477 |
also have "... = t*((a div b)*b + a mod b) + (s - t * (a div b))*b" |
| 58023 | 1478 |
by (simp add: algebra_simps) |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1479 |
also have "(a div b)*b + a mod b = a" using mod_div_equality . |
| 58023 | 1480 |
finally show ?thesis |
1481 |
by (subst euclid_ext.simps, simp add: False stc) |
|
1482 |
qed |
|
1483 |
qed |
|
1484 |
||
1485 |
lemma euclid_ext'_correct: |
|
1486 |
"fst (euclid_ext' a b) * a + snd (euclid_ext' a b) * b = gcd a b" |
|
1487 |
proof- |
|
1488 |
obtain s t c where "euclid_ext a b = (s,t,c)" |
|
1489 |
by (cases "euclid_ext a b", blast) |
|
1490 |
with euclid_ext_correct[of a b] euclid_ext_gcd[of a b] |
|
1491 |
show ?thesis unfolding euclid_ext'_def by simp |
|
1492 |
qed |
|
1493 |
||
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1494 |
lemma bezout: "\<exists>s t. s * a + t * b = gcd a b" |
| 58023 | 1495 |
using euclid_ext'_correct by blast |
1496 |
||
| 60438 | 1497 |
lemma euclid_ext'_0 [simp]: "euclid_ext' a 0 = (1 div normalization_factor a, 0)" |
| 58023 | 1498 |
by (simp add: bezw_def euclid_ext'_def euclid_ext_0) |
1499 |
||
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1500 |
lemma euclid_ext'_non_0: "b \<noteq> 0 \<Longrightarrow> euclid_ext' a b = (snd (euclid_ext' b (a mod b)), |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1501 |
fst (euclid_ext' b (a mod b)) - snd (euclid_ext' b (a mod b)) * (a div b))" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1502 |
by (cases "euclid_ext b (a mod b)") |
| 58023 | 1503 |
(simp add: euclid_ext'_def euclid_ext_non_0) |
1504 |
||
1505 |
end |
|
1506 |
||
1507 |
instantiation nat :: euclidean_semiring |
|
1508 |
begin |
|
1509 |
||
1510 |
definition [simp]: |
|
1511 |
"euclidean_size_nat = (id :: nat \<Rightarrow> nat)" |
|
1512 |
||
1513 |
definition [simp]: |
|
| 60438 | 1514 |
"normalization_factor_nat (n::nat) = (if n = 0 then 0 else 1 :: nat)" |
| 58023 | 1515 |
|
1516 |
instance proof |
|
| 59061 | 1517 |
qed simp_all |
| 58023 | 1518 |
|
1519 |
end |
|
1520 |
||
1521 |
instantiation int :: euclidean_ring |
|
1522 |
begin |
|
1523 |
||
1524 |
definition [simp]: |
|
1525 |
"euclidean_size_int = (nat \<circ> abs :: int \<Rightarrow> nat)" |
|
1526 |
||
1527 |
definition [simp]: |
|
| 60438 | 1528 |
"normalization_factor_int = (sgn :: int \<Rightarrow> int)" |
| 58023 | 1529 |
|
1530 |
instance proof |
|
1531 |
case goal2 then show ?case by (auto simp add: abs_mult nat_mult_distrib) |
|
1532 |
next |
|
| 59061 | 1533 |
case goal3 then show ?case by (simp add: zsgn_def) |
| 58023 | 1534 |
next |
| 59061 | 1535 |
case goal5 then show ?case by (auto simp: zsgn_def) |
| 58023 | 1536 |
next |
| 59061 | 1537 |
case goal6 then show ?case by (auto split: abs_split simp: zsgn_def) |
| 58023 | 1538 |
qed (auto simp: sgn_times split: abs_split) |
1539 |
||
1540 |
end |
|
1541 |
||
1542 |
end |